The present disclosure relates to systems and methods for determining one or more motor parameters such as the inductance in an AC motor such as to provide improved motor control.
AC motors are used in wide variety of industrial and consumer applications. A motor converts electrical energy into rotational mechanical energy. An alternating current (AC) motor can include motor windings located on a stationary stator and a rotor that includes current-carrying conductors, permanent magnets, or other means for producing a rotating magnetic field. During operation, alternating currents can be supplied to the motor windings to generate magnetic fields, which in turn can cause the rotor to rotate, such as for turning a motor shaft. In certain motor systems a current control loop can ensure proper operation of a motor, for example by ensuring that a phase current follows a reference. The tuning of parameters in the current control loop can be based on motor parameters such as inductance, resistance, or magnetization. However, since the motor parameters are often unknown, it is often not possible to optimize tuning of the current control loop.
The present inventors have recognized, among other things, that there exists a need for a technique to quickly and accurately determine motor parameters such as to provide optimal tuning of a current control loop during operation of the motor. For example, a rise time, overshoot, or settling time can be optimized based on the determined motor parameters. Non-linear behavior of the motor can be compensated for based on the determined motor parameters. For example, the torque produced by the motor can be a non-linear function of the motor current because of saturation of the inductance of the motor. In such an example where the inductance is determined, the torque produced by the motor can be compensated to always have a linear relationship with the motor current. Such compensation for non-linear behavior can be important in automotive applications or hoist/crane applications. In certain systems, the current or voltage in the motor windings can be monitored and a fault condition can be triggered if the average value of current or voltage exceeds a threshold so that the motor can be de-energized to avoid unsafe conditions. In many systems, average values of voltage and current can be determined based on sampling once per pulse with modulation (PWM) period and are sufficient for protection. However, in high performance systems, a first derivative of current or voltage may be needed to improve performance. The slope of current in the motor winding currents can indicate when fault conditions exist, because usually, the inductance of the windings limits the slope of the winding current. If a winding is shorted, the inductance of the winding will decrease, thereby increasing slopes of currents and thereby indicating a fault condition. However, the slope of the winding current is prone to noise at high frequency and electrical noise from the power inverter can couple into the feedback path and contribute to errors. The slope of the winding current is, in the general case, not suitable for inductance estimation so alternative approaches that can be used can include AC signal injection, or separate current derivative sensors such as a Rogowski coils. The present inventors have recognized, among other things, that there is a need for an improved technique for determining the slope of current in motor windings and in determining one or more motor parameters such as inductance.
The present disclosure can provide, among other things, an improved technique of determining a motor parameter based on oversampling the current in the motor windings such as to provide optimal tuning of a current control loop during operation of the motor and overload protection.
In an aspect, the disclosure can feature a method for determining at least one motor parameter such as using an adaptive filter in a motor control system. The method can include sampling at least one phase current being supplied to at least one motor winding to form a set of sampled data points. The method can also include analyzing the set of sampled data points with a fitting function. The method can also include selecting at least one fitting window based on at least one phase voltage being switched on and off to the at least one motor winding. The at least one fitting window can be selected to exclude at least one transient component of the at least one phase current and including a subset of the sampled data points. The method can also include filtering the subset of sampled data points corresponding to the at least one fitting window, to determine at least one parameter of the fitting function. The method can also include determining the at least one motor parameter based on the determined at least one parameter of the fitting function. The fitting function can be a linear function. The at least one parameter of the fitting function can include a slope of the linear function. The at least one parameter of the fitting function can include an offset of the linear function. The method can also include determining the slope and offset of the linear function such as based on central tendencies respectively of phase current, time, the product of phase current and time, and the square of time, such as wherein the central tendencies are determined recursively. The method can also include determining the slope and offset of the linear function such as based on a square of a mean value of time, a mean value of a square of time, a product of a mean value of time and a mean value of phase current, and mean value of a product of time and phase current. The at least one fitting window can be determined based on a pulse width modulation synchronization pulse. The at least one fitting window can be further determined based on a switching state of the at least one motor winding. Filtering the subset of sampled data points can include performing a least squares fit. The phase current can be oversampled at a rate of at least two samples per pulse width modulation period. The method can also include determining a phase current for sampled data points corresponding to the at least one transient component based on the fit. The at least one motor parameter can include one or more of an inductance, a resistance, or a magnetization.
