The present invention relates to systems and methods for milling asphalt. More specifically, the present invention relates to attachable systems and methods that improve milling by providing steering capability while maintaining depth control for a milling device.
Portable asphalt milling attachments historically comprise two principal features. They have a way to control the depth that the milling attachment device cuts. They also have a way to facilitate the changing of bits mounted to a cutting wheel of the milling attachment device. However, such devices are quite heavy and can prove very difficult to steer and keep on line, particularly when the host vehicle is small or has difficulty moving very heavy objects. These challenges are exacerbated by the loader unit carrying the milling attachment. A loader riding on pneumatic tires tends to move unpredictably. As it drives the milling unit moves vertically and horizontally as tires flex and bounce during operation of the device. This movement may be caused by the device itself as it encounters and mills material of different hardness, and by movement of the loader over an uneven surface. Moreover, machines whose chassis can be articulated often provide less precise steering as none of the wheels actually turn, but instead are redirected by the articulation of the loader from a central axis. The further a device is located from the central axis, the more exaggerated will be its movements. However, as precision milling is critical to many aspects of a job; costs quickly escalate as time and fuel are wasted as a surface is needlessly milled due to imprecise steering. Thus there is a need to quickly and precisely maintain a steering direction during milling.
The present invention has been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available asphalt milling/trenching attachments which are selectively coupled to the bucket of a front-end loader.
This disclosure provides steering capability that operates independent of or can be integrated with direction and depth control and will not interfere with bit access. In particular the disclosure provides precise steering capabilities for maintaining the direction of the milling in a straight line despite mis-steering caused by the operator reacting to uneven surfaces and bucking of the milling machine.
The front of the milling machine has one or more steerable wheels that are controlled hydraulically, electrically, pneumatically, or by using any other suitable drive. The wheel or wheels may be of any suitable type, including caster-type wheels, and may be raised or lowered to maintain desired depth control in the milling/trenching process. In certain embodiments, the steerable wheels are disposed forward of the milling assembly such that they will not impede bit access for repair and/or replacement.
Steering precision can be improved through use of a guidance system, such as a laser, and sensors mounted on the machine which detect when the machine is veering off-course. In addition, an augmented guidance system may comprise a microprocessor and sensors which detect mis-steering by the operator and adjust the steering of the attachment through its own wheels. A ground operator with a sight line to the milling trench may also control the steering of the milling machine. Precise adjustments may then be made to the wheels on the milling machine to steer both the milling machine and the loader to which it is attached. While this improves the accuracy or straightness of the cut, imperfections still occur as the loader bounces on its wheels due to the impact of the milling machine as it encounters material of different hardness or as the loader travels over an uneven surface.
One aspect of the present invention is control over the rate of forward movement of the loader. This allows for more precise milling as the forward progress of the milling machine may be halted or slowed by the ground operator until undulations have diminished and undesired movement of the machine has abated.
Another aspect of the present invention is to provide a load meter on the milling attachment which measures the amount of milling work being done by the engine. In some embodiments the speed of the loader is reduced when the load meter registers a pre-determined value. In some embodiments, when the milling attachment load increases due to more difficult milling conditions, such as harder material, the speed of the loader is reduced automatically to prevent the loader from bucking or jumping out of alignment.
Another aspect of the present invention is to provide an accelerometer to monitor the movement of the milling attachment. In some embodiments the accelerometer is placed on the milling attachment and if the milling attachment begins to buck, oscillate or move out of alignment the speed of the loader is reduced automatically.
Another aspect of the present invention is to provide a speed control mechanism for a groundman to control the velocity of the loader. In some embodiments a groundman walks adjacent to or in front of the milling attachment at the front of the loader as the milling occurs. In some embodiments the loader can move unpredictably, causing the loader to move out of alignment. In some embodiments the groundman can control the speed of the loader. In some embodiments the groundman can control the speed and direction and load of the milling attachment. In some embodiments, the laser directs the direction of the milling attachment by being directly coupled to the steering of the milling attachment and variations beyond a preset limit will trigger a slowing of the loader and reduce the load on the milling attachment.
