Example embodiments of the invention relates generally to cognitive radios, and more particularly to determining sensing thresholds of a multi-resolution spectrum sensing (MRSS) technique.
According to an example embodiment of the invention, spectrum sensing methods such as multi-resolution spectrum sensing (MRSS) may be utilized to detect occupancy in a dynamic spectrum. MRSS may be an energy detection method that may not require explicit filter banks in adjusting the resolution bandwidth. In accordance with an embodiment of the invention, systems and methods may be provided for determining sensing thresholds for use with MRSS. These thresholds may be based upon an acceptable false alarm rate and MRSS parameters such as the type and duration of a window and the number of averaging.
According to an example embodiment of the invention, there may be a method for threshold determinations for spectrum sensing, The method may include receiving a false alarm rate, where the false alarm rate is associated with false occupancy identifications of a spectrum segment, determining a noise floor as a function of a noise figure and characteristics of a multi-resolution spectrum sensing (MRSS) window, and calculating a sensing threshold based at least in part upon the false alarm rate and the noise floor.
According to another example embodiment of the invention, there may be a system for spectrum sensing. The system may include an antenna for receiving a portion of a radio frequency (RF) spectrum, and a spectrum sensing module. The spectrum sensing module may be operative to receive a false alarm rate, where the false alarm rate is associated with false occupancy identifications of a spectrum segment, determine a noise floor as a function of a noise figure and characteristics of a multi-resolution spectrum sensing (MRSS) window, and calculate a sensing threshold based at least in part upon the false alarm rate and the noise floor.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Embodiments of the invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
According to an embodiment of the invention, systems and methods may be provided for determining one or more appropriate sensing threshold levels for use with multi-resolution spectrum sensing (MRSS) utilized by example cognitive radios for determining occupancy (e.g., vacant or occupied) within one or more spectrum channels. An example cognitive radio system that utilizes MRSS and associated sensing thresholds will be presented prior to provided example systems and methods for determining the sensing thresholds. In an example cognitive radio system, the MRSS sensing thresholds may be utilized in sensing modules such as coarse-sensing modules, according to an example embodiment of the invention,
During operation of the cognitive radio system of
Referring back to
In some instances, based on the recognized spectrum segments, the MAC module 124 may request a more refined search of the spectrum occupancy (block 206). In such a case, the fine-sensing module 106 may be operative to identify the particular signal types and/or modulation schemes utilized within at least a portion of the spectrum occupancy (block 208). The information identifying the signal types and/or modulation schemes may then be digitized by the AID converter 118, and provided to the spectrum recognition module 120. Information about the signal type and/or modulation scheme may be necessary to determine the impact of interferers within the detected suspicious spectrum segments.
In accordance with an embodiment of the invention, the spectrum recognition module 120 may compare information from the coarse-sensing module 104 and/or fine-sensing module 106 with a spectrum usage database (block 210) to determine an available (e.g., non-occupied or safe) spectrum slot (block 212). The spectrum usage database may include information regarding known signal types, modulation schemes, and associated frequencies. Likewise, the spectrum usage database may include one or more thresholds for determining whether information from the coarse-sensing module 104 and/or fine-sensing module 106 is indicative of one or more occupied spectrum. According to an example embodiment of the invention, the spectrum usage database may be updated based upon information received from an external source, including periodic broadcasts form a base station or other remote station, removable information stores (e.g., removable chips, memory, etc.), Internet repositories. Alternatively, the spectrum usage database may be updated based upon internally, perhaps based upon adaptive learning techniques that may involve trial and error, test configurations, statistical calculations, etc.
The sensing results determined by the spectrum recognition module 120 may be reported to the controller (e.g., spectrum allocation module) of the MAC module 124, and permission may be requested for a particular spectrum use (block 214). Upon approval from the controller, the reconfiguration block of the MAC module 124 may provide reconfiguration information to the radio front end 108 via the signal processing module 126 (block 218). In an example embodiment of the invention, the radio front-end 108 may be reconfigurable to operate at different frequencies (“frequency-agile”), where the particular frequency or frequencies may depend upon the selected spectrum segments for use in communications by the cognitive radio 100. In conjunction with the frequency-agile front-end 108, the signal processing module 126, which may be a physical layer signal processing block in an example embodiment, may enhance the cognitive radio's 100 performance with adaptive modulation and interference mitigation technique.
According to an example embodiment of the invention, spectrum sensing such as MRSS implemented in a coarse-sensing module 104, may involve determining whether one or more spectrum channels may be occupied by primary users, as illustratively provided in block 204 of
According to an example embodiment of the invention, the spectrum sensing by a coarse-sensing module may involve three probabilities: (i) a probability of a false alarm ( PFA), (ii) a probability of a misdetection (PMD), (iii) and a probability of detection (PD). According to an example embodiment of the invention, the probability of a false alarm (PFA), as provided in (3) below, may be the probability that the coarse-sensing module determining that a channel is occupied when it is actually vacant. On the other hand, the probability of a misdetection (PMD), as provided in (4) below, may be the probability of the coarse-sensing module determining that a channel is vacant when it is actually occupied. The probability of detection (PD), as provided in (5) below, may be the desired detection probability. As shown by (5), the probability of detection (PD) may be defined to be 1 minus the probability of probability of a misdetection (PMD), according to an example embodiment of the invention.
