Systems and methods for determining when to wirelessly transmit power to a location within a transmission field based on predicted specific absorption rate values at the location

Information

  • Patent Grant
  • 11777328
  • Patent Number
    11,777,328
  • Date Filed
    Monday, September 14, 2020
    3 years ago
  • Date Issued
    Tuesday, October 3, 2023
    6 months ago
  • Inventors
  • Original Assignees
  • Examiners
    • Isla; Richard
    • Torres Ruiz; Johali A
    Agents
    • Morgan, Lewis & Bockius LLP
Abstract
Embodiments disclosed herein may generate and transmit power waves that, as result of their physical waveform characteristics (e.g., frequency, amplitude, phase, gain, direction), converge at a predetermined location in a transmission field to generate a pocket of energy. Receivers associated with an electronic device being powered by the wireless charging system, may extract energy from these pockets of energy and then convert that energy into usable electric power for the electronic device associated with a receiver. The pockets of energy may manifest as a three-dimensional field (e.g., transmission field) where energy may be harvested by a receiver positioned within or nearby the pocket of energy.
Description
TECHNICAL FIELD

This application generally relates to wireless charging systems and the hardware and software components used in such systems.


BACKGROUND

Numerous attempts have been made to wirelessly transmit energy to electronic devices, where a receiver device can consume the transmission and convert it to electrical energy. However, most conventional techniques are unable to transmit energy at any meaningful distance. For example, magnetic resonance provides electric power to devices without requiring an electronic device to be wired to a power resonator. However, the electronic device is required to be proximately located to a coil of the power resonator (i.e., within a magnetic field). Other conventional solutions may not contemplate user mobility for users who are charging their mobile devices or such solutions do not allow devices to be outside of a narrow window of operability.


Wirelessly powering a remote electronic device requires a means for identifying the location of electronic devices within a transmission field of a power-transmitting device. Conventional systems typically attempt to proximately locate an electronic device, so there are no capabilities for identifying and mapping the spectrum of available devices to charge, for example, in a large coffee shop, household, office building, or other three-dimensional space in which electrical devices could potentially move around. Moreover, what is needed is a system for managing power wave production, both for directionality purposes and power output modulation. Because many conventional systems do not contemplate a wide range of movement of the electronic devices they service, what is also needed is a means for dynamically and accurately tracking electronic devices that may be serviced by the power-transmitting devices.


Wireless power transmission may need to satisfy certain regulatory requirements. The devices transmitting wireless energy may be required to adhere to electromagnetic field (EMF) exposure protection standards for humans or other living beings. Maximum exposure limits are defined by US and European standards in terms of power density limits and electric field limits (as well as magnetic field limits). Some of these limits are established by the Federal Communications Commission (FCC) for Maximum Permissible Exposure (MPE), and some limits are established by European regulators for radiation exposure. Limits established by the FCC for MPE are codified at 47 CFR § 1.1310. For electromagnetic field (EMF) frequencies in the microwave range, power density can be used to express an intensity of exposure. Power density is defined as power per unit area. For example, power density can be commonly expressed in terms of watts per square meter (W/m2), milliwatts per square centimeter (mW/cm2), or microwatts per square centimeter (μW/cm2).


Accordingly, it is desirable to appropriately administer the systems and methods for wireless power transmission to satisfy these regulatory requirements. What is needed is a means for wireless power transmission that incorporates various safety techniques to ensure that humans or other living beings within a transmission field are not exposed to EMF energy near or above regulatory limits or other nominal limits.


SUMMARY

Disclosed herein are systems and methods intended to address the shortcomings in the art and may provide additional or alternative advantages as well. Embodiments disclosed herein may generate and transmit power waves that, as result of their physical waveform characteristics (e.g., frequency, amplitude, phase, gain, direction), converge at a predetermined location in a transmission field to generate a pocket of energy. Receivers associated with an electronic device being powered by the wireless charging system, may extract energy from these pockets of energy and then convert that energy into usable electric power for the electronic device associated with a receiver. The pockets of energy may manifest as a three-dimensional field (e.g., transmission field), where energy may be harvested by receivers positioned within or nearby a pocket of energy. In some embodiments, transmitters may perform adaptive pocket forming by adjusting transmission of the power waves in order to regulate power levels based on inputted sensor data from sensors or to avoid certain objects. A technique for identifying regions in the transmission field may be employed to determine where pockets of energy should be formed and where power waves should be transmitted. In one example, this technique may result in determination of a specific absorption rate (SAR) value at each spatial location within the transmission field with respect to one or more power waves radiated from one or more antennas in the transmission field. Determination of the specific SAR may be done by sensors coupled to, or integrated into, a transmitter. These sensors may. capture information useful for making SAR measurements within a transmission field, and the transmitter may use this information in conjunction with pre-stored calculations and estimates that determine the SAR values in the transmission field based on known propagation characteristics of the power waves produced by the transmitter. The SAR is the rate at which electromagnetic energy from radio frequency (RF) waves are absorbed by a human body or another living being. In another example, heat-map data, which is a form of mapping data that may be stored into a mapping memory for later reference or computations may be used in determining where pockets of energy should be formed. In yet another example, sensors may generate sensor data that may identify areas that the power waves should avoid. This sensor data may be an additional or alternative form of mapping data, which may also be stored into a mapping memory for later reference or computation.


In an embodiment, a method of wireless power transmission comprises calculating, by a transmitter, a specific absorption rate (SAR) value at each spatial location within a transmission field of the transmitter with respect to one or more power waves radiated from one or more antennas of the transmitter; determining, by the transmitter, a selected portion within the transmission field where the calculated SAR value fails a pre-defined SAR value threshold; and transmitting, by the transmitter, the one or more power waves to converge destructively at the selected portion within the transmission field.


In another embodiment, a method of wireless power transmission includes receiving, by a transmitter, a specific absorption rate (SAR) value at each spatial location within a transmission field of the transmitter with respect to one or more power waves radiated from one or more antennas. The method further includes determining, by the transmitter, a selected portion within the transmission field where the received SAR value is greater than a pre-defined SAR value. The method further includes transmitting, by the transmitter, the one or more power waves to converge destructively at the selected portion within the transmission field. The method further includes transmitting, by the transmitter, the one or more power waves to converge destructively to form a null space at remaining portions within the transmission field.


In another embodiment, a system for wireless power transmission may include one or more transmitters. Each of the one or more transmitters may include a microprocessor configured to calculate a specific absorption rate (SAR) value at each spatial location within a transmission field of the transmitter with respect to one or more power waves radiated from one or more antennas, and determine a selected portion within the transmission field where the calculated SAR value is greater than a pre-defined SAR value. Each of the one or more transmitters may further include one or more antenna arrays where each of the one or more antenna arrays includes one or more antennas configured to transmit power waves to converge destructively to form null space at the selected portion within the transmission field.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings constitute a part of this specification and illustrate embodiments of the invention. The present disclosure can be better understood by referring to the following figures. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure.



FIG. 1A illustrates a wireless power transmission system, according to an exemplary embodiment.



FIG. 1B shows components of a system according to an exemplary embodiment.



FIG. 1C shows components of the system, according to the exemplary embodiment shown in FIG. 1B.



FIG. 2 illustrates a method to form a pocket of energy in a wireless power transmission system, according to an exemplary embodiment.



FIG. 3 illustrates a method for forming a null space in a wireless power transmission system, according to an exemplary embodiment.





DETAILED DESCRIPTION

Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used here to describe the same. It should be understood that no limitation of the scope of the invention is intended through the descriptions of such exemplary embodiments. Alterations and further modifications of the exemplary embodiments and additional applications implementing the principles of the inventive features, which would occur to a person skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of this disclosure.


A pocket of energy used to provide power wirelessly may be formed at locations of constructive interference patterns of power waves transmitted by a transmitter. The pockets of energy may manifest as a three-dimensional field where energy may be harvested by receivers located within or proximate to the pocket of energy. In operation, the pocket of energy produced by the transmitters during pocket-forming processes may be harvested by a receiver, converted to an electrical charge, and then provided to an electronic device (e.g., laptop computer, smartphone, rechargeable battery) associated with the receiver to operate the device or to charge the device battery. In some embodiments, multiple transmitters and/or multiple receivers may power various electronic devices. The receiver may be separable from the electronic device or integrated with the electronic device.


Constructive interference may be a type of waveform interference that may be generated at the convergence of the power waves at a particular location within a transmission field associated with one or more transmitters. Constructive interference may occur when power waves converge and their respective waveform characteristics coalesce, thereby augmenting the amount of energy concentrated at the particular location where the power waves converge. The constructive interference may be the result of power waves having particular waveform characteristics such that constructive interference results in a field of energy or “pocket of energy” at the particular location in the transmission field where the power waves converge. In the case of periodic signals, such as chirp waves or sinusoidal waves, a constructive interference pattern is created when the positive and negative peaks of the power waves arriving at a specific location are synchronized. The correlated positive and negative peaks across the waveforms add cumulatively to create a cumulative waveform having a larger amplitude than each of the individual power waves.


Destructive interference may be another type of waveform interference that may be generated at the convergence of the power waves at a particular location within a transmission field associated with one or more transmitters. Destructive interference may occur when power waves converge at a particular location and their respective waveform characteristics are opposite each other (i.e., waveforms cancel each other out), thereby diminishing the amount of energy concentrated at the particular location. Where constructive interference may result in generating pockets of energy when enough energy is present, destructive interference may result in generating a negligible amount of energy or “null” at the particular location within the transmission field where the power waves converge to form destructive interference. In the case of periodic waves, such as chirp waves or sinusoidal waves, a destructive interference pattern results when the positive and negative peaks of the power waves arriving at a specific location subtract from each other, rather than adding cumulatively, and therefore a low (ideally zero) amplitude waveform signal results.


A transmitter may be an electronic device that comprises, or is otherwise associated with, various components and circuits responsible for, e.g., generating and transmitting power waves, forming pockets of energy at locations in a transmission field, monitoring the conditions of the transmission field, and generating null spaces where needed. A transmitter may generate and transmit power waves for pocket-forming and/or null steering based on a specific absorption rate (SAR) value determined by the transmitter at one or more spatial locations within a transmission field of the transmitter. The specific absorption rate (SAR) value may be determined by a transmitter processor, and indicate an electric power absorbed by a living tissue, such as a human body, exposed to a radio frequency (RF) wave. The transmitter may generate and transmit, or otherwise adjust, the power waves so that the SAR value for the RF energy at a particular location in the transmission field does not exceed a predetermined SAR threshold value.


A receiver may be an electronic device that comprises at least one antenna, at least one rectifying circuit, and at least one power converter, which may utilize a pocket of energy for powering or charging the electronic device. “Pocket-forming” may refer to generating one or more RF waves that converge in a transmission field, forming controlled pockets of energy and null spaces. A “pocket of energy” may refer to an area or region of space where energy or power may accumulate based on a convergence of waves causing constructive interference at that area or region. The “null-space” may refer to areas or regions of space where pockets of energy do not form, which may be caused by destructive interference of waves at that area or region.


A transmitter may determine the present SAR value of RF energy at one or more particular locations of the transmission field using one or more sampling or measurement techniques. In some implementations, the transmitter may be preloaded with values, tables, and/or algorithms that indicate for the transmitter which waveform characteristics are likely to exceed to a pre-stored SAR threshold value. For example, a lookup table may indicate that the SAR value for a volume of space (V) located some distance (D) from the transmitter receiving a number of power waves (P) having a particular frequency (F). One skilled in the art will appreciate that there could be any number of potential calculations, which may use any number of variables, to determine the SAR value of RF energy at a particular locations.


Moreover, a transmitter may apply the SAR values identified for particular locations in various ways when generating, transmitting, or adjusting the power waves. In some embodiments, the SAR values may be measured and used by the transmitter to maintain a constant energy level throughout the transmission field, where the energy level is both safely below a SAR threshold value but still contains enough RF energy for the receivers to effectively convert into electrical power. In some implementations, the transmitter may proactively modulate the power waves based upon the RF expected to result from newly formed power waves based upon the predetermined SAR values. For example, after determining how to generate or adjust the power waves, but prior to actually transmitting the power waves, the transmitter may determine whether the power waves to be transmitted will result in RF energy accumulation at a particular location that either satisfies or fails the SAR threshold. Additionally or alternatively, in some implementations, the transmitter may actively monitor the transmission field to reactively adjust power waves transmitted to or through a particular location when the transmitter determines that the power waves passing through or accumulating at the particular location fail the SAR threshold. Where the transmitter is configured to proactively and reactively adjust power waves, with the goal of maintaining a continuous power level throughout the transmission field, the transmitter may be configured to proactively adjust the power waves to be transmitted to a particular location to be certain the power waves will satisfy the SAR threshold, but may also continuously poll the SAR values at locations throughout the transmission field to determine whether the SAR values for power waves accumulating at or passing through particular locations unexpectedly fail the SAR threshold. In some embodiments, the transmitter may be configured to generate a pockets of energy or nulls at particular locations, and thus the SAR value may be used to determine whether areas around a pocket of energy are satisfactorily below the SAR threshold, or to determine the efficacy of the destructive interference patterns generating a null space.


Although the exemplary embodiments described herein mention the use of RF-based wave transmission technologies, it should be appreciated that the wireless charging techniques that might be employed are not be limited to such RF-based technologies and techniques. Rather, it should be appreciated that here are additional or alternative wireless charging techniques, which may include any number of technologies and techniques for wirelessly transmitting energy to a receiver that is capable of converting the transmitted energy to electrical power. Non-limiting exemplary transmission techniques for energy that can be converted by a receiving device into electrical power may include: ultrasound, microwave, laser light, infrared, or other forms of electromagnetic energy.


In some embodiments, control systems of transmitters adhere to electromagnetic field (EMF) exposure protection standards for human subjects. Maximum exposure limits are defined by US and European standards in terms of power density limits and electric field limits (as well as magnetic field limits). These include, for example, limits established by the Federal Communications Commission (FCC) for MPE, and limits established by European regulators for radiation exposure. Limits established by the FCC for MPE are codified at 47 CFR § 1.1310. For electromagnetic field (EMF) frequencies in the microwave range, power density can be used to express an intensity of exposure. Power density is defined as power per unit area. For example, power density can be commonly expressed in terms of watts per square meter (W/m2), milliwatts per square centimeter (mW/cm2), or microwatts per square centimeter (μW/cm2).


In some embodiments, the present systems and methods for wireless power transmission incorporate various safety techniques to ensure that human occupants in or near a transmission field are not exposed to EMF energy near or above regulatory limits or other nominal limits. One safety method is to include a margin of error (e.g., about 10% to 20%) beyond the nominal limits, so that human subjects are not exposed to power levels at or near the EMF exposure limits. A second safety method can provide staged protection measures, such as reduction or termination of wireless power transmission if humans (and in some embodiments, other living beings or sensitive objects) move toward a pocket of energy with power density levels exceeding EMF exposure limits.



FIG. 1A illustrates a wireless power transmission system 100, according to an exemplary embodiment. The wireless power transmission system 100 comprises a transmitter 102 that transmits one or more power waves 104 from an antenna array 106. Non-limiting examples of power waves 104 may include microwaves, radio waves, and ultrasound waves. The power waves 104 are controlled through a microprocessor of the transmitter 102 to form a pocket of energy 112 at one or more locations in a transmission field, where the controller determines that a pocket of energy 112 is needed. The transmitter 102 is further configured to transmit the power waves 104 that may converge in three-dimensional space to create the one or more null spaces in the one or more locations where transmitted power waves cancel each other out substantially. In some implementations, the transmitter 102 may continuously measure the specific absorption rate (SAR) values of areas within the transmission field in order to maintain consistent energy levels throughout the transmission field. In such embodiments, the energy levels maintained may be high enough to provide power to receivers 103 charging electronic devices 108, 110, but remain below a given SAR threshold value. One skilled in the art would therefore appreciate that the generation of pockets of energy 112 or nulls, may not be necessary in every embodiment, as some embodiments may maintain a uniform or substantially uniform, safe and effective energy level throughout the transmission field. It would further be appreciated that the transmitter 102 may be configured to operate according to any combination of techniques for determining the appropriate means for delivering power waves 104 to receives 103 in a transmission field.


