Systems and methods for distributing radioheads

Information

  • Patent Grant
  • 12166280
  • Patent Number
    12,166,280
  • Date Filed
    Monday, November 22, 2021
    3 years ago
  • Date Issued
    Tuesday, December 10, 2024
    a month ago
Abstract
Systems and methods are described to create radio daisy chains for convenient and aesthetically pleasing high-density radio deployments.
Description
BACKGROUND

As wireless communications systems steadily grow in density, placement of radios becomes increasingly difficult. There are challenges in finding physical locations to hold radios, challenges in bringing backhaul and/or fronthaul (“fronthaul”, as used herein, refers to a communications infrastructure that carries the radio signal in some form to a radiohead, as opposed to “backhaul”, as used herein, which carries user data to the base stations which generate the radio waveform to carry the user data). With conventional cellular systems (e.g. LTE, UMTS) or conventional interference avoidance systems (e.g. Wi-Fi), to optimize performance and frequency reuse, base station or antenna planning requires placing radios in certain locations for coverage, and avoiding other locations to mitigate interference. Then, even assuming the technical issues can be overcome, there are local and national government restrictions on radio and antenna placement, for example, out of concern for the visual appearance of the radios and antennas. Even if radios or antennas meet standards for government approval, the permitting process may be very slow, sometimes taking years to have antenna deployments approved.


Throughout the history of radio communications, there have been a vast number of different approaches to deploying radios and antennas, depending on the type of radio technology (e.g. satellite, mobile, television, etc.), the frequencies of the transmissions (e.g. HF, VHF, UHF, microwave, millimeter wave, etc.), and the directionality of the transmission (e.g. omnidirectional, high gain, or narrow beam, etc.). Also, aesthetic considerations have often come into play, from simple efforts like painting radios and antennas to match their surroundings, to elaborate efforts like fashioning cellular towers to look like palm trees.


Because achieving optimal performance in conventional cellular and interference-avoiding networks requires radios and antennas to be placed according to a specific plan (e.g. not too far apart such that coverage is lost, and not too close together to avoid intercell interference), these requirements often clash with other constraints, such as the availability of mounting solutions at the sites and backhaul and/or fronthaul. And, in many situations (e.g. a historic building) no radio or antenna solution is acceptable because the government will not permit anything mounted on or near the building that changes the appearance of the building.


Radios and antennas have been placed on towers, rooftops, utility poles, on power lines and strung between utility poles. Radios and antennas have been placed at indoor locations in ceilings, on walls, on shelves, on tabletops, etc. Radios have also been placed inside stadiums on their structural elements, under seats, etc. Specialized antennas such as “leaky feeders” (described below) have been placed in tunnels. In short, radios and antennas have been placed in any location imaginable.


Examples of prior art efforts to attach radios and antennas to power lines, include those disclosed in U.S. Pat. Nos. 7,862,837, 8,780,901 and US 2014/0286444, and prior art efforts to attaching radios and antennas to utility poles include those of the Metricom Ricochet packet communication network, for example, as disclosed in U.S. Pat. No. 7,068,630.


A utility pole 400 or 401 such as illustrated prior art FIG. 4 is often divided into two zones, a typically higher zone, which may be called the “supply space” where electrical power lines are carried on cables, such as in the area of crossarm 403. A typically lower zone, where it is safe for workers to attach communications cables and equipment may be called the “communications space”, with communications cables and equipment illustrated in this zone in prior art FIG. 5, at the height of crossarm 402.


Some prior art systems place the radios and/or antennas in the supply zone on the utility poles, as shown in FIG. 4 with radios and/or antennas 410 and 411, and/or place radios and/or antennas on the power lines themselves as shown with radios and/or antennas 420 and 421.


Some prior art systems place the radios and/or antennas in the communications zone on the utility poles, as shown in FIG. 5 with radios and/or antennas 550 and 551, and/or place radios and/or antennas on cables (often communications cables) strung between utility poles as shown with radios and/or antennas 540 and 541. Backhaul or fronthaul may be carried on communications cables 531, which typically are electrical (e.g. copper) or fiber, are often protected by insulation or an outer duct 530, and often derive structural support from a mechanically strong cable 532, often made of braided steel. Sometimes radios are attached to the pole and/or cabling and then they are coupled to antennas that are either on the pole or the cabling, or embedded in the radios, as shown in FIG. 5. In some prior art systems, radios derive power from the power lines, often through a step-down power supply 561 and measured by a power meter 560 so that usage cost can be assessed by the electric utility providing power. Radios such as 550 and 551 can also be used for backhaul or fronthaul.



FIG. 6 shows a prior art configuration with antennas and/or radios on lamp posts. Lamp posts, as used herein are utility poles that do not have aerial power or communications cables between them. The antennas 601 and 602 might be coupled to radios 611 and 612, or they may be in the same enclosure with the radio and thus there is no need for a separate radio 611 or 612. The backhaul or fronthaul cabling (e.g. copper or fiber) may be conveyed through an underground conduit 630 (illustrated with dotted lines to indicate the conduit is underground and not visible) or the backhaul or fronthaul can be carried through a wireless link between the lamp posts. If the backhaul or fronthaul is underground, then it is typically conveyed from the underground conduit through the interior of the lamp post (e.g. if it is metal or hollow) or, as illustrated with 621 and 622, through a conduit or duct from the ground up the side of the lamp post, either through a radio 611 and 612, or directly to the top of the lamp post. The approach of using underground conduit for backhaul or fronthaul as illustrated in FIG. 6 for lamp posts can also be applied to the utility poles illustrated in FIGS. 4 and 5, with cabling from underground conduit either conveyed through the interior of the utility pole (e.g. if it is metal and hollow) or through a conduit or duct from the ground up the side of the utility pole.


Backhaul and/or fronthaul (whether to radios on utility poles or radios placed elsewhere) can be provided to radios over a wide range of media, including coax, fiber, line-of-sight wireless, non-line-of-sight wireless, etc. A wide range of protocols can be used over the media, including Ethernet, Common Public Radio Interface (“CPRI”), Multimedia over Coax Alliance (“MoCA”), Data Over Cable Service Interface Specification (“DOCSIS”), Broadband over Power Line (“BPL”), etc.


A wide range of switches, splitters, hubs can be used for distributing wireline (e.g. copper, fiber, etc.) communications. Analog splitters are often used to distribute coaxial connections (e.g. to distribute DOCSIS and/or MoCA data). Electric outlet couplings can be used to distribute BPL. Ethernet switches and hubs are often used to distribute copper and fiber Ethernet connections. Many radios made for home and commercial applications have built-in switches as a convenience to pass-through Ethernet, so that if the radio is plugged into an Ethernet cable, there is another Ethernet jack on the radio that can be used to plug in other devices.


Another prior art technology that has been used for distributing wireless connectivity down a cable is what is called a “leaky feeder” or a “leaky cable”. A leaky feeder is a cable that carries wireless signals, but deliberately leaks and absorbs wireless radiation through the sides of the cable. An exemplary prior art leaky cable 700 is illustrated in FIG. 7. It is very similar to a coaxial cable in that there is an insulating and protective jacket 701, an outer conductor 702 (e.g. copper foil), a dielectric 704 (e.g. dielectric foam), and an inner conductor 705 (e.g. a copper wire). But, unlike a coaxial cable, there are apertures 703 in the outer conductor 702 that allow the wireless radiation to propagate out of and into the leaky feeder 700.


Leaky feeders are often used in tunnels or shafts (e.g. mining tunnels, subway tunnels) where they are attached to the side of the tunnel or shaft to run along the length of the tunnel or shaft. This way, regardless of where a user is located in the tunnel or shaft, the user will have wireless connectivity to a nearby part of the leaky feeder. Because leaky feeders leak wireless energy, they often have radio frequency amplifiers inserted periodically to boost the signal power. If two or more leaky feeders are run together, then prior art MIMO techniques can be used to increase capacity.


Leaky feeder deployment is convenient and fast in that it is like deploying cabling, with just amplifiers deployed periodically between lengths of leaky feeder to repeatedly restore the signal strength.


A fundamental limitation of leaky feeders is that the same channel is shared for the entire length of the leaky feeder cabling. Thus, a user at one end of a leaky feeder shares the channel with a user in the middle of the leaky feeder as well as with a user at the end of the leaky feeder. While this may be acceptable for applications where users are sparsely distributed along the length of the leaky feeder or there is low data capacity demand by users (e.g. for voice communications in a mining tunnel or shaft), it is not suited for applications where there is a high density of users and/or high data capacity demand by users since users throughout the entire length of the leaky feeder will be sharing the same channel, despite the fact they are very far from each other. Thus, while leaky feeders are convenient to deploy, since they are like deploying cabling with periodic amplifiers, to provide coverage their deployment works against densification.


Regardless of what prior techniques are used placing radios and/or antennas and how backhaul or fronthaul is provisioned, as noted, current wireless systems are faced with challenges of densification. There is not a good general-purpose solution for densification that provides highly efficient and reliable coverage and service, is easily and rapidly deployed, and avoids being unsightly and/or subject to government restrictions. The below teachings address these issues.





BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be obtained from the following detailed description in conjunction with the drawings, in which:



FIG. 1 illustrates the general framework of a DIDO, now branded pCell™ Radio Access Network (DRAN) and other multi-user multi-antenna system (MU-MAS) networks,



FIGS. 2a and 2b illustrates the protocol stack of a Virtual Radio Instance (VRI) consistent to the OSI model and LTE standard.



FIG. 3 illustrates adjacent DRANs to extend coverage in DIDO, now branded pCell™, wireless networks and other MU-MAS networks.



FIG. 4 is a prior art illustration of utility poles with radios and/or antennas in the “supply space”.



FIG. 5 is a prior art illustration of utility poles with radios and/or antennas in the “communications space”.



FIG. 6 is a prior art illustration of lamp posts with radios and/or antennas.



FIG. 7 is a prior art illustration of a leaky feeder.



FIG. 8a illustrates a coaxial cable embodiment of a radio daisy chain.



FIG. 8b illustrates a twisted pair embodiment of a radio daisy chain.



FIG. 8c illustrates a fiber embodiment of a radio daisy chain.



FIG. 8d illustrates a combined coaxial and twisted pair embodiment of a radio daisy chain.



FIG. 9a illustrates one embodiment of the architecture of a daisy chain radio illustrating the basic architecture.



FIG. 9b illustrates one embodiment of the architecture of a daisy chain radio illustrating timing distribution.



FIG. 9c illustrates one embodiment of the architecture of a daisy chain radio illustrating power distribution.



FIG. 9d illustrates one embodiment of the architecture of a daisy chain radio illustrating RF distribution.



FIG. 9e illustrates one embodiment of the architecture of a daisy chain radio illustrating a daisy chain network implemented through a splitter.



FIG. 10a illustrates one embodiment of a daisy chain radio with a sleeve or duct.



FIG. 10b illustrates one embodiment of a daisy chain radio with a sleeve or duct with one or more pass-through cables.



FIG. 10c illustrates one embodiment of a daisy chain radio with a sleeve or duct with one or more pass-through cables and a support strand.



FIG. 10d illustrates one embodiment of daisy chain radios with sleeves or ducts with one or more pass-through cables and a support strand with data and/or power couplers.



FIG. 11 is an illustration of utility poles with daisy chain radios.



FIG. 12 is an illustration of lamp posts with daisy chain radios.



FIG. 13 is an illustration of a building with daisy chain radios.



FIG. 14 is an illustration of daisy chain radios in non-straight deployment patterns.



FIG. 15 is an illustration of daisy chain radios in an array.



FIG. 16 is an illustration of daisy chain radios in deployed in a Cloud-Radio Access Network.





DETAILED DESCRIPTION

One solution to overcome many of the above prior art limitations is to daisy-chain network and power cables and small distributed radioheads utilized in a multi-user multi-antenna system (MU-MAS). By making the radioheads extremely small, they can be physically no larger than the cabling, thus making the daisy-chained radio installation similar to a cable installation. Not only is a cable installation often much simpler than antenna or radio installations, but cable deployments often require no government permits, or in most cases they are much easier to gain permit approval than deployments of large antennas or large radio enclosures. Also, in terms of aesthetics, cables can often be partially or completely hidden from sight, whereas it may be more difficult or impractical to hide a conventional radio and/or antenna.


Further, in the below detailed embodiments spectral efficiency can be vastly increased by implementing one or both networks using Distributed-Input Distributed-Output (“DIDO”) technology and other MU-MAS technology as described in the following patents, patent applications and provisional applications, all of which are assigned the assignee of the present patent and are incorporated by reference. These patents, applications and provisional applications are sometimes referred to collectively herein as the “Related Patents and Applications.”


U.S. Provisional Application Ser. No. 62/380,126, entitled “Systems and Methods for Mitigating Interference within Actively Used Spectrum”.


U.S. Application Provisional No. 62/380,126, entitled “Systems and Methods for Mitigating Interference within Actively Used Spectrum”.


U.S. application Ser. No. 14/672,014, entitled “Systems And Methods For Concurrent Spectrum Usage Within Actively Used Spectrum”.


U.S. Provisional Patent Application No. 61/980,479, filed Apr. 16, 2014, entitled, “Systems and Methods for Concurrent Spectrum Usage Within Actively Used Spectrum”.


