Endoscopic surgery, also known as minimally invasive surgery, uses an endoscope delivered through a small body incision or a natural body orifice to collect images of the surgical site. Conventional endoscopes usually include two fiber optic lines for image collection—a “light fiber” which carries light into the body cavity, and an “image fiber” which carries the image of the body cavity back to the physician's viewing lens. Such endoscopes can further include a separate axial port or working channel for administration of drugs, suction, and irrigation. This working channel may also be used to introduce small surgical instruments or end-effectors, such as forceps, scissors, brushes, etc. for tissue excision, sampling, or other diagnostic and surgical work. The goal of endoscopic surgery is to reduce tissue trauma and the body's response to the injury of traditional (or open) surgery. Examples of endoscopic surgery include laparoscopic cholecystectomies (gall bladder removal) and appendectomies; arthroscopic surgery of the interior of bone joints; endoscopic rhinosinusitis; colonoscopic excisions, endoscopic discectomy, etc. In addition, endoscopic tools may be used for visualization and manipulation of architectural scale models, complex technical systems, improvised explosive devices, and other non-medical applications.
The growing capabilities of endoscopic tools have allowed physicians to perform an increasing variety of surgeries and diagnostic procedures through small body openings. Further refinement of the endoscopic devices may enable the physicians to access the target sites through even less invasive routes, and thereby cause less post-operative pain, less scar tissue formation, and shorten the recovery time. Improvement in the design and functionality of the minimally invasive tools would make endoscopic procedures feasible for body regions not accessible with conventional endoscopic tools, and would contribute significantly towards the advancement of translumenal endoscopic surgeries via natural orifices.
Described herein are systems and methods for directing instruments to varying positions at a target site relative to anatomic structure, other instruments, and/or a guide tube. In one aspect, the system comprises an elongate guide tube extending between a proximal end and a distal end, and includes two or more channels for the delivery of instruments to the target site. The channels in the guide tube comprise a point of entry at the proximal end of the guide tube, and a point of exit at the distal end of the guide tube. At least one of the channels further comprises an additional exit point at the distal end. An instrument positioned in one of the exit points may be switched to a different exit point in order to direct the instrument to a different position relative to another instrument, the guide tube, and/or the target site.
In another aspect, the system comprises an elongate guide tube extending between a proximal end and a distal end, wherein the guide tube includes multiple exit points for instruments at the distal end, and at least two of the exit points are connected by a common lumen. The common lumen is configured to receive an instrument at the proximal end of the guide tube, and the instrument may be selectively positioned at any of the distal exit points connected to the lumen.
In yet another aspect, the system comprises an elongate guide tube extending between a proximal end and a distal end, and having two or more working channels to deliver instruments to a target site. The guide tube is rotatable about a longitudinal axis, such that an instrument delivered to the target site can be rotated to a different position by rotating the guide tube.
In one embodiment, only a portion of the guide tube rotates around a longitudinal axis of the guide axis. In another embodiment, the guide can be segmented and only a segment of the guide tube is rotatable around the longitudinal axis.
Further described herein are methods for directing instruments to varying positions at the distal end of a guide tube. In one embodiment, the guide tube comprises multiple exit points for instruments at its distal end, and the exits are interconnected via a passage. An instrument positioned in one of the exit points may be redirected to another exit point through the interconnecting passage to enable the instrument to access a different target location.
In another embodiment, the guide tube comprises multiple exit points for instruments at its distal end, and at least two of the exit points are connected by a common lumen. An instrument may be introduced into the guide tube through the common lumen, and positioned at any of the exit points connected to the lumen. To repositioning the instrument at the target site, the instrument may be withdrawn into the common lumen, and redirected to another exit point connected to the lumen.
In yet another embodiment, the entire guide tube, or a section thereof, is rotatable around a longitudinal axis. An instrument may be delivered to a target site through a channel in the guide tube. To reposition the instrument at the target site, the entire guide tube, or a rotatable section thereof, may be rotated to redirect the instrument to a different position relative to the target site.