In some embodiments, the transmitter 102 may comprise or may otherwise be coupled to a memory or hard disk that stores predetermined SAR value determination criteria, such as algorithms, variables, tables, or other such information that a processor of the transmitter 102 may use to determine the SAR value at a given location, based on the characteristics of the power waves being transmitted to or through the given location, or about to be transmitted to or through the given location. The transmitter 102 may use known channel propagation models and empirical data on propagation losses collected prior to manufacture or prior to deployment, to calculate what the SAR may be at some distance from the transmitter 102. For example, prior to deployment or prior to manufacture, a probe may be used to scan a volume of space inside a model of living tissue, or other model intended to resemble the human body, such as a container filled with a liquid having nearly-equivalent characteristics of body-tissue, may be placed within a transmission field. The antenna array 106 of the transmitter 102 may transmit power waves 104 having various characteristics that cause the power waves 104 to be near and intersect with the model. The probe may measure the SAR values and RF energy levels in the proximity of the model and/or within the model. The probe may be used to register the RF energies and SAR values resulting from the various waveform characteristics, such as the amplitude, frequency, and vector characteristics, of the power waves 104 transmitted by the antenna array 106. The resulting SAR values and RF energies may be stored in a memory accessible to the transmitter 102, which may then use the pre-stored data to determine the SAR values at locations of a transmission field based on the characteristics of the power waves 104 being generated by the transmitter 102.


The receiver 103 and the transmitter 102 may comprise a communications component 111, which may be wireless communications chips configured to transmit various types of data through a communications signal 131 that is a distinct wireless communication channel independent from the power waves 104. In some cases, such as the receiver 103 of FIG. 1, the communications component may be embedded or otherwise integrated into an electronic device, such as a laptop 108 or other computer, coupled to the receiver 103 or transmitter 102. For example, the receiver 103 may be integrated into a laptop 108, and the communications component of the receiver 103 may include the native Bluetooth® chipset of laptop 108. In some cases, such as the transmitter 102 of FIG. 1, the communications component may be embedded or otherwise integrated into the transmitter 102 or receiver 103. In some embodiments, a communications component may be a distinct, stand alone structure from the transmitter 102, receiver 103, or any other electronic device. The transmitter 102 may transmit communications signals to the receiver 103 containing operational instructions for the receiver 103 to execute, or containing requests for power level data or other operational data from the receiver 103.


The microprocessor of the transmitter 102 is configured to determine how the power waves 104 should be generated and transmitted to provide energy effectively and to avoid living beings or other sensitive objects safely. Determining how the power waves 104 should be generated may be based on the SAR value sampled or determined at each spatial location within the transmission field of the transmitter 102 with respect to one or more power waves 104 radiated into the transmission field from one or more antennas of the transmitter 102. When determining how the power waves 104 should be generated and transmitted, the microcontroller may determine the physical characteristics of the power waves 104 (e.g., frequency, amplitude, phase), and/or which antennas of the transmitter 102 may be used to transmit the power waves 104. The transmitter 102 may determine the characteristics of the power waves 104, and/or identify a subset of the antennas to transmit the power waves 104, such that the power waves 104 converge at a particular location in a transmission field to create constructive and/or destructive interference patterns. Additionally or alternatively, the microcontroller may determine the characteristics and/or the antennas to transmit the power waves 104, such that the power waves 104 generate a uniform or substantially uniform energy level throughout the transmission field or at one or more particular localized areas of the transmission field.


As an example, based on a particular SAR value sampled at a particular location in the transmission field, the microprocessor of the transmitter 102 may select a type of waveform for the power waves 104 (e.g., chirp, sinusoidal, saw tooth, stepped), select the output frequency of the power waves 104, the shape of the one or more antenna arrays 106, and the spacing of the one or more antennas in at least one antenna array 106. Using one or more of these selections or determinations, the transmitter 100 may generate and transmit the power waves 104, and, as a result, the power waves 104 form the pocket of energy 112 at the targeted location to power one or more electronic devices 108, 110. The microprocessor of the transmitter 102 is further configured to, based on the SAR value at each spatial location within the transmission field of the transmitter 102, select the output frequency of the power waves 104, the shape of the one or more antenna arrays 106, and the spacing of the one or more antennas in at least one antenna array 106 to form the one or more null spaces at locations within the transmission field of the transmitter 102. The pockets of energy are formed where the power waves 104 accumulate to form a three-dimensional field of energy.


In the exemplary embodiment, the antennas of the antenna array 106 of the transmitter 102 are operable as the single array of one or more antennas. But in some cases, the microcontroller may segment the array into subsets operating to service multiple device or multiple regions in the transmission field. In an embodiment, the antenna array 106 may include antenna elements where the height of at least one antenna of the array 106 may range from about ⅛ inches to about 1 inch, and the width of the at least one antenna can be from about ⅛ inches to about 1 inch. A distance between two adjacent antennas in an antenna array 106 can be between about ⅓ to about 12 Lambda. For instance, in some cases, the distance between antennas can be greater than about 1 Lambda; in some cases, the distance between antennas can be between about 1 Lambda and about 10 Lambda; and in some cases, the distance can be between about 4 Lambda and about 10 Lambda. Lambda is the wavelength of the power waves 106, and may be used as a measurement for the spacing between antennas of the antenna array 106.


The transmitter 102 calculates the SAR value at each spatial location within the transmission field of the transmitter 102 with respect to one or more power waves 104 radiated from one or more antennas of the antenna array 106 in the transmission field. The microprocessor of the transmitter 102 then compares the calculated SAR value at each spatial location against a threshold SAR value. For example, based on FCC regulations, a pre-defined SAR value is about 1.6 watts per kilogram (W/Kg), so the transmitter 102 may adjust the various characteristics of the power waves 102 to reduce the amount of energy or power accumulating at a particular location in the transmission field, when the transmitter 102 determines that the power waves 102 accumulating at the particular location generate constructive interference patterns of 2.0 W/Kg, and thus no longer satisfy the threshold.


In some embodiments, the transmitter 102 may generate and transmit or otherwise adjust the power waves 104 when the calculated SAR value at a spatial location does not satisfy the pre-defined SAR value threshold. The microprocessor of the transmitter 104 may be configured to determine the characteristics for power waves 104 and/or determine from which antennas to transmit the power waves 104, so that the power waves 104 converge to form a destructive interference pattern at the particular location, and result in a null space having very little, negligible, or no energy accumulation at the portion in the transmission field. In some implementations, in order to generate null spaces, the transmitter 102 may generate a first set of power waves 104 that converge constructively to form pockets of energy 112, and then a second set of power waves 104 that converge destructively to form null spaces. In some embodiments, based upon the SAR values sampled at one or more locations of the transmission field, the microprocessor may generate and transmit, or otherwise adjust, the power waves 104 to converge constructively at certain locations within the transmission field, and simultaneously generate and transmit, or otherwise adjust, the power waves 104 to converge destructively to form the one or more null spaces at other locations within the transmission field.


In yet another embodiment, when the calculated SAR value is lesser than the pre-defined SAR value in a selected portion of the transmission field, the microprocessor is configured to select the type of power waves 104 to transmit such that the power waves 104 converge constructively at the selected portion within the transmission field, and simultaneously transmit any other type of power waves 104 that converge destructively to form the one or more null spaces in portions other than the selected portions in the transmission field. These power waves 104 may also be produced by using an external power source and a local oscillator chip using a piezoelectric material. The power waves 104 are constantly controlled by the microprocessor of the transmitter 102, which may also include a proprietary chip for adjusting phase and/or relative magnitudes of the power waves 104.


The microprocessor of the transmitter 102, may continuously or periodically receive and/or calculate SAR value according to one or more sampling triggers or parameters. In some instances, the microprocessor may determine the SAR value for predetermined locations according to a location sampling-interval (e.g., one-inch interval, one-foot intervals). In some instances, the microprocessor may continuously determine the SAR values of locations or may determine the SAR values at a given time sampling-interval. In some instances, the microprocessor may determine or receive the SAR value for locations whenever there is a change in frequency value of the one or more power waves 104. During sampling, the microprocessor of the transmitter 102 determines the SAR value of the new or adjusted power waves 104 at each predetermined location or at a given location sampling-interval and then compares the new SAR values obtained for each spatial location within the transmission field with the pre-defined SAR value threshold. Based on the results of the comparison, the microprocessor may identify, for example, a location within the transmission field area where the corresponding newly-calculated SAR value no longer satisfies the pre-defined SAR value. The microprocessor of the transmitter 102 may then manipulate the frequency, phase, amplitude, or other characteristics of the transmitted power waves 104, and/or the selection of new sets of antennas or antenna arrays for the transmission of new power waves 104 to control the transmission of the power waves 104.


The transmitter 102 may receive location data of one or more receivers within the transmission field of the transmitter 102. In another embodiment, the transmitter 102 determines location data of one or more receivers within the transmission field of the transmitter 102. The transmitter 102 calculates the SAR value at each of the one or more receiver locations and in a zone surrounding a predetermined distance from the one or more receivers within the transmission field of the transmitter 102. In another embodiment, the transmitter 102 receives the SAR value at each of the one or more receiver locations, as measured and reported by the receivers, and in a zone surrounding a predetermined distance from the one or more receivers within the transmission field of the transmitter 102. The microprocessor of the transmitter 102 then compares the calculated SAR value at each of the one or more receiver locations and in the zone surrounding the predetermined distance from the one or more receivers within the transmission field with a pre-defined SAR value. In an embodiment, the pre-defined SAR value can be 1.6 watts per kilogram (W/Kg). In another embodiment, the pre-defined SAR value can be any value established by the Federal Communications Commission (FCC).


When the calculated SAR value at each of the one or more receiver locations and in the zone surrounding the predetermined distance from the one or more receivers satisfies the pre-defined SAR value in a selected portion of the transmission field, the transmitter 102 may generate and transmit or otherwise adjust the power waves 104 to converge constructively at the selected portion within the transmission field. In another embodiment, when the calculated SAR value at each of the one or more receiver locations and in the zone surrounding the predetermined distance from the one or more receivers does not satisfy the pre-defined SAR value in a selected portion of the transmission field, the microprocessor is configured to generate and transmit, or otherwise adjust, the one or more power waves 104 to converge destructively to form one or more null spaces within selected portion in the transmission field.


In order to determine the location of the one or more receivers, the transmitter 102 may continuously transmit the power waves 104 and a communication signal into the transmission field of the transmitter 102. The power waves 104 may be any type of wave having any set of characteristics that may provide power to the one or more receivers located at a given location within the transmission field. Non-limiting examples of power waves may include ultrasonic waves, microwaves, infrared waves, and radio-frequency waves. The power waves 104 may be transmitted with a certain set of physical characteristics (e.g., frequency, phase, energy level, amplitude, distance, direction) that result in the power waves 104 providing elevated energy levels at the given location in the transmission field. In some embodiments, the transmitter 102 may transmit so-called exploratory power waves, which are power waves having a power level comparatively lower than the power level ordinarily used for the power waves providing power to the one or more receivers. The exploratory power waves may be used to identify the one or more receivers, and/or used to determine the appropriate characteristics for the power waves 104 that will ultimately provide power to the one or more receivers in the transmission field.


The communication signal may be any type of wave used by electrical devices to communicate data through associated protocols. Non-limiting examples may include Bluetooth®, NFC, Wi-Fi, ZigBee®, and the like. The communications signal may be used to communicate parameters used by the transmitter 102 to properly formulate the power waves 104. The communications signal may contain data describing the characteristics of the low-level power waves being transmitted. This data may indicate, for example, the direction and energy level of the power waves 104 transmitted along with the communication signal.


One or more antennas of the one or more receivers may receive the power waves 104 and the communication signal from the transmitter 102. The power waves 104 may have waveform characteristics that give the power waves 104 low-levels of power. The communication signal may contain data indicating the characteristics of the power waves 104. When the transmitter 102 formulates and/or transmits the power waves 104 in a certain direction or to a certain location within the transmission field, a communications component 111 of the transmitter 102 may generate and transmit data, within the communications signal 114, describing the power waves 104. For example, the communications signal 114 may indicate information about the power wave, such as the amplitude, frequency, energy level, the trajectory of the power waves, and/or the desired location to which the power waves were transmitted.


In some embodiments, a receiver 103 may then respond to the transmitter 102 with an indication of its location, for example, an explicit communication of location information or a communication indicating receipt of an exploratory low power wave transmission in a segment or sub-segment, and/or confirmation that the power level of said exploratory wave exceeds a particular threshold within the transmission field, using the data in the communications signal as input parameters. The one or more receivers may comprise a processor configured to generate a message for responding to the transmitter 102 with the indication of its location. The one or more receivers may be integrated into (e.g., within a smart phone) or coupled to (e.g., a smart phone backpack) an electronic device comprising a processor that is configured to generate messages indicating the receiver's location when receiving a low power wave transmission. In an alternative embodiment, the one or more receivers can determine its own location based upon characteristics of the received power waves as indicated by the received communication signal, and transmit it to the transmitter 102.


In one embodiment, the one or more antennas may be fixed upon movable elements and the distance between the one or more antennas in each of the one or more antenna arrays is dynamically adjusted depending on a location of portion within the transmission field where either a pocket of energy or null space has to be formed based on a comparison result of the calculated SAR value and the pre-defined SAR value for the given portion. The movable elements are any mechanical actuators that are controlled by the microprocessor of the transmitter. The microprocessor of the transmitter determines the location of the portion within the transmission field, and based on the location of the portion, the microprocessor controls the movement of the mechanical actuators on which the antennas are mounted.


The one or more antennas of each of the one or more antenna arrays may be configured to transmit the one or more power waves at a different time from each other because of the placement of the one or more antennas. In another embodiment, the one or more antennas of each of the one or more antenna arrays may be configured to transmit the one or more power waves at a different time from each other because of a presence of a timing circuit that is controlled by the microprocessor of the transmitter. The timing circuit can be used to select a different transmission time for each of the one or more antennas. In one example, the microprocessor may pre-configure the timing circuit with the timing of transmission of the one or more transmission waves from each of the one or more antennas. In another example, depending on a location of portion within the transmission field where either a pocket of energy or null space has to be formed based on a comparison result of the calculated SAR value and the pre-defined SAR value for the given portion, the transmitter may delay the transmission of few transmission waves from few antennas.


In one implementation, the transmitter may include an antenna circuit coupled to a switch, where each of the one or more antennas in the antenna array, are adjusted or otherwise selected depending on a location within the transmission field where power waves, a pocket of energy, or null space has to be formed or otherwise transmitted based on a comparison result of the calculated SAR value and the pre-defined SAR value for the given location. In one embodiment, the antenna array is configured such that the power wave direction can be steered in a first direction by switching on a first set of antennas of the one or more antennas, and the power wave direction of the antenna array can be steered in a second direction by switching on a second set of antennas of the one or more antennas. The second set of antennas can include one or more antennas from the first set of antennas, or the second set of antennas may not include any antennas from the first set. In one embodiment, the power wave direction of the antenna array can be steered in a plurality of directions by switching on a set of antennas from the one or more antennas for each of the plurality of directions. The selections of antennas in the first set of antennas and the second set of antennas are based upon the distances between the antennas in the first set of antennas and the second set of antennas. The distances are so chosen that the power waves emerging out of the first set, second set or any set of antennas generate effective transmission of a pocket of energy at the desired locations.


In another embodiment, the transmitter comprises at least two antenna arrays. In one example, the at least two antenna arrays comprises a first antenna array and a second antenna array. The microprocessor is configured to control the spacing between the first antenna array and the second antenna array. The distance between the first antenna array and the second antenna array is dynamically adjusted, depending on a location within the transmission field where either a pocket of energy or null space has to be formed based on a comparison result of the calculated SAR value and the pre-defined SAR value for the given portion. In an embodiment, the first antenna array and the second antenna array may be flat shaped and the offset distance between the at least two antenna arrays is 4 inches.