P
FA
=P(D1|H0) (3)
P
MD
=P(D0|H1) (4)
P
D=1−PMD (5)
According to an embodiment of the invention, an occupancy decision may made by the coarse-sensing module comparing the MRSS result to a pre-defined threshold level, PTH. For example, the MRSS result may be correlation values representing a correlation between a received time-variant signal and a modulated basis waveform (e.g., wavelet pulses) that serves as a window. If the threshold level PTH is set too high, the false alarm rate ( PFA) may be low at the expense of a lower probability of detection (PD) Accordingly, the threshold level PTH may be set based upon an acceptable false alarm rate (PFA), according to an example embodiment of the invention. For example, if the acceptable false alarm rate ( PFA) is 0.10 (e.g., 10%), then the threshold level may be set such that the false alarm rate ( PFA) does not exceed 0.10. As shown in (3), the false alarm rate (PFA) may be based on the MRSS result when there is no signal in the channel of interest. Accordingly, the determination of threshold level PTH may be affected by the MRSS result distribution on the noise power measurement.
According to an example embodiment of the invention, the MRSS result distribution on the noise power measurement may be analyzed to determine an appropriate MRSS threshold level. According to an example embodiment of the invention, the noise power measurement may be modeled as white Gaussian noise. The envelope voltage v of white Gaussian noise may have a Rayleigh distribution with a power density function fv(v) (pdf), as provided below in (6).
If the envelope voltage v is expressed in a logarithmic domain, perhaps in a dB scale, then the new variable x=20 log(v) would have a pdf fx(x), a mean μx, and a standard deviation σx as shown in (7), (8), and (9), respectively. According to an example embodiment of the invention, this representation in the logarithmic domain may sometimes be referred to as a log-compressed Rayleigh distribution.
According to an example embodiment of the invention, a way of reducing the variation (or standard deviation) on the measured noise power may be to average the individually measured noise power. If the averaging is done in a logarithmic domain, the resultant pdf fX,AVG(x), mean μAVG, and standard deviation σAVG by averaging NAVG independent measurements may be as provided in (10), (11), and (12), respectively.
According to an example embodiment of the invention, a threshold level decision may begin with the noise floor estimation. The input-referred noise figure of the MRSS receiver path may be NF in a dB scale, according to an example embodiment of the invention. The window with the duration of 1/fw may have an equivalent noise bandwidth of fNBW. The equivalent noise bandwidth fNBW may be a bandwidth of an ideal rectangular filter which would accumulate the same noise power from white noise with same peak gain, thus indicating the bandwidth of a filter.
μ=−174+NF+10 log(fNBW)(dBm). (13)
According to an example embodiment of the invention, the signal processing of the envelope voltage v of white Gaussian noise in a logarithmic domain may result in an under-response of 2.51 dB compared with the true noise power. For example, the true power of Rayleigh distribution voltage with variance of σ2 may be
From (14), the log-compressed Rayleigh distribution representing an average power
The difference between the true power
Based on the foregoing, if the MRSS result is processed in a logarithmic domain, the detected noise power may have an under-response of −2.51 dB. Therefore, after adjusting for an under-response of −2.51 dB, the detected noise floor μN may be as provided in (15).
μN=−174+NF+10 log(fNBW)−2.51 (dBm). (15)
As shown by (15), the detected noise floor μN may be a function of system noise figure NF and a duration and shape of the window. Decreasing the duration of window may increase the detection time of MRSS, but at the expense of the increased noise floor μN and the decreased resolution. With the same duration of the window, the shape of the window may also affect the detected noise floor, but the selectivity of the signal may be affected as well because of the skirt characteristics of the window.
The averaged result of the detected noise power fX,AVG (x) may have a probability density function (pdf) as provided in (10). Therefore, the threshold level PTH having a false alarm rate of PFA may be found by calculating a cumulative density function of (10) and locating the point where the cumulative density function reaches (1−PFA). For example, if the acceptable false alarm rate (PFA) is 0.10, the threshold level PTH may be calculated as shown in (16). In particular, (15) may be obtained by finding a point to which integration of the cumulative density function of (10) has a value of (1−PFA)=0.9.
Still referring to
Once the threshold level is determined, the probability of misdetection may be simulated as shown in
where μD is the detected power, PS is the original signal power, and fBW is the signal bandwidth. According to an example embodiment of the invention, in the case of ATSC signal with cos4(πfwt) window having fw=100 kHz,
As expected, the average of detected ATSC signal power is within 1-dB error with the value calculated from (18).
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application claims priority to U.S. Provisional Application No. 60/892,381, filed Mar. 1, 2007, and entitled “Systems and Methods for Determining Sensing Thresholds of a Multi-Resolution Spectrum Sensing (MRSS) Technique for Cognitive Radio (CR) Systems,” which is hereby incorporated by reference in its entirety as if fully set forth herein.
Number | Date | Country | |
---|---|---|---|
60892381 | Mar 2007 | US |