U.S. application Ser. No. 14/611,565, entitled “Systems and Methods for Mapping Virtual Radio Instances into Physical Areas of Coherence in Distributed Antenna Wireless Systems”


U.S. application Ser. No. 14/086,700, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology”


U.S. application Ser. No. 13/844,355, entitled “Systems and Methods for Radio Frequency Calibration Exploiting Channel Reciprocity in Distributed Input Distributed Output Wireless Communications”


U.S. application Ser. No. 13/797,984, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology”


U.S. application Ser. No. 13/797,971, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology”


U.S. application Ser. No. 13/797,950, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology”


U.S. application Ser. No. 13/233,006, entitled “System and Methods for planned evolution and obsolescence of multiuser spectrum”


U.S. application Ser. No. 13/232,996, entitled “Systems and Methods to Exploit Areas of Coherence in Wireless Systems”


U.S. application Ser. No. 12/802,989, entitled “System And Method For Managing Handoff Of A Client Between Different Distributed-Input-Distributed-Output (DIDO) Networks Based On Detected Velocity Of The Client”


U.S. application Ser. No. 12/802,988, entitled “Interference Management, Handoff, Power Control And Link Adaptation In Distributed-Input Distributed-Output (DIDO) Communication Systems”


U.S. application Ser. No. 12/802,975, entitled “System And Method For Link adaptation In DIDO Multicarrier Systems”


U.S. application Ser. No. 12/802,974, entitled “System And Method For Managing Inter-Cluster Handoff Of Clients Which Traverse Multiple DIDO Clusters”


U.S. application Ser. No. 12/802,958, entitled “System And Method For Power Control And Antenna Grouping In A Distributed-Input-Distributed-Output (DIDO) Network”


U.S. Pat. No. 9,685,997, entitled “Systems and Methods to enhance spatial diversity in distributed-input distributed-output wireless systems”


U.S. Pat. No. 9,386,465, issued Jul. 5, 2016 entitled “System and Method For Distributed Antenna Wireless Communications”


U.S. Pat. No. 9,369,888, issued Jun. 14, 2016 entitled “Systems And Methods To Coordinate Transmissions In Distributed Wireless Systems Via User Clustering”


U.S. Pat. No. 9,312,929, issued Apr. 12, 2016, entitled “System and Methods to Compensate for Doppler Effects in Distributed-Input Distributed Output Systems”


U.S. Pat. No. 8,989,155, issued Mar. 24, 2015, entitled “Systems and Methods for Wireless Backhaul in Distributed-Input Distributed-Output Wireless Systems”


U.S. Pat. No. 8,971,380, issued Mar. 3, 2015, entitled “System and Method for Adjusting DIDO Interference Cancellation Based On Signal Strength Measurements


U.S. Pat. No. 8,654,815, issued Feb. 18, 2014, entitled “System and Method for Distributed Input Distributed Output Wireless Communications”


U.S. Pat. No. 8,571,086, issued Oct. 29, 2013, entitled “System and Method for DIDO Precoding Interpolation in Multicarrier Systems”


U.S. Pat. No. 8,542,763, issued Sep. 24, 2013, entitled “Systems and Methods To Coordinate Transmissions In Distributed Wireless Systems Via User Clustering”


U.S. Pat. No. 8,428,162, issued Apr. 23, 2013, entitled “System and Method for Distributed Input Distributed Output Wireless Communications”


U.S. Pat. No. 8,170,081, issued May 1, 2012, entitled “System And Method For Adjusting DIDO Interference Cancellation Based On Signal Strength Measurements”


U.S. Pat. No. 8,160,121, issued Apr. 17, 2012, entitled, “System and Method For Distributed Input-Distributed Output Wireless Communications”;


U.S. Pat. No. 7,885,354, issued Feb. 8, 2011, entitled “System and Method for Enhancing Near Vertical Incidence Skywave (“NVIS”) Communication Using Space-Time Coding.”


U.S. Pat. No. 7,711,030, issued May 4, 2010, entitled “System and Method For Spatial-Multiplexed Tropospheric Scatter Communications”;


U.S. Pat. No. 7,636,381, issued Dec. 22, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”;


U.S. Pat. No. 7,633,994, issued Dec. 15, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”;


U.S. Pat. No. 7,599,420, issued Oct. 6, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”;


U.S. Pat. No. 7,418,053, issued Aug. 26, 2008, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”.


1. Systems and Methods for Distributing Radio Heads
1.1 A MU-MAS System Improved by Embodiments of the Present Invention

The preferred embodiments of the present invention are improvements to multi-user multi-antenna systems described in co-pending U.S. application Ser. No. 14/611,565, entitled “Systems and Methods for Mapping Virtual Radio Instances into Physical Areas of Coherence in Distributed Antenna Wireless Systems” (of which this application is a continuation-in-part) and other Related Patents and Applications, as well as in their counterparts filed in other countries. FIGS. 1, 2 and 3 and the following six paragraphs describing them, correspond to FIGS. 1, 2 and 3 and paragraphs [0074-0080] of U.S. application Ser. No. 14/611,565 as its counterparts filed in other countries.


The presently preferred embodiments are systems and methods to improve systems and methods to deliver multiple simultaneous non-interfering data streams within the same frequency band between a network and a plurality of areas of coherence in a wireless link through Virtual Radio Instances (VRIs). In one embodiment the system is a multiuser multiple antenna system (MU-MAS) as depicted in FIG. 1. The color-coded (using patterns instead of colors) units in FIG. 1 show one-to-one mapping between the data sources 101, the VRIs 106 and the areas of coherence 103 as described hereafter.


In FIG. 1, the data sources 101 are data files or streams carrying web content or files in a local or remote server, such as text, images, sounds, videos or combinations of those. One or multiple data files or streams are sent or received between the network 102 and every area of coherence 103 in the wireless link 110. In one embodiment the network is the Internet or any wireline or wireless local area network.


The area of coherence is a volume in space where the waveforms from different antennas of the MU-MAS add up coherently in a way that only the data output 112 of one VRI is received within that area of coherence, without any interference from other data output from other VRIs sent simultaneously over the same wireless link. In the present application we use the term “area of coherence” to describe volumes of coherence or personal cells (e.g., “pCells™” 103) as described in previous patent application [U.S. application Ser. No. 13/232,996, entitled “Systems and Methods to Exploit Areas of Coherence in Wireless Systems”]. In one embodiment, the areas of coherence correspond to the locations of the user equipment (UE) 111 or subscribers of the wireless network, such that every subscriber is associated with one or multiple data sources 101. The areas of coherence may vary in size and shape depending on propagation conditions as well as type of MU-MAS precoding techniques employed to generate them. In one embodiment of the invention, the MU-MAS precoder dynamically adjusts size and shape of the areas of coherence to adapt to the changing propagation conditions while delivering contents to the users with good link reliability.


The data sources 101 are first sent through the Network 102 to the DIDO Radio Access Network (DRAN) 104. Then, the DRAN translates the data files or streams into a data format that can be received by the UEs and sends the data files or streams simultaneously to the plurality of areas of coherence, such that every UE receives its own data files or streams without interference from other data files or streams sent to other UEs. The DRAN consists of a gateway 105 as the interface between the network and the VRIs 106. The VRIs translate packets being routed by the gateway into data streams 112, either as raw data, or in a packet or frame structure, that are fed to a MU-MAS baseband unit. In one embodiment, the VRI comprises the open systems interconnection (OSI) protocol stack consisting of several layers: application, presentation, session, transport, network, data link and physical, as depicted in FIG. 2a. In another embodiment, the VRI only comprises a subset of the OSI layers.


In another embodiment, the VRIs are defined from different wireless standards. By way of example, but not limitation, a first VRI consists of the protocol stack from the GSM standard, a second VRI from the 3G standard, a third VRI from HSPA+ standard, a fourth VRI from LTE standard, as fifth VRI from LTE-A standard and a sixth VRI from the Wi-Fi standard. In an exemplary embodiment, the VRIs comprise the control-plane or user-plane protocol stack defined by the LTE standards. The user-plane protocol stack is shown in FIG. 2b. Every UE 202 communicates with its own VRI 204 through the PHY, MAC, RLC and PDCP layers, with the gateway 203 through the IP layer and with the network 205 through the application layer. For the control-plane protocol stack, the UE also communicates directly with the mobility management entity (MME) through the NAS (as defined in the LTE standard stack) layer.


The Virtual Connection Manager (VCM) 107 is responsible for assigning the PHY layer identity of the UEs (e.g., cell-specific radio network temporary identifier, RNTI), authentication and mobility of the VRI and UE. The data streams 112 at the output of the VRIs are fed to the Virtual Radio Manager (VRM) 108. The VRM comprises a scheduler unit (that schedules DL (downlink) and UL (uplink) packets for different UEs), a baseband unit (e.g., comprising of FEC encoder/decoder, modulator/demodulator, resource grid builder) and a MU-MAS baseband processor (comprising of precoding methods). In one embodiment, the data streams 112 are I/O samples at the output of the PHY layer in FIG. 2b that are processed by the MU-MAS baseband processor. In a different embodiment, the data streams 112 are MAC, RLC or PDCP packets sent to a scheduler unit that forwards them to a baseband unit. The baseband unit converts packets into I/O fed to the MU-MAS baseband processor.


The MU-MAS baseband processor is the core of the VRM that converts the M I/O samples from the M VRIs into N data streams 113 sent to N access points (APs) 109. In one embodiment, the data streams 113 are I/O samples of the N waveforms transmitted over the wireless link 110 from the APs 109. In this embodiment the AP consists of analog-to-digital/digital-to-analog (“ADC/DAC”), radio frequency (“RF”) chain and antenna. In a different embodiment, the data streams 113 are bits of information and MU-MAS precoding information that are combined at the APs to generate the N waveforms sent over the wireless link 110. In this embodiment every AP is equipped with a central processing unit (“CPU”), digital signal processor (“DSP”) and/or system-on-a-chip (“SoC”) to carry out additional baseband processing before the ADC/DAC units.


1.2 Radios Daisy-Chained Over Coaxial Cable


FIGS. 8a, 8b, 8c and 8d show several preferred embodiments of the present invention. FIG. 8a illustrates one embodiment in which radio 801 is a wireless transceiver. Each end of radio 801 has a connector (e.g. without limitation, F type, BNC, SMA, etc.) to which can be coupled to coaxial cable (e.g. without limitation, RG-6, RG-59, triaxial, twinaxial, semi-rigid, rigid, 50 ohm, 75 ohm, etc.) 841 through connector 845 on the left and can be coupled to coaxial cable 842 through connector 846 on the right. A smaller illustration of radio 801 is shown below the larger illustration. As can be seen in this smaller illustration (with most details removed), radio 801 can be daisy-chained through coaxial cable 841 with radio 800 on the left and daisy-chained through coaxial cable 842 on the right with radio 802. Radio 802 is, in turn, daisy-chained with radio 803 on the right. In this illustration, radio 803 is shown at the end of the daisy chain. Radio 800 is shown at the start of the daisy chain with coaxial cable 840 available for connections to, without limitation, more radios, power, data connections, networks, computing resources and/or RF signals, and/or other digital or analog signals. The radios 800, 801, 802, 803 and/or additional radios coupled to this daisy-chain may be radios of largely same or similar structure and/or configuration, or they may be quite different in structure and/or configuration.


The coaxial cable daisy chain can use any standard or proprietary network protocol including but not limited to, MoCA, Ethernet and/or DOCSIS, etc.


Turning again to the larger illustration (with details) of radio 801 above the daisy chain, in one embodiment radio 801 has one or more antennas 890 that may be internal to radio 801 enclosure or external to it. The antenna(s) can be any type of antenna, including without limitation patch antenna, dipole, monopole, printed circuit board (“PCB”) antenna, yagi, etc. In one embodiment there is a single antenna 890. In another embodiment there is more than one antenna 890, and another embodiment at least two antennas 890 are cross-polarized relative to each other. In another embodiment, antenna or antennas 890 are external to radio 801 and are coupled to one or more connectors 891, which may be a coaxial connector or other conductive connector, or may be through a non-conductive connector, including without limitation, an RF or inductive connection. An external antenna may also be coupled to radio 801 without coupling through a connector, including without limitation, via a fixed wired connection.


In one embodiment, radio 801 receives power from an external power source coupled through one or both coaxial cables 841 or 842, in either DC or AC power form. In another embodiment, radio 801 receives power from an external power source coupled to connector 892, which may be a connector of any type, including without limitation a DC or AC power connector (e.g. EIAJ-01, EIAJ-02, EIAJ-03, EIAJ-04, EIAJ-05, Molex connector, etc.). In another embodiment, radio 801 receives power conductively without a connector, including without limitation through a wired connection. In another embodiment, radio 801 receives power wirelessly, including without limitation receiving power wirelessly through a rectifying antenna, through an inductive coupling, through antenna 890, through an external antenna, through a photovoltaic cell, or through other wireless transmission means.


In one embodiment, radio 801 receives and/or transmits timing, calibration and/or analog or digital signals (collectively “Additional Signals” coupled through one or more connectors 893. The timing signals may include, without limitation, clock, pulse per second “PPS”, synchronization, and/or Global Positioning Satellite (“GPS”) signals. The calibration signals may include, without limitation, one or more of power level information, channel state information, power information, RF channel information, and/or pre-distortion information in analog and/or digital form. In one embodiment, these Additional Signals are received and/or transmitted wirelessly. In one embodiment, these Additional Signals are received and/or transmitted over coaxial cables 841 and/or 842. In one embodiment, these Additional Signals are transmitted and/or are received from radio 801. In one embodiment, the Addition Signals are transmitted and/or received from one or more external devices. In one embodiment, the one or more external devices are one or more additional radios in the MU-MAS. In one embodiment, the one or more external devices are one or more user devices in the MU-MAS. In one embodiment, the one or more external devices are one or more devices that are not are not radios in the MU-MAS.


1.3 Radios Daisy-Chained Over Twisted Pair Cable


FIG. 8b illustrates one embodiment in which radio 811 is a wireless transceiver similar to radio 801 disclosed above, except each end of radio 811 has network connectors 855 and 856 (e.g. without limitation, RJ-45, RJ-11 connectors) which can be coupled to twisted pair cables (e.g. without limitation, Category 3, Category 4, Category 5, Category 5e, Category 6, Category 6a, telephone wires, etc.) which would then connect to twisted pair cable 851 through connector 855 on the left and can be coupled to twisted pair cable 852 through connector 856 on the right.


The twisted pair cable daisy chain can use any standard or proprietary network protocol including but not limited to, Ethernet.


A smaller illustration of radio 811 is shown below the larger illustration. As can be seen in this smaller illustration (with most details removed), radio 811 can be daisy-chained through twisted pair cable 851 with radio 810 on the left and daisy-chained through twisted pair cable 852 on the right with radio 812. Radio 812 is, in turn, daisy-chained with radio 813 on the right. In this illustration, radio 813 is shown at the end of the daisy chain. Radio 810 is shown at the start of the daisy chain with twisted pair cable 850 available for connections to, without limitation, more radios, power, data connections, networks, computing resources and/or RF signals, and/or other digital or analog signals. The radios 810, 811, 812, 813 and/or additional radios coupled to this daisy-chain may be radios of largely same or similar structure and/or configuration, or they may be quite different in structure and/or configuration.


Turning again to the larger illustration (with details) of radio 811 above the daisy chain, it has connectors and features similar to those described for radio 801, above. In other embodiments radio 811 has one or more antennas 890 that may internal to the radio 811 enclosure or external to it, and one or more antenna connectors 891 as detailed relative to radio 801, above.


In one embodiment radio 811 receives power from an external power source coupled through one or both twisted pair cables 851 or 852, in ether DC or AC power form. In other embodiments radio 811 receives power from an external power source coupled to connector 892 and/or wirelessly as detailed relative to radio 801, above.


In one embodiment radio 811 receives and/or transmits Additional Signals coupled through one of more connectors 812. In one embodiment these Additional Signals are received and/or transmitted wirelessly. In one embodiment these Additional Signals are received and/or transmitted over twisted pair 851 and/or 852. In one embodiment these Additional Signals are transmitted and/or are received from radio 811. In other embodiments the Additional Signals are transmitted and/or received from one or more external devices as detailed relative to radio 801 above.


1.4 Radios Daisy-Chained Over Fiber Cable


FIG. 8c illustrates one embodiment in which radio 821 is a wireless transceiver similar to radios 801 and 811 disclosed above, except each end of radio 821 has network connectors 865 and 866 (e.g. without limitation, ST, DC, SC, LC, MU, MT-RJ, MPO connectors) which can be coupled to fiber cables (e.g. without limitation, multimode, single mode, etc.), which would then connect to either fiber cable 861 through connector 865 on the left and can be coupled to fiber cable 862 through connector 866 on the right.


The fiber cable daisy chain can use any standard or proprietary network protocol including but not limited to Ethernet and/or Common Public Radio Interface (“CPRI”), etc.