In another embodiment, the transmitter comprises at least two antenna arrays. In one example, the at least two antenna arrays comprises a first antenna array and a second antenna array. It should be noted that for the simplicity of explanation that the first antenna array and the second antenna array are being described; however, more than two antenna arrays may be included in the system without moving out from the scope of the disclosed embodiments. Each of the first antenna array and the second antenna array comprises one or more rows and one or more columns of antennas configured to transmit one or more power waves. In one example, the first antenna array and the second antenna array are both used for creation of the pocket of energy at the same time depending on a location within the transmission field where either a pocket of energy or null space has to be formed based on a comparison result of the calculated SAR value and the pre-defined SAR value for the given portion. In another example, the first antenna array and the second antenna array are both used for creation of the null space at the same time depending on a location within the transmission field where either a pocket of energy or null space has to be formed based on a comparison result of the calculated SAR value and the pre-defined SAR value for the given portion. In another example, the first antenna array and the second antenna array are both used for creation of the pocket of energy and the null space at the same time depending on the location within the transmission field where either a pocket of energy or null space has to be formed based on a comparison result of the calculated SAR value and the pre-defined SAR value for the given portion.



FIG. 1B shows components of a system 100 according to an exemplary embodiment. The exemplary system comprises a transmitter 102 configured to transmit one or more power waves 104 that are intended to maintain a consistent energy level, such that SAR levels do not exceed a SAR threshold, but there may be enough RF energy for a receiver 103 to capture and convert to electric power for an electronic device 108 coupled to the receiver 103. In the exemplary embodiment, a first location 105 comprises enough RF energy that the RF energy exceeds a SAR threshold; a second location 107 comprises RF energy that is uniform through the transmission field, and is compliant with the SAR threshold. The transmitter 102 may detect the non-compliant SAR value of the first location 105 through any number of techniques. For example, the transmitter 102 may continuously determine the SAR value of the power waves 104 that the transmitter 102 is generating to particular locations, at a given distance interval. In such examples, the transmitter 102 may determine that the first location 105, located at a given distance from the transmitter 102, and at a particular lateral interval, has power waves 104 being transmitted having particular characteristics that cause the RF energy at that location to exceed the SAR value threshold. Accordingly, the transmitter 102 may determine that the power waves 104 may be adjusted to maintain uniform energy levels across the transmission field.



FIG. 1C shows components of the system 100, according to the exemplary embodiment shown in FIG. 1B. In FIG. 1C, the transmitter 102 may have adjusted the power waves 104 generated and transmitted by the transmitter 102, to mitigate the RF energy exceeding the SAR threshold at the first location 105. As such, the RF energy of the power waves 104 remains uniform throughout the transmission field.



FIG. 2 illustrates a method to form a pocket of energy in a wireless power transmission system, according to an exemplary embodiment.


In a first step 202, a transmitter (TX) determines SAR values for each spatial location within a transmission field of the transmitter with respect to one or more power waves radiated from one or more antennas in the transmission field. For instance, in another embodiment, TX determines the SAR values obtained for each spatial location within the transmission field with respect to one or more power waves radiated from one or more antennas in the transmission field.


One having skill in the art would appreciate that SAR values may be predetermined or modeled according to a number of waveform parameters. The models and predetermined values are stored into memory or preprogrammed into a processor of the TX, and the waveform parameters are known to the TX as result of determining how to generate and transmit, or otherwise adjust, the power waves. For instance, the transmitter may determine a SAR value sample for a particular location using a model that uses the frequency, power level, antenna strength, and distance of one or more power waves entering the certain volume of space where the particular location is found. Using these known values and the model, the TX may determine how much power is generated by the power waves within the volume containing the location.


In a next step 204, the transmitter compares the SAR values for each spatial location within the transmission field with respect to one or more power waves radiated from one or more antennas in the transmission field with a pre-defined SAR value. In an embodiment, the pre-defined SAR value is 1.6 watts per kilogram (W/Kg). In another embodiment, the pre-defined SAR value can be any value established by the Federal Communications Commission (FCC).


In a next step 206, a microprocessor of the transmitter may execute one or more software modules in order to analyze the comparison between the SAR values for each spatial location within the transmission field with the pre-defined SAR value, and based on the analysis identify safe area within the transmission field. In one embodiment, the safe area is an area within the transmission field where the calculated SAR value is lesser than the pre-defined SAR threshold value.


The microprocessor will then determine the distance and size of the safe area from the transmitter, and based on the determined distance and the size of the safe area, the microprocessor may execute one or more software modules to select a power wave to be generated by the waveform generator, select the output frequency of the power wave, select a subset of antennas from a fixed physical shape of one or more antenna arrays that correspond to a desired spacing of antennas to form a pocket of energy at the safe area.


In one embodiment, the transmitter may adjust the power waves for the distance and the size of the safe area. For example, the transmitter may adjust the phase at which the transmitter's antenna transmits the power. When an optimal configuration for the antennas is identified, memory of the transmitter may store the configurations to keep the transmitter transmitting at that highest level. In another embodiment, the algorithms of the transmitter based on determined distance and the size of the safe area from the transmitter may determine when it is necessary to adjust the power waves and may also vary the configuration of the transmitter antennas. For example, the transmitter may determine the power received at the safe area is less than maximal, based on the determined distance and the size of the safe area. The transmitter may then adjust the phase of the power waves.


In the next step 208, the transmitter will transmit the one or more power waves to converge constructively at the safe area within the transmission field to generate the pocket of energy at the safe area.



FIG. 3 illustrates a method for forming a null space in a wireless power transmission system, according to an exemplary embodiment.


In a first step 302, a transmitter (TX) calculates SAR values for each spatial location within a transmission field of the transmitter. In another embodiment, TX receives the SAR values obtained for each spatial location within the transmission field.


In a next step 304, the transmitter compares the SAR values for each spatial location within the transmission field with a pre-defined SAR value. In an embodiment, the pre-defined SAR value is 1.6 watts per kilogram (W/Kg). In another embodiment, the pre-defined SAR value can be any value established by the Federal Communications Commission (FCC).


In a next step 306, a microprocessor of the transmitter may execute one or more software modules in order to analyze the comparison between the SAR values for each spatial location within the transmission field with the pre-defined SAR value, and based on the analysis identify unsafe area within the transmission field. In one embodiment, the unsafe area is an area within the transmission field where the calculated SAR value for each spatial location within the transmission field is greater than to the pre-defined SAR value.


The microprocessor will then determine the distance and size of the unsafe area from the transmitter, and based on the determined distance and the size of the unsafe area from the transmitter, the microprocessor may execute one or more software modules to select a power wave to be generated by the waveform generator, select the output frequency of the power wave, select a subset of antennas from a fixed physical shape of one or more antenna arrays that correspond to a desired spacing of antennas to form null space at the unsafe area.


In one embodiment, the distance and the size of the unsafe area from the transmitter, as calculated according to transmitter algorithms, may vary production and transmission of power waves by the transmitter's antennas to form null space at the unsafe area. For example, the transmitter may adjust the phase at which the transmitter's antenna transmits the power. When an optimal configuration for the antennas is identified, memory of the transmitter may store the configurations to keep the transmitter transmitting at that highest level. In another embodiment, the algorithms of the transmitter based on determined distance and the size of the unsafe area from the transmitter may determine when it is necessary to adjust the power waves and may also vary the configuration of the transmitter antennas.


In the next step 308, the transmitter will transmit the one or more power waves to converge destructively at the unsafe area within the transmission field to form the null space. In an embodiment, the unsafe area may receive multiple power transmission signals from the transmitter. Each of the multiple power transmission signals comprises the power waves from multiple antennas of the transmitter. The composite of these power transmission signals may be essentially zero, because the power waves add together destructively to create the null space.


In another embodiment, at least two power waves may be generated by a waveform generator of the transmitter. The at least two power waves generated may have different frequencies. The change in phase of the frequency of one of the at least two power waves may result in formation of a unified power wave. The uniform power wave may be such that it will generate the null space at the unsafe area in the transmission field, along with generation of the pocket of energy in areas other than the unsafe area in the transmission field.


The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that the steps of the various embodiments must be performed in the order presented. As will be appreciated by one of skill in the art the steps in the foregoing embodiments may be performed in any order. Words such as “then,” “next,” etc. are not intended to limit the order of the steps; these words are simply used to guide the reader through the description of the methods. Although process flow diagrams may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination may correspond to a return of the function to the calling function or the main function.


The various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Those skilled in the art may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.


Embodiments implemented in computer software may be implemented in software, firmware, middleware, microcode, hardware description languages, or any combination thereof. A code segment or machine-executable instructions may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc.


The actual software code or specialized control hardware used to implement these systems and methods is not limiting of the invention. Thus, the operation and behavior of the systems and methods were described without reference to the specific software code being understood that software and control hardware can be designed to implement the systems and methods based on the description herein.


When implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable or processor-readable storage medium. The steps of a method or algorithm disclosed herein may be embodied in a processor-executable software module, which may reside on a computer-readable or processor-readable storage medium. A non-transitory computer-readable or processor-readable media includes both computer storage media and tangible storage media that facilitate transfer of a computer program from one place to another. A non-transitory processor-readable storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such non-transitory processor-readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other tangible storage medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer or processor. Disk and disc, as used herein, include compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable medium and/or computer-readable medium, which may be incorporated into a computer program product.

Claims
  • 1. A method of monitoring specific absorption rate (SAR) values to determine when to wirelessly transmit power to a receiver, the method comprising: receiving, at a wireless-power transmission device, an indication from a receiver responsive to wirelessly delivered RF power, the receiver being present at a location within a transmission field of the wireless-power transmission device;in response to receiving the indication, determining transmission characteristics to use for transmitting radio frequency power transmission signals to the receiver;determining, using stored SAR value determination criteria and one or more of the transmission characteristics, a predicted SAR value that would be present at the location after the radio frequency power transmission signals with the transmission characteristics would be transmitted to the location of the receiver; andin accordance with a determination that the predicted SAR value would be less than a predefined SAR value, causing the wireless-power transmission device to transmit the radio frequency power transmission signals to the receiver.
  • 2. The method of claim 1, further comprising: after satisfaction of one or more sampling triggers or parameters, determining an updated predicted SAR value that would be present at the location after the radio frequency power transmission signals with the transmission characteristics would be transmitted to the location of the receiver;in accordance with a determination that the updated predicted SAR value would be greater than or equal to the predefined SAR value: manipulating one or more of the transmission characteristics to define one or more manipulated transmission characteristics; andcausing the wireless-power transmission device to transmit radio frequency power transmission signals to the receiver using the one or more manipulated transmission characteristics.
  • 3. The method of claim 1, wherein the stored SAR value determination criteria are based on modelling performed prior to deployment or prior to manufacture of the wireless-power transmission device.
  • 4. The method of claim 3, wherein the modelling performed prior to deployment or prior to manufacture of the wireless-power transmission device includes scanning a model intended to resemble the human body to measure SAR values as RF power transmission signals with various waveform characteristics are transmitted to the model intended to resemble the human body.
  • 5. The method of claim 1, wherein the stored SAR value determination criteria includes using known channel propagation models and empirical data on propagation losses to determine the predicted SAR value.
  • 6. The method of claim 1, wherein the predefined SAR value is 1.6 watts per kilogram (W/kg).
  • 7. The method of claim 1, wherein the stored SAR value determination criteria are stored in a memory that is coupled with the wireless-power transmission device.
  • 8. The method of claim 1, further comprising: before transmitting the radio frequency power transmission signals to the receiver, calculating an additional predicted SAR value for a zone surrounding a predetermined distance from the location of the receiver,wherein the determination that the predicted SAR value would be less than a predefined SAR value also includes a determination that the additional predicted SAR value would be less than the predefined SAR value.
  • 9. The method of claim 1, further comprising: monitoring SAR values at multiple locations within the transmission field;adjusting transmission of radio frequency power transmission signals to maintain uniform energy levels that remain compliant with the predefined SAR value across the transmission field.
  • 10. The method of claim 1, wherein the predicted SAR value is further based on sensor data from one or more sensors.
  • 11. A non-transitory computer-readable storage medium storing executable instructions that, when executed by a transmitter configured to monitor specific absorption rate (SAR) values to determine when to wirelessly transmit power to a receiver, cause the transmitter to: receive, at a wireless-power transmission device, an indication from a receiver responsive to wirelessly delivered RF power, the receiver being present at a location within a transmission field of the wireless-power transmission device;in response to receiving the indication, determine transmission characteristics to use for transmitting radio frequency power transmission signals to the receiver;determine, using stored SAR value determination criteria and one or more of the transmission characteristics, a predicted SAR value that would be present at the location after the radio frequency power transmission signals with the transmission characteristics would be transmitted to the location of the receiver; andin accordance with a determination that the predicted SAR value would be less than a predefined SAR value, cause the wireless-power transmission device to transmit the radio frequency power transmission signals to the receiver.
  • 12. The non-transitory computer-readable storage medium of claim 11, further comprising executable instructions that, when executed by the transmitter, cause the transmitter to: after satisfaction of one or more sampling triggers or parameters, determine an updated predicted SAR value that would be present at the location after the radio frequency power transmission signals with the transmission characteristics would be transmitted to the location of the receiver;in accordance with a determination that the updated predicted SAR value would be greater than or equal to the predefined SAR value: manipulate one or more of the transmission characteristics to define one or more manipulated transmission characteristics; andcause the wireless-power transmission device to transmit radio frequency power transmission signals to the receiver using the one or more manipulated transmission characteristics.
  • 13. The non-transitory computer-readable storage medium of claim 11, wherein the stored SAR value determination criteria are based on modelling performed prior to deployment or prior to manufacture of the wireless-power transmission device.
  • 14. The non-transitory computer-readable storage medium of claim 13, wherein the modelling performed prior to deployment or prior to manufacture of the wireless-power transmission device includes scanning a model intended to resemble the human body to measure SAR values as RF power transmission signals with various waveform characteristics are transmitted to the model intended to resemble the human body.
  • 15. The non-transitory computer-readable storage medium of claim 11, wherein the stored SAR value determination criteria includes using known channel propagation models and empirical data on propagation losses to determine the predicted SAR value.
  • 16. The non-transitory computer-readable storage medium of claim 11, wherein the predefined SAR value is 1.6 watts per kilogram (W/kg).
  • 17. The non-transitory computer-readable storage medium of claim 11, wherein the stored SAR value determination criteria are stored in a memory that is coupled with the wireless-power transmission device.
  • 18. The non-transitory computer-readable storage medium of claim 11, further comprising executable instructions that, when executed by the transmitter, cause the transmitter to: before transmitting the radio frequency power transmission signals to the receiver, calculate an additional predicted SAR value for a zone surrounding a predetermined distance from the location of the receiver,wherein the determination that the predicted SAR value would be less than a predefined SAR value also includes a determination that the additional predicted SAR value would be less than the predefined SAR value.
  • 19. The non-transitory computer-readable storage medium of claim 11, further comprising executable instructions that, when executed by the transmitter, cause the transmitter to: monitor SAR values at multiple locations within the transmission field;adjust transmission of radio frequency power transmission signals to maintain uniform energy levels that remain compliant with the predefined SAR value across the transmission field.
  • 20. The non-transitory computer-readable storage medium of claim 11, wherein the predicted SAR value is further based on sensor data from one or more sensors.
  • 21. A system for wireless power transmission, the system comprising: one or more transmitters, each of the one or more transmitters configured to monitor specific absorption rate (SAR) values to determine when to wirelessly transmit power to a receiver, each transmitter comprising a microprocessor configured to: receive, at a wireless-power transmission device, an indication from a receiver responsive to wirelessly delivered RF power, the receiver being present at a location within a transmission field of the wireless-power transmission device;in response to receiving the indication, determine transmission characteristics to use for transmitting radio frequency power transmission signals to the receiver;determine, using stored SAR value determination criteria and one or more of the transmission characteristics, a predicted SAR value that would be present at the location after the radio frequency power transmission signals with the transmission characteristics would be transmitted to the location of the receiver; andin accordance with a determination that the predicted SAR value would be less than a predefined SAR value, cause the wireless-power transmission device to transmit the radio frequency power transmission signals to the receiver.
  • 22. The system of claim 21, wherein the microprocessor of each transmitter is further configured to: after satisfaction of one or more sampling triggers or parameters, determine an updated predicted SAR value that would be present at the location after the radio frequency power transmission signals with the transmission characteristics would be transmitted to the location of the receiver;in accordance with a determination that the updated predicted SAR value would be greater than or equal to the predefined SAR value: manipulate one or more of the transmission characteristics to define one or more manipulated transmission characteristics; andcause the wireless-power transmission device to transmit radio frequency power transmission signals to the receiver using the one or more manipulated transmission characteristics.
  • 23. The system of claim 21, wherein the stored SAR value determination criteria are based on modelling performed prior to deployment or prior to manufacture of the wireless-power transmission device.
  • 24. The system of claim 23, wherein the modelling performed prior to deployment or prior to manufacture of the wireless-power transmission device includes scanning a model intended to resemble the human body to measure SAR values as RF power transmission signals with various waveform characteristics are transmitted to the model intended to resemble the human body.
  • 25. The system of claim 21, wherein the stored SAR value determination criteria includes using known channel propagation models and empirical data on propagation losses to determine the predicted SAR value.
  • 26. The system of claim 21, wherein the predefined SAR value is 1.6 watts per kilogram (W/kg).
  • 27. The system of claim 21, wherein the stored SAR value determination criteria are stored in a memory that is coupled with the wireless-power transmission device.
  • 28. The system of claim 21, wherein the microprocessor of each transmitter is further configured to: before transmitting the radio frequency power transmission signals to the receiver, calculate an additional predicted SAR value for a zone surrounding a predetermined distance from the location of the receiver,wherein the determination that the predicted SAR value would be less than a predefined SAR value also includes a determination that the additional predicted SAR value would be less than the predefined SAR value.
  • 29. The system of claim 21, wherein the microprocessor of each transmitter is further configured to: monitor SAR values at multiple locations within the transmission field;adjust transmission of radio frequency power transmission signals to maintain uniform energy levels that remain compliant with the predefined SAR value across the transmission field.
  • 30. The system of claim 21, wherein the predicted SAR value is further based on sensor data from one or more sensors.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Non-Provisional patent application Ser. No. 15/059,898, filed on Mar. 3, 2016, entitled “Systems And Methods For Generating Power Waves In A Wireless Power Transmission System,” which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/272,454, entitled “Systems And Methods for Generating Power Waves in a Wireless Power Transmission System,” filed Dec. 29, 2015, which are hereby incorporated by reference in their entirety U.S. Non-Provisional patent application Ser. No. 15/059,898 is a continuation-in-part of U.S. patent application Ser. No. 14/856,337, entitled “Receiver Devices Configured to Operate with a Wireless Charging System,” filed Sep. 16, 2015 (now U.S. Pat. No. 10,312,715), which is incorporated by reference herein in its entirety.