Asphalt milling devices are quite heavy and some are self-propelled. The self-propelled asphalt milling devices are steerable, but are extremely expensive and have limitations. Asphalt milling attachments can be attached to and maneuvered by a host vehicle, but heretofore the host vehicle provides the steering. Because asphalt milling attachments are quite heavy, smaller host vehicles or host vehicles that have difficulty moving very heavy objects have difficulty steering when a milling attachment is attached. The attachment embodiments disclosed herein facilitate maneuverability by providing a steering mechanism for the attachment. The asphalt milling attachments of the present disclosure could use a bucket slot in the rear of the asphalt milling attachment to allow a host vehicle to connect to it. Alternatively, other known quick-connects (JRB style, skid steer or balderson style) could be used. Host vehicles for the asphalt milling attachment could include back hoes, loaders, excavators, track hoes, skid steers and the like. However, without the steering capability provided in the present disclosure, steering the asphalt milling attachment or maintaining a desired line and milling depth can prove to be very difficult for an operator of the device, particularly if the host vehicle is a smaller vehicle. The present invention is much more versatile than known asphalt milling devices because it provides steering capability for the asphalt milling attachment that can be attached to and used by broader range of host vehicles. In one embodiment, the wheel is a caster wheel that can be locked into a particular orientation (such as directly forward) or unlocked so that the operator can steer the device right or left. In some embodiments, the steering capability is independent of the depth control, and does not interfere with depth control. In other embodiments the steering is integrated with the depth control such as when the wheel is also connected to a framework that can be raised or lowered to assist in controlling the depth of the milling performed by the device.
With the steerable wheel system in use, the intended use of the asphalt milling device could be to cut asphalt, concrete or any other road construction/parking lot material. The milling device could also be used for soil stabilization. It could be used for full depth reclamation of roads. These and other features will become more fully apparent from the following description, or may be learned by the practice of the steerable wheel system as set forth hereinafter.
In order that the manner in which the above-recited and other features and advantages of the invention are obtained will be readily understood, a more particular description of exemplary embodiments of the invention, briefly described above, will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Exemplary embodiments of the invention will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood that the components of steerable asphalt milling devices, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the present disclosure, as represented in the figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of exemplary embodiments of the invention.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
In this application, the phrases “connected to”, “coupled to”, and “in communication with” refer to any form of interaction between two or more entities, including mechanical, hydraulic, electrical, magnetic, electromagnetic, and pneumatic interactions.
The phrases “attached to”, “secured to”, and “mounted to” refer to a form of mechanical coupling that restricts relative translation or rotation between the attached, secured, or mounted object, respectively.
The term “pivoting” refers to items that rotate about an axis. A “pivoting engagement” is an engagement between two or more items in direct contact, with one or more of the items being capable of pivoting about an axis common to each of the items.
The pivot shaft 18 is carried in a shaft opening in the support bar 16 and extends above the support bar 16 so that the rotating bracket 24 can be attached to the pivot shaft 18. The rotating bracket 24 comprises a collar 28 and laterally extending ears 30 (the reference numerals 28, 30 are not shown in
The pivot shaft 18 is carried in a shaft opening in the support bar 16 and extends above the support bar 16 so that the rotating bracket 24 can be attached to the pivot shaft 18. The rotating bracket 24 comprises a collar 28 and laterally extending ears 30. The collar 28 fits snug about the pivot shaft 18 and can be secured to the pivot shaft 18 by any suitable means, such as by screw, bolt, key, set screw, weld, or the like. Ears 30 provide a location for pivotally attaching the cooperating steering actuators 20. Each of the stationary brackets 22 is secured to the support bar 16 and spaced to provide locations for pivotally attaching the cooperating steering actuators 20. One end of each steering actuator 20 is pivotally attached to a stationary bracket 22 while the other end is pivotally attached to ears 30 of the rotating bracket 24, so that distance between the two stationary brackets 22 is covered by the ears 30 and steering actuators 20, with the ears 30 being disposed between the two steering actuators. In this manner, as one of the steering actuators 20 contracts, the other steering actuator 20 extends, thereby causing the ears 30 to move to the right or left and rotating the pivot shaft 18 and wheel 14 accordingly. As shown in
The hydraulic drive (not shown in
As shown in both
The alternative embodiment of a two-wheel configuration for the asphalt milling device 10 of
Additionally, the arms 26 may pivot about their connections to the support arm 16 so that the wheels 14 can swing from a forward mode (
Although the exact configuration of the hydraulic drive together with the hoses and fittings, and the controls for regulating the hydraulic power have not specifically been shown, one skilled in the art, armed with the disclosure provided herein can configure the hydraulics to provide both steering and height-adjustment by locating needed controls in the host vehicle 50.