A smaller illustration of radio 821 is shown below the larger illustration. As can be seen in this smaller illustration (with most details removed), radio 821 can be daisy-chained through fiber cable 861 with radio 820 on the left and daisy-chained through fiber cable 863 on the right with radio 822. And, radio 822 is, in turn, daisy-chained with radio 823 on the right. In this illustration, radio 823 is shown at the end of the daisy chain. Radio 820 is shown at the start of the daisy chain with fiber cable 860 available for connections to, without limitation, more radios, power, data connections, networks, computing resources and/or RF signals, and/or other digital or analog signals. The radios 820, 821, 822, 823 and/or additional radios coupled to this daisy-chain may be radios of largely same or similar structure and/or configuration, or they may be quite different in structure and/or configuration.


Turning again to the larger illustration (with details) of radio 821 above the daisy chain, it has connectors and features similar to those described for radio 801 and 811, above. In other embodiments radio 811 has one or more antennas 890 that may be internal to the radio 811 enclosure or external to it, and one or more antenna connectors 891 as detailed relative to radio 801, above.


In one embodiment radio 821 receives power from an external power source coupled as transmitted light through one or both fiber cables 861 or 862 and converted to electric power (e.g. without limitation, via a photovoltaic cell or a rectifying antenna responsive to light wavelengths). In other embodiments radio 821 receives power from an external power source coupled to connector 892 and/or wirelessly as detailed relative to radio 801, above.


In one embodiment radio 821 receives and/or transmits Additional Signals coupled through one of more connectors 893. In one embodiment these Additional Signals are received and/or transmitted wirelessly. In one embodiment these Additional Signals are received and/or transmitted over fiber cable 861 and/or 862. In one embodiment these Additional Signals are transmitted and/or are received from radio 821. In other embodiments the Additional Signals are transmitted and/or received from one or more external devices as detailed relative to radio 801 above.


1.5 Radios Daisy-Chained Using More than One Type of Cable

In comparing radios 801, 811 and 821 we can see that they are structurally quite similar, with a distinction being that the daisy-chain cables are coaxial cables in the case of radio 801, twisted pair in case of radio 811 and fiber in the case of 821. Comparing coaxial cable and twisted pair cable, they have many similarities in terms of electrical characteristics including, without limitation, the ability to carry DC or AC power and the ability to carry RF signals. Depending on the particular type of coaxial or twisted pair cable, they can differ in terms of electrical or RF characteristics, without limitation, in their efficiency in carrying different DC or AC voltage or current, their efficiency in carrying different RF radiation wavelengths, their cable leakage in different RF radiation wavelengths, their impedance at different frequencies, their resistance to DC, the number of conductors in a cable, and the signal power they can carry.


In comparing fiber with twisted pair or coaxial cable, the primary difference is that fiber cable carries light radiation wavelengths and is not conductive for carrying electrical power or RF radiation wavelengths (e.g. at wavelengths below the light radiation wavelengths the fiber is designed to carry). Different types of fiber carry different light radiation wavelengths with different characteristics, but as a data transport medium, fiber cable typically suffers less loss in signal quality (e.g. without limitation, signal-to-noise ratio (“SNR”)) for a given distance than coaxial or twisted pair cable, making it feasible to maintain high signal quality for long distances that would be impractical for coaxial or twisted pair cable. Additionally, fiber generally can carry larger bandwidth and higher data rate signals in practice than coaxial or twisted paid cables. Fiber cables can be fabricated in the same cable sleeve with a conductive cable (e.g. without limitation, coaxial, twisted pair, or other conductive cable), so that conductively-coupled power and/or RF radiation wavelengths can be carried simultaneously with the light radiation on the fiber. Or, fiber cables can be tied or wrapped together with a conductive cable at the time of deployment to achieve a similar result.


Also, different specific cables have different physical characteristics that may be relevant in different deployment scenarios. They vary in thickness, weight, pliability, durability, ability to retard fire, cost, etc. The choice of which type of cabling (coaxial, twisted pair or fiber cable) used, and within each kind of cabling, the specific choice of each type of cabling (e.g. without limitation, RG-6, RG-89, Category 5e, Category 6, multimode single mode, etc.) and connector (without limitation, F-type, BNC, RJ-45, RJ-11, ST, DC) used to daisy-chain radios 801, 811 and/or 821 may be determined by a large number of factors including, without limitation, what cabling is already in place at the site of installation; the cost of cabling; the length of the cabling; the size, cost, power consumption, heat dissipation, performance characteristics of the radio 801, 811, 821 or 831; aesthetic considerations; environmental considerations; regulatory requirements; etc.


In some situations, characteristics of more than one type of cable for daisy-chaining may be desirable for a given radio. In one embodiment, illustrated in FIG. 8d, radio 831 uses two or more types of cables for daisy-chaining. Radio 831 has two different types of connectors on each side to accommodate two different types of cable, connectors 875 and 876 are coaxial cable connectors and connectors 885 and 886 are twisted pair connectors. Coaxial cable 871 and twisted pair cable 881 are connected to the left side and coaxial cable 872 and twisted pair cable 882 are connected to the right side. In another embodiment, one or the other connectors is a fiber connector to which a fiber cable is attached. In another embodiment, one, some or all of the daisy chain connectors on radios 801, 811, 821, or 831 are for different types of cable. In another embodiment one, some or all of the daisy chain connectors on radios 801, 811, 821, or 831 is a connector for a module with its own physical layer transceiver and connector, such as, without limitation, a small form-factor pluggable (“SFP”) module, to which can be connected a twisted pair, fiber, coaxial or some other form of cable.


A smaller illustration of radio 831 is shown below the larger illustration. As can be seen in this smaller illustration (with most details removed), radio 831 can be daisy-chained through cables 871 and 881 with radio 830 on the left and daisy-chained through cables 872 and 882 on the right with radio 832. And, radio 832 is, in turn, daisy-chained with radio 833 on the right. In this illustration, radio 833 is shown at the end of the daisy chain. Radio 830 is shown at the start of the daisy chain with cables 870 and 880 available for connections to, without limitation, more radios, power, data connections, networks, computing resources and/or RF signals, and/or other digital or analog signals. The radios 830, 831, 832, 833 and/or additional radios coupled to this daisy-chain may be radios of largely same or similar structure and/or configuration, or they may be quite different in structure and/or configuration. Similarly, radios 801, 811, 821 or 831 with daisy chain connector embodiments such as those described in the preceding paragraph can be daisy chained together. Antenna couplings (such as those described above with antenna 890, connector 891 or as described through other means), power couplings (such as those described above with connector 892 or as described through other means), and/or Additional Signal couplings (such as those described above with connector 893 or as described through other means) are applicable to radios 801, 811, 821 or 831 with daisy chain connector embodiments such as those described in the preceding paragraph.


2. Daisy-Chain Radio Architectural Embodiments


FIGS. 9a, 9b, 9c, 9d and 9e illustrate several embodiments of radios 801, 811, 821, and 831 of FIGS. 8a, 8b, 8c and 8d. Each of the embodiments illustrated in each of FIGS. 9a, 9b, 9c, 9d and 9e is applicable to any of the radios 801, 811, 821 and 831 that has the elements illustrated in a given figure.



FIG. 9a illustrates a radio that can be inserted into a network daisy chain that is coupled through network links to a data center or other computing and/or data resource (detailed further below in connection with FIG. 16). Two network physical interfaces (PHYs) are illustrated in FIG. 9a, with PHY 901 coupled to upstream network 900 (by “upstream” meaning closer in the daisy chain to the data center) and PHY 901 connected to downstream network 906 (by “downstream” meaning further in the daisy chain to the data center). PHY 901 is coupled to network switch 903 though physical interconnect 902 (e.g. without limitation, bus, serial interconnect, etc.) and PHY 906 is coupled to network switch 903 through physical interconnect 904. Network switch 903 can be configured to either route data upstream or downstream between the PHYs 905 and 901 (thus enabling a network “pass through”) and/or can be configured to route some or all data through physical interconnect to baseband processing and control unit 910. In one embodiment the switch is configured for a particular routing of some or all data. In another embodiment the switch is configured to route data based on source or destination address associated with the data (e.g. without limitation, IP address) of the data.


Network switch 903 is coupled to baseband processing and control unit 910, which processes data packets to/from network switch 903 either as data (e.g. without limitation, 8-bit, 16-bit, 24-bit, 32-bit or any length data samples; fixed-length numeric values, floating-point numeric values, compressed numeric values, bit-coded numeric values) to be streamed (e.g. without limitation, transferred as successive samples) to/from the A-to-D/D-to-A unit 911, or uses them as control data.


Data to be streamed to/from unit 910 are either streamed directly without further processing to/from unit 910 or additional processing is applied to the data stream. Additional processing may include, without limitation, buffering the data; holding the data to be released with a specific trigger or timing event; compressing and/or decompressing the data; filtering the data through, without limitation, finite impulse response (FIR) or other filters; resampling the data to a different clock rate either higher or lower than the received clock rate, or with a different time reference; scaling the amplitude of the data; limiting that data to maximum values; deleting data samples from the stream; inserting data sample sequences in the stream; scrambling or descrambling the data; or encrypting or decrypting the data; etc. Unit 910 may also include either dedicated hardware or a computing means to implement, without limitation, part or all of the operations referenced in this paragraph and/or part or all of the function of a wireless protocol, which it may implement while awaiting, sending or receiving data (either to/from network switch 903 or to/from unit 912 and after A-to-D/D-to-A conversion in unit 911).


Data to/from unit 903 may be used as control data, without limitation, to send and receive messages to/from any subsystem in the radio, both within unit 910 and also to/from other units, for example, without limitation, as shown with interconnect 913 connecting to/from unit 910 and RF processing unit 912. The messages may be used for any purpose whatsoever including, without limitation, configuring any of the subsystems in the radio; reading the status of any subsystems in the radio; sending or receiving timing information; rerouting data streams; controlling power levels; changing sample rates; changing transmit/receive frequencies; changing bandwidth; changing duplexing; switching between transmit and receive mode; controlling filtering; configuring the network mode; loading an image to or reading an image from a memory subsystem; or loading an image to or reading an image from a field-programmable gate array (FPGA), etc.


The A-to-D/D-to-A unit 911 converts digital data samples received from unit 910 to one or more analog voltages and/or currents coupled to RF processing unit 912 and converts one or more analog voltages and/or currents from unit 912 to digital data samples send to unit 910. Unit 911 can be implemented as receiving data in parallel or serial form, with any data sample size and any data rate, either fixed or configurable.


In the transmit path, the one or more analog voltages and/or currents received by the RF processing unit 912 may be coupled as RF signals directly to the one or more antenna outputs 914, or the signals may be used as one or more baseband signals that are modulated onto one or more carrier frequencies that are synthesized by the RF processing unit into an RF waveform, and then the modulated signals on the carrier frequencies are coupled to one or more antennas 914. The signals from unit 910 may be in the form of, without limitation, baseband waveforms or baseband I/O waveforms.


In the receive path, received RF signals from the one or more antennas 914 are either directly coupled as voltages and/or currents to unit 911, or the signals are demodulated from one or more carrier frequencies to either baseband waveforms or baseband I/O waveforms that are coupled as voltages and/or currents to unit 911 to be converted to a data stream.


RF unit 912 may include, without limitation, other RF processing functions including power amplifiers, low noise amplifiers, filters, attenuators, circulators, switches, and baluns, etc.


Antennas 914 may be any type of antenna including, without limitation, patch antennas, dipoles, monopoles, or a PCB antenna, yagis, etc. In one embodiment there is a single antenna 890. In another embodiment there is more than one antenna 890, and another embodiment at least two antennas 890 are cross-polarized relative to each other.



FIG. 9b illustrates additional embodiments of the radios illustrated in FIG. 9a showing different embodiments of clocking subsystems. Unit 920 is a clock and/or sync distribution and synthesis unit, which may be implemented, without limitation, in a single device or in a plurality of devices. It distributes timing signals, including, without limitation, clock and sync signals to other subsystems within the radio. As illustrated in FIG. 9b these subsystems may include, without limitation, baseband and control unit 910, A-to-D/D-to-A unit 911, RF processing unit 912, network PHY 901, network switch 903 and/or network PHY 902. The timing signals distributed to different subsystems may be, without limitation, the same timing signals, different timing signals that are synchronous to each other, different timing signals that are asynchronous to each other, timing signals that are synchronous to external reference and/or timing signals that have synchronous or non-synchronous changes based on, without limitation, configuration or other factors.


The timing signals may be at any frequency, including without limitation, 10 MHz, and the timing signals may be, without limitation, the same frequency, different frequencies, varying frequencies and/or variable frequencies. The timing signals may use any timing reference, including without limitation, external references, internal references, or a combination of external and internal references.


External timing references include, without limitation, timing references 922 derived from timing references carried through the daisy chain, whether upstream 921 to downstream 923 or downstream 923 to upstream 921; a Global Positioning Satellite Disciplined Oscillator (“GPSDO”) 924, which derives timing references (e.g. 10 MHz clock and PPS) from radio signals received from Global Positioning Satellites; an external clock reference; an external PPS 940; and/or network timing signals derived from either the upstream network 900 or downstream network 906 by network PHY 901, network switch 903, and/or network PHY 905. Network timing references include, without limitation, timing references derived from Ethernet SyncE (e.g. ITU G.8261, ITU G.8262, ITU G.8264, etc.); IEEE 1588 Precision Time Protocol; and/or clocks and sync signals derived from the network signals, protocols or traffic.


Internal timing references include, without limitation, oscillator 928 and/or controlled oscillator 929. Oscillators 928 and 929 can be of any type of oscillator, without limitation, quartz crystal oscillator, rubidium clock, cesium clock, and/or resistor-capacitor network oscillator, inductor-capacitor resonant circuit. Oscillators 928 and 929 may be of any level of stabilization including, without limitation, non-stabilized; temperature-compensated oscillators, and/or oven-controlled oscillators. Oscillators 928 and 929 may be of any level of precision including, without limitation, low-precision, 1 part per million (“ppm”); 1 part per billion (“ppb”); have any precision in each frequency ranges, have any Allan Deviation, have any short-term or long-term stability. Oscillator 929 may have an external input that controls its frequency by controlling with, without limitation, an analog value of voltage, current, resistance, etc.; a digital value, coupled serially, in parallel, etc.; and/or a frequency, etc. If oscillator 929 is controlled by an analog value, it can be controlled by, without limitation, a potentiometer in a voltage divider network, a digital-to-analog converter 930, which receives a digital value 931 from unit 910 or another source, etc. If oscillator 929 is controlled by a digital value, it can be controlled by, without limitation, a digital value 931 from unit 910 or another source, etc. Controlled oscillator 929's frequency can be free-running, or synchronized to any type of internal or external timing source including, without limitation, timing from the network, timing from the daisy chain separate from the network, timing from the data center, timing from a wireless protocol, etc.


The timing on the daisy chain network can be free-running or it can be synchronous, using any number of network synchronization methods, including without limitation, SyncE and/or IEEE 1588, etc. A synchronous protocol may have its own self-synchronization mechanisms, or timing signals 927 can be passed from one network PHY 901 or 905 to the other and/or to/from network switch 903.