US Referenced Citations (1202)
Number Name Date Kind
787412 Tesla Apr 1905 A
2811624 Haagensen Oct 1957 A
2863148 Gammon et al. Dec 1958 A
3167775 Guertler Jan 1965 A
3434678 Brown et al. Mar 1969 A
3696384 Lester Oct 1972 A
3754269 Clavin Aug 1973 A
4101895 Jones, Jr. Jul 1978 A
4360741 Fitzsimmons et al. Nov 1982 A
4944036 Hyatt Jul 1990 A
4995010 Knight Feb 1991 A
5200759 McGinnis Apr 1993 A
5211471 Rohrs May 1993 A
5548292 Hirshfield et al. Aug 1996 A
5556749 Mitsuhashi et al. Sep 1996 A
5568088 Dent et al. Oct 1996 A
5646633 Dahlberg Jul 1997 A
5697063 Kishigami et al. Dec 1997 A
5712642 Hulderman Jan 1998 A
5936527 Isaacman et al. Aug 1999 A
5982139 Parise Nov 1999 A
6046708 MacDonald, Jr. et al. Apr 2000 A
6127799 Krishnan Oct 2000 A
6127942 Welle Oct 2000 A
6163296 Lier et al. Dec 2000 A
6271799 Rief Aug 2001 B1
6289237 Mickle et al. Sep 2001 B1
6329908 Frecska Dec 2001 B1
6400586 Raddi et al. Jun 2002 B2
6421235 Ditzik Jul 2002 B2
6437685 Hanaki Aug 2002 B2
6456253 Rummeli et al. Sep 2002 B1
6476795 Derocher et al. Nov 2002 B1
6501414 Amdt et al. Dec 2002 B2
6583723 Watanabe et al. Jun 2003 B2
6597897 Tang Jul 2003 B2
6615074 Mickle et al. Sep 2003 B2
6650376 Obitsu Nov 2003 B1
6664920 Mott et al. Dec 2003 B1
6680700 Hilgers Jan 2004 B2
6798716 Charych Sep 2004 B1
6803744 Sabo Oct 2004 B1
6853197 McFarland Feb 2005 B1
6856291 Mickle et al. Feb 2005 B2
6911945 Korva Jun 2005 B2
6960968 Odendaal et al. Nov 2005 B2
6967462 Landis Nov 2005 B1
6988026 Breed et al. Jan 2006 B2
7003350 Denker et al. Feb 2006 B2
7027311 Vanderelli et al. Apr 2006 B2
7068234 Sievenpiper Jun 2006 B2
7068991 Parise Jun 2006 B2
7079079 Jo et al. Jul 2006 B2
7183748 Unno et al. Feb 2007 B1
7191013 Miranda et al. Mar 2007 B1
7193644 Carter Mar 2007 B2
7196663 Bolzer et al. Mar 2007 B2
7205749 Hagen et al. Apr 2007 B2
7215296 Abramov et al. May 2007 B2
7222356 Yonezawa et al. May 2007 B1
7274334 O'Riordan et al. Sep 2007 B2
7274336 Carson Sep 2007 B2
7351975 Brady et al. Apr 2008 B2
7359730 Dennis et al. Apr 2008 B2
7372408 Gaucher May 2008 B2
7392068 Dayan Jun 2008 B2
7403803 Mickle et al. Jul 2008 B2
7443057 Nunally Oct 2008 B2
7451839 Perlman Nov 2008 B2
7463201 Chiang et al. Dec 2008 B2
7471247 Saily Dec 2008 B2
7535195 Horovitz et al. May 2009 B1
7614556 Overhultz et al. Nov 2009 B2
7639994 Greene et al. Dec 2009 B2
7643312 Vanderelli et al. Jan 2010 B2
7652577 Madhow et al. Jan 2010 B1
7679576 Riedel et al. Mar 2010 B2
7702771 Ewing et al. Apr 2010 B2
7786419 Hyde et al. Aug 2010 B2
7812771 Greene et al. Oct 2010 B2
7830312 Choudhury et al. Nov 2010 B2
7844306 Shearer et al. Nov 2010 B2
7868482 Greene et al. Jan 2011 B2
7898105 Greene et al. Mar 2011 B2
7904117 Doan et al. Mar 2011 B2
7911386 Ito et al. Mar 2011 B1
7925308 Greene et al. Apr 2011 B2
7948208 Partovi et al. May 2011 B2
8049676 Yoon et al. Nov 2011 B2
8055003 Mittleman et al. Nov 2011 B2
8070595 Alderucci et al. Dec 2011 B2
8072380 Crouch Dec 2011 B2
8092301 Alderucci et al. Jan 2012 B2
8099140 Arai Jan 2012 B2
8115448 John Feb 2012 B2
8159090 Greene et al. Apr 2012 B2
8159364 Zeine Apr 2012 B2
8180286 Yamasuge May 2012 B2
8228194 Mickle Jul 2012 B2
8234509 Gioscia et al. Jul 2012 B2
8264101 Hyde et al. Sep 2012 B2
8264291 Morita Sep 2012 B2
8276325 Clifton et al. Oct 2012 B2
8278784 Cook et al. Oct 2012 B2
8284101 Fusco Oct 2012 B2
8310201 Wright Nov 2012 B1
8338991 Von Novak et al. Dec 2012 B2
8362745 Tinaphong Jan 2013 B2
8380255 Shearer et al. Feb 2013 B2
8384600 Huang et al. Feb 2013 B2
8410953 Zeine Apr 2013 B2
8411963 Luff Apr 2013 B2
8432062 Greene et al. Apr 2013 B2
8432071 Huang et al. Apr 2013 B2
8446248 Zeine May 2013 B2
8447234 Cook et al. May 2013 B2
8451189 Fluhler May 2013 B1
8452235 Kirby et al. May 2013 B2
8457656 Perkins et al. Jun 2013 B2
8461817 Martin et al. Jun 2013 B2
8467733 Leabman Jun 2013 B2
8497601 Hall et al. Jul 2013 B2
8497658 Von Novak et al. Jul 2013 B2
8552597 Song et al. Aug 2013 B2
8558661 Zeine Oct 2013 B2
8560026 Chanterac Oct 2013 B2
8604746 Lee Dec 2013 B2
8614643 Leabman Dec 2013 B2
8621245 Shearer et al. Dec 2013 B2
8626249 Kuusilinna et al. Jan 2014 B2
8629576 Levine Jan 2014 B2
8653966 Rao et al. Feb 2014 B2
8674551 Low et al. Mar 2014 B2
8686685 Moshfeghi Apr 2014 B2
8686905 Shtrom Apr 2014 B2
8712355 Black et al. Apr 2014 B2
8712485 Tam Apr 2014 B2
8718773 Wills et al. May 2014 B2
8729737 Schatz et al. May 2014 B2
8736228 Freed et al. May 2014 B1
8760113 Keating Jun 2014 B2
8770482 Ackermann et al. Jul 2014 B2
8772960 Yoshida Jul 2014 B2
8823319 Von Novak, III et al. Sep 2014 B2
8832646 Wendling Sep 2014 B1
8854176 Zeine Oct 2014 B2
8860364 Low et al. Oct 2014 B2
8897770 Frolov et al. Nov 2014 B1
8903456 Chu et al. Dec 2014 B2
8917057 Hui Dec 2014 B2
8923189 Leabman Dec 2014 B2
8928544 Massie et al. Jan 2015 B2
8937408 Ganem et al. Jan 2015 B2
8946940 Kim et al. Feb 2015 B2
8963486 Kirby et al. Feb 2015 B2
8970070 Sada et al. Mar 2015 B2
8989053 Skaaksrud et al. Mar 2015 B1
9000616 Greene et al. Apr 2015 B2
9001622 Perry Apr 2015 B2
9006934 Kozakai et al. Apr 2015 B2
9021277 Shearer et al. Apr 2015 B2
9030161 Lu et al. May 2015 B2
9059598 Kang et al. Jun 2015 B2
9059599 Won et al. Jun 2015 B2
9077188 Moshfeghi Jul 2015 B2
9083595 Rakib et al. Jul 2015 B2
9088216 Garrity et al. Jul 2015 B2
9124125 Leabman et al. Sep 2015 B2
9130397 Leabman et al. Sep 2015 B2
9130602 Cook Sep 2015 B2
9142998 Yu et al. Sep 2015 B2
9143000 Leabman et al. Sep 2015 B2
9143010 Urano Sep 2015 B2
9153074 Zhou et al. Oct 2015 B2
9178389 Hwang Nov 2015 B2
9225196 Huang et al. Dec 2015 B2
9240469 Sun et al. Jan 2016 B2
9242411 Kritchman et al. Jan 2016 B2
9244500 Cain et al. Jan 2016 B2
9252628 Leabman et al. Feb 2016 B2
9270344 Rosenberg Feb 2016 B2
9276329 Jones et al. Mar 2016 B2
9282582 Dunsbergen et al. Mar 2016 B1
9294840 Anderson et al. Mar 2016 B1
9297896 Andrews Mar 2016 B1
9318898 John Apr 2016 B2
9368020 Bell et al. Jun 2016 B1
9401977 Gaw Jul 2016 B1
9409490 Kawashima Aug 2016 B2
9419335 Pintos Aug 2016 B2
9419443 Leabman Aug 2016 B2
9438045 Leabman Sep 2016 B1
9438046 Leabman Sep 2016 B1
9444283 Son et al. Sep 2016 B2
9450449 Leabman et al. Sep 2016 B1
9461502 Lee et al. Oct 2016 B2
9520725 Masaoka et al. Dec 2016 B2
9520748 Hyde et al. Dec 2016 B2
9522270 Perryman et al. Dec 2016 B2
9537354 Bell et al. Jan 2017 B2
9537357 Leabman Jan 2017 B2
9537358 Leabman Jan 2017 B2
9538382 Bell et al. Jan 2017 B2
9544640 Lau Jan 2017 B2
9559553 Bae Jan 2017 B2
9564773 Pogorelik et al. Feb 2017 B2
9571974 Choi et al. Feb 2017 B2
9590317 Zimmerman et al. Mar 2017 B2
9590444 Walley Mar 2017 B2
9620996 Zeine Apr 2017 B2
9647328 Dobric May 2017 B2
9706137 Scanlon et al. Jul 2017 B2
9711999 Hietala et al. Jul 2017 B2
9723635 Nambord et al. Aug 2017 B2
9793758 Leabman Oct 2017 B2
9793764 Perry Oct 2017 B2
9800080 Leabman et al. Oct 2017 B2
9800172 Leabman Oct 2017 B1
9806564 Leabman Oct 2017 B2
9819230 Petras et al. Nov 2017 B2
9824815 Leabman et al. Nov 2017 B2
9825674 Leabman Nov 2017 B1
9831718 Leabman et al. Nov 2017 B2
9838083 Bell et al. Dec 2017 B2
9843213 Leabman et al. Dec 2017 B2
9843229 Leabman Dec 2017 B2
9843763 Leabman et al. Dec 2017 B2
9847669 Leabman Dec 2017 B2
9847677 Leabman Dec 2017 B1
9847679 Bell et al. Dec 2017 B2
9853361 Chen et al. Dec 2017 B2
9853692 Bell et al. Dec 2017 B1
9859756 Leabman et al. Jan 2018 B2
9859758 Leabman Jan 2018 B1
9866279 Bell et al. Jan 2018 B2
9867032 Verma et al. Jan 2018 B2
9867062 Bell et al. Jan 2018 B1
9871301 Contopanagos Jan 2018 B2
9876380 Leabman et al. Jan 2018 B1
9876394 Leabman Jan 2018 B1
9876536 Bell et al. Jan 2018 B1
9876648 Bell Jan 2018 B2
9882394 Bell et al. Jan 2018 B1
9882427 Leabman et al. Jan 2018 B2
9887584 Bell et al. Feb 2018 B1
9891669 Bell Feb 2018 B2
9893554 Bell et al. Feb 2018 B2
9893555 Leabman et al. Feb 2018 B1
9893564 de Rochemont Feb 2018 B2
9899844 Bell et al. Feb 2018 B1
9899861 Leabman et al. Feb 2018 B1
9899873 Bell et al. Feb 2018 B2
9912199 Leabman et al. Mar 2018 B2
9917477 Bell et al. Mar 2018 B1
9923386 Leabman et al. Mar 2018 B1
9939864 Bell et al. Apr 2018 B1
9941747 Bell et al. Apr 2018 B2
9965009 Bell et al. May 2018 B1
9966765 Leabman May 2018 B1
9966784 Leabman May 2018 B2
9967743 Bell et al. May 2018 B1
9973008 Leabman May 2018 B1
10003211 Leabman et al. Jun 2018 B1
10008889 Bell et al. Jun 2018 B2
10014728 Leabman Jul 2018 B1
10027159 Hosseini Jul 2018 B2
10038337 Leabman et al. Jul 2018 B1
10050462 Leabman et al. Aug 2018 B1
10056782 Leabman Aug 2018 B1
10063064 Bell et al. Aug 2018 B1
10063105 Leabman Aug 2018 B2
10063106 Bell et al. Aug 2018 B2
10068703 Contopanagos Sep 2018 B1
10075008 Bell et al. Sep 2018 B1
10079515 Hosseini et al. Sep 2018 B2
10090699 Leabman Oct 2018 B1
10090886 Bell et al. Oct 2018 B1
10103552 Leabman et al. Oct 2018 B1
10103582 Leabman et al. Oct 2018 B2
10122219 Hosseini et al. Nov 2018 B1
10122415 Bell et al. Nov 2018 B2
10124754 Leabman Nov 2018 B1
10128686 Leabman et al. Nov 2018 B1
10128695 Leabman et al. Nov 2018 B2
10128699 Leabman Nov 2018 B2
10134260 Bell et al. Nov 2018 B1
10135112 Hosseini Nov 2018 B1
10135286 Hosseini et al. Nov 2018 B2
10135294 Leabman Nov 2018 B1
10135295 Leabman Nov 2018 B2
10141768 Leabman et al. Nov 2018 B2
10141771 Hosseini et al. Nov 2018 B1
10141791 Bell et al. Nov 2018 B2
10148097 Leabman et al. Dec 2018 B1
10153645 Bell et al. Dec 2018 B1
10153653 Bell et al. Dec 2018 B1
10153660 Leabman et al. Dec 2018 B1
10158257 Leabman Dec 2018 B2
10158259 Leabman Dec 2018 B1
10164478 Leabman Dec 2018 B2
10170917 Bell et al. Jan 2019 B1
10177594 Contopanagos Jan 2019 B2
10181756 Bae et al. Jan 2019 B2
10186892 Hosseini et al. Jan 2019 B2
10186893 Bell et al. Jan 2019 B2
10186911 Leabman Jan 2019 B2
10186913 Leabman et al. Jan 2019 B2
10193396 Bell et al. Jan 2019 B1
10199835 Bell Feb 2019 B2
10199849 Bell Feb 2019 B1
10199850 Leabman Feb 2019 B2
10205239 Contopanagos et al. Feb 2019 B1
10206185 Leabman et al. Feb 2019 B2
10211674 Leabman et al. Feb 2019 B1
10211680 Leabman et al. Feb 2019 B2
10211682 Bell et al. Feb 2019 B2
10211685 Bell et al. Feb 2019 B2
10218207 Hosseini et al. Feb 2019 B2
10218227 Leabman et al. Feb 2019 B2
10223717 Bell Mar 2019 B1
10224758 Leabman et al. Mar 2019 B2
10224982 Leabman Mar 2019 B1
10230266 Leabman et al. Mar 2019 B1
10243414 Leabman et al. Mar 2019 B1
10256657 Hosseini et al. Apr 2019 B2
10256677 Hosseini et al. Apr 2019 B2
10263432 Leabman et al. Apr 2019 B1
10263476 Leabman Apr 2019 B2
10270261 Bell et al. Apr 2019 B2
10277054 Hosseini Apr 2019 B2
10291055 Bell et al. May 2019 B1
10291056 Bell et al. May 2019 B2
10291066 Leabman May 2019 B1
10291294 Leabman May 2019 B2
10298024 Leabman May 2019 B2
10298133 Leabman May 2019 B2
10305315 Leabman et al. May 2019 B2
10312715 Leabman Jun 2019 B2
10320446 Hosseini Jun 2019 B2
10333332 Hosseini Jun 2019 B1
10381880 Leabman et al. Aug 2019 B2
10389161 Hosseini et al. Aug 2019 B2
10396588 Leabman Aug 2019 B2
10396604 Bell et al. Aug 2019 B2
10439442 Hosseini et al. Oct 2019 B2
10439448 Bell et al. Oct 2019 B2
10476312 Johnston et al. Nov 2019 B2
10490346 Contopanagos Nov 2019 B2
10491029 Hosseini Nov 2019 B2
10498144 Leabman et al. Dec 2019 B2
10511097 Kornaros et al. Dec 2019 B2
10516301 Leabman Dec 2019 B2
10523033 Leabman Dec 2019 B2
10523058 Leabman Dec 2019 B2
10615647 Johnston et al. Apr 2020 B2
10680319 Hosseini et al. Jun 2020 B2
10714984 Hosseini et al. Jul 2020 B2
10734717 Hosseini Aug 2020 B2
10778041 Leabman Sep 2020 B2
10790674 Bell et al. Sep 2020 B2
10923954 Leabman Feb 2021 B2
11011942 Liu May 2021 B2