The applications of the disclosed systems and methods include, but are not limited to, trans-oral, trans-anal, trans-vaginal, trans-nasal, laparoscopic, arthroscopic, thoracoscopic, panendoscopic surgeries, etc. In addition, the disclosed systems and methods may be used for various diagnostic applications, such as collection of tissue biopsy samples, gastroscopy for visualization of ulcers within the upper GI tract, hysteroscopy for diagnosis of intrauterine pathology, etc. The systems and methods disclosed herein may also be used for non-medical applications, such as in the inspection and/or repair of machinery.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and are not restrictive of the invention, as claimed.
Disclosed herein are systems and methods for directing instruments to varying positions at a target site for performing various endoscopic procedures. As depicted in
Disclosed herein are various systems and methods for changing the relative position of the optics, and/or the surgical instruments without necessitating the retraction of the guide tube from the target site. The present disclosure may generally refer to both optical devices and surgical instruments as “instruments” for convenience hereinafter. The described systems and methods may be applied to any optical and surgical/diagnostics instruments used with an endoscopic system.
In one aspect, an endoscopic guide tube may include an instrument channel having multiple exit points, and the position of an instrument at the target site may be switched by redirecting the instrument to a different exit point of the channel.
In another aspect, the instrument channel is configured to inhibit movement of the instrument within the channel. An instrument placed in one of the exit positions can be locked in position relative to the guide tube by the wall of the channel. The multiple exit points of the channel may be defined by a narrow central region of the channel, as shown in
In another embodiment, illustrated in
In yet another embodiment, the placement of an instrument in a first or a second position causes deformation of the channel and prevents movement of the instrument to a different position. In such an embodiment, at least a portion of the walls of channel 12 can be defined by a flexible member. Insertion of an instrument into a first or a second exit position changes the shape of channel 12. In particular, instrument 20 can have a larger cross-section than channel 12. Inserting the instrument into channel 12 deforms the walls of channel 12 and changes the shape of the channel. In one embodiment, the unused exit position is reduced in area by the insertion of instrument 20. In addition, insertion of instrument 20 can change the shape of channels 14 and 16.
In one embodiment, the removal of instrument 20 from an exit position causes channel 12 to return to its original shape, and consequently. the other channels in the guide tube regain their original configuration. As illustrated in
In another embodiment, the removal of instrument 20 from a first exit position does not automatically restore the shape of channel 12. The subsequent insertion of instrument 20 into a second exit position of channel 12 may restore the shape of the channel, or deform it further.
In another aspect, the distal end of a guide tube includes multiple exit points for instruments introduced into the guide tube. At least two of the exit points are connected by a common lumen, such that an instrument introduced into the guide tube through the common lumen may be positioned at any of the distal exit points connected to the lumen.
In yet another aspect, the guide tube may be rotated around a longitudinal axis to reposition the instrument at the target site.
In another aspect, only a portion of the guide tube is rotatable about a central longitudinal axis. As illustrated in
In yet another embodiment, a distal segment of the guide tube may be rotated to reposition the instruments at the target site. As illustrated in
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
The present disclosure claims priority to U.S. Provisional Application No. 61/139,033, filed on Dec. 19, 2008, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4706656 | Kuboto | Nov 1987 | A |
4784117 | Miyazaki | Nov 1988 | A |
4971035 | Ito | Nov 1990 | A |
5503616 | Jones | Apr 1996 | A |
5928137 | Green | Jul 1999 | A |
6152871 | Foley et al. | Nov 2000 | A |
7775968 | Mathis | Aug 2010 | B2 |
7815565 | Stefanchik et al. | Oct 2010 | B2 |
8016749 | Clerc et al. | Sep 2011 | B2 |
8425406 | Smith et al. | Apr 2013 | B2 |
20030176880 | Long et al. | Sep 2003 | A1 |
20070167680 | Miyamoto et al. | Jul 2007 | A1 |
20110124960 | St. Onge et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
1 284 120 | Feb 2003 | EP |
1 426 005 | Jun 2004 | EP |
Entry |
---|
International Search Report and Written Opinion issued in PCT/US2009/068767, mailed Apr. 20, 2010. |
Patil et al. “Effect of the angle between the optical axis of the endoscope and the instruments' plane on monitor image and surgical performance,” Surgical Endoscopy 18(1):111-114 (2004), abstract. |
Number | Date | Country | |
---|---|---|---|
20130225926 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61139033 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12640424 | Dec 2009 | US |
Child | 13779344 | US |