FIG. 9c illustrates additional embodiments of the radios illustrated in FIG. 9a and FIG. 9b showing power conversion and distribution systems. Unit 950 Power conversion/distribution unit and it may be implemented, without limitation, in a single device or a plurality of devices to implement conversion and distribution of power through couplings, (e.g. without limitation, wires, printed circuit board traces, and/or through components, wireless transmission, etc.) to the various subsystems. Until 950 distributes power, including, without limitation, different voltages; different independent power buses (whether the same or different voltage); different current levels; AC or DC power; wireless power; etc. within the radio. As illustrated in FIG. 9c subsystems receiving power from unit 950 may include, without limitation, baseband and control unit 910, A-to-D/D-to-A unit 911, RF processing unit 912, network PHY 901, network switch 903 and/or network PHY 902. The power couplings distributed to different subsystems may be, without limitation, the same power couplings; different power couplings that are the same or different voltages and/or currents; and/or variable voltages, etc.


The power may be at any voltage or current, including without limitation, AC, DC, 1 Volt (“V”), 2.2V, 3.3V, 5V, −5V, 6V, 12V, variable voltages. The power may be from any source, including without limitation, external sources, internal sources, or a combination of external and internal sources.


External power sources include, without limitation, pass-through power source 952 derived from a power source carried through the daisy chain, whether upstream power coupling 951 to downstream power coupling 953 or downstream power coupling 953 to upstream power coupling 951; wireless power 954, which can come from, without limitation, radio wave transmissions (e.g., without limitation received by a rectifying antenna), inductive power (e.g., without limitation coupled through a transformer), light energy (e.g. without limitation coupled through a photovoltaic cell, a rectifying antenna, etc.); network power carried through the daisy chain network, either through a direct coupling 957 from upstream network 900 to the downstream network 906, or through a switching and/or power insertion in one or both network PHYs 900 or 905 or network switch 903; through network power coupling 956 from network PHY 901, 903 or 905; and/or an external power connection 955, via, without limitation, a cable, a jack, conductive contacts; etc.


Power transmission through the daisy chain via upstream power coupling 951 to/from downstream power coupling 953, or via upstream network 900 to/from downstream network 906 may be either always passed through, or it may be only be allowed to pass through if the radio is configured to do so or external conditions (e.g. detection of a suitable device connected to either end of the daisy chain) trigger power being allowed to pass through. Any type of device can be used to control whether power passes through including, without limitation, a mechanical relay and/or a transistor, including, but not limited to, a metal-oxide semiconductor field-effect transistor (MOSFET), etc.


Internal power sources include any type of battery 958, including without limitation lithium ion, lithium polymer, fuel cells and electrical generators.



FIG. 9d illustrates additional embodiments of the radios illustrated in FIG. 9a, FIG. 9b and FIG. 9c showing upstream 961 and downstream 963 RF links coupled to RF processing unit 912. RF links 961 and 963 may be coupled in the daisy chain over a conductive coupling, for example without limitation, coaxial cable, twisted pair cable, etc., or through fiber if the RF frequencies modulate carrier wavelengths that propagate through fiber (e.g. without limitation, infrared radiation, visible light radiation, and/or ultraviolet radiation, etc.), or over a wireless coupling including, without limitation, over any kind of antenna, and/or through an inductive coupling.


RF links 961 and 963 may be coupled together over RF link 962 and then coupled to unit 912 as illustrated in FIG. 9d or they each may be coupled individually to unit 912, or they be coupled to each other, but not to unit 912. Each of these couplings, whether between each other or to unit 912 may be through any of the RF (including light wavelength) couplings as detailed in the preceding paragraph. The couplings may be via, without limitation, one or more (or any type): direct connections; RF splitters; RF attenuators; RF baluns; RF filters; power amplifiers; and/or low noise amplifiers, etc. The RF couplings may not be connected to anything, or connected to one or more of the antennas 914. The RF couplings may carry signals at one or more RF center frequencies and of one or more bandwidths. The RF signals may be transmitted, received, or both at once to/from any of unit 912, link 961 and/or link 963. The RF signals may carry any kind of information and/or signal reference information including without limitation, data, control signals, RF protocols, beacons, RF timing signals, RF channels, RF power references, RF pre-distortion information, RF interference information, RF calibration information, clocks, and/or PPS.



FIG. 9e illustrates additional embodiments of the radios illustrated in FIG. 9a, FIG. 9b, FIG. 9c and FIG. 9d showing upstream 900 and downstream 906 networks links where the network is a common RF channel, rather than switched links. For example, this is a common configuration used with coaxial networks using network protocols such as, without limitation, MoCA and DOCSIS. Upstream 900 and downstream 906 network links are coupled to RF splitter 972, which is coupled to network PHY 971, which is coupled to baseband processing and control 910. RF splitter 972 may include more than 3 branches, and further, it may include a power amplifier to amplify some or all of the RF signals in one or more directions. It may also include attenuators and/or filters to limit which RF bands pass through it in different paths. RF splitter 972 may also pass through power onto one or more or a plurality of branches, and it may also insert power onto one or more of its branches.


Embodiments of the radios 801, 811, 821 and 831 illustrated in FIGS. 8a, 8b, 8c and 8d may have internal elements that correspond to one or more of the embodiments described in FIGS. 9a, 9b, 9c, 9d and 9e above, sometimes as independent elements, and sometimes as combined elements. For example, without limitation, each of radios 801, 811, 821 and 831 has an upstream and downstream daisy chain cable connection, that is either coaxial (e.g. 841/842 and 871/872), twisted pair (e.g. 851/852 and 881/882) or fiber (e.g. 861/862). These daisy chain connections can correspond to embodiments in FIGS. 9a, 9b, 9c, 9d and 9e that are upstream and downstream daisy chain connections, such as 900/906, 911/923, 951/953 and 961/963. If the daisy chain cable in radio 801, 811, 821 or 831 is physically capable of an embodiment described connection with FIGS. 9a, 9b, 9c, 9d and 9e, then that daisy chain cable can be used for that embodiment. For example, coaxial and twisted pair cable daisy chains can be used to carry upstream 951 and downstream 953 power conductively (e.g. without limitation using any of many well-known power over coax or power over Ethernet technologies), but fiber cable cannot, however, fiber cable can carry power transmitted in the form of light and converted to electricity, e.g. without limitation, using a photovoltaic cell. Each of the daisy chain cables can also carry upstream 900 and downstream 906 standard and proprietary network protocols, including without limitation, Ethernet, as noted above. All of the daisy chain cables can also carry timing information 921 and 923 and with network protocols and signals carrying timing information, they can provide network timing 926. The daisy chain cables can carry upstream 961 and downstream 963 RF at certain frequencies/wavelengths (e.g. without limitation, many coaxial cables can propagate 1 GHz frequencies efficiently, many twisted pair cables propagate 100 MHz frequencies efficiently and many fiber cables propagate 1300 nm wavelengths efficiently).


In the case of radio 831, the multiple daisy chain cable pairs can each correspond to one of the daisy chain connections illustrated FIGS. 9a, 9b, 9c, 9d and 9e, or each to multiple daisy chain connections.


Antennas 890 and/or antenna connectors 891 of radios 801, 811, 821 or 831 can correspond to antennas 914 and/or antennas on units 924 and/or 954 of FIGS. 9a, 9b, 9c, 9d and 9e.


Power connector 892 of radios 801, 811, 821 or 831 can correspond to external power 955 of FIGS. 9a, 9b, 9c, 9d and 9e. Antennas 890 and/or antenna connectors 891 of radios 801, 811, 821 or 831 can also correspond to the antennas of wireless power receiver 954.


Connector 893 of radios 801, 811, 821 or 831 can carry Additional Signals that correspond to External Clock 925, PPS 940, or RF link 962 coupled to unit 912.


3. Radio Daisy Chains within Sleeves or Ducts


FIGS. 10a, 10b, 10c and 10d illustrate several embodiments in which the radio daisy chain radio embodiments illustrated in FIGS. 8a, 8b, 8c and 8d and described above with daisy chain radio architecture embodiments illustrated in FIGS. 9a, 9b, 9c, 9d and 9e and described above are housed within sleeves or ducts. For the sake of illustration the daisy chain radios shown in FIGS. 10a, 10b, 10c and 10d lack many of the details of daisy chain radios described above, but any of the above daisy chain embodiments that is applicable to a sleeve or duct embodiment illustrated in any of FIGS. 10a, 10b, 10c and 10d can be used in that embodiment. Note that sleeves or ducts can come in many forms, including without limitation, flexible plastic tubes that entirely envelope radio daisy chains, or rigid plastic ducts that partially envelope the radio chains.



FIG. 10a illustrates a sleeve or duct 1010 encapsulating a daisy chain of radios 1000, 1001, 1002, 1003. The daisy chain shows the network cables 1020 and 1021 extending from both sides and they can be connected to, without limitation, additional daisy chains or radios, upstream or downstream network connections, to power sources, to RF sources to timing sources, etc. Indeed, the daisy chain connection can be connected as described in any of the large number of embodiments described above.



FIG. 10b illustrates a sleeve or duct encapsulating a daisy chain of radios. The daisy chain shows the radio daisy chain described in the preceding paragraph, but in this embodiment sleeve or duct 1011 also encapsulates pass-through cable 1030. Pass-through cable 1030 could be a cable used for any purpose, including without limitation, coaxial, twisted pair or coaxial cable carrying high data rate data and/or a power cable. There may be one or multiple pass-through cables 1030.



FIG. 10c illustrates a sleeve or duct 1012 encapsulating a daisy chain of radios and a pass-through cable as described in the preceding paragraph, but in this embodiment the sleeve or duct is physically strengthened by a support strand 1040 and may be made of any of wide range of materials, including galvanized steel. An example of such a sleeve or duct 1012 with galvanized steel support strand is “FIG. 8”-branded duct from dura-line, with a specification currently available at http://duraline.com/conduit/figure-8. The support strand 1040 can help support the duct in an aerial deployment of the duct, e.g., between utility poles.



FIG. 10d illustrates the sleeve or duct 1012 (in a reduced-size illustration) encapsulating a daisy chain of radios and a pass-through cable with a support strand 1040 as described in the preceding paragraph, but in this embodiment the sleeve or duct daisy chain 1012 is connected in a continuing daisy chain with other sleeves or ducts. In this embodiment, between each sleeve or duct daisy chain 1012, there is a data and/or power coupler 1050 that may be used, without limitation, to couple power into the daisy chain end 1020 or 1021 and/or may be used to couple data to/from the daisy chain end 1020. Data and/or power coupler 1050 can be suspended from support strand 1040 or physically supported through another means. The power may come from any power source, including without limitation, a pass-through power cable 1030 and/or photovoltaic cell, etc. The data connection may come from any source including a pass-through high-bandwidth fiber twisted pair or coaxial cable 1030. Data and/or power coupler 1050 can be useful because the daisy chain cabling will typically be limited in power and/or data throughput, and each radio 1000, 1001, 1002 and 1003 on the daisy chain will draw a certain amount of power and consume a certain amount of data throughput. Once the power and/or data capacity of the daisy chain cable is exhausted, then there can be no more radios attached to the daisy chain. The pass-through cable 1030 can be specified to carry enough power for several daisy chains and the pass-through cable 1030 can be specified to support high enough data throughput to support several daisy chains. For example, without limitation, if the daisy chain cable supports 1 gigabit Ethernet with Power over Ethernet+ (“PoE+”) power limitations (limited to roughly 25 watts (“W”)), and each radio consumes 225 Mbps in data rate and 6 W in power, then if there are 4 radios in a daisy chain there will be 900 Mbps of data rate and 24 W in power and there will not be enough data rate or power for another radio. If there are one or more pass-through cables 1030 that can (a) carry 250 W of power and (b) 10 Gbps of data rate, then that will be enough to support 10 daisy chains of 4 radios (24 W*10=240W, 900 Mbps*10=9 Gbps). The data and/or power coupler 1050 can couple power to the daisy chain cable in any of many ways, including using a commercially-available PoE+ switch with a 10 Gbps fiber port and one or more 1 Gbps PoE+ ports. Note that while the PoE+ standard (e.g. IEEE 802.3at-2009) may not support daisy chaining of power, PoE+ can still be used to bring power to the first daisy chain radio attached to the PoE+ switch, and proprietary power insertion onto the daisy chain can be used thereafter. Proprietary power insertion techniques include, without limitation, coupling the power to network signal wires in the daisy chain network cable.


3. Practical Deployments of Radio Daisy Chains


FIG. 11 illustrates utility poles with daisy chained radios in sleeves and ducts, such as those described in FIGS. 10a and 10d. The sleeve or duct 1012 suspended between the two utility poles is the same as illustrated in FIG. 10d with 4 daisy chained radios 1000, 1001, 1002, and 1003, with a daisy chain end coupled to data and//or power coupler 1050, which couples to high-speed data from pass-through cable 1030, and receives power from power converter 1100, that is coupled to the high power electrical lines in the supply zone of the utility pole and reduces the voltage for unit 1050. Power meter 1101 monitors power use for billing or other purposes. Because it can be expensive to connect to the high voltage electrical lines, power converter 1100 may be used to provide enough power to many unit 1050s, with power carried between unit 1050s in a pass-through strand 1030.


Also illustrated in FIG. 11 is an embodiment of a vertical deployment of daisy chained radios in a sleeve or duct 1010 attached to the side of the utility pole. This corresponds to sleeve or duct 1010 illustrated in FIG. 10a. On one end, the daisy chain network connection 1020 attaches to unit 1050 for data and power. Since this daisy chain ends when it reaches the ground, there is no need for a continuing daisy chain network connection at the bottom end, nor is there a need for a pass-through cable. Also, because the utility pole provides structural stability, there is no need for a support strand. Note also that the unit 1050 is coupled to 3 daisy chains, the two largely horizontal aerial daisy chains between utility poles and the one vertical daisy chain on the side of the pole. There is no restriction that all daisy chains must be sequential line network topology; they can be in any of many topologies. For example, without limitation, this unit 1050 could support 3 daisy chains by using a PoE+ network switch with 3 ports for the 3 daisy chains and 1 port for the high bandwidth pass-through cable. (e.g. 3 1 Gbps PoE+ connections to the 3 daisy chains and 1 10 Gbps fiber connection for the pass-through cable).


The embodiments of daisy chain cables shown in FIG. 11 are just exemplary. Depending on, without limitation, the deployment requirements, municipal regulations, cost constraints, distance of spans, etc., any number of daisy chain radio configurations in any topology may be used. Significantly, the radio daisy chains look no different than cabling. In many municipalities, cabling does not require permits, or the permits are easier to obtain than antenna permits. Also, from an aesthetic standpoint, cables are less visible than large antennas.



FIG. 12 illustrates two lamp posts with radio daisy chains 1010 attached to them. The embodiment illustrated conforms to the radios daisy chains 1010 from FIG. 10a. In this embodiment data and power connections are coupled through underground conduit 1251, with a data and/or power coupler 1250 underneath the pole, operating in the same manner as data and power coupler 1050 illustrated in FIG. 10d and FIG. 11. As in FIG. 11, significantly, the radio daisy chains look no different than cabling. In many municipalities, cabling does not require permits, or the permits are easier to obtain than antenna permits. Also, from an aesthetic standpoint, cables are less visible than large antennas.