20010027876 Tsukamoto et al. Oct 2001 A1
20020001307 Nguyen et al. Jan 2002 A1
20020024471 Ishitobi Feb 2002 A1
20020028655 Rosener et al. Mar 2002 A1
20020034958 Oberschmidt et al. Mar 2002 A1
20020054330 Jinbo et al. May 2002 A1
20020065052 Pande et al. May 2002 A1
20020072784 Sheppard et al. Jun 2002 A1
20020095980 Breed et al. Jul 2002 A1
20020103447 Terry Aug 2002 A1
20020123776 Von Arx Sep 2002 A1
20020133592 Matsuda Sep 2002 A1
20020171594 Fang Nov 2002 A1
20020172223 Stilp Nov 2002 A1
20030005759 Breed et al. Jan 2003 A1
20030038750 Chen Feb 2003 A1
20030058187 Billiet et al. Mar 2003 A1
20030076274 Phelan et al. Apr 2003 A1
20030179152 Watada et al. Sep 2003 A1
20030179573 Chun Sep 2003 A1
20030192053 Sheppard et al. Oct 2003 A1
20040019624 Sukegawa Jan 2004 A1
20040020100 O'Brian et al. Feb 2004 A1
20040036657 Forster et al. Feb 2004 A1
20040066251 Eleftheriades et al. Apr 2004 A1
20040107641 Walton et al. Jun 2004 A1
20040113543 Daniels Jun 2004 A1
20040119675 Washio et al. Jun 2004 A1
20040130425 Dayan et al. Jul 2004 A1
20040130442 Breed Jul 2004 A1
20040142733 Parise Jul 2004 A1
20040145342 Lyon Jul 2004 A1
20040155832 Yuanzhu Aug 2004 A1
20040196190 Mendolia et al. Oct 2004 A1
20040203979 Attar et al. Oct 2004 A1
20040207559 Milosavljevic Oct 2004 A1
20040218759 Yacobi Nov 2004 A1
20040259604 Mickle et al. Dec 2004 A1
20040263124 Wieck et al. Dec 2004 A1
20050007276 Barrick et al. Jan 2005 A1
20050030118 Wang Feb 2005 A1
20050046584 Breed Mar 2005 A1
20050055316 Williams Mar 2005 A1
20050077872 Single Apr 2005 A1
20050093766 Turner May 2005 A1
20050116683 Cheng Jun 2005 A1
20050117660 Vialle et al. Jun 2005 A1
20050134517 Gottl Jun 2005 A1
20050171411 KenKnight Aug 2005 A1
20050198673 Kit et al. Sep 2005 A1
20050227619 Lee et al. Oct 2005 A1
20050232469 Schofield Oct 2005 A1
20050237249 Nagel Oct 2005 A1
20050237258 Abramov et al. Oct 2005 A1
20050282591 Shaff Dec 2005 A1
20060013335 Leabman Jan 2006 A1
20060019712 Choi Jan 2006 A1
20060030279 Leabman et al. Feb 2006 A1
20060033674 Essig, Jr. et al. Feb 2006 A1
20060071308 Tang et al. Apr 2006 A1
20060092079 de Rochemont May 2006 A1
20060094425 Mickle et al. May 2006 A1
20060113955 Nunally Jun 2006 A1
20060119532 Yun et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060160517 Yoon Jul 2006 A1
20060183473 Ukon Aug 2006 A1
20060190063 Kanzius Aug 2006 A1
20060192913 Shutou et al. Aug 2006 A1
20060199620 Greene et al. Sep 2006 A1
20060238365 Vecchione et al. Oct 2006 A1
20060266564 Perlman et al. Nov 2006 A1
20060266917 Baldis et al. Nov 2006 A1
20060278706 Hatakayama et al. Dec 2006 A1
20060284593 Nagy et al. Dec 2006 A1
20060287094 Mahaffey et al. Dec 2006 A1
20070007821 Rossetti Jan 2007 A1
20070019693 Graham Jan 2007 A1
20070021140 Keyes Jan 2007 A1
20070060185 Simon et al. Mar 2007 A1
20070070490 Tsunoda et al. Mar 2007 A1
20070090997 Brown et al. Apr 2007 A1
20070093269 Leabman et al. Apr 2007 A1
20070097653 Gilliland et al. May 2007 A1
20070103110 Sagoo May 2007 A1
20070106894 Zhang May 2007 A1
20070109121 Cohen May 2007 A1
20070139000 Kozuma Jun 2007 A1
20070149162 Greene et al. Jun 2007 A1
20070164868 Deavours et al. Jul 2007 A1
20070173196 Gallic Jul 2007 A1
20070173214 Mickle et al. Jul 2007 A1
20070178857 Greene et al. Aug 2007 A1
20070178945 Cook et al. Aug 2007 A1
20070182367 Partovi Aug 2007 A1
20070191074 Harrist et al. Aug 2007 A1
20070191075 Greene et al. Aug 2007 A1
20070197281 Stronach Aug 2007 A1
20070210960 Rofougaran et al. Sep 2007 A1
20070222681 Greene et al. Sep 2007 A1
20070228833 Stevens et al. Oct 2007 A1
20070240297 Yang et al. Oct 2007 A1
20070257634 Leschin et al. Nov 2007 A1
20070273486 Shiotsu Nov 2007 A1
20070291165 Wang Dec 2007 A1
20070296639 Hook et al. Dec 2007 A1
20070298846 Greene et al. Dec 2007 A1
20080014897 Cook et al. Jan 2008 A1
20080024376 Norris et al. Jan 2008 A1
20080048917 Achour et al. Feb 2008 A1
20080062062 Borau et al. Mar 2008 A1
20080062255 Gal Mar 2008 A1
20080067874 Tseng Mar 2008 A1
20080074324 Puzella et al. Mar 2008 A1
20080089277 Alexander et al. Apr 2008 A1
20080110263 Klessel et al. May 2008 A1
20080113816 Mahaffey et al. May 2008 A1
20080122297 Arai May 2008 A1
20080123383 Shionoiri May 2008 A1
20080129536 Randall et al. Jun 2008 A1
20080140278 Breed Jun 2008 A1
20080169910 Greene et al. Jul 2008 A1
20080197802 Onishi Aug 2008 A1
20080204342 Kharadly Aug 2008 A1
20080204350 Tam et al. Aug 2008 A1
20080210762 Osada et al. Sep 2008 A1
20080211458 Lawther et al. Sep 2008 A1
20080233890 Baker Sep 2008 A1
20080248758 Schedelbeck et al. Oct 2008 A1
20080248846 Stronach et al. Oct 2008 A1
20080258993 Gummalla et al. Oct 2008 A1
20080266191 Hilgers Oct 2008 A1
20080278378 Chang et al. Nov 2008 A1
20080309452 Zeine Dec 2008 A1
20090002493 Kates Jan 2009 A1
20090010316 Rofougaran et al. Jan 2009 A1
20090019183 Wu et al. Jan 2009 A1
20090036065 Siu Feb 2009 A1
20090039828 Jakubowski Feb 2009 A1
20090047998 Alberth, Jr. Feb 2009 A1
20090058354 Harrison Mar 2009 A1
20090058361 John Mar 2009 A1
20090058731 Geary et al. Mar 2009 A1
20090060012 Gresset et al. Mar 2009 A1
20090067198 Graham et al. Mar 2009 A1
20090067208 Martin et al. Mar 2009 A1
20090073066 Jordon et al. Mar 2009 A1
20090096412 Huang Apr 2009 A1
20090096413 Partovi Apr 2009 A1
20090102292 Cook et al. Apr 2009 A1
20090102296 Greene et al. Apr 2009 A1
20090108679 Porwal Apr 2009 A1
20090122847 Nysen et al. May 2009 A1
20090128262 Lee et al. May 2009 A1
20090157911 Aihara Jun 2009 A1
20090174604 Keskitalo Jul 2009 A1
20090180653 Sjursen et al. Jul 2009 A1
20090200985 Zane et al. Aug 2009 A1
20090206791 Jung Aug 2009 A1
20090207090 Pettus et al. Aug 2009 A1
20090207092 Nysen et al. Aug 2009 A1
20090218884 Soar Sep 2009 A1
20090218891 McCollough Sep 2009 A1
20090219903 Alamouti et al. Sep 2009 A1
20090243397 Cook et al. Oct 2009 A1
20090256752 Akkermans et al. Oct 2009 A1
20090264069 Yamasuge Oct 2009 A1
20090271048 Wakamatsu Oct 2009 A1
20090280866 Lo et al. Nov 2009 A1
20090281678 Wakamatsu Nov 2009 A1
20090284082 Mohammadian Nov 2009 A1
20090284083 Karalis et al. Nov 2009 A1
20090284220 Toncich et al. Nov 2009 A1
20090284227 Mohammadian et al. Nov 2009 A1
20090284325 Rossiter et al. Nov 2009 A1
20090286475 Toncich et al. Nov 2009 A1
20090286476 Toncich et al. Nov 2009 A1
20090291634 Saarisalo Nov 2009 A1
20090299175 Bernstein et al. Dec 2009 A1
20090308936 Nitzan et al. Dec 2009 A1
20090312046 Clevenger et al. Dec 2009 A1
20090315412 Yamamoto et al. Dec 2009 A1
20090322281 Kamijo et al. Dec 2009 A1
20100001683 Huang et al. Jan 2010 A1
20100007307 Baarman et al. Jan 2010 A1
20100007569 Sim et al. Jan 2010 A1
20100019686 Gutierrez, Jr. Jan 2010 A1
20100019908 Cho et al. Jan 2010 A1
20100026605 Yang et al. Feb 2010 A1
20100027379 Saulnier et al. Feb 2010 A1
20100029383 Dai Feb 2010 A1
20100033021 Bennett Feb 2010 A1
20100033390 Alamouti et al. Feb 2010 A1
20100034238 Bennett Feb 2010 A1
20100041453 Grimm, Jr. Feb 2010 A1
20100044123 Perlman et al. Feb 2010 A1
20100054200 Tsai Mar 2010 A1
20100060534 Oodachi Mar 2010 A1
20100066631 Puzella et al. Mar 2010 A1
20100075607 Hosoya Mar 2010 A1
20100079005 Hyde et al. Apr 2010 A1
20100079011 Hyde et al. Apr 2010 A1
20100082193 Chiappetta Apr 2010 A1
20100087227 Francos et al. Apr 2010 A1
20100090524 Obayashi Apr 2010 A1
20100090656 Shearer et al. Apr 2010 A1
20100109443 Cook et al. May 2010 A1
20100117596 Cook et al. May 2010 A1
20100117926 DeJean, II May 2010 A1
20100119234 Suematsu et al. May 2010 A1
20100123618 Martin et al. May 2010 A1
20100123624 Minear et al. May 2010 A1
20100124040 Diebel et al. May 2010 A1
20100127660 Cook et al. May 2010 A1
20100134105 Zelinski et al. Jun 2010 A1
20100142418 Nishioka et al. Jun 2010 A1
20100142509 Zhu et al. Jun 2010 A1
20100148723 Cook et al. Jun 2010 A1
20100151808 Toncich et al. Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100156741 Vazquez et al. Jun 2010 A1
20100164296 Kurs et al. Jul 2010 A1
20100164433 Janefalker et al. Jul 2010 A1
20100167664 Szini Jul 2010 A1
20100171461 Baarman et al. Jul 2010 A1
20100174629 Taylor et al. Jul 2010 A1
20100176934 Chou et al. Jul 2010 A1
20100181961 Novak et al. Jul 2010 A1
20100181964 Huggins et al. Jul 2010 A1
20100194206 Burdo et al. Aug 2010 A1
20100201189 Kirby et al. Aug 2010 A1
20100201201 Mobarhan et al. Aug 2010 A1
20100201314 Toncich et al. Aug 2010 A1
20100207572 Kirby et al. Aug 2010 A1
20100210233 Cook et al. Aug 2010 A1
20100213895 Keating et al. Aug 2010 A1
20100214177 Parsche Aug 2010 A1
20100222010 Ozaki et al. Sep 2010 A1
20100225270 Jacobs et al. Sep 2010 A1
20100227570 Hendin Sep 2010 A1
20100231470 Lee et al. Sep 2010 A1
20100237709 Hall et al. Sep 2010 A1
20100244576 Hillan et al. Sep 2010 A1
20100253281 Li Oct 2010 A1
20100256831 Abramo et al. Oct 2010 A1
20100259110 Kurs et al. Oct 2010 A1
20100259447 Crouch Oct 2010 A1
20100264747 Hall et al. Oct 2010 A1
20100277003 Von Novak et al. Nov 2010 A1
20100277121 Hall et al. Nov 2010 A1
20100279606 Hillan et al. Nov 2010 A1
20100289341 Ozaki et al. Nov 2010 A1
20100295372 Hyde et al. Nov 2010 A1
20100308767 Rofougaran et al. Dec 2010 A1
20100309079 Rofougaran et al. Dec 2010 A1
20100309088 Hyvonen et al. Dec 2010 A1
20100315045 Zeine Dec 2010 A1
20100316163 Forenza et al. Dec 2010 A1
20100327766 Recker et al. Dec 2010 A1
20100328044 Waffenschmidt et al. Dec 2010 A1
20100332401 Prahlad et al. Dec 2010 A1
20110013198 Shirley Jan 2011 A1
20110018360 Baarman et al. Jan 2011 A1
20110028114 Kerselaers Feb 2011 A1
20110031928 Soar Feb 2011 A1
20110032149 Leabman Feb 2011 A1
20110032866 Leabman Feb 2011 A1
20110034190 Leabman Feb 2011 A1
20110034191 Leabman Feb 2011 A1
20110043047 Karalis et al. Feb 2011 A1
20110043163 Baarman et al. Feb 2011 A1
20110043327 Baarman et al. Feb 2011 A1
20110050166 Cook et al. Mar 2011 A1
20110055037 Hayashigawa et al. Mar 2011 A1
20110056215 Ham Mar 2011 A1
20110057607 Carobolante Mar 2011 A1
20110057853 Kim et al. Mar 2011 A1
20110062788 Chen et al. Mar 2011 A1
20110074342 MacLaughlin Mar 2011 A1
20110074349 Ghovanloo Mar 2011 A1
20110074620 Wintermantel Mar 2011 A1
20110078092 Kim et al. Mar 2011 A1
20110090126 Szini et al. Apr 2011 A1
20110109167 Park et al. May 2011 A1
20110114401 Kanno May 2011 A1
20110115303 Baarman et al. May 2011 A1
20110115432 El-Maleh May 2011 A1
20110115605 Dimig et al. May 2011 A1
20110121660 Azancot et al. May 2011 A1
20110122018 Tarng et al. May 2011 A1
20110122026 DeLaquil et al. May 2011 A1
20110127845 Walley et al. Jun 2011 A1
20110127952 Walley et al. Jun 2011 A1
20110133655 Recker et al. Jun 2011 A1
20110133691 Hautanen Jun 2011 A1
20110148578 Aloi et al. Jun 2011 A1
20110148595 Miller et al. Jun 2011 A1
20110151789 Viglione et al. Jun 2011 A1
20110152670 Yang Jun 2011 A1
20110154429 Stantchev Jun 2011 A1
20110156494 Mashinsky Jun 2011 A1
20110156640 Moshfeghi Jun 2011 A1
20110163128 Taguchi et al. Jul 2011 A1
20110175455 Hashiguchi Jul 2011 A1
20110175461 Tinaphong Jul 2011 A1
20110181120 Liu et al. Jul 2011 A1
20110182245 Malkamaki et al. Jul 2011 A1
20110184842 Melen Jul 2011 A1
20110188207 Won et al. Aug 2011 A1
20110193688 Forsell Aug 2011 A1
20110194543 Zhao et al. Aug 2011 A1
20110195722 Walter et al. Aug 2011 A1
20110199046 Tsai et al. Aug 2011 A1
20110215086 Yeh Sep 2011 A1
20110217923 Ma Sep 2011 A1
20110220634 Yeh Sep 2011 A1
20110221389 Won et al. Sep 2011 A1
20110222272 Yeh Sep 2011 A1
20110243040 Khan et al. Oct 2011 A1
20110243050 Yanover Oct 2011 A1
20110244913 Kim et al. Oct 2011 A1
20110248573 Kanno et al. Oct 2011 A1
20110248575 Kim et al. Oct 2011 A1
20110249678 Bonicatto Oct 2011 A1