A target is also provided. In embodiments involving shorter distance the target comprises a reflective surface so as to reflect an aligned light beam sent from the light source back to the photoelectric sensor. In certain embodiments involving longer distances the target is a sensor which receives an aligned light beam sent from the light source and transmit a signal via wires or wirelessly, that the beam is aligned. In certain embodiments the target comprises adjustable blinders which create an aperture between the light source and the target to ensure the desired milling depth has been achieved. In certain embodiments the blinder is used to set a vertical high limit. In some embodiments the lower limit is functionally set by the maximum milling depth set by the physical limitations of the milling attachment.
Some embodiments comprise a light beam projected on a sensing target wherein the target senses whether the position of the light beam is within pre-set tolerances. In some embodiments the guidance system provides an alert, such as a sound, a light or vibration to alert the operator the beam is out of alignment. In some embodiments the guidance system notifies the operator what corrective action required to realign the steering mechanism with the predetermined course. In some embodiments the steering mechanism become misaligned and require a steering correction. In some embodiments when the light beam is out of alignment the operator manually determines the cause of the misalignment and manually guides the steering mechanism into alignment. In some embodiments the guidance system may sense the beam moved off a specific side of the target (e.g. right) and thus indicate a steering correction (e.g. to the left) is required to regain alignment, or vice versa.
In some embodiments the guidance system is used to confirm the depth of the milling. In some embodiments the sensor may sense the beam moved vertically out of alignment and indicate the vertical misalignment to an operator. In some embodiments the vertical misalignment may be caused the material being milled. In the milling process the rotating cutting head may encounter materials of different hardness, and depending on the speed the rotating cutting head may pass over the material without properly milling or pulverizing the material. In some instances the progress of the host machine and milling attachment are stopped and possibly even reversed to permit the rotating cutting head to operate until the milling or pulverization is complete. In some embodiments the vertical misalignment may prompt the operator to put more pressure on the rotating cutting head. In some embodiments the increased pressure is accomplished by the host vehicle lowering the boom connected to the milling attachment, thus placing more of the host vehicle's weight on the milling attachment and forcing the rotating cutting into the material. The additional downward force will drive the cutting head 58 into the material being milled. In certain embodiments the ideal downward force on the milling attachment is created when the host vehicle's front wheels are almost off the ground.
In some embodiments instead or lowering a boom to increase pressure the height-adjustment mechanism 34 can be adjusted completely mill the ground and realign the steering mechanism. Because the asphalt milling device 10 can mill to various depths, the height of the wheel 14 of the steering mechanism 12 is also adjustable to assist in maintaining depth control. In some embodiments, the wheel 14 can be raised and lowered using a pivoting parallelogrammatic structure, generally designed as 36, and comprising four pivot points 38a, 38b, 38c, and 38d. Between pivot points 38a and 38c, a height-adjusting strut such as a height-adjusting hydraulic piston 40 is provided. By extending and contracting the length of the height-adjusting strut (e.g., a hydraulic piston 40), the configuration of the parallelogrammatic structure 36 will change and the support bar 16 and wheel 14 can be raised and lowered to achieve a desired milling depth or to lift the front of the asphalt milling device 10 to realign the steering mechanism. The raising and lowering of the height-adjustment mechanism in response to sensed misalignment can be used to compensate for depressions in the ground's surface contours.