FIG. 13 illustrates a building with many radio daisy chains attached to both the outside and inside of the building. All of these radio data chains would connect to data and power connections, but they have been omitted for the sake of illustration. Radio daisy chains 1300 are on the edge of the rooftop. A rooftop edge is a highly advantageous location for antennas because there is high angle visibility to the street without obstruction. Typically, a large number of antennas on the edge of a rooftop would be unsightly aesthetically, but a sleeve or duct can be made to be hardly visible, because, without limitation, its small size, its ability to be painted in a color matching the background, the fact it can be placed in a niche on the building, the fact it is flexible and can conform to the shape of the architecture features (e.g. without limitation, a cornice) on the building, and because there are already cables on many buildings and it will look no different.



FIG. 13 shows other placements of radio daisy chains, including radio daisy chain 1301 above an architectural feature over windows to make it less visible, and radio daisy chain 1302, that is placed along the wall near street level (perhaps pressed into a niche on the wall to be more hidden) and radio daisy chain 1303 vertically along the corner of a wall, perhaps placed along a downspout to be less visible. Also radio daisy chain 1304 is shown indoors, perhaps above ceiling tiles or in walls. Note that in this embodiment, the radio daisy chain is not in a sleeve or duct because there will be situations where none is needed and the daisy chain can be placed with the radios and cables exposed. Clearly radio daisy chains can be placed in a wide range of locations, indoors and outdoors. In all of these embodiments, the radio daisy chains are deployed where it is convenient to deploy them and where they are aesthetically acceptable.



FIG. 14 illustrates how the radio daisy chains do not need to be deployed in a straight line, but can be deployed in whatever shape conforms to the physical and/or aesthetical requirements of the location. Note they need not be deployed in only 2 dimensions; radio daisy chains can be deployed in x, y and z dimensions. In fact, the more angular diversity is used, generally the better the performance in the presently preferred MU-MAS embodiment.



FIG. 15 illustrates how the radio daisy chain can also be deployed in an array topology. An 8×8 array with 64 radios is shown in this embodiment, with 16 daisy chains connected to a network switch (e.g. without limitation a PoE+ switch). Such an array can be used for many applications, including beamforming and MIMO.



FIG. 16 illustrates how Cloud-Radio Access Network (“C-RAN”) architecture can be used with radio daisy chains. In one embodiment, the baseband waveforms are computed in the Data Center Servers. They can serve a local network 1601 to the data center (e.g., without limitation, if the data center is in a stadium, and the local network is distributed throughout the stadium), connecting to a switch, which connects to multiple radio daisy chains.


Line of sight microwave 1602 can be used as a data link to go a farther distance than a local network, and it too can connect to a switch, which connects to multiple radio daisy chains.


Fiber 1603 can go a very long distance without a line of sight requirement and can connect to a switch, which connects to multiple radio daisy chains. Also, the switch can couple repeated fiber 1604 to another switch which then can connect another group of multiple radio daisy chains.


Although the illustration in FIG. 16 shows straight daisy chains, as noted previously, they can be bent into whichever shape is convenient and aesthetically pleasing.


The C-RAN topology illustrated in FIG. 16 supports the pCell™ MU-MAS system illustrated in FIGS. 1, 2 and 3 and in Related Patents and Applications. Unlike other wireless technologies, pCell supports extremely high density radio deployments, and is not dependent on a particular arrangement of radios or antennas (e.g. in contrast, cellular technology requires specific radio spacing in accordance with a cell plan). As such, pCell technology is highly suited for the daisy chain radio embodiments described herein, and is able to exploit radios that are placed where convenient and aesthetically pleasing.


Embodiments of the invention may include various steps, which have been described above. The steps may be embodied in machine-executable instructions which may be used to cause a general-purpose or special-purpose processor to perform the steps. Alternatively, these steps may be performed by specific hardware components that contain hardwired logic for performing the steps, or by any combination of programmed computer components and custom hardware components.


As described herein, instructions may refer to specific configurations of hardware such as application specific integrated circuits (ASICs) configured to perform certain operations or having a predetermined functionality or software instructions stored in memory embodied in a non-transitory computer readable medium. Thus, the techniques shown in the figures can be implemented using code and data stored and executed on one or more electronic devices. Such electronic devices store and communicate (internally and/or with other electronic devices over a network) code and data using computer machine-readable media, such as non-transitory computer machine-readable storage media (e.g., magnetic disks; optical disks; random access memory; read only memory; flash memory devices; phase-change memory) and transitory computer machine-readable communication media (e.g., electrical, optical, acoustical or other form of propagated signals—such as carrier waves, infrared signals, digital signals, etc.).


Throughout this detailed description, for the purposes of explanation, numerous specific details were set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the invention may be practiced without some of these specific details. In certain instances, well known structures and functions were not described in elaborate detail in order to avoid obscuring the subject matter of the present invention. Accordingly, the scope and spirit of the invention should be judged in terms of the claims which follow.

Claims
  • 1. A system comprising: a plurality of wireless transceivers arranged in an electrical or optical fiber (collectively “wireline”) daisy chain;a plurality of digital baseband waveforms transmitted through the daisy chain;wherein each wireless transceiver can receive a digital baseband waveform from the plurality of digital baseband waveforms and modulate a radio frequency (“RF”) signal; andat least two wireless transceivers receive different baseband waveforms; andwherein two or more of the wireless transceivers are to receive power level information, channel station information, power information, RF channel information, pre-distortion, or other calibration information (collectively “calibration information”) from signals carried on the daisy chain.
  • 2. The system in claim 1 wherein the two or more of the plurality of wireless transceivers receive wireless transmissions comprising clock, pulse per second, Global Positioning Satellite or other timing information (collectively “timing information”) from signals carried on the daisy chain.
  • 3. The system in claim 1 wherein the two or more of the plurality of wireless transceivers receive timing information from signals external to the daisy chain.
  • 4. The system in claim 1 wherein the two or more of the plurality of wireless transceivers receive timing information wirelessly.
  • 5. The system in claim 1 wherein: the two or more of the wireless transceivers receive power from the daisy chain.
  • 6. The system in claim 1 wherein: the two or more of the wireless transceivers receive power wirelessly.
  • 7. The system in claim 1 wherein: the two or more of the wireless transceivers receive calibration information from signals external to the daisy chain.
  • 8. The system in claim 1 wherein: the two or more of the wireless transceivers receive calibration information wirelessly.
  • 9. The system in claim 1 wherein: the daisy chain is waterproof.
  • 10. A method for transmitting baseband signals to wireless transceivers comprising: arranging a plurality of wireless transceivers in a wireline daisy chain,transmitting a plurality of digital baseband waveforms through the daisy chain,receiving at each wireless transceiver a digital baseband waveform from the plurality of digital baseband waveforms and modulate an RF signal, andreceiving different baseband waveforms at two or more wireless transceivers;wherein two or more of the wireless transceivers receive power level information, channel station information, power information, RF channel information, pre-distortion, or other calibration information (collectively “calibration information”) from signals carried on the daisy chain.
  • 11. The method of claim 10 wherein: the two or more of the plurality of wireless transceivers receive timing information from signals carried on the daisy chain.
  • 12. The method of claim 10 wherein: the two or more of the plurality of wireless transceivers receive timing information from signals external to the daisy chain.
  • 13. The method of claim 10 wherein: the two or more of the plurality of wireless transceivers receive timing information wirelessly.
  • 14. The method of claim 10 wherein: the two or more of the wireless transceivers receive power from the daisy chain.
  • 15. The method of claim 10 wherein: the two or more of the wireless transceivers receive power wirelessly.
  • 16. The method of claim 10 wherein: the two or more of the wireless transceivers receive calibration information from signals carried on the daisy chain.
  • 17. The method of claim 10 wherein: the two or more of the wireless transceivers receive calibration information from signals external to the daisy chain.
  • 18. The method of claim 10 wherein: the two or more of the wireless transceivers receive calibration information wirelessly.
  • 19. The method of claim 10 wherein: the daisy chain is waterproof.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of co-pending U.S. application Ser. No. 15/792,610, filed Oct. 24, 2017, which claims the benefit of U.S. Provisional Application No. 62/413,944, filed Oct. 27, 2016, entitled, “System and Methods For Distributing Radioheads”. This application is also a continuation-in-part of co-pending U.S. application Ser. No. 15/682,076, filed Aug. 21, 2017, entitled “Systems And Methods For Mitigating Interference Within Actively Used Spectrum”, which claims the benefit of and priority to U.S. Provisional Application No. 62/380,126, filed Aug. 26, 2016, entitled “Systems and Methods for Mitigating Interference within Actively Used Spectrum” and co-pending U.S. application Ser. No. 15/682,076, filed Aug. 21, 2017, is also a continuation-in-part of U.S. application Ser. No. 14/672,014, filed Mar. 27, 2015, entitled “Systems and Methods for Concurrent Spectrum Usage Within Actively Used Spectrum” which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/980,479, filed Apr. 16, 2014, entitled, “Systems and Methods for Concurrent Spectrum Usage Within Actively Used Spectrum”. This application may be related to the following U.S. Patent Applications and U.S. Provisional Applications: U.S. Provisional Application Ser. No. 62/380,126, entitled “Systems and Methods for Mitigating Interference within Actively Used Spectrum” U.S. application Ser. No. 14/611,565, entitled “Systems and Methods for Mapping Virtual Radio Instances into Physical Areas of Coherence in Distributed Antenna Wireless Systems” U.S. application Ser. No. 14/086,700, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology” U.S. application Ser. No. 13/844,355, entitled “Systems and Methods for Radio Frequency Calibration Exploiting Channel Reciprocity in Distributed Input Distributed Output Wireless Communications” U.S. application Ser. No. 13/797,984, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology” U.S. application Ser. No. 13/797,971, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology” U.S. application Ser. No. 13/797,950, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology” U.S. application Ser. No. 13/233,006, entitled “System and Methods for planned evolution and obsolescence of multiuser spectrum” U.S. application Ser. No. 13/232,996, entitled “Systems and Methods to Exploit Areas of Coherence in Wireless Systems” U.S. application Ser. No. 12/802,989, entitled “System And Method For Managing Handoff Of A Client Between Different Distributed-Input-Distributed-Output (DIDO) Networks Based On Detected Velocity Of The Client” U.S. application Ser. No. 12/802,988, entitled “Interference Management, Handoff, Power Control And Link Adaptation In Distributed-Input Distributed-Output (DIDO) Communication Systems” U.S. application Ser. No. 12/802,975, entitled “System And Method For Link adaptation In DIDO Multicarrier Systems” U.S. application Ser. No. 12/802,974, entitled “System And Method For Managing Inter-Cluster Handoff Of Clients Which Traverse Multiple DIDO Clusters” U.S. application Ser. No. 12/802,958, entitled “System And Method For Power Control And Antenna Grouping In A Distributed-Input-Distributed-Output (DIDO) Network” U.S. Pat. No. 9,685,997, entitled “Systems and Methods to enhance spatial diversity in distributed-input distributed-output wireless systems” U.S. Pat. No. 9,386,465, issued Jul. 5, 2016 entitled “System and Method For Distributed Antenna Wireless Communications” U.S. Pat. No. 9,369,888, issued Jun. 14, 2016 entitled “Systems And Methods To Coordinate Transmissions In Distributed Wireless Systems Via User Clustering” U.S. Pat. No. 9,312,929, issued Apr. 12, 2016, entitled “System and Methods to Compensate for Doppler Effects in Distributed-Input Distributed Output Systems” U.S. Pat. No. 8,989,155, issued Mar. 24, 2015, entitled “Systems and Methods for Wireless Backhaul in Distributed-Input Distributed-Output Wireless Systems” U.S. Pat. No. 8,971,380, issued Mar. 3, 2015, entitled “System and Method for Adjusting DIDO Interference Cancellation Based On Signal Strength Measurements U.S. Pat. No. 8,654,815, issued Feb. 18, 2014, entitled “System and Method for Distributed Input Distributed Output Wireless Communications” U.S. Pat. No. 8,571,086, issued Oct. 29, 2013, entitled “System and Method for DIDO Precoding Interpolation in Multicarrier Systems” U.S. Pat. No. 8,542,763, issued Sep. 24, 2013, entitled “Systems and Methods To Coordinate Transmissions In Distributed Wireless Systems Via User Clustering” U.S. Pat. No. 8,428,162, issued Apr. 23, 2013, entitled “System and Method for Distributed Input Distributed Output Wireless Communications” U.S. Pat. No. 8,170,081, issued May 1, 2012, entitled “System And Method For Adjusting DIDO Interference Cancellation Based On Signal Strength Measurements” U.S. Pat. No. 8,160,121, issued Apr. 17, 2012, entitled, “System and Method For Distributed Input-Distributed Output Wireless Communications”; U.S. Pat. No. 7,885,354, issued Feb. 8, 2011, entitled “System and Method For Enhancing Near Vertical Incidence Skywave (“NVIS”) Communication Using Space-Time Coding.” U.S. Pat. No. 7,711,030, issued May 4, 2010, entitled “System and Method For Spatial-Multiplexed Tropospheric Scatter Communications”; U.S. Pat. No. 7,636,381, issued Dec. 22, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”; U.S. Pat. No. 7,633,994, issued Dec. 15, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”; U.S. Pat. No. 7,599,420, issued Oct. 6, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”; U.S. Pat. No. 7,418,053, issued Aug. 26, 2008, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”.