20110254377 Widmer et al. Oct 2011 A1
20110254503 Widmer et al. Oct 2011 A1
20110259953 Baarman et al. Oct 2011 A1
20110273977 Shapira et al. Nov 2011 A1
20110278941 Krishna et al. Nov 2011 A1
20110279226 Chen et al. Nov 2011 A1
20110281535 Low et al. Nov 2011 A1
20110282415 Eckhoff et al. Nov 2011 A1
20110285213 Kowalewski Nov 2011 A1
20110286374 Shin et al. Nov 2011 A1
20110291489 Tsai et al. Dec 2011 A1
20110302078 Failing Dec 2011 A1
20110304216 Baarman Dec 2011 A1
20110304437 Beeler Dec 2011 A1
20110304521 Ando et al. Dec 2011 A1
20120007441 John Jan 2012 A1
20120013196 Kim et al. Jan 2012 A1
20120013198 Uramoto et al. Jan 2012 A1
20120013296 Heydari et al. Jan 2012 A1
20120019419 Prat et al. Jan 2012 A1
20120043887 Mesibov Feb 2012 A1
20120051109 Kim et al. Mar 2012 A1
20120051294 Guillouard Mar 2012 A1
20120056486 Endo et al. Mar 2012 A1
20120056741 Zhu et al. Mar 2012 A1
20120068906 Asher et al. Mar 2012 A1
20120074891 Anderson et al. Mar 2012 A1
20120080944 Recker et al. Apr 2012 A1
20120080957 Cooper et al. Apr 2012 A1
20120086284 Capanella et al. Apr 2012 A1
20120086615 Norair Apr 2012 A1
20120095617 Martin et al. Apr 2012 A1
20120098350 Campanella et al. Apr 2012 A1
20120098485 Kang et al. Apr 2012 A1
20120099675 Kitamura et al. Apr 2012 A1
20120103562 Clayton May 2012 A1
20120104849 Jackson May 2012 A1
20120105252 Wang May 2012 A1
20120112532 Kesler et al. May 2012 A1
20120119914 Uchida May 2012 A1
20120126743 Rivers, Jr. May 2012 A1
20120132647 Beverly et al. May 2012 A1
20120133214 Yun et al. May 2012 A1
20120142291 Rath et al. Jun 2012 A1
20120146426 Sabo Jun 2012 A1
20120146576 Partovi Jun 2012 A1
20120146577 Tanabe Jun 2012 A1
20120147802 Ukita et al. Jun 2012 A1
20120149307 Terada et al. Jun 2012 A1
20120150670 Taylor et al. Jun 2012 A1
20120153894 Widmer et al. Jun 2012 A1
20120157019 Li Jun 2012 A1
20120161531 Kim et al. Jun 2012 A1
20120161544 Kashiwagi et al. Jun 2012 A1
20120169276 Wang Jul 2012 A1
20120169278 Choi Jul 2012 A1
20120173418 Beardsmore et al. Jul 2012 A1
20120179004 Roesicke et al. Jul 2012 A1
20120181973 Lyden Jul 2012 A1
20120182427 Marshall Jul 2012 A1
20120188142 Shashi et al. Jul 2012 A1
20120187851 Huggins et al. Aug 2012 A1
20120193999 Zeine Aug 2012 A1
20120200399 Chae Aug 2012 A1
20120201153 Bharadia et al. Aug 2012 A1
20120201173 Jian et al. Aug 2012 A1
20120206299 Valdes-Garcia Aug 2012 A1
20120211214 Phan Aug 2012 A1
20120212071 Miyabayashi et al. Aug 2012 A1
20120212072 Miyabayashi et al. Aug 2012 A1
20120214462 Chu et al. Aug 2012 A1
20120214536 Kim et al. Aug 2012 A1
20120228392 Cameron et al. Sep 2012 A1
20120228956 Kamata Sep 2012 A1
20120231856 Lee et al. Sep 2012 A1
20120235636 Partovi Sep 2012 A1
20120242283 Kim et al. Sep 2012 A1
20120248886 Kesler et al. Oct 2012 A1
20120248888 Kesler et al. Oct 2012 A1
20120248891 Drennen Oct 2012 A1
20120249051 Son et al. Oct 2012 A1
20120262002 Widmer et al. Oct 2012 A1
20120265272 Judkins Oct 2012 A1
20120267900 Huffman et al. Oct 2012 A1
20120268238 Park et al. Oct 2012 A1
20120270519 Ngai Oct 2012 A1
20120270592 Ngai Oct 2012 A1
20120274154 DeLuca Nov 2012 A1
20120280650 Kim et al. Nov 2012 A1
20120286582 Kim et al. Nov 2012 A1
20120292993 Mettler et al. Nov 2012 A1
20120293021 Teggatz et al. Nov 2012 A1
20120293119 Park et al. Nov 2012 A1
20120299389 Lee et al. Nov 2012 A1
20120299540 Perry Nov 2012 A1
20120299541 Perry Nov 2012 A1
20120299542 Perry Nov 2012 A1
20120300588 Perry Nov 2012 A1
20120300592 Perry Nov 2012 A1
20120300593 Perry Nov 2012 A1
20120306433 Kim et al. Dec 2012 A1
20120306705 Sakurai et al. Dec 2012 A1
20120306707 Yang et al. Dec 2012 A1
20120306720 Tanmi et al. Dec 2012 A1
20120307873 Kim et al. Dec 2012 A1
20120309295 Maguire Dec 2012 A1
20120309308 Kim et al. Dec 2012 A1
20120309332 Liao Dec 2012 A1
20120313449 Kurs Dec 2012 A1
20120313835 Gebretnsae Dec 2012 A1
20120326660 Lu et al. Dec 2012 A1
20130002550 Zalewski Jan 2013 A1
20130018439 Chow et al. Jan 2013 A1
20130024059 Miller et al. Jan 2013 A1
20130026981 Van Der Lee Jan 2013 A1
20130026982 Rothenbaum Jan 2013 A1
20130032589 Chung Feb 2013 A1
20130033571 Steen Feb 2013 A1
20130038124 Newdoll et al. Feb 2013 A1
20130038402 Karalis et al. Feb 2013 A1
20130043738 Park et al. Feb 2013 A1
20130044035 Zhuang Feb 2013 A1
20130049471 Oleynik Feb 2013 A1
20130049475 Kim et al. Feb 2013 A1
20130049484 Weissentern et al. Feb 2013 A1
20130057078 Lee Mar 2013 A1
20130057205 Lee et al. Mar 2013 A1
20130057210 Negaard et al. Mar 2013 A1
20130057364 Kesler et al. Mar 2013 A1
20130058379 Kim et al. Mar 2013 A1
20130063082 Lee et al. Mar 2013 A1
20130063143 Adalsteinsson et al. Mar 2013 A1
20130069444 Waffenschmidt et al. Mar 2013 A1
20130076308 Niskala et al. Mar 2013 A1
20130077650 Traxler et al. Mar 2013 A1
20130078918 Crowley et al. Mar 2013 A1
20130082651 Park et al. Apr 2013 A1
20130082653 Lee et al. Apr 2013 A1
20130083774 Son et al. Apr 2013 A1
20130088082 Kang et al. Apr 2013 A1
20130088090 Wu Apr 2013 A1
20130088192 Eaton Apr 2013 A1
20130088331 Cho Apr 2013 A1
20130093388 Partovi Apr 2013 A1
20130099389 Hong et al. Apr 2013 A1
20130099586 Kato Apr 2013 A1
20130106197 Bae et al. May 2013 A1
20130107023 Tanaka et al. May 2013 A1
20130119777 Rees May 2013 A1
20130119778 Jung May 2013 A1
20130119929 Partovi May 2013 A1
20130120052 Siska May 2013 A1
20130120205 Thomson et al. May 2013 A1
20130120206 Biancotto et al. May 2013 A1
20130120217 Ueda et al. May 2013 A1
20130130621 Kim et al. May 2013 A1
20130132010 Winger et al. May 2013 A1
20130134923 Smith May 2013 A1
20130137455 Xia May 2013 A1
20130141037 Jenwatanavet et al. Jun 2013 A1
20130148341 Williams Jun 2013 A1
20130149975 Yu et al. Jun 2013 A1
20130154387 Lee et al. Jun 2013 A1
20130155748 Sundstrom Jun 2013 A1
20130157729 Tabe Jun 2013 A1
20130162335 Kim et al. Jun 2013 A1
20130169061 Microshnichenko et al. Jul 2013 A1
20130169219 Gray Jul 2013 A1
20130169348 Shi Jul 2013 A1
20130171939 Tian et al. Jul 2013 A1
20130175877 Abe et al. Jul 2013 A1
20130178253 Karaoguz Jul 2013 A1
20130181881 Christie et al. Jul 2013 A1
20130187475 Vendik Jul 2013 A1
20130190031 Persson et al. Jul 2013 A1
20130193769 Mehta et al. Aug 2013 A1
20130197320 Albert et al. Aug 2013 A1
20130200064 Alexander Aug 2013 A1
20130207477 Nam et al. Aug 2013 A1
20130207604 Zeine Aug 2013 A1
20130207879 Rada et al. Aug 2013 A1
20130210357 Qin et al. Aug 2013 A1
20130221757 Cho et al. Aug 2013 A1
20130222201 Ma et al. Aug 2013 A1
20130234530 Miyauchi Sep 2013 A1
20130234536 Chemishkian et al. Sep 2013 A1
20130234658 Endo et al. Sep 2013 A1
20130241306 Aber et al. Sep 2013 A1
20130241468 Moshfeghi Sep 2013 A1
20130241474 Moshfeghi Sep 2013 A1
20130249478 Hirano Sep 2013 A1
20130249479 Partovi Sep 2013 A1
20130250102 Scanlon et al. Sep 2013 A1
20130254578 Huang et al. Sep 2013 A1
20130264997 Lee et al. Oct 2013 A1
20130268782 Tam et al. Oct 2013 A1
20130270923 Cook et al. Oct 2013 A1
20130278076 Proud Oct 2013 A1
20130278209 Von Novak Oct 2013 A1
20130285464 Miwa Oct 2013 A1
20130285477 Lo et al. Oct 2013 A1
20130285606 Ben-Shalom et al. Oct 2013 A1
20130288600 Kuusilinna et al. Oct 2013 A1
20130288617 Kim et al. Oct 2013 A1
20130293423 Moshfeghi Nov 2013 A1
20130307751 Yu-Juin et al. Nov 2013 A1
20130310020 Kazuhiro Nov 2013 A1
20130311798 Sultenfuss Nov 2013 A1
20130328417 Takeuchi Dec 2013 A1
20130334883 Kim et al. Dec 2013 A1
20130339108 Ryder et al. Dec 2013 A1
20130343208 Sexton et al. Dec 2013 A1
20130343251 Zhang Dec 2013 A1
20140001846 Mosebrook Jan 2014 A1
20140001875 Nahidipour Jan 2014 A1
20140001876 Fujiwara et al. Jan 2014 A1
20140006017 Sen Jan 2014 A1
20140008993 Leabman Jan 2014 A1
20140009108 Leabman Jan 2014 A1
20140009110 Lee Jan 2014 A1
20140011531 Burstrom et al. Jan 2014 A1
20140015336 Weber et al. Jan 2014 A1
20140015344 Mohamadi Jan 2014 A1
20140021907 Yun et al. Jan 2014 A1
20140021908 McCool Jan 2014 A1
20140035524 Zeine Feb 2014 A1
20140035526 Tripathi et al. Feb 2014 A1
20140035786 Ley Feb 2014 A1
20140043248 Yeh Feb 2014 A1
20140049422 Von Novak et al. Feb 2014 A1
20140054971 Kissin Feb 2014 A1
20140055098 Lee et al. Feb 2014 A1
20140057618 Zirwas et al. Feb 2014 A1
20140062395 Kwon et al. Mar 2014 A1
20140082435 Kitgawa Mar 2014 A1
20140086125 Polo et al. Mar 2014 A1
20140086592 Nakahara et al. Mar 2014 A1
20140091756 Ofstein et al. Apr 2014 A1
20140091968 Harel et al. Apr 2014 A1
20140091974 Desclos et al. Apr 2014 A1
20140103869 Radovic Apr 2014 A1
20140104157 Burns Apr 2014 A1
20140111147 Soar Apr 2014 A1
20140113689 Lee Apr 2014 A1
20140117946 Muller et al. May 2014 A1
20140118140 Amis May 2014 A1
20140128107 An May 2014 A1
20140132210 Partovi May 2014 A1
20140133279 Khuri-Yakub May 2014 A1
20140139034 Sankar et al. May 2014 A1
20140139039 Cook et al. May 2014 A1
20140139180 Kim et al. May 2014 A1
20140141838 Cai et al. May 2014 A1
20140142876 John et al. May 2014 A1
20140143933 Low et al. May 2014 A1
20140145879 Pan May 2014 A1
20140145884 Dang et al. May 2014 A1
20140152117 Sanker Jun 2014 A1
20140159651 Von Novak et al. Jun 2014 A1
20140159652 Hall et al. Jun 2014 A1
20140159662 Furui Jun 2014 A1
20140159667 Kim et al. Jun 2014 A1
20140169385 Hadani et al. Jun 2014 A1
20140175876 Cheatham, III et al. Jun 2014 A1
20140175893 Sengupta et al. Jun 2014 A1
20140176054 Porat et al. Jun 2014 A1
20140176061 Cheatham, III et al. Jun 2014 A1
20140176082 Visser Jun 2014 A1
20140177399 Teng et al. Jun 2014 A1
20140184148 Van Der Lee et al. Jul 2014 A1
20140184155 Cha Jul 2014 A1
20140184163 Das et al. Jul 2014 A1
20140184170 Jeong Jul 2014 A1
20140191568 Partovi Jul 2014 A1
20140191818 Waffenschmidt et al. Jul 2014 A1
20140194092 Wanstedt et al. Jul 2014 A1
20140194095 Wanstedt et al. Jul 2014 A1
20140197691 Wang Jul 2014 A1
20140203629 Hoffman et al. Jul 2014 A1
20140206384 Kim et al. Jul 2014 A1
20140210281 Ito et al. Jul 2014 A1
20140217955 Lin Aug 2014 A1
20140217967 Zeine et al. Aug 2014 A1
20140225805 Pan et al. Aug 2014 A1
20140232320 Ento July et al. Aug 2014 A1
20140232610 Shigemoto et al. Aug 2014 A1
20140239733 Mach et al. Aug 2014 A1
20140241231 Zeine Aug 2014 A1
20140245036 Oishi Aug 2014 A1
20140246416 White Sep 2014 A1
20140247152 Proud Sep 2014 A1
20140252813 Lee et al. Sep 2014 A1
20140252866 Walsh et al. Sep 2014 A1
20140265725 Angle et al. Sep 2014 A1
20140265727 Berte Sep 2014 A1
20140265943 Angle et al. Sep 2014 A1
20140266025 Jakubowski Sep 2014 A1
20140266946 Bily et al. Sep 2014 A1
20140273819 Nadakuduti Sep 2014 A1
20140273892 Nourbakhsh Sep 2014 A1
20140281655 Angle et al. Sep 2014 A1
20140292090 Cordeiro et al. Oct 2014 A1
20140292451 Zimmerman Oct 2014 A1
20140300452 Rofe et al. Oct 2014 A1
20140312706 Fiorello et al. Oct 2014 A1
20140325218 Shimizu et al. Oct 2014 A1
20140327320 Muhs et al. Nov 2014 A1
20140327390 Park et al. Nov 2014 A1
20140333142 Desrosiers Nov 2014 A1
20140346860 Aubry et al. Nov 2014 A1
20140354063 Leabman et al. Dec 2014 A1
20140354221 Leabman et al. Dec 2014 A1
20140355718 Guan et al. Dec 2014 A1
20140368048 Leabman et al. Dec 2014 A1
20140368161 Leabman et al. Dec 2014 A1
20140368405 Ek et al. Dec 2014 A1
20140370929 Khawand et al. Dec 2014 A1
20140375139 Tsukamoto Dec 2014 A1
20140375253 Leabman et al. Dec 2014 A1
20140375255 Leabman et al. Dec 2014 A1
20140375258 Arkhipenkov Dec 2014 A1
20140375261 Manova-Elssibony et al. Dec 2014 A1
20150001949 Leabman et al. Jan 2015 A1
20150002086 Matos et al. Jan 2015 A1
20150003207 Lee et al. Jan 2015 A1
20150008980 Kim et al. Jan 2015 A1
20150011160 Uurgovan et al. Jan 2015 A1
20150015180 Miller et al. Jan 2015 A1