In some embodiments the steering guidance system further comprises remote steering member. In some embodiments the remote steering member comprises a relay remote control unit, configured to allow an operator to correct misalignments. In certain embodiments this relay remote comprises a notification mechanism which notifies the operator when the steering mechanism is misaligned. In some embodiments the relay remote comprises steering controls to direct the steering mechanism and correct for horizontal misalignment. In certain embodiments the relay remote comprises controls for the height-adjustment mechanism 34. In some embodiments the relay remote is used by the operator of the host vehicle to adjust the downward pressure on the boom. In some embodiments the relay remote is wirelessly connected to the guidance system. In some embodiments the relay remote is connected to the guidance system by a wire wherein the operator is a groundman walking on the ground next to the steering mechanism to observe the position of the steering mechanism as it moves. In some embodiments the steering guidance system is configured in the host vehicle cab to allow the host vehicle operator to operate both the host vehicle and the steering mechanism, as well as the milling depth.
In some embodiments a steering mechanism control, along with a visual observation system is configured away from the front of the milling attachment, such as in the host vehicle's cab, to obviate the need for a groundman. In some embodiments the visual observation system comprises one or more cameras positioned to provide a view of the milling attachment's direction. In some embodiments one or more observation members, such as cameras, is positioned to provide a view of the milling attachment's milling depth. In some embodiments one or more cameras is positioned to provide a view of the guidance system to visually indicate when the milling attachment is the correctly aligned. In some embodiments one or more visual, such as a LCD screen, LED screen, ELD screen, or phosphorous screen, displays the alignment of the milling attachment with the guidance system.
Some embodiments comprise a guidance system configured to automate directing the system in predetermined course. In some embodiments the guidance system directs the system in a straight line. In some embodiments the guidance system maintains the straight course of the system regardless of the slope of the grade. In some embodiments the speed of the system is slowed to grind down hard materials disposed in the predetermined course. In some embodiments the guidance system is controlled by a GPS navigation system. In some embodiments the guidance system is controlled by a laser.
In some embodiments steering precision is improved through a guidance system. In some embodiments the steering comprises a laser and target wherein steering is maintained in a straight direction so as to minimize milling in an unnecessary direction. Some embodiments of the improved guidance system comprise a laser which is projected along the direction in which the milling is to take place. In some embodiment the milling attachment comprises a target extending off the side of the milling attachment. In some embodiments the target comprises a receiver which detects the laser and ensures with precision that the milling is in a straight direction. In some embodiments as the vibration on the pneumatic tires disorients the direction of the tractor, the guidance system recognizes the misdirection.
In some embodiments the target comprises a laser source, a target and a U-shaped sight extending from the side of the milling attachment. In some embodiments the sight extends from the side of the tractor or a first sight from the milling attachment and a second sight from the tractor. In some embodiments the laser comprises a plurality of lasers. In some embodiments the laser, sight and target are aligned. In some embodiments the milling begins and the tractor moves along the path set by the laser. In some embodiments, if a first beam is broken the course is adjusted to realign the laser, the sight and the target. In some embodiments, if more than one laser is broken the milling stops and the tractor is realigned before proceeding. The tolerances of the sight can be adjusted depending on the precision required.
Some embodiments comprise correcting the misdirection by activating the steering mechanism. In some embodiments steering mechanism activation comprises an automated system wherein a computer system receives data from the receiver or target and adjusts the steering mechanism to correct for a mis-direction. In some embodiments the steering comprises precisely adjusting the steering actuator to maintain the direction of the milling attachment in a straight line. In some embodiments steering mechanism activation comprises alerting a driver to course correct to keep the laser within the desired tolerances. In some embodiments steering mechanism activation comprises alerting a groundman who uses controls steering the steering mechanism on the milling attachment.
In some embodiments the tractor is placed on the milling path when it is aligned with the laser. Some embodiments comprise aligning the tractor with the milling path the path, and a laser is then aligned with the tractor. In some embodiments the guidance system comprises the laser guide and sensors mounted on the machine which detect when the machine is veering off-course. In addition, an augmented guidance system may comprise a microprocessor and sensors which detect mis-steering by the tractor and either adjust the steering of the attachment, alert a user or actuate the steering mechanism to precisely maintain the direction of the tractor.