US Referenced Citations (658)
Number Name Date Kind
4003016 Remley Jan 1977 A
4253193 Kennard et al. Feb 1981 A
4564935 Kaplan Jan 1986 A
4771289 Masak Sep 1988 A
5045862 Alden et al. Sep 1991 A
5088091 Schroeder et al. Feb 1992 A
5095500 Tayloe et al. Mar 1992 A
5097485 O'Connor et al. Mar 1992 A
5315309 Rudow et al. May 1994 A
5377183 Dent Dec 1994 A
5400037 East Mar 1995 A
5483667 Faruque Jan 1996 A
5555257 Dent Sep 1996 A
5600326 Yu et al. Feb 1997 A
5661765 Ishizu Aug 1997 A
5742253 Conroy et al. Apr 1998 A
5809422 Raleigh et al. Sep 1998 A
5838671 Ishikawa et al. Nov 1998 A
5872814 McMeekin Feb 1999 A
5983104 Wickman et al. Nov 1999 A
6005516 Reudink et al. Dec 1999 A
6005856 Jensen et al. Dec 1999 A
6014107 Wiesenfarth Jan 2000 A
6041365 Kleinerman Mar 2000 A
6052582 Blasing et al. Apr 2000 A
6061021 Zibell May 2000 A
6061023 Daniel et al. May 2000 A
6067290 Paulraj et al. May 2000 A
6232921 Aiken et al. May 2001 B1
6252912 Salinger Jun 2001 B1
6275738 Kasevich et al. Aug 2001 B1
6308080 Burt et al. Oct 2001 B1
6320853 Wong et al. Nov 2001 B1
6323823 Wong et al. Nov 2001 B1
6330460 Wong et al. Dec 2001 B1
6377782 Bishop et al. Apr 2002 B1
6400761 Smee et al. Jun 2002 B1
6411612 Halford et al. Jun 2002 B1
6421543 Molnar Jul 2002 B1
6442151 H'mimy et al. Aug 2002 B1
6445910 Oestreich Sep 2002 B1
6448937 Aiken et al. Sep 2002 B1
6453177 Wong et al. Sep 2002 B1
6459900 Scheinert Oct 2002 B1
6473467 Wallace et al. Oct 2002 B1
6484030 Antoine et al. Nov 2002 B1
6519478 Scherzer et al. Feb 2003 B1
6611231 Crilly, Jr. et al. Aug 2003 B2
6654590 Boros et al. Nov 2003 B2
6668161 Boros et al. Dec 2003 B2
6684366 Trott et al. Jan 2004 B1
6697644 Scherzer et al. Feb 2004 B2
6718180 Undh et al. Apr 2004 B1
6718184 Aiken et al. Apr 2004 B1
6760388 Ketchum et al. Jul 2004 B2
6760599 Uhlik Jul 2004 B1
6760603 Scherzer et al. Jul 2004 B1
6763225 Farmine et al. Jul 2004 B1
6771706 Ling et al. Aug 2004 B2
6785341 Walton et al. Aug 2004 B2
6791508 Berry et al. Sep 2004 B2
6794939 Kim et al. Sep 2004 B2
6795413 Uhlik Sep 2004 B1
6799026 Scherzer et al. Sep 2004 B1
6801580 Kadous Oct 2004 B2
6804311 Dabak et al. Oct 2004 B1
6834043 Vook et al. Dec 2004 B1
6836673 Trott Dec 2004 B1
6847832 Wong et al. Jan 2005 B2
6862271 Medvedev et al. Mar 2005 B2
6888795 Gupta et al. May 2005 B2
6888809 Foschini et al. May 2005 B1
6888899 Raleigh et al. May 2005 B2
6895258 Scherzer et al. May 2005 B1
6901062 Scherzer et al. May 2005 B2
6920192 Laroia et al. Jul 2005 B1
6925127 Dent Aug 2005 B1
6956537 Scherzer et al. Oct 2005 B2
6963742 Boros et al. Nov 2005 B2
6970682 Crilly, Jr. et al. Nov 2005 B2
6978150 Hamabe Dec 2005 B2
6996060 Dahlby et al. Feb 2006 B1
7006043 Nalbandian Feb 2006 B1
7013144 Yamashita et al. Mar 2006 B2
7016649 Narasimhan et al. Mar 2006 B1
7020490 Khatri Mar 2006 B2
7027415 Dahlby et al. Apr 2006 B1
7027523 Jalali et al. Apr 2006 B2
7027837 Uhlik et al. Apr 2006 B1
7031336 Scherzer et al. Apr 2006 B2
7031754 Scherzer et al. Apr 2006 B2
7068704 Orr Jun 2006 B1
7072413 Walton et al. Jul 2006 B2
7072693 Farlow et al. Jul 2006 B2
7075485 Song et al. Jul 2006 B2
7079809 Scherzer Jul 2006 B1
7085240 Wu et al. Aug 2006 B2
7095723 Sezgin et al. Aug 2006 B2
7096040 Scherzer et al. Aug 2006 B1
7116723 Kim et al. Oct 2006 B2
7117014 Van Rensburg et al. Oct 2006 B1
7120440 Cho et al. Oct 2006 B2
7139527 Tamaki et al. Nov 2006 B2
7142154 Quilter et al. Nov 2006 B2
7154936 Bjerke et al. Dec 2006 B2
7154960 Liu et al. Dec 2006 B2
7158493 Uhlik et al. Jan 2007 B1
7167684 Kadous et al. Jan 2007 B2
7181167 Onggosanusi et al. Feb 2007 B2
7184492 Dent Feb 2007 B2
7193991 Melpignano et al. Mar 2007 B2
7194006 Wong et al. Mar 2007 B2
7197082 Alexiou et al. Mar 2007 B2
7197084 Ketchum et al. Mar 2007 B2
7197282 Dent et al. Mar 2007 B2
7209511 Dent Apr 2007 B2
7218689 Gupta May 2007 B2
7224942 Dent May 2007 B2
7227855 Barratt et al. Jun 2007 B1
7242724 Alexiou et al. Jul 2007 B2
7242964 Aiken et al. Jul 2007 B1
7248645 Vialle et al. Jul 2007 B2
7248841 Agee et al. Jul 2007 B2
7248879 Walton et al. Jul 2007 B1
7269231 Ding et al. Sep 2007 B2
7272294 Zhou et al. Sep 2007 B2
7299071 Barratt et al. Nov 2007 B1
7310680 Graham Dec 2007 B1
7313403 Gong et al. Dec 2007 B2
7327795 Oprea Feb 2008 B2
7333540 Yee Feb 2008 B2
7336626 Barratt et al. Feb 2008 B1
7339906 Dahlby et al. Mar 2008 B1
7339908 Uhlik et al. Mar 2008 B2
7352774 Uhlik et al. Apr 2008 B2
7352819 Lakshmipathi et al. Apr 2008 B2
7363376 Uhlik et al. Apr 2008 B2
7366202 Scherzer et al. Apr 2008 B2
7366245 Li et al. Apr 2008 B2
7366519 Jason et al. Apr 2008 B2
7369841 Uhlik et al. May 2008 B1
7369876 Lee et al. May 2008 B2
7394858 Sadowsky et al. Jul 2008 B2
7406315 Uhlik et al. Jul 2008 B2
7412212 Hottinen Aug 2008 B2
7418053 Perlman et al. Aug 2008 B2
7430197 Uhlik Sep 2008 B1
7437177 Ozluturk et al. Oct 2008 B2
7450489 Sandhu Nov 2008 B2
7451839 Perlman Nov 2008 B2
7471736 Ding et al. Dec 2008 B2
7486931 Cho et al. Feb 2009 B2
7492743 Uhlik Feb 2009 B2
7499548 Meandzija et al. Mar 2009 B2
7502420 Ketchum Mar 2009 B2
7519011 Petrus et al. Apr 2009 B2
7548752 Sampath et al. Jun 2009 B2
7558575 Losh et al. Jul 2009 B2
7599420 Forenza et al. Oct 2009 B2
7599443 Ionescu et al. Oct 2009 B2
7606192 Uhlik Oct 2009 B2
7609751 Giallorenzi et al. Oct 2009 B1
7616698 Sun et al. Nov 2009 B2
7630337 Zheng et al. Dec 2009 B2
7633944 Chang et al. Dec 2009 B1
7633994 Forenza et al. Dec 2009 B2
7636381 Forenza et al. Dec 2009 B2
7684753 Ionescu et al. Mar 2010 B2
7688789 Pan et al. Mar 2010 B2
7689639 Dent Mar 2010 B2
7719993 Li May 2010 B2
7729316 Uhlik Jun 2010 B2
7729433 Jalloul Jun 2010 B2
7747250 Larsson Jun 2010 B2
7751368 Li Jul 2010 B2
7751843 Butala Jul 2010 B2
7756222 Chen Jul 2010 B2
7801490 Scherzer Sep 2010 B1
7849173 Uhlik Dec 2010 B1
7864663 Dent Jan 2011 B2
7948444 Signell May 2011 B2
7961809 Bourdoux et al. Jun 2011 B2
7978673 Uhlik Jul 2011 B1
7986742 Ketchum et al. Jul 2011 B2
7995973 Dent Aug 2011 B2
8041362 Li Oct 2011 B2
8081944 Li Dec 2011 B2
8086271 Dent Dec 2011 B2
8090320 Dent Jan 2012 B2
8116710 Dent Feb 2012 B2
8126510 Samson Feb 2012 B1
8170081 Forenza May 2012 B2
8260198 Yamaura Sep 2012 B2
8320432 Chockalingam Nov 2012 B1
8428177 Tsai Apr 2013 B2
8451764 Chao May 2013 B2
8469800 Lemay et al. Jun 2013 B2
8482462 Komijani Jul 2013 B2
8548384 Lee Oct 2013 B2
8612619 Guo et al. Dec 2013 B2
8638880 Baldemair Jan 2014 B2
8654815 Forenza Feb 2014 B1
8675768 Xu Mar 2014 B2
8705484 Caire Apr 2014 B2
8731480 Kim May 2014 B2
8787469 Kim Jul 2014 B2
8797970 Xing Aug 2014 B2
8849339 Anto Sep 2014 B2
8902862 Yu Dec 2014 B2
8971380 Forenza et al. Mar 2015 B2
8989155 Forenza Mar 2015 B2
9089002 Abraham et al. Jul 2015 B2
9094180 Zirwas Jul 2015 B2
9179495 Scherzer Nov 2015 B1
9252858 Abbasfar Feb 2016 B2
9307506 Kelly Apr 2016 B1
9331882 Fehri May 2016 B2
9685997 Forenza Jun 2017 B2
9698881 Nammi Jul 2017 B2
10205513 Winters Feb 2019 B1
10277290 Forenza Apr 2019 B2
10349417 Forenza Jul 2019 B2
10637554 Zhu Apr 2020 B2
10749583 Park Aug 2020 B2
10804985 Ge Oct 2020 B2
10985811 Forenza Apr 2021 B2
11190947 Perlman et al. Nov 2021 B2
20010031647 Scherzer et al. Oct 2001 A1
20020027985 Rashid-Farrokhi Mar 2002 A1
20020041575 Karabinis et al. Apr 2002 A1
20020051433 Affes et al. May 2002 A1
20020061004 Lomp et al. May 2002 A1
20020097705 Sezgin et al. Jul 2002 A1
20020136169 Struhsaker et al. Sep 2002 A1
20020142723 Foschini et al. Oct 2002 A1
20020168017 Berthet et al. Nov 2002 A1
20020177447 Walton et al. Nov 2002 A1
20020181444 Acampora Dec 2002 A1
20020193146 Wallace et al. Dec 2002 A1
20030003863 Thielecke et al. Jan 2003 A1
20030012315 Fan Jan 2003 A1
20030036359 Dent et al. Feb 2003 A1
20030043887 Hudson Mar 2003 A1
20030043929 Sampath Mar 2003 A1
20030045297 Dent Mar 2003 A1
20030048753 Jalali Mar 2003 A1
20030065779 Malik et al. Apr 2003 A1
20030072379 Ketchum Apr 2003 A1
20030092456 Dent May 2003 A1
20030114165 Mills Jun 2003 A1
20030114193 Kavak et al. Jun 2003 A1
20030119556 Khan et al. Jun 2003 A1
20030125026 Tsunehara et al. Jul 2003 A1
20030125040 Walton et al. Jul 2003 A1
20030128658 Walton et al. Jul 2003 A1
20030139196 Medvedev et al. Jul 2003 A1
20030147362 Dick et al. Aug 2003 A1
20030148738 Das et al. Aug 2003 A1
20030156056 Perry Aug 2003 A1
20030161282 Medvedev et al. Aug 2003 A1
20030211843 Song et al. Nov 2003 A1
20030214431 Hager et al. Nov 2003 A1
20030220112 Bugeja Nov 2003 A1
20030235146 Wu et al. Dec 2003 A1
20040009755 Yoshida Jan 2004 A1
20040042556 Medvedev et al. Mar 2004 A1
20040043784 Czaja et al. Mar 2004 A1
20040063450 Uhlik Apr 2004 A1
20040082356 Walton et al. Apr 2004 A1
20040095907 Agee et al. May 2004 A1
20040097197 Juncker et al. May 2004 A1
20040131011 Sandell et al. Jul 2004 A1
20040136349 Walton et al. Jul 2004 A1
20040152480 Willars et al. Aug 2004 A1
20040170430 Gorokhov Sep 2004 A1
20040176097 Wilson et al. Sep 2004 A1
20040179627 Ketchum et al. Sep 2004 A1
20040185909 Alexiou et al. Sep 2004 A1
20040190636 Oprea Sep 2004 A1
20040203347 Nguyen Oct 2004 A1
20040203987 Butala Oct 2004 A1
20040209579 Vaidyanathan Oct 2004 A1
20040252632 Bourdoux et al. Dec 2004 A1
20050003865 Astinger et al. Jan 2005 A1
20050020237 Alexiou et al. Jan 2005 A1
20050024231 Fincher et al. Feb 2005 A1
20050031047 Maltsev et al. Feb 2005 A1
20050041750 Nang Feb 2005 A1
20050041751 Nir et al. Feb 2005 A1
20050042988 Hoek et al. Feb 2005 A1
20050043031 Cho et al. Feb 2005 A1
20050047515 Walton et al. Mar 2005 A1
20050058217 Sandhu et al. Mar 2005 A1
20050075110 Posti et al. Apr 2005 A1
20050085267 Lemson et al. Apr 2005 A1
20050096058 Warner et al. May 2005 A1
20050101259 Tong et al. May 2005 A1
20050101352 Logothetis et al. May 2005 A1
20050111406 Pasanen et al. May 2005 A1
20050111599 Walton et al. May 2005 A1
20050148368 Scheinert et al. Jul 2005 A1
20050157683 Ylitalo et al. Jul 2005 A1
20050169396 Baier et al. Aug 2005 A1
20050174977 Pedlar et al. Aug 2005 A1
20050186991 Bateman Aug 2005 A1
20050232135 Mukai et al. Oct 2005 A1
20050239406 Shattil Oct 2005 A1
20050259627 Song et al. Nov 2005 A1
20050265273 Karabinis et al. Dec 2005 A1
20050271009 Shirakabe et al. Dec 2005 A1
20050287962 Mehta et al. Dec 2005 A1
20060023803 Perlman et al. Feb 2006 A1
20060032979 Mitchell et al. Feb 2006 A1
20060046658 Cruz et al. Mar 2006 A1
20060050804 Philippe Mar 2006 A1
20060056855 Nakagawa et al. Mar 2006 A1
20060062180 Sayeedi et al. Mar 2006 A1
20060098568 Oh et al. May 2006 A1
20060098754 Kim et al. May 2006 A1
20060146755 Pan et al. Jul 2006 A1
20060159160 Kim et al. Jul 2006 A1
20060159187 Wang et al. Jul 2006 A1
20060165120 Karabinis Jul 2006 A1
20060198461 Hayase Sep 2006 A1
20060199584 Bergstrom et al. Sep 2006 A1
20060203708 Sampath et al. Sep 2006 A1
20060209979 Sandell et al. Sep 2006 A1
20060270359 Karmi et al. Nov 2006 A1