In an aspect, the disclosure can feature a motor control system such as for determining at least one motor parameter such as using an adaptive filter. The motor control system can include power circuitry that can be configured to deliver a phase voltage to a motor winding, the phase voltage causing a phase current to flow in the motor winding. The motor control system can also include a current sensor that can be configured to sense the phase current flowing in the motor winding. The motor control system can also include sampling circuitry that can be configured to convert the sensed phase current into a set of sampled data points. The motor control system can also include pulse width modulation timing circuitry such as for controlling the timing of the phase current delivered to the motor winding, the pulse width modulation timing circuitry determining at least one fitting window, the at least one fitting window excluding at least one transient component and including a subset of the sampled data points. The motor control system can also include an adaptive filter that can be configured to filter the subset of sampled data points corresponding to the at least one fitting window, the filtering determining at least one parameter of a fitting function. The motor control system can also include a motor controller that can be configured to determine the at least one motor parameter such as based on the determined at least one parameter of the fitting function. The fitting function can be a linear function. The at least one parameter of the fitting function can include a slope of the linear function. The at least one parameter of the fitting function can include an offset of the linear function. The adaptive filter can be configured to determine the slope and offset of the linear function such as based on central tendencies respectively of phase current, time, the product of phase current and time, and the square of time, such as wherein the central tendencies can be determined recursively. The at least one motor parameter can include one or more of an inductance, a resistance or a magnetization. The at least one motor parameter can include a flux linkage.
In an aspect, the disclosure can feature a method for determining at least one motor parameter such as using an adaptive filter in a motor control system. The method can include sampling at least one phase current being supplied to at least one motor winding to form a set of sampled data points. The method can also include selecting at least one fitting window based on at least one phase voltage being switched on and off between the at least one motor winding, the at least one fitting window selected to exclude at least one transient component of the at least one phase current and including a subset of the sampled data points. The method can also include filtering the subset of sampled data points corresponding to the at least one fitting window, to determine one or more of a slope and offset of a linear function. The method can also include determining the at least one motor parameter based on the determined at least one parameter of the fitting function. The method can also include determining a motor state based on the determined at least one motor parameter. The method can also include determining one or more of the slope and offset of the linear function such as can be based on one or more central tendencies respectively of phase current, time, the product of phase current and time, and the square of time, wherein the central tendencies can be determined recursively.
In an aspect, the disclosure can feature a motor control system for determining at least one motor parameter. The motor control system can include a means for sampling at least one phase current being supplied to at least one motor winding, such as to form a set of sampled data points. The means for sampling can include sampling circuitry, such as inverter feedback circuitry 130, analog-to-digital converter 155, and/or sample timers 140, such that as shown in
Further features of the disclosure are provided in the detailed description and the appended claims, which features may optionally be combined with each other in any permutation or combination, unless expressly indicated otherwise elsewhere in this document.
The present disclosure will now be described, by way of example, with reference to the accompanying drawings, in which:
A current control loop can ensure proper operation of a motor, for example by ensuring that a phase current follows a reference. The tuning of parameters in the current control loop can be based on motor parameters such as inductance, resistance, or magnetization. However, since the motor parameters are often unknown, it is often not possible to optimize tuning of the current control loop. Described below is a method to determine motor parameters such as to provide optimal tuning of a current control loop during operation of the motor.
For example, the slope α1 can be determined based on the square of an average of time, the average value of time squared, the average value of the product of time and phase current, and a product of the average value of current and the average value of time. The offset α0 can be determined based on the average value of phase current, and average value of time, and the determined slope α1. The slope and offset may be determined recursively. The average value of current can be provided to the motor control circuitry 185 such as for purposes of motor control. The determined slope α1, and the determined offset α0 can be provided to the motor control circuitry 185, and the motor control circuitry 185 can determine at least one motor parameter, such as based in part on the provided slope α1, and offset α0. In an example, the time values of the digital samples can be defined such that
Where
For voltage vector V000, the following equations may describe the system shown in
The resistance of the motor windings may be neglected and the back emf voltages may be assumed to be the same for the two switching states corresponding to the voltage vectors V100 and V000 (e.g., eaV000=eaV100=ea, ebV000=ebV100=eb, and ecV000=ecV100=ec). Based on this assumption, the equations describing the system for an applied voltage vectors V100 and V000 may be simplified as follows:
These equations may be further simplified by defining the following differences in current derivatives:
Based on the defined differences in the current derivatives, the equations describing the system for applied voltage vectors V100 and V000 may be further simplified as follows:
Where the motor has no saliency, La=Lb=Lc=L, and the inductance may be determined from any of the above simplified equations as follows:
Where the motor has a saliency, La, Lb, and Lc are not equal and an inductance of the motor windings can be determined based on the switching states corresponding to one active voltage vector and V000 and by taking into account a position of the rotor. The rotor position can be assumed constant between the two switching states corresponding to applied voltage vectors. The inductances can be expressed as follows:
where θr represents an angle of the rotor, and PP represents a number of pole pairs. The expressions for the inductances can be further simplified as follows:
where Ld represents an inductance when the rotor is aligned with the motor windings, and Lq represents an inductance when the rotor is aligned with gaps between the motor windings. The above equations describing the inductances can be further simplified as follows:
La=Ld·kad+Lq·kaq
Lb=Ld·kbd+Lq·kbq
Lc=Ld·kcd+Lq·kcq
where
With these modified inductance equations substituted into the general equations in
In examples where the rotor position is not known, an inductance of the motor windings can be determined based on the slope of current in the motor windings for three switching states (e.g., voltage vectors V100, V000, and V110). The slope of current in the motor windings may be determined by digitally sampling the current in the motor windings and applying a least squares fit. For a voltage vector V110, the following equations may describe the system shown in
The resistance of the motor windings may be neglected and the back emf voltages may be assumed to be the same for the three switching states corresponding to the voltage vectors V100, V000, and V110 (e.g., eaV000=eaV100=eaV110=ea, ebV000=ebV100=ebV110=eb, and ecV000=ecV100=ecV110=ec). Based on this assumption, the equations describing the system for applied voltage vectors V110 and V000 may be simplified as follows:
These equations may be further simplified by defining the following differences in current derivatives:
Based on the defined differences in the current derivatives, the equations describing the system for applied voltage vectors V110 and V000 may be further simplified as follows:
The three equations above, combined with the three equations determined previously for applied voltage vectors V100 and V000 may be used to determine the inductances of the motor windings based on the slope of the current in the motor windings and the applied voltage as follows:
If the inductance is changing as a function of current it may indicate a saturation condition. The determined inductances may be used to detect a fault condition such as rotor demagnetization, isolation failure, and winding shorts. Higher order (e.g., non-linear) adaptive filters can be used to fit a non-linear function to the motor winding current such as to determine second order effects on the motor winding current such as one or more switching transients such as can be due to cable capacitance and magnetic core losses.
A resistance of the motor windings, and back emf voltages of the motor windings can be determined based on the following equations:
where van represents the voltage across a first motor winding, such as motor winding 210 as shown in
represents a slope of the current in the first motor winding, vbn represents the voltage across a second motor winding, such as motor winding 220 as shown in
represents a slope of the current in the second motor winding, vcn represents the voltage across a third motor winding, such as motor winding 230 as shown in
represents a slope of the current in the third motor w winding. The inductances La, Lb, and Lc can be determined as described above, the currents, voltages, and slopes of currents can be measured as described above, the resistances in the motor windings can be assumed to be equal (e.g., Ra=Rb=Rc) and the back emf in each winding can be expressed as follows:
where ωr represents the angular speed of the rotor, θr represents the angular position of the rotor and PP represents the number of pole-pairs. Based on the above equations, the resistances R and the back emfs, ea, eb, and ec can be determined. In such an example where motor parameters, such as resistance, inductance, and back emf can be determined, a current control loop of the motor can be tuned, such as based on the determined motor parameters to provide optimal tuning of the current control loop. For example, a rise time, overshoot, or settling time can be optimized based on the determined motor parameters. In such an example where motor parameters, such as resistance, inductance, and back emf can be determined, non-linear behavior of the motor can be compensated for based on the determined motor parameters. For example, a torque produced by the motor can be determined based on the determined inductance and the current control loop can be tuned accordingly to compensate. The above described methods can be used to determine the motor parameters during operation of the motor and can allow for a periodic adjustment of the current control loop parameters to compensate for changes in the motor parameters, such as due to temperature or age.
Number | Name | Date | Kind |
---|---|---|---|
4772839 | MacMinn et al. | Sep 1988 | A |
5663618 | Adachi | Sep 1997 | A |
5859518 | Vitunic | Jan 1999 | A |
7667419 | Fukamizu | Feb 2010 | B2 |
7723946 | Welchko | May 2010 | B2 |
8816626 | Kurosawa | Aug 2014 | B2 |
9059651 | Purfuerst | Jun 2015 | B2 |
9899945 | Jang | Feb 2018 | B2 |
20120330595 | Atay | Dec 2012 | A1 |
20130082630 | Purfuerst | Apr 2013 | A1 |
20140156144 | Hoshi | Jun 2014 | A1 |
20150365028 | Hammel | Dec 2015 | A1 |
Entry |
---|
Duan, Yu, et al., “A Novel Current Derivative Measurement Using Recursive Least Square Algorithms for Sensorless Control of Permanent Magnet Synchronous Machine”, 2012 IEEE 7th International Power Electronics and Motion Control Conference, (Jun. 2012), 1193-1200. |
Hind, David M., “Current derivative estimation for densorless motor drives”, PhD thesis, University of Nottingham, (2015), 1-266. |
Shaw, Steven R., “Numerical Methods for Identification of Induction Motor Parmeters”, (Feb. 1997), 1-223. |
Number | Date | Country | |
---|---|---|---|
20180062549 A1 | Mar 2018 | US |