20150015182 Brandtman et al. Jan 2015 A1
20150015192 Leabman et al. Jan 2015 A1
20150021990 Myer et al. Jan 2015 A1
20150022008 Leabman et al. Jan 2015 A1
20150022010 Leabman et al. Jan 2015 A1
20150022194 Almalki et al. Jan 2015 A1
20150023204 Wil et al. Jan 2015 A1
20150028688 Masaoka Jan 2015 A1
20150028694 Leabman et al. Jan 2015 A1
20150028697 Leabman et al. Jan 2015 A1
20150028875 Irie et al. Jan 2015 A1
20150035378 Calhoun et al. Feb 2015 A1
20150035715 Kim et al. Feb 2015 A1
20150039482 Fuinaga Feb 2015 A1
20150041459 Leabman et al. Feb 2015 A1
20150042265 Leabman et al. Feb 2015 A1
20150044977 Ramasamy et al. Feb 2015 A1
20150046526 Bush et al. Feb 2015 A1
20150061404 Lamenza et al. Mar 2015 A1
20150076917 Leabman et al. Mar 2015 A1
20150076927 Leabman et al. Mar 2015 A1
20150077036 Leabman et al. Mar 2015 A1
20150077037 Leabman et al. Mar 2015 A1
20150091520 Blum et al. Apr 2015 A1
20150091706 Chemishkian et al. Apr 2015 A1
20150097442 Muurinen Apr 2015 A1
20150097663 Sloo et al. Apr 2015 A1
20150102764 Leabman et al. Apr 2015 A1
20150102769 Leabman et al. Apr 2015 A1
20150102973 Hand et al. Apr 2015 A1
20150108848 Joehren Apr 2015 A1
20150109181 Hyde et al. Apr 2015 A1
20150115877 Aria et al. Apr 2015 A1
20150115878 Park Apr 2015 A1
20150116153 Chen et al. Apr 2015 A1
20150128733 Taylor et al. May 2015 A1
20150130285 Leabman et al. May 2015 A1
20150130293 Hajimiri et al. May 2015 A1
20150137612 Yamakawa et al. May 2015 A1
20150148664 Stolka et al. May 2015 A1
20150155737 Mayo Jun 2015 A1
20150155738 Leabman et al. Jun 2015 A1
20150162751 Leabman et al. Jun 2015 A1
20150162779 Lee et al. Jun 2015 A1
20150171512 Chen et al. Jun 2015 A1
20150171513 Chen et al. Jun 2015 A1
20150171656 Leabman et al. Jun 2015 A1
20150171658 Manova-Elssibony et al. Jun 2015 A1
20150171931 Won et al. Jun 2015 A1
20150177326 Chakraborty et al. Jun 2015 A1
20150180133 Hunt Jun 2015 A1
20150180249 Jeon et al. Jun 2015 A1
20150181117 Park et al. Jun 2015 A1
20150187491 Yanagawa Jul 2015 A1
20150188352 Peek et al. Jul 2015 A1
20150199665 Chu Jul 2015 A1
20150201385 Mercer et al. Jul 2015 A1
20150207333 Baarman et al. Jul 2015 A1
20150207542 Zeine Jul 2015 A1
20150222126 Leabman et al. Aug 2015 A1
20150233987 Von Novak, III et al. Aug 2015 A1
20150234144 Cameron et al. Aug 2015 A1
20150236520 Baarman Aug 2015 A1
20150244070 Cheng et al. Aug 2015 A1
20150244080 Gregoire Aug 2015 A1
20150244187 Horie Aug 2015 A1
20150244201 Chu Aug 2015 A1
20150244341 Ritter et al. Aug 2015 A1
20150249484 Mach et al. Sep 2015 A1
20150255989 Walley et al. Sep 2015 A1
20150256097 Gudan et al. Sep 2015 A1
20150260835 Widmer et al. Sep 2015 A1
20150263534 Lee et al. Sep 2015 A1
20150263548 Cooper Sep 2015 A1
20150270618 Zhu et al. Sep 2015 A1
20150270622 Takasaki et al. Sep 2015 A1
20150270741 Leabman et al. Sep 2015 A1
20150280484 Radziemski et al. Oct 2015 A1
20150288074 Harper et al. Oct 2015 A1
20150288438 Maltsev et al. Oct 2015 A1
20150311585 Church et al. Oct 2015 A1
20150312721 Singh Oct 2015 A1
20150318729 Leabman Nov 2015 A1
20150326024 Bell et al. Nov 2015 A1
20150326070 Petras et al. Nov 2015 A1
20150326072 Petras et al. Nov 2015 A1
20150326143 Petras et al. Nov 2015 A1
20150327085 Hadani Nov 2015 A1
20150333528 Leabman Nov 2015 A1
20150333573 Leabman Nov 2015 A1
20150333800 Perry et al. Nov 2015 A1
20150340759 Bridgelall et al. Nov 2015 A1
20150340903 Bell et al. Nov 2015 A1
20150341087 Moore et al. Nov 2015 A1
20150358222 Berger et al. Dec 2015 A1
20150365137 Miller et al. Dec 2015 A1
20150365138 Miller et al. Dec 2015 A1
20160005068 Im et al. Jan 2016 A1
20160012695 Bell et al. Jan 2016 A1
20160013560 Daniels Jan 2016 A1
20160013677 Bell et al. Jan 2016 A1
20160013855 Campos Jan 2016 A1
20160020636 Khlat Jan 2016 A1
20160028403 McCaughan et al. Jan 2016 A1
20160042206 Pesavento et al. Feb 2016 A1
20160054440 Younis Feb 2016 A1
20160056635 Bell Feb 2016 A1
20160056640 Mao Feb 2016 A1
20160065005 Won et al. Mar 2016 A1
20160079799 Khlat Mar 2016 A1
20160087483 Hietala et al. Mar 2016 A1
20160087486 Pogorelik et al. Mar 2016 A1
20160094091 Shin et al. Mar 2016 A1
20160094092 Davlantes et al. Mar 2016 A1
20160099601 Leabman et al. Apr 2016 A1
20160099611 Leabman et al. Apr 2016 A1
20160099612 Leabman et al. Apr 2016 A1
20160099614 Leabman et al. Apr 2016 A1
20160099755 Leabman et al. Apr 2016 A1
20160099757 Leabman et al. Apr 2016 A1
20160112787 Rich Apr 2016 A1
20160126749 Shichino et al. May 2016 A1
20160126752 Vuori et al. May 2016 A1
20160126776 Kim et al. May 2016 A1
20160141908 Jakl et al. May 2016 A1
20160164563 Khawand et al. Jun 2016 A1
20160174162 Nadakuduti et al. Jun 2016 A1
20160181849 Govindaraj Jun 2016 A1
20160181867 Daniel et al. Jun 2016 A1
20160181873 Mitcheson et al. Jun 2016 A1
20160197522 Zeine et al. Jul 2016 A1
20160202343 Okutsu Jul 2016 A1
20160204642 Oh Jul 2016 A1
20160233582 Piskun Aug 2016 A1
20160238365 Wixey et al. Aug 2016 A1
20160240908 Strong Aug 2016 A1
20160248276 Hong Aug 2016 A1
20160294225 Blum et al. Oct 2016 A1
20160299210 Zeine Oct 2016 A1
20160301240 Zeine Oct 2016 A1
20160322868 Akuzawa et al. Nov 2016 A1
20160323000 Liu et al. Nov 2016 A1
20160336804 Son et al. Nov 2016 A1
20160339258 Perryman et al. Nov 2016 A1
20160344098 Ming Nov 2016 A1
20160359367 Rothschild Dec 2016 A1
20160380464 Chin et al. Dec 2016 A1
20160380466 Yang Dec 2016 A1
20170005481 Von Novak, III Jan 2017 A1
20170005516 Leabman et al. Jan 2017 A9
20170005524 Akuzawa et al. Jan 2017 A1
20170005530 Zeine et al. Jan 2017 A1
20170012448 Miller et al. Jan 2017 A1
20170025903 Song et al. Jan 2017 A1
20170026087 Tanabe Jan 2017 A1
20170040700 Leung Feb 2017 A1
20170043675 Jones et al. Feb 2017 A1
20170047784 Jung et al. Feb 2017 A1
20170063168 Uchida Mar 2017 A1
20170077733 Jeong et al. Mar 2017 A1
20170077736 Leabman Mar 2017 A1
20170077765 Bell et al. Mar 2017 A1
20170077995 Leabman Mar 2017 A1
20170085120 Leabman et al. Mar 2017 A1
20170085437 Condeixa et al. Mar 2017 A1
20170092115 Sloo et al. Mar 2017 A1
20170110888 Leabman Apr 2017 A1
20170127196 Blum et al. May 2017 A1
20170134686 Leabman May 2017 A9
20170141582 Adolf et al. May 2017 A1
20170141583 Adolf et al. May 2017 A1
20170163076 Park et al. Jun 2017 A1
20170168595 Sakaguchi et al. Jun 2017 A1
20170179763 Leabman Jun 2017 A9
20170214422 Na et al. Jul 2017 A1
20170338695 Port Nov 2017 A1
20180040929 Chappelle Feb 2018 A1
20180048178 Leabman Feb 2018 A1
20180226840 Leabman Aug 2018 A1
20180241255 Leabman Aug 2018 A1
20180248409 Johnston Aug 2018 A1
20180331429 Kornaros Nov 2018 A1
20180375368 Leabman et al. Dec 2018 A1
20180376235 Leabman Dec 2018 A1
20190074728 Leabman Mar 2019 A1
20190131827 Johnston May 2019 A1
20190288567 Leabman et al. Sep 2019 A1
20210104919 Leabman Apr 2021 A1
Foreign Referenced Citations (74)
Number Date Country
101803110 Aug 2010 CN
102292896 Dec 2011 CN
102860037 Jan 2013 CN
203826555 Sep 2014 CN
104090265 Oct 2014 CN
104718708 Jun 2015 CN
103380561 Sep 2017 CN
20016655 Feb 2002 DE
102013216953 Feb 2015 DE
1028482 Aug 2000 EP
1081506 Mar 2001 EP
2346136 Jul 2011 EP
2397973 Feb 2012 EP
2545635 Jan 2013 EP
2747195 Jun 2014 EP
3067983 Sep 2016 EP
3118970 Jan 2017 EP
3145052 Mar 2017 EP
2404497 Feb 2005 GB
2002319816 Oct 2002 JP
2006157586 Jun 2006 JP
2007043432 Feb 2007 JP
2008167017 Jul 2008 JP
2011514781 May 2011 JP
2013162624 Aug 2013 JP
2014501080 Jan 2014 JP
2015128349 Jul 2015 JP
WO2015177859 Apr 2017 JP
20060061776 Jun 2006 KR
20070044302 Apr 2007 KR
100755144 Sep 2007 KR
20110132059 Dec 2011 KR
20110135540 Dec 2011 KR
20120009843 Feb 2012 KR
20120108759 Oct 2012 KR
20130026977 Mar 2013 KR
20140023409 Feb 2014 KR
20140085200 Jul 2014 KR
20150077678 Jul 2015 KR
WO 199508125 Mar 1995 WO
WO 199831070 Jul 1998 WO
WO 199952173 Oct 1999 WO
WO 2000111716 Feb 2001 WO
WO 2003091943 Nov 2003 WO
WO 2004077550 Sep 2004 WO
WO 2006122783 Nov 2006 WO
WO 2007070571 Jun 2007 WO
WO 2008024993 Feb 2008 WO
WO 2008156571 Dec 2008 WO
WO 2010022181 Feb 2010 WO
WO 2010039246 Apr 2010 WO
WO 2010138994 Dec 2010 WO
WO 2011112022 Sep 2011 WO
WO 2012177283 Dec 2012 WO
WO 2013031988 Mar 2013 WO
WO 2013035190 Mar 2013 WO
WO 2013038074 Mar 2013 WO
WO 2013042399 Mar 2013 WO
WO 2013052950 Apr 2013 WO
WO 2013105920 Jul 2013 WO
WO 2014075103 May 2014 WO
WO 2014132258 Sep 2014 WO
WO 2014134996 Sep 2014 WO
WO 2014156465 Oct 2014 WO
WO 2014182788 Nov 2014 WO
WO 2014182788 Nov 2014 WO
WO 2014197472 Dec 2014 WO
WO 2014209587 Dec 2014 WO
WO 2015038773 Mar 2015 WO
WO 2015097809 Jul 2015 WO
WO 2015161323 Oct 2015 WO
WO 2016024869 Feb 2016 WO
WO 2016048512 Mar 2016 WO
WO 2016187357 Nov 2016 WO
Non-Patent Literature Citations (181)
Entry
Energous Corp., IPRP, PCT/US2014/037072, Nov. 10, 2015, 6 pgs.
Energous Corp., IPRP, PCT/US2014/037109, Apr. 12, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/037170, Nov. 10, 2015, 8 pgs.
Energous Corp., IPRP, PCT/US2014/040648, Dec. 8, 2015, 8 pgs.
Energous Corp., IPRP, PCT/US2014/040697, Dec. 8, 2015, 9 pgs.
Energous Corp., IPRP, PCT/US2014/040705, Dec. 8, 2015, 6 pgs.
Energous Corp., IPRP, PCT/US2014/041323, Dec. 22, 2015, 8 pgs.
Energous Corp., IPRP, PCT/US2014/041342, Dec. 15, 2015, 8 pgs.
Energous Corp., IPRP, PCT/US2014/041534, Dec. 29, 2015, 7 pgs.
Energous Corp., IPRP, PCT/US2014/041546, Dec. 29, 2015, 9 pgs.
Energous Corp., IPRP, PCT/US2014/041558, Dec. 29, 2015, 6 pgs.
Energous Corp., IPRP, PCT/US2014/044810, Jan. 5, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/045102, Jan. 12, 2016, 11 pgs.
Energous Corp., IPRP, PCT/US2014/045119, Jan. 12, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/045237, Jan. 12, 2016, 12 pgs.
Energous Corp., IPRP, PCT/US2014/046941, Jan. 19, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/046956, Jan. 19, 2016, 7 pgs.
Energous Corp., IPRP, PCT/US2014/046961, Jan. 19, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/047963, Jan. 26, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/048002, Feb. 12, 2015 8 pgs.
Energous Corp., IPRP, PCT/US2014/049666, Feb. 9, 2016, 5 pgs.
Energous Corp., IPRP, PCT/US2014/049669, Feb. 9, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/049673, Feb. 9, 2016, 6 pgs.
Energous Corp., IPRP, PCT/US2014/054891, Mar. 15, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/054897, Mar. 15, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/054953, Mar. 22, 2016, 5 pgs.
Energous Corp., IPRP, PCT/US2014/055195, Mar. 22, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/059317, Apr. 12, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/059340, Apr. 12, 2016, 11 pgs.
Energous Corp., IPRP, PCT/US2014/059871, Apr. 12, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/062661, May 3, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/062672, May 10, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/062682, May 3, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/068282, Jun. 7, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/068568, Jun. 14, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/068586, Jun. 14, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2015/067242, Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067243, Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067245, Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067246, Jun. 27, 2017, 9 pgs.
Energous Corp., IPRP, PCT/US2015/067249, Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067250, Mar. 30, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2015/067271, Jul. 4, 2017, 5 pgs.