20060281421 Pan et al. Dec 2006 A1
20060287743 Sampath et al. Dec 2006 A1
20060292990 Karabinis et al. Dec 2006 A1
20070004337 Biswas et al. Jan 2007 A1
20070015526 Hansen Jan 2007 A1
20070025464 Perlman Feb 2007 A1
20070054633 Piirainen Mar 2007 A1
20070058590 Wang et al. Mar 2007 A1
20070064823 Hwang et al. Mar 2007 A1
20070066331 Zheng et al. Mar 2007 A1
20070082674 Pedersen et al. Apr 2007 A1
20070086400 Shida et al. Apr 2007 A1
20070093273 Cai Apr 2007 A1
20070093274 Jafarkhani et al. Apr 2007 A1
20070099665 Kim et al. May 2007 A1
20070132653 Weller et al. Jun 2007 A1
20070135125 Kim et al. Jun 2007 A1
20070183362 Mondal et al. Aug 2007 A1
20070206504 Koo et al. Sep 2007 A1
20070211747 Kim Sep 2007 A1
20070220151 Li et al. Sep 2007 A1
20070242782 Han et al. Oct 2007 A1
20070243871 Chen et al. Oct 2007 A1
20070249380 Stewart et al. Oct 2007 A1
20070253508 Zhou et al. Nov 2007 A1
20070254602 Li et al. Nov 2007 A1
20070258531 Chen et al. Nov 2007 A1
20070263736 Yuda et al. Nov 2007 A1
20070280116 Wang et al. Dec 2007 A1
20070286298 Choi et al. Dec 2007 A1
20080013644 Hugl et al. Jan 2008 A1
20080051150 Tsutsui Feb 2008 A1
20080080631 Forenza et al. Apr 2008 A1
20080080635 Hugl et al. Apr 2008 A1
20080089396 Zhang et al. Apr 2008 A1
20080102881 Han et al. May 2008 A1
20080107135 Ibrahim May 2008 A1
20080117961 Han et al. May 2008 A1
20080118004 Forenza et al. May 2008 A1
20080125051 Kim et al. May 2008 A1
20080130790 Forenza et al. Jun 2008 A1
20080132281 Kim et al. Jun 2008 A1
20080165866 Teo et al. Jul 2008 A1
20080181285 Hwang et al. Jul 2008 A1
20080192683 Han et al. Aug 2008 A1
20080192697 Shaheen Aug 2008 A1
20080200211 Hwang et al. Aug 2008 A1
20080205538 Han et al. Aug 2008 A1
20080214185 Cho et al. Sep 2008 A1
20080227422 Hwang et al. Sep 2008 A1
20080232394 Kozek et al. Sep 2008 A1
20080233902 Pan et al. Sep 2008 A1
20080239938 Jalloul et al. Oct 2008 A1
20080260054 Myung et al. Oct 2008 A1
20080261587 Ennartson et al. Oct 2008 A1
20080267142 Mushkin et al. Oct 2008 A1
20080268833 Huang et al. Oct 2008 A1
20080292011 Yang Nov 2008 A1
20080317014 Veselinovic et al. Dec 2008 A1
20090010204 Pratt, Jr. et al. Jan 2009 A1
20090023467 Huang et al. Jan 2009 A1
20090034636 Kotecha et al. Feb 2009 A1
20090041148 Li et al. Feb 2009 A1
20090041151 Khan et al. Feb 2009 A1
20090046678 Lee et al. Feb 2009 A1
20090046800 Xu et al. Feb 2009 A1
20090060013 Ashikhmin et al. Mar 2009 A1
20090067402 Forenza et al. Mar 2009 A1
20090069054 Zangi et al. Mar 2009 A1
20090075686 Gomadam et al. Mar 2009 A1
20090086648 Xu et al. Apr 2009 A1
20090086855 Jin et al. Apr 2009 A1
20090097448 Vasudevan et al. Apr 2009 A1
20090135944 Dyer et al. May 2009 A1
20090168914 Chance et al. Jul 2009 A1
20090195355 Mitchell Aug 2009 A1
20090202016 Seong et al. Aug 2009 A1
20090207822 Kim et al. Aug 2009 A1
20090209206 Zou et al. Aug 2009 A1
20090227249 Ylitalo Sep 2009 A1
20090227292 Laroia et al. Sep 2009 A1
20090232245 Lakkis Sep 2009 A1
20090254790 Pi et al. Oct 2009 A1
20090262695 Chen et al. Oct 2009 A1
20090268675 Choi Oct 2009 A1
20090285156 Huang et al. Nov 2009 A1
20090290517 Rao et al. Nov 2009 A1
20090290632 Wegener Nov 2009 A1
20090296650 Venturino et al. Dec 2009 A1
20090316807 Kim et al. Dec 2009 A1
20090318183 Hugl et al. Dec 2009 A1
20100008331 Li et al. Jan 2010 A1
20100034151 Alexiou et al. Feb 2010 A1
20100068999 Bangs et al. Mar 2010 A1
20100080163 Krishnamoorthi et al. Apr 2010 A1
20100080323 Mueck et al. Apr 2010 A1
20100098030 Wang et al. Apr 2010 A1
20100099428 Bhushan et al. Apr 2010 A1
20100119001 Walton et al. May 2010 A1
20100128630 Barak et al. May 2010 A1
20100150013 Hara et al. Jun 2010 A1
20100157861 Na et al. Jun 2010 A1
20100164802 Li et al. Jul 2010 A1
20100172309 Forenza et al. Jul 2010 A1
20100183099 Toda et al. Jul 2010 A1
20100189191 Taoka et al. Jul 2010 A1
20100195527 Gorokhov et al. Aug 2010 A1
20100203887 Kim Aug 2010 A1
20100220671 Guillouard et al. Sep 2010 A1
20100220679 Abraham et al. Sep 2010 A1
20100227562 Shim et al. Sep 2010 A1
20100232336 Choudhury et al. Sep 2010 A1
20100234071 Shabtay et al. Sep 2010 A1
20100238824 Farajidana et al. Sep 2010 A1
20100238984 Sayana et al. Sep 2010 A1
20100260060 Abraham et al. Oct 2010 A1
20100260103 Guey et al. Oct 2010 A1
20100260115 Frederiksen et al. Oct 2010 A1
20100265842 Khandekar et al. Oct 2010 A1
20100279625 Ko et al. Nov 2010 A1
20100290369 Hui et al. Nov 2010 A1
20100290382 Hui et al. Nov 2010 A1
20100296591 Xu et al. Nov 2010 A1
20100315966 Weigand Dec 2010 A1
20100316154 Park et al. Dec 2010 A1
20100316163 Forenza et al. Dec 2010 A1
20100322176 Chen et al. Dec 2010 A1
20100323611 Choudhury Dec 2010 A1
20110002371 Forenza et al. Jan 2011 A1
20110002410 Forenza et al. Jan 2011 A1
20110002411 Forenza et al. Jan 2011 A1
20110003606 Forenza et al. Jan 2011 A1
20110003607 Forenza et al. Jan 2011 A1
20110003608 Forenza et al. Jan 2011 A1
20110007856 Jang et al. Jan 2011 A1
20110017700 Patcheak et al. Jan 2011 A1
20110019715 Brisebois Jan 2011 A1
20110038436 Kim et al. Feb 2011 A1
20110044193 Forenza et al. Feb 2011 A1
20110051832 Mergen et al. Mar 2011 A1
20110069638 Ishizu et al. Mar 2011 A1
20110076954 Wee et al. Mar 2011 A1
20110077038 Montojo et al. Mar 2011 A1
20110085610 Zhuang et al. Apr 2011 A1
20110086611 Klein et al. Apr 2011 A1
20110090005 Nakayama Apr 2011 A1
20110090840 Lee et al. Apr 2011 A1
20110090885 Safavi Apr 2011 A1
20110096736 Kwon et al. Apr 2011 A1
20110105174 Pelletier et al. May 2011 A1
20110111781 Chen et al. May 2011 A1
20110135308 Tarlazzi et al. Jun 2011 A1
20110142020 Kang et al. Jun 2011 A1
20110142104 Coldrey et al. Jun 2011 A1
20110149765 Gorokhov et al. Jun 2011 A1
20110164597 Amini et al. Jul 2011 A1
20110164697 Liao et al. Jul 2011 A1
20110194504 Gorokhov et al. Aug 2011 A1
20110195670 Dakshinamurthy et al. Aug 2011 A1
20110199946 Breit et al. Aug 2011 A1
20110205963 Tang et al. Aug 2011 A1
20110207416 Doi Aug 2011 A1
20110211485 Xu et al. Sep 2011 A1
20110216662 Nie et al. Sep 2011 A1
20110261769 Ji et al. Oct 2011 A1
20110274053 Baik et al. Nov 2011 A1
20110294527 Brueck et al. Dec 2011 A1
20110305195 Forck et al. Dec 2011 A1
20110306381 Jia et al. Dec 2011 A1
20110310987 Ee et al. Dec 2011 A1
20110310994 Ko et al. Dec 2011 A1
20120002743 Cavalcante et al. Jan 2012 A1
20120014415 Su et al. Jan 2012 A1
20120014477 Ko et al. Jan 2012 A1
20120021707 Forrester et al. Jan 2012 A1
20120039320 Lemson et al. Feb 2012 A1
20120039419 Maddah-Ali et al. Feb 2012 A1
20120046039 Hagerman et al. Feb 2012 A1
20120051257 Kim et al. Mar 2012 A1
20120051258 Josso Mar 2012 A1
20120054172 Agrawal et al. Mar 2012 A1
20120076023 Ko et al. Mar 2012 A1
20120076028 Ko et al. Mar 2012 A1
20120076042 Chun et al. Mar 2012 A1
20120076236 Ko et al. Mar 2012 A1
20120082038 Xu et al. Apr 2012 A1
20120087261 Yoo et al. Apr 2012 A1
20120087430 Forenza et al. Apr 2012 A1
20120093078 Perlman et al. Apr 2012 A1
20120106388 Shimezawa et al. May 2012 A1
20120108278 Kim et al. May 2012 A1
20120114021 Chung et al. May 2012 A1
20120127977 Copeland et al. May 2012 A1
20120163427 Kim Jun 2012 A1
20120176982 Zirwas et al. Jul 2012 A1
20120188988 Chung et al. Jul 2012 A1
20120218968 Kim et al. Aug 2012 A1
20120224528 Tapia et al. Sep 2012 A1
20120230691 Hui et al. Sep 2012 A1
20120236741 Xu et al. Sep 2012 A1
20120236840 Kim et al. Sep 2012 A1
20120252470 Wong et al. Oct 2012 A1
20120258657 Scheinert Oct 2012 A1
20120275530 Olesen et al. Nov 2012 A1
20120281555 Gao et al. Nov 2012 A1
20120281622 Saban et al. Nov 2012 A1
20120288022 Guey et al. Nov 2012 A1
20120289284 Kuningas Nov 2012 A1
20120300717 Cepeda et al. Nov 2012 A1
20120314570 Forenza et al. Dec 2012 A1
20120314649 Forenza et al. Dec 2012 A1
20120314797 Kummetz et al. Dec 2012 A1
20120328301 Gupta et al. Dec 2012 A1
20130003658 Stewart et al. Jan 2013 A1
20130010840 Maddah-Ali et al. Jan 2013 A1
20130028109 Joengren et al. Jan 2013 A1
20130033998 Seo et al. Feb 2013 A1
20130038766 Perlman et al. Feb 2013 A1
20130039168 Forenza et al. Feb 2013 A1
20130039332 Nazar et al. Feb 2013 A1
20130039349 Ebrahimi et al. Feb 2013 A1
20130039387 Qu Feb 2013 A1
20130044797 Nammi Feb 2013 A1
20130051240 Bhattad et al. Feb 2013 A1
20130058307 Kim et al. Mar 2013 A1
20130064216 Gao et al. Mar 2013 A1
20130077514 Dinan Mar 2013 A1
20130077569 Nam et al. Mar 2013 A1
20130083681 Ebrahimi et al. Apr 2013 A1
20130089009 Li et al. Apr 2013 A1
20130089159 Liu Apr 2013 A1
20130094548 Park Apr 2013 A1
20130114437 Yoo et al. May 2013 A1
20130114763 Park May 2013 A1
20130115986 Mueck et al. May 2013 A1
20130128821 Hooli et al. May 2013 A1
20130142290 Farmanbar et al. Jun 2013 A1
20130170360 Xu et al. Jul 2013 A1
20130188567 Wang et al. Jul 2013 A1
20130195047 Koivisto et al. Aug 2013 A1
20130195086 Xu et al. Aug 2013 A1
20130195467 Schmid et al. Aug 2013 A1
20130208604 Lee et al. Aug 2013 A1
20130208671 Royz et al. Aug 2013 A1
20130242890 He et al. Sep 2013 A1
20130242956 Hall Sep 2013 A1
20130272170 Chatterjee et al. Oct 2013 A1
20130272250 Shimezawa et al. Oct 2013 A1
20130272441 Uyehara et al. Oct 2013 A1
20130273950 Sun et al. Oct 2013 A1
20130286866 Hammarwall et al. Oct 2013 A1
20130286958 Liang et al. Oct 2013 A1
20130286997 Davydov et al. Oct 2013 A1
20130315189 Kim et al. Nov 2013 A1
20130315195 Ko et al. Nov 2013 A1
20130315211 Balan et al. Nov 2013 A1
20130322308 Yu et al. Dec 2013 A1
20130329592 Beale Dec 2013 A1
20130331114 Gormley et al. Dec 2013 A1
20140010197 Wang et al. Jan 2014 A1
20140016556 Shimezawa et al. Jan 2014 A1
20140025999 Kessler Jan 2014 A1
20140029490 Kim et al. Jan 2014 A1
20140038619 Moulsley Feb 2014 A1
20140056156 Joengren Feb 2014 A1
20140064206 Bao et al. Mar 2014 A1
20140086209 Su et al. Mar 2014 A1
20140086296 Badic et al. Mar 2014 A1
20140087680 Luukkala et al. Mar 2014 A1
20140094169 Takano Apr 2014 A1
20140112216 Seo et al. Apr 2014 A1
20140113677 Parkvall et al. Apr 2014 A1
20140133435 Forenza et al. May 2014 A1
20140140225 Wala May 2014 A1
20140146756 Sahin et al. May 2014 A1
20140153427 Seo et al. Jun 2014 A1
20140185700 Dong et al. Jul 2014 A1
20140198744 Wang et al. Jul 2014 A1
20140206280 Nilsson et al. Jul 2014 A1
20140219142 Schulz et al. Aug 2014 A1
20140219152 Anto et al. Aug 2014 A1
20140219202 Kim et al. Aug 2014 A1
20140219267 Eyuboglu et al. Aug 2014 A1
20140225788 Schulz et al. Aug 2014 A1
20140226570 Comeau et al. Aug 2014 A1
20140241209 Pollakowski et al. Aug 2014 A1
20140241218 Moshfeghi Aug 2014 A1
20140241240 Kloper et al. Aug 2014 A1
20140245095 Nammi et al. Aug 2014 A1
20140294108 Etkin et al. Oct 2014 A1
20140295758 Pedersen Oct 2014 A1
20140301278 Ghosh et al. Oct 2014 A1
20140301345 Kim et al. Oct 2014 A1
20140301493 Govindswamy et al. Oct 2014 A1
20140307630 Nagata et al. Oct 2014 A1
20140340255 Meerkerk et al. Nov 2014 A1