In some embodiments steering precision is improved through use of a guidance system, such as a laser, a target, and sensors sight mounted on the machine. In some embodiments the guidance system comprises a chalk line marked on the milling surface. In some embodiments the guidance system comprises optical cameras which observe the alignment of the milling attachment and the tractor with the desired path. In some embodiments the system comprises a cellular network connection, such as a 5G connection which accurately and precisely identifies the location and alignment of the loader and milling attachment with the desired milling path. Some embodiments comprise a GPS signal which accurately and precisely identifies the location and alignment of the milling attachment. Some embodiments combine these different elements, such as a guidance laser and an optical camera. Some embodiments combine other elements, such as a groundman with a control and chalk line.
In some embodiments an augmented guidance system may comprise a microprocessor and sensors which detect mis-alignment by the milling attachment and loader. In some embodiments the sensor comprises a laser target. In some embodiments the sensors comprise the sights. In some embodiments when the microprocessor receives input that the tractor is out of alignment it indicates the corrective action needed to realign the tractor with the laser. In some embodiments the guidance system comprises actuator controls which adjust the attachment steering to maintain the alignment of the tractor with the laser. In some embodiments the system comprises alerts which indicate to a user, such as a groundman, the necessary corrective action required to realign the loader with the laser. A ground operator with a visual sight line to the milling trench may also control the steering of the milling machine. Precise adjustments may then be made to the wheels on the milling machine to steer both the milling machine and the loader to which it is attached. While this improves the accuracy or straightness of the cut, imperfections still occur as the loader bounces on its wheels due to the impact of the milling machine as it encounters material of different hardness or as the loader travels over an uneven surface.
In some embodiments the guidance system comprises control over the rate of forward movement of the loader. This allows for more precise alignment of the milling attachment as the forward progress or speed of the milling machine may be slowed or even halted to maintain alignment until loader undulations have diminished and undesired movement of the machine has abated. In some embodiments the speed is adjusted by the ground operator. In some embodiments the speed is reduced by the guidance system in response to data received by the microprocessor as sent by sensors on the system.
Some embodiments of the milling attachment comprise a load meter on the milling attachment which measures the load the milled surface is placing on the milling attachment. Difficult milling conditions may cause the loader and milling attachment to move unpredictably and go out of alignment. In some embodiments if the load measured by the monitor exceeds a predetermined threshold, due to conditions such as surface hardness, the speed of the loader is reduced to allow for more thorough milling. In some embodiments, when the milling attachment power output increases due to more difficult milling conditions, such as harder material, the speed of the loader is reduced to prevent the loader from bucking or jumping out of alignment.
Some embodiments of the milling attachment comprise an accelerometer that monitors the vertical movement of the milling attachment. In some embodiments the load meter is placed on the milling attachment and if the milling attachment begins to buck, oscillate or move out of alignment the speed of the loader is reduced until the loader and attachment have settled and are realigned.
Some embodiments of the present invention comprise speed control mechanism for a groundman to control the forward or reverse rate of the loader. In some embodiments a groundman walks next to the milling attachment at the front of the loader as the milling occurs. If the milling attachment encounters a surface that causes unpredictable movement in the loader and attachment the groundman can modulate or stop the speed of the loader until the loader and milling attachment are realigned. In some embodiments the groundman, instead of the loader operator or driver, can control the speed of the loader.
The present invention may be embodied in other specific forms without departing from its structures, methods, or other essential characteristics as broadly described herein and claimed hereinafter. The described embodiments are to be considered in all respects only as illustrative, and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This patent application is a continuation-in-part application claiming priority to U.S. patent application Ser. No. 16/148,910, which is a continuation-in-part application claiming priority to U.S. patent application Ser. No. 13/686,461 which was filed Nov. 27, 2012, which claims priority to U.S. Provisional Patent Application No. 61/565,278 which was filed Nov. 30, 2011 and is hereby incorporated herein by this reference.
Number | Date | Country | |
---|---|---|---|
61565278 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16148910 | Oct 2018 | US |
Child | 16355429 | US | |
Parent | 13686461 | Nov 2012 | US |
Child | 16148910 | US |