Energous Corp., IPRP, PCT/US2015/067275, Jul. 4, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067279, Jul. 4, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067282, Jul. 4, 2017, 6 pgs.
Energous Corp., IPRP, PCT/US2015/067287, Jul. 4, 2017, 6 pgs.
Energous Corp., IPRP, PCT/US2015/067291, Jul. 4, 2017, 4 pgs.
Energous Corp., IPRP, PCT/US2015/067294, Jul. 4, 2017, 6 pgs.
Energous Corp., IPRP, PCT/US2015/067325, Jul. 4, 2017, 8 pgs.
Energous Corp., IPRP, PCT/US2015/067334, Jul. 4, 2017, 5 pgs.
Energous Corp., IPRP, PCT/US2016/068495, Jun. 26, 2018, 7 pgs.
Energous Corp., IPRP, PCT/US2016/068498, Jun. 26, 2018, 6 pgs.
Energous Corp., IPRP, PCT/US2016/068504, Jun. 26, 2018, 5 pgs.
Energous Corp., IPRP, PCT/US2016/068551, Jun. 26, 2018, 6 pgs.
Energous Corp., IPRP, PCT/US2016/068565, Jun. 26, 2018, 9 pgs.
Energous Corp., IPRP, PCT/US2016/068987, Jul. 3, 2018, 7 pgs.
Energous Corp., IPRP, PCT/US2016/068993, Jul. 3, 2018, 10 pgs.
Energous Corp., IPRP, PCT/US2016/069313, Jul. 3, 2018, 7 pgs.
Energous Corp., IPRP, PCT/US2016/069316, Jul. 3, 2018, 12 pgs.
Energous Corp., IPRP, PCT/US2017/046800, Feb. 12, 2019, 10 pgs.
Energous Corp., IPRP, PCT/US2017/065886, Jun. 18, 2019, 10 pgs.
Energous Corp., IPRP, PCT/US2018/012806, Jul. 9, 2019, 6 pgs.
Energous Corp., ISRWO, PCT/US2014/037072, Sep. 12, 2014, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/037109, Apr. 8, 2016, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/037170, Sep. 15, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/040648, Oct. 10, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/040697, Oct. 10, 2014, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/040705, Sep. 23, 2014, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/041323, Oct. 10, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/041342, Jan. 27, 2015, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/041534, Oct. 13, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/041546, Oct. 16, 2014, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/041558, Oct. 10, 2014, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/044810 Oct. 21, 2014, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/045102, Oct. 28, 2014, 14 pgs.
Energous Corp., ISRWO, PCT/US2014/045119, Oct. 13, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/045237, Oct. 13, 2014, 16 pgs.
Energous Corp., ISRWO, PCT/US2014/046941, Nov. 6, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/046956, Nov. 12, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/046961, Nov. 24, 2014, 16 pgs.
Energous Corp., ISRWO, PCT/US2014/047963, Nov. 7, 2014, 13 pgs.
Energous Corp., ISRWO, PCT/US2014/048002, Nov. 13, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/049666, Nov. 10, 2014, 7 pgs.
Energous Corp., ISRWO, PCT/US2014/049669, Nov. 13, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/049673, Nov. 18, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/054891, Dec. 18, 2014, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/054897, Feb. 17, 2015, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/054953, Dec. 4, 2014, 7 pgs.
Energous Corp., ISRWO, PCT/US2014/055195, Dec. 22, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/059317, Feb. 24, 2015, 13 pgs.
Energous Corp., ISRWO, PCT/US2014/059340, Jan. 15, 2015, 13 pgs.
Energous Corp., ISRWO, PCT/US2014/059871, Jan. 23, 2015, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/062661, Jan. 27, 2015, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/062672, Jan. 26, 2015, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/062682, Feb. 12, 2015, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/068282, Mar. 19, 2015, 13 pgs.
Energous Corp., ISRWO, PCT/US2014/068568, Mar. 20, 2015, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/068586, Mar. 20, 2015, 11 pgs.
Energous Corp., ISRWO, PCT/US2015/067242, Mar. 16, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2015/067243, Mar. 10, 2016, 11 pgs.
Energous Corp., ISRWO, PCT/US2015/067245, Mar. 17, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067246, May 11, 2016, 18 pgs.
Energous Corp., ISRWO, PCT/US2015/067249, Mar. 29, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067250, Mar. 30, 2016, 11 pgs.
Energous Corp., ISRWO, PCT/US2015/067271, Mar. 11, 2016, 6 pgs.
Energous Corp., ISRWO, PCT/US2015/067275, Mar. 3, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067279, Mar. 11, 2015, 13 pgs.
Energous Corp., ISRWO, PCT/US2015/067282, Jul. 5, 2016, 7 pgs.
Energous Corp., ISRWO, PCT/US2015/067287, Feb. 2, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067291, Mar. 4, 2016, 10 pgs.
Energous Corp., ISRWO, PCT/US2015/067294, Mar. 29, 2016, 7 pgs.
Energous Corp., ISRWO, PCT/US2015/067325, Mar. 10, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2015/067334, Mar. 3, 2016, 6 pgs.
Energous Corp., ISRWO, PCT/US2016/068495, Mar. 30, 2017, 9 pgs.
Energous Corp., ISRWO, PCT/US2016/068498, May 17, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068504, Mar. 30, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068551, Mar. 17, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068565, Mar. 8, 2017, 11 pgs.
Energous Corp., ISRWO, PCT/US2016/068987, May 8, 2017, 10 pgs.
Energous Corp., ISRWO, PCT/US2016/068993, Mar. 13, 2017, 12 pgs.
Energous Corp., ISRWO, PCT/US2016/069313, Nov. 13, 2017, 10 pgs.
Energous Corp., ISRWO, PCT/US2016/069316, Mar. 16, 2017, 15 pgs.
Energous Corp., ISRWO, PCT/US2017/046800, Sep. 11, 2017, 13 pgs.
Energous Corp., ISRWO, PCT/US2017/065886, Apr. 6, 2018, 13 pgs.
Energous Corp., ISRWO, PCT/US2018/012806, Mar. 23, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/025465, Jun. 22, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/031768, Jul. 3, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/031786, Aug. 8, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/039334, Sep. 11, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/051082, Dec. 12, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/058178, Mar. 13, 2019, 10 pgs.
Energous Corp., ISRWO, PCT/US2019/015820, May 14, 2019, 9 pgs.
Energous Corp., ISRWO, PCT/US2019/021817, Apr. 6, 2019, 11 pgs.
Order Granting Reexamination Request, U.S. Appl. No. 90/013,793, dated Aug. 31, 2016, 23 pgs.
Notice of Intent to Issue Reexam Certificate: 90/013,793 Feb. 2, 2017, 8 pgs.
Ossia Inc. vs Energous Corp., Declaration of Stephen B. Heppe in Support of Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, PGR2016-00023, May 31, 2016, 144 pgs.
Ossia Inc. vs Energous Corp., Declaration of Stephen B. Heppe in Support of Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, PGR2016-00024, May 31, 2016, 122 pgs.
Ossia Inc. vs Energous Corp., Patent Owner Preliminary Response, Sep. 8, 2016, 95 pgs.
Ossia Inc. vs Energous Corp., Petition for Post Grant Review of U.S. Pat. No. 9,124,125, May 31, 2016, 86 pgs.
Ossia Inc. vs Energous Corp., Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, May 31, 2016, 92 pgs.
Ossia Inc. vs Energous Corp., PGR2016-00023—Institution Decision, Nov. 29, 2016, 29 pgs.
Ossia Inc. vs Energous Corp., PGR2016-00024—Institution Decision, Nov. 29, 2016, 50 pgs.
Ossia Inc. vs Energous Corp., PGR2016-00024—Judgement-Adverse, Jan. 20, 2017, 3 pgs.
Extended European Search Report, EP14818136.5, dated Jul. 21, 2016, 9 pgs.
Extended European Search Report, EP14822971.9, dated Feb. 10, 2017, 10 pgs.
Extended European Search Report, EP14868901.1, dated Jul. 17, 2017, 6 pgs.
Extended European Search Report, EP15874273.4, dated May 11, 2018, 7 pgs.
Extended European Search Report, EP15876033.0, dated Jun. 13, 2018, 10 pgs.
Extended European Search Report, EP15876036.3, dated May 3, 2018, 9 pgs.
Extended European Search Report, EP15876043.9, dated Aug. 9, 2018, 9 pgs.
Extended European Search Report, EP16189052.0, dated Feb. 10, 2017, 13 pgs.
Extended European Search Report, EP16189300.3, dated Mar. 24, 2017, 6 pgs.
Extended European Search Report, EP16189319.3, dated Feb. 10, 2017, 11 pgs.
Extended European Search Report, EP16189974.5, dated Mar. 13, 2017, 7 pgs.
Extended European Search Report, EP16189982.8, dated Feb. 7, 2017, 11 pgs.
Extended European Search Report, EP16189987.7, dated Feb. 9, 2017, 10 pgs.
Extended European Search Report, EP16189988.5, dated Mar. 13, 2017, 6 pgs.
Extended European Search Report, EP16193743.8, dated Feb. 8, 2017, 9 pgs.
Extended European Search Report, EP16196205.5, dated Apr. 7, 2017, 9 pgs.
Extended European Search Report, EP16880139.7, dated Jul. 12, 2019, 5 pgs.
Extended European Search Report, EP16880153.8, dated Jul. 2, 2019, 9 pgs.
Extended European Search Report, EP16880158.7, dated Jul. 15, 2019, 8 pgs.
Extended European Search Report, EP16882597.4, dated Aug. 7, 2019, 9 pgs.
Extended European Search Report, EP16882696.4, dated Jul. 3, 2019, 10 pgs.
Extended European Search Report, EP17840412.5, dated Jul. 15, 2019, 8 pgs.
Extended European Search Report, EP18204043.6, dated Feb. 14, 2019, 5 pgs.
Adamiuk et al. “Compact, Dual-Polarized UWB-Antanna, Embedded in a Dielectric,” IEEE Transactions on Antenna and Propagation, IEEE Service Center, Piscataway, NJ, US vol. 56, No. 2, Feb. 1, 2010, 8 pgs.
Gill et al. “A System for Change Detection and Human Recognition in Voxel Space using the Microsoft Kinect Sensor,” 2011 IEEE Applied Imagery Pattern Recognition Workshop. 8 pgs.
Han et al. Enhanced Computer Vision with Microsoft Kinect Sensor: A Review, IEEE Transactions on Cybernetics vol. 43, No. 5. pp. 1318-1334, Oct. 3, 2013.
Hsieh et al. “Development of a Retrodirective Wireless Microwave Power Transmission System”, IEEE, 2003 pp. 393-396.
Leabman “Adaptive Band-partitioning for Interference Cancellation in Communication System,” Thesis Massachusetts Institute of Technology, Feb. 1997, pp. 1-70.
Li et al. High-Efficiency Switching-Mode Charger System Design Considerations with Dynamic Power Path Management, Mar./Apr. 2012 Issue, 8 pgs.
Mao et al. “BeamStar: An Edge-Based Approach to Routing in Wireless Sensors Networks”, IEEE Transactions on Mobile Computing, IEEE Service Center, Los Alamitos, CA US, vol. 6, No. 11, Nov. 1, 2007, 13 pgs.
Mascarenas et al. “Experimental Studies of Using Wireless Energy Transmission for Powering Embedded Sensor Nodes,” Nov. 28, 2009, Journal of Sound and Vibration, 13 pgs.
Mishra et al. “SIW-based Slot Array Antenna and Power Management Circuit for Wireless Energy Harvesting Applications”, IEEE APSURSI, Jul. 2012, 2 pgs.
Nenzi et al “U-Helix: On-Chip Short Conical Antenna”, 2013 7th European Conference on Antennas and Propagation (EUCAP), ISBN:978-1-4673-2187-7, IEEE, Apr. 8, 2013, 5 pgs.
Singh “Wireless Power Transfer Using Metamaterial Bonded Microstrip Antenna for Smart Grid WSN”, Fourth International Conference on Advances in Computing and Communications (ICACC) Aug. 27-29, 2014, Abstract 1 pg.
Smolders “Broadband Microstrip Array Antennas” Institute of Electrical 1-15 and Electronics Engineers, Digest of the Antennas and Propagation Society International Symposium. Seattle, WA, Jun. 19-24, 1994, Abstract 3 pgs.
Van Veen et al., “Beamforming: A Versatile Approach to Spatial Filtering”, IEEE, ASSP Magazine, Apr. 1988, pp. 4-24.
Zhai et al. “A Practical Wireless Charging System Based On Ultra-Wideband Retro-Reflective Beamforming” 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON 2010, 4 pgs.
Related Publications (1)
Number Date Country
20210104919 A1 Apr 2021 US
Provisional Applications (1)
Number Date Country
62272454 Dec 2015 US
Continuations (1)
Number Date Country
Parent 15059898 Mar 2016 US
Child 17020568 US
Continuation in Parts (1)
Number Date Country
Parent 14856337 Sep 2015 US
Child 15059898 US