Procedures relying on unsupervised self-directed compliance of many individuals may be vulnerable to noncompliance, particularly where such noncompliance is not easily detectable after the fact. For example, hand hygiene procedures in hospitals and other healthcare settings, intended to prevent the spread of bacteria, viruses, and other disease-causing microorganisms, are often vulnerable to non-compliance. Typical hand hygiene procedures include conventional soap and water hand washing, and the use of antibacterial fluids, such as gels or foams, which has the advantage of not requiring rinsing of the hands. These procedures, while effective, are not easily and/or cost effectively verified after the fact.
Exemplary embodiments of usage monitoring devices, systems, and methods are described herein. In an exemplary method of monitoring usage of an electronically operated dispenser, a dispensing mechanism is operated by an internal controller of the dispenser in response to user activation of an actuator of the dispenser in communication with the controller. In response to operation of the dispensing mechanism, dispenser data is written to an internal dispenser memory in circuit communication with the controller, with the controller and the dispenser memory being electrically connected with and powered by a power source. The dispenser memory receives a wireless interrogation signal from an external reader and collects energy from the wireless interrogation signal. In response to receipt of the wireless interrogation signal, the dispenser memory wirelessly transmits the written dispenser data to the external reader, with the dispenser memory being powered by the collected energy.
In another exemplary embodiment, an electronically operated dispenser includes an actuator, a dispensing mechanism, a controller, and a dispenser memory. The actuator is in communication with the controller, which is configured to operate the dispensing mechanism in response to user activation of the actuator. The dispenser memory may be in circuit communication with a wired interface and a wireless interface. The wired interface supports wired communication between the dispenser memory and the controller, and powered by a power source electrically connected with the controller and the dispenser memory, for writing dispenser data from the controller to the dispenser memory. The wireless interface supports passive wireless communication between the dispenser memory (and any required circuitry) and an external reader, for transmitting the written dispenser data from the dispenser memory to the external reader, the dispenser data transmission being powered by energy collected from a wireless interrogation signal received by the dispenser memory.
In yet another exemplary embodiment, a hand hygiene monitoring system includes an electronically operated dispenser and an external reader. The electronically operable dispenser includes an actuator, a dispensing mechanism, a controller, and a dispenser memory. The actuator is in communication with the controller, which is configured to operate the dispensing mechanism in response to user activation of the actuator. The dispenser memory may include a wired interface and a wireless interface. The wired interface supports wired communication between the dispenser memory and the controller, and is powered by a power source electrically connected with the controller and the dispenser memory, for writing dispenser data from the controller to the dispenser memory. The external reader is configured to wirelessly transmit an interrogation signal to the wireless interface, with the dispenser memory (and any associated required circuitry) collecting energy from the interrogation signal to power the dispenser memory for transmission of the written dispenser data to the external reader.
These and other features and advantages of the present invention will become better understood with regard to the following description and accompanying drawings in which:
The Detailed Description merely describes exemplary embodiments of the invention and is not intended to limit the scope of the claims in any way. Indeed, the invention is broader than and unlimited by the exemplary embodiments, and the terms used in the claims have their full ordinary meaning.
Also, while certain exemplary embodiments described in the specification and illustrated in the drawings relate to dispenser devices for hand hygiene applications, and systems and methods for monitoring usage of hand hygiene dispenser devices, it should be understood that many of the inventive features described herein may be applied to other systems and methods. For example, the features described herein may be utilized in systems and/or methods for monitoring conditions and usage of other types of dispensers (e.g., sunscreen, pharmaceuticals) and other types of devices.
“Circuit communication” indicates a communicative relationship between devices. Direct electrical, electromagnetic and optical connections and indirect electrical, electromagnetic and optical connections are examples of circuit communication. Two devices are in circuit communication if a signal from one is received by the other, regardless of whether the signal is modified by some other device. For example, two devices separated by one or more of the following—amplifiers, filters, transformers, optoisolators, digital or analog buffers, analog integrators, other electronic circuitry, fiber optic transceivers or satellites—are in circuit communication if a signal from one is communicated to the other, even though the signal is modified by the intermediate device(s). As another example, an electromagnetic sensor is in circuit communication with a signal if it receives electromagnetic radiation from the signal. As a final example, two devices not directly connected to each other, but both capable of interfacing with a third device, such as, for example, a CPU, are in circuit communication.
“Logic,” as used herein, is synonymous with “circuit” or “circuitry” and includes, but is not limited to, hardware, firmware, software and/or combinations of each to perform a function(s) or an action(s). For example, based on a desired application or needs, logic may include a software controlled microprocessor or microcontroller, discrete logic, such as an application specific integrated circuit (ASIC) or other programmed logic device. Logic may also be fully embodied as software. The circuits identified and described herein may have many different configurations to perform the desired functions.
“Signal,” includes, but is not limited to one or more electrical signals, analog or digital signals, one or more computer instructions, a bit or bit stream, or the like.