20140340260 Richards Nov 2014 A1
20140341143 Yang et al. Nov 2014 A1
20140348077 Chen et al. Nov 2014 A1
20140348090 Nguyen et al. Nov 2014 A1
20140348131 Duan et al. Nov 2014 A1
20150003311 Feuersaenger et al. Jan 2015 A1
20150011197 Tarraf et al. Jan 2015 A1
20150016317 Park et al. Jan 2015 A1
20150049689 Seo Feb 2015 A1
20150092416 Potucek et al. Apr 2015 A1
20150098410 Jongren et al. Apr 2015 A1
20150117392 Hammarwall et al. Apr 2015 A1
20150118369 Hyde et al. Apr 2015 A1
20150131750 Xue et al. May 2015 A1
20150131751 Bayesteh et al. May 2015 A1
20150133126 Liu et al. May 2015 A1
20150181568 Seo et al. Jun 2015 A1
20150229372 Perlman et al. Aug 2015 A1
20150270882 Shattil Sep 2015 A1
20150271003 Kuchi et al. Sep 2015 A1
20150296533 Park Oct 2015 A1
20150304855 Perlman et al. Oct 2015 A1
20150305010 Guan et al. Oct 2015 A1
20160013855 Campos et al. Jan 2016 A1
20160061027 Gao et al. Mar 2016 A1
20160094318 Shattil Mar 2016 A1
20160157146 Karabinis Jun 2016 A1
20160248559 Guo et al. Aug 2016 A1
20160302028 Ling et al. Oct 2016 A1
20160302218 Behravan et al. Oct 2016 A1
20160353290 Nammi et al. Dec 2016 A1
20160374070 Ghosh Dec 2016 A1
20190385057 Litichever et al. Dec 2019 A1
20200084673 Ahmadi Mar 2020 A1
Foreign Referenced Citations (169)
Number Date Country
2018200832 Feb 2018 AU
1307842 Sep 1992 CA
2011298 May 1999 CA
2856772 Jan 2006 CA
2838781 Jan 2013 CA
1256803 Jun 2000 CN
1516370 Jul 2004 CN
1538636 Oct 2004 CN
1703113 Nov 2005 CN
1734972 Feb 2006 CN
1820424 Aug 2006 CN
1898973 Jan 2007 CN
101031129 Sep 2007 CN
101238648 Aug 2008 CN
101291503 Oct 2008 CN
101310454 Nov 2008 CN
101405965 Apr 2009 CN
101442388 May 2009 CN
101536320 Sep 2009 CN
101542938 Sep 2009 CN
101682432 Mar 2010 CN
101861718 Oct 2010 CN
101873281 Oct 2010 CN
101981826 Feb 2011 CN
102007707 Apr 2011 CN
102027636 Apr 2011 CN
102158272 Aug 2011 CN
102185641 Sep 2011 CN
102186541 Sep 2011 CN
102439891 May 2012 CN
102594420 Jul 2012 CN
102948085 Feb 2013 CN
103069903 Apr 2013 CN
103117975 May 2013 CN
103152807 Jun 2013 CN
103201958 Jul 2013 CN
103797725 May 2014 CN
104025684 Sep 2014 CN
104038245 Sep 2014 CN
104335625 Feb 2015 CN
105981340 Sep 2016 CN
105119794 Dec 2022 CN
1359683 Nov 2003 EP
1392029 Feb 2004 EP
1597842 Nov 2005 EP
2244390 Oct 2010 EP
2252109 Nov 2010 EP
2889957 Jul 2015 EP
2904814 Aug 2015 EP
3419188 Dec 2018 EP
2300547 Nov 1996 GB
02-210897 Aug 1990 JP
11-252613 Sep 1999 JP
2001-217759 Aug 2001 JP
2002-281551 Sep 2002 JP
2002-374224 Dec 2002 JP
2003-018054 Jan 2003 JP
2003-134013 May 2003 JP
2003-179948 Jun 2003 JP
2003-284128 Oct 2003 JP
2004-502376 Jan 2004 JP
2004-104206 Apr 2004 JP
2005-039822 Feb 2005 JP
2005-159448 Jun 2005 JP
2006-081162 Mar 2006 JP
2006-245871 Sep 2006 JP
2007-060106 Mar 2007 JP
2007-116686 May 2007 JP
2008-035287 Feb 2008 JP
2009-213052 Sep 2009 JP
2009-273167 Nov 2009 JP
2009-540692 Nov 2009 JP
2010-016674 Jan 2010 JP
2010-021999 Jan 2010 JP
2010-068496 Mar 2010 JP
2010-074520 Apr 2010 JP
2010-193189 Sep 2010 JP
2010-206794 Sep 2010 JP
2010-537577 Dec 2010 JP
2011-035912 Feb 2011 JP
2011-078025 Apr 2011 JP
2011-097225 May 2011 JP
2011-517393 Jun 2011 JP
2011-524117 Aug 2011 JP
2011-176493 Sep 2011 JP
2012-120063 Jun 2012 JP
2012-124859 Jun 2012 JP
2012-175189 Sep 2012 JP
2012-521180 Sep 2012 JP
2012-532495 Dec 2012 JP
2013-502117 Jan 2013 JP
2013-507064 Feb 2013 JP
2013-102450 May 2013 JP
2016-513940 May 2016 JP
10-2008-0081698 Sep 2008 KR
10-2009-0132625 Dec 2009 KR
10-2010-0057071 May 2010 KR
10-2012-0003781 Jan 2012 KR
10-2012-0024836 Mar 2012 KR
10-2012-0084243 Jul 2012 KR
10-2012-0119175 Oct 2012 KR
10-2018-0061394 Jun 2018 KR
10-2012-0001598 Jan 2021 KR
2330381 Jul 2008 RU
2010110620 Sep 2011 RU
2012121952 Feb 2014 RU
2543092 Feb 2015 RU
201031243 Aug 2010 TW
201112665 Apr 2011 TW
201212570 Mar 2012 TW
201220741 May 2012 TW
9923767 May 1999 WO
0054463 Sep 2000 WO
0201732 Jan 2002 WO
0208785 Jan 2002 WO
0254626 Jul 2002 WO
0293784 Nov 2002 WO
0299995 Dec 2002 WO
0303604 Jan 2003 WO
0384092 Oct 2003 WO
0394460 Nov 2003 WO
2003107582 Dec 2003 WO
2004017586 Feb 2004 WO
2004073210 Aug 2004 WO
2004095719 Nov 2004 WO
2005046081 May 2005 WO
2005064871 Jul 2005 WO
2006049417 May 2006 WO
2006063138 Jun 2006 WO
2006078019 Jul 2006 WO
2006110737 Oct 2006 WO
2006113872 Oct 2006 WO
2007024913 Mar 2007 WO
2007027825 Mar 2007 WO
2007046621 Apr 2007 WO
2007114654 Oct 2007 WO
2008119216 Oct 2008 WO
2009026400 Feb 2009 WO
2009099752 Aug 2009 WO
2009125962 Oct 2009 WO
2009151989 Dec 2009 WO
2010017482 Feb 2010 WO
2010019524 Feb 2010 WO
2010067419 Jun 2010 WO
2011017700 Feb 2011 WO
2011018121 Feb 2011 WO
2011099802 Aug 2011 WO
2011100492 Aug 2011 WO
2011116824 Sep 2011 WO
2011155763 Dec 2011 WO
2012000278 Jan 2012 WO
2012001086 Jan 2012 WO
2012007837 Jan 2012 WO
2012024454 Feb 2012 WO
2012044111 Apr 2012 WO
2012044969 Apr 2012 WO
2012058600 May 2012 WO
2012061325 May 2012 WO
2012108807 Aug 2012 WO
2012108928 Aug 2012 WO
2012108976 Aug 2012 WO
2012130071 Oct 2012 WO
2013040089 Mar 2013 WO
2013166464 Nov 2013 WO
2013173809 Nov 2013 WO
2014055294 Apr 2014 WO
2014082048 May 2014 WO
2016037305 Mar 2016 WO
2016057304 Apr 2016 WO
Non-Patent Literature Citations (1165)
Entry
Non-Final Office Action, U.S. Appl. No. 14/611,565, dated Mar. 25, 2020, 5 pages.
Non-Final Office Action, U.S. Appl. No. 14/611,565, dated Nov. 5, 2021, 7 pages.
Non-Final Office Action, U.S. Appl. No. 14/672,014, dated Feb. 22, 2021, 12 pages.
Non-Final Office Action, U.S. Appl. No. 14/672,014, dated Jun. 8, 2020, 11 pages.
Non-Final Office Action, U.S. Appl. No. 15/181,383, dated Jun. 25, 2018, 7 pages.
Non-Final Office Action, U.S. Appl. No. 15/181,383, dated May 22, 2017, 48 pages.
Non-Final Office Action, U.S. Appl. No. 15/340,914, dated Aug. 8, 2019, 13 pages.
Non-Final Office Action, U.S. Appl. No. 15/340,914, dated Mar. 25, 2020, 15 pages.
Non-Final Office Action, U.S. Appl. No. 15/682,076, dated Jan. 28, 2019, 20 pages.
Non-Final Office Action, U.S. Appl. No. 15/682,076, dated May 27, 2020, 8 pages.
Non-Final Office Action, U.S. Appl. No. 15/792,610, dated Apr. 18, 2019, 147 pages.
Non-Final Office Action, U.S. Appl. No. 15/792,610, dated Apr. 29, 2020, 7 pages.
Non-Final Office Action, U.S. Appl. No. 15/792,610, dated Jan. 13, 2021, 8 pages.
Non-Final Office Action, U.S. Appl. No. 16/188,841, dated Jan. 22, 2020, 9 pages.
Non-Final Office Action, U.S. Appl. No. 16/208,895, dated Sep. 9, 2021, 7 pages.
Non-Final Office Action, U.S. Appl. No. 16/208,895, dated Apr. 26, 2019, 7 pages.
Non-Final Office Action, U.S. Appl. No. 16/208,895, dated Jan. 3, 2020, 7 pages.
Non-Final Office Action, U.S. Appl. No. 16/208,895, dated Jul. 28, 2020, 7 pages.
Non-Final Office Action, U.S. Appl. No. 16/253,028, dated Oct. 18, 2019, 10 pages.
Non-Final Office Action, U.S. Appl. No. 16/578,265, dated May 12, 2020, 8 pages.
Non-Final Office Action, U.S. Appl. No. 16/719,169, dated Feb. 4, 2021, 15 pages.
Non-Final Office Action, U.S. Appl. No. 17/100,875, dated Nov. 9, 2021, 10 pages.
Non-Final Office Action, U.S. Appl. No. 17/234,699, dated Jul. 15, 2021, 9 pages.
Non-Final Office Action, U.S. Appl. No. 17/308,031, dated Jul. 15, 2021, 12 pages.
Non-Final Office Action, U.S. Appl. No. 17/317,856, dated Jul. 19, 2021, 39 pages.
Non-Final Office Action, U.S. Appl. No. 17/361,252, dated Oct. 20, 2021, 10 pages.
Non-Final Office Action, U.S. Appl. No. 17/379,985, dated Aug. 26, 2021, 10 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,958, dated Jun. 23, 2014, 24 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,974, dated Aug. 1, 2013, 35 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,975, dated Aug. 14, 2013, 26 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,975, dated May 7, 2015, 25 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,988, dated Apr. 12, 2013, 45 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,988, dated Jun. 26, 2015, 17 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,988, dated Mar. 24, 2014, 11 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,989, dated Nov. 25, 2014, 17 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,989, dated Nov. 26, 2013, 27 pages.
Non-Final Office Action, U.S. Appl. No. 13/232,996, dated Apr. 11, 2013, 23 pages.
Non-Final Office Action, U.S. Appl. No. 13/232,996, dated Jun. 24, 2015, 15 pages.
Non-Final Office Action, U.S. Appl. No. 13/233,006, dated Apr. 1, 2016, 9 pages.
Non-Final Office Action, U.S. Appl. No. 13/233,006, dated Apr. 16, 2013, 9 pages.
Non-Final Office Action, U.S. Appl. No. 13/233,006, dated Apr. 28, 2017, 10 pages.
Non-Final Office Action, U.S. Appl. No. 13/233,006, dated Jul. 11, 2018, 29 pages.
Non-Final Office Action, U.S. Appl. No. 13/233,006, dated Jun. 4, 2015, 12 pages.
Non-Final Office Action, U.S. Appl. No. 13/233,006, dated Sep. 12, 2013, 6 pages.
Non-Final Office Action, U.S. Appl. No. 13/233,006, dated Sep. 24, 2014, 9 pages.
Non-Final Office Action, U.S. Appl. No. 13/461,682, dated Feb. 25, 2014, 37 pages.
Non-Final Office Action, U.S. Appl. No. 13/464,648, dated Feb. 14, 2014, 11 pages.
Non-Final Office Action, U.S. Appl. No. 13/475,598, dated Mar. 23, 2015, 14 pages.
Non-Final Office Action, U.S. Appl. No. 13/633,702, dated Dec. 17, 2013, 21 pages.
Non-Final Office Action, U.S. Appl. No. 13/844,355, dated Jan. 8, 2015, 23 pages.
Notice of Allowance, U.S. Appl. No. 11/256,478, dated Oct. 29, 2009, 16 pages.
Notice of Allowance, U.S. Appl. No. 11/894,362, dated Mar. 23, 2009, 10 pages.
Notice of Allowance, U.S. Appl. No. 11/894,362, dated Nov. 10, 2009, 5 pages.
Notice of Allowance, U.S. Appl. No. 11/894,362, dated Sep. 3, 2009, 12 pages.
Notice of Allowance, U.S. Appl. No. 11/894,394, dated Jun. 26, 2009, 7 pages.
Notice of Allowance, U.S. Appl. No. 11/894,394, dated Jul. 30, 2009, 14 pages.
Notice of Allowance, U.S. Appl. No. 11/894,394, dated Mar. 6, 2009, 11 pages.
Notice of Allowance, U.S. Appl. No. 11/894,540, dated Nov. 9, 2009, 5 pages.
Notice of Allowance, U.S. Appl. No. 11/894,540, dated Sep. 14, 2009, 13 pages.
Notice of Allowance, U.S. Appl. No. 12/143,503, dated Apr. 11, 2011, 9 pages.
Notice of Allowance, U.S. Appl. No. 12/143,503, dated Aug. 18, 2011, 12 pages.
Notice of Allowance, U.S. Appl. No. 12/143,503, dated Dec. 9, 2011, 11 pages.
Notice of Allowance, U.S. Appl. No. 12/637,643, dated Jan. 17, 2013, 11 pages.
Notice of Allowance, U.S. Appl. No. 12/802,938, dated Dec. 6, 2012, 37 pages.
Notice of Allowance, U.S. Appl. No. 12/802,938, dated Sep. 19, 2012, 8 pages.
Notice of Allowance, U.S. Appl. No. 12/802,975, dated Apr. 17, 2020, 12 pages.
Notice of Allowance, U.S. Appl. No. 12/802,975, dated Aug. 26, 2020, 14 pages.
Notice of Allowance, U.S. Appl. No. 12/802,976, dated Apr. 14, 2011, 8 pages.
Notice of Allowance, U.S. Appl. No. 12/802,976, dated Aug. 22