Any values identified in the detailed description are exemplary and they are determined as needed for a particular dispenser and/or refill design. Accordingly, the inventive concepts disclosed and claimed herein are not limited to the particular values or ranges of values used to describe the embodiments disclosed herein.
An exemplary aspect of the present application involves systems and methods for monitoring usage of hand hygiene dispenser devices. In one such embodiment, a hand cleaning fluid dispenser is configured to facilitate system monitoring of dispenser usage.
The actuator 40 may include one or more of a variety of actuating mechanisms. For example, the actuator may include a button, plunger, capacitance sensor, or other contact sensor that is touched or manually depressed by the user to dispense hand cleaning fluid (e.g., depressed by a first hand to dispense hand cleaning fluid into a second hand of the user). As another example, the sensor may include one or more non-contact sensors configured to sense one or more of user movement (e.g., motion sensor), user proximity (e.g., infrared sensor or capacitance sensor), or voice commands (e.g., microphone), such that the user may receive hand cleaning fluid without exposure to surface bacteria (and without the spread of bacteria to such a surface).
The actuator 40 is in circuit communication with a controller 50 of the dispenser 10, for example, by a wired connection, to transmit an activating signal to the controller upon user activation of the actuator. The controller 50 may include a processor, a microprocessor or the like, and any necessary memory or circuitry required to perform the functions described herein. The controller is in circuit communication with the dispensing mechanism 30, for example, by a wired connection, and includes logic and/or circuitry for operating the dispensing mechanism 30 in response to user activation of the actuator 40.
The exemplary dispenser 10 includes a power source 60 for providing power to the dispensing mechanism 30, the actuator 40, the controller 50, and any other components that require power. The power supply 60 may include one or more batteries, and/or a hard wired alternating current (AC) mains power source supplied by connection to an electrical outlet using a power cord. In one such embodiment, an external (e.g., AC mains) power supply provides primary power to the dispenser, and an internal power supply (e.g., batteries) provides back-up power for operating the dispenser in the event of a power outage.
To track usage of the dispenser, the exemplary dispenser 10 includes a dispenser memory 70 powered by the power supply for circuit communication with the controller 50. In the illustrated embodiment, as shown in
In some embodiments, dispenser data may be retrieved from the dispenser memory using a wired connection, for example, by providing a USB port or other data port on the dispenser, from which the dispenser data may be downloaded, for example, by connection of a portable memory drive. In other embodiments the dispenser may include a wireless interface for wireless communication of the dispenser data to a remote reader, from which this data may be processed or transmitted (e.g., to a further remote or off-site central computer). While the wireless interface may be locally powered (e.g., by an internal battery or AC mains power connection) for active transmission of wireless data signals, in other embodiments, the wireless interface may collect energy from interrogating radio waves to function as a passive transponder transmitting the stored dispenser data.
In the illustrated embodiment of
Many different circuitry arrangements may be utilized to provide wired read/write and wireless read/write dispenser memory for a hand hygiene dispenser. In one embodiment, a dual interface electrically erasable programmable read-only memory (EEPROM) unit may be utilized to provide memory having a wired interface including an inter-integrated circuit (I2C) protocol bus for circuit communication between the dispenser memory and the controller, and a wireless RF interface (e.g., antenna and power extraction/power management circuitry) for wireless RF communication between the dispenser memory and an external reader. In an exemplary embodiment, the I2C bus may be configured for low power (1.8-5.5V) wired communication, and the RF interface may be configured to operate at the 13.56 MHz HF frequency (e.g., in accordance with the ISO/IEC 15693 standard), or the 860-960 MHz UHF frequency range. Commercially available dual interface EEPROM units are offered by NXP Semiconductors and STMicroelectronics.
As shown in
According to another aspect of the present application, existing RFID systems may be adapted or expanded to include one or more hand hygiene dispensers configured for passive wireless communication with an external reader of the existing system. By providing the dispenser with a passive RFID communication circuit, the dispenser can be incorporated into an existing RFID system at a modest incremental cost, without requiring additional FCC approvals (as the passive RFID communication circuit does not include a radio) and without requiring additional regulatory testing. While a reader may include a portable unit (e.g., a smart phone or other handheld device) for mobile auditing of a system of RFID communicating devices (including, for example, hand hygiene dispensers), in other embodiments, a substantially fixed RFID reader is provided with a communication range or read distance to sufficient to collect stored data from passive RFID devices within this read distance, for example for coverage of a fixed zone (e.g., a hospital room, conference room, storeroom, etc.). Commercially available zone-based RFID systems utilizing UHF frequencies in the range of 860-960 MHz for a maximum read distance of 20-30 feet are offered by Odin Technologies, Inc. and Thingmagic, A Division of Trimble.
In an exemplary hand hygiene dispenser usage monitoring process using the exemplary system of
To collect dispenser data from the dispenser 10, an external reader 190 transmits periodic wireless interrogation signals S to the dispenser 10, which is positioned within a read range (e.g., within 30 ft) of the reader 190. The antenna portion 75 of the dispenser's dispenser memory 70 collects energy from the interrogation signals S, and the power management portion 76 of the dispenser memory uses the collected energy to generate RFID signals D1 including both the dynamic dispenser data written to the dispenser memory from the controller 50 and static dispenser identification data (e.g., dispenser serial number or part number) for identifying the dispenser to the reader. The dispenser data signals D1 are transmitted to the reader 190, which may include circuitry and logic for processing the collected data. Alternatively, the reader may be configured to transmit the collected data to a remote computer system for further processing.
To evaluate process compliance related to usage of the hand hygiene dispenser, a monitoring system may include one or more activity monitors configured to identify the presence of an individual in an area (e.g., a room) within which the hand hygiene dispenser has been assigned, to identify opportunities for process compliant usage of a hand hygiene dispenser in that area. In the exemplary system of
To collect monitor data from the activity monitor 210, the periodic wireless interrogation signals S, as described above, are transmitted from the external reader 190 to the activity monitor 210, which is positioned within a read range (e.g., within 30 ft) of the reader 190. The antenna portion 275 of a wireless interface 274 of the monitor memory 270 collects energy from the interrogation signals S, and the power management portion 276 of the monitor memory uses the collected energy to generate RFID data signals D2 including both the dynamic monitor data written to the monitor memory 270 from the controller 250 and static monitor identification data (e.g., activity monitor serial number) for identifying the activity to the reader. When the reader 190 collects dispenser data from the dispenser 10 and monitor data from the activity monitor 210, the system 100 can identify hand hygiene compliance opportunities, as determined by activity monitor activation counts, and pair this data with corresponding hand hygiene compliance, as determined by dispenser usage counts, or failed compliance, as determined by the absence of a corresponding dispenser usage count. This collected data, when aggregated, can provide administrative information on the effectiveness of a hand hygiene compliance program (e.g., for a hospital or restaurant).
To monitor hand hygiene process compliance of specific individuals, the activity monitor 210 may include an RFID reader 280, powered (e.g., by power source 260) upon activation of the activity monitor actuator 240 to generate interrogation signals s (or alternatively, continuously powered to generate interrogation signals) for communication with an RFID identification badge B of a user U that has actuated the activity monitor 210. The RFID badge B transmits user identification data d to the reader 280, which transmits the identification data to the controller 250 for writing of the identification data to the monitor memory 270 using the wired interface 272. This identification data is transmitted by the wireless interface 274 to the external reader 190 for pairing with hand hygiene compliance data collected from the dispenser 10.
To more accurately monitor hand hygiene process compliance of specific individuals (e.g., in an area of higher traffic), the dispenser 10 may also be provided with an internal RFID reader 80, powered (e.g., by power source 60) upon activation of the dispenser actuator 40 to generate interrogation signals for communication with an RFID identification badge B of the user that has actuated the dispenser 10. The RFID badge B transmits user identification data to the reader 80, which transmits the identification data to the controller 10 for writing of the identification data to the monitor memory 70 using the wired interface 72. This identification data is transmitted by the wireless interface 74 to the external reader 190 for pairing with hand hygiene compliance data collected from the dispenser 10.
While various inventive aspects, concepts and features of the inventions may be described and illustrated herein as embodied in combination in the exemplary embodiments, these various aspects, concepts and features may be used in many alternative embodiments, either individually or in various combinations and sub-combinations thereof. Unless expressly excluded herein all such combinations and sub-combinations are intended to be within the scope of the present inventions. Still further, while various alternative embodiments as to the various aspects, concepts and features of the inventions—such as alternative materials, structures, configurations, methods, circuits, devices and components, software, hardware, control logic, alternatives as to form, fit and function, and so on—may be described herein, such descriptions are not intended to be a complete or exhaustive list of available alternative embodiments, whether presently known or later developed. Those skilled in the art may readily adopt one or more of the inventive aspects, concepts or features into additional embodiments and uses within the scope of the present inventions even if such embodiments are not expressly disclosed herein. Additionally, even though some features, concepts or aspects of the inventions may be described herein as being a preferred arrangement or method, such description is not intended to suggest that such feature is required or necessary unless expressly so stated. Still further, exemplary or representative values and ranges may be included to assist in understanding the present disclosure; however, such values and ranges are not to be construed in a limiting sense and are intended to be critical values or ranges only if so expressly stated. Moreover, while various aspects, features and concepts may be expressly identified herein as being inventive or forming part of an invention, such identification is not intended to be exclusive, but rather there may be inventive aspects, concepts and features that are fully described herein without being expressly identified as such or as part of a specific invention. Descriptions of exemplary methods or processes are not limited to inclusion of all steps as being required in all cases, nor is the order that the steps are presented to be construed as required or necessary unless expressly so stated.
This application claims priority to and the benefits of U.S. Provisional Patent Application Ser. No. 62/211,253 filed on Aug. 28, 2015 and entitled “SYSTEMS AND METHODS FOR DEVICE USAGE MONITORING,” which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62211253 | Aug 2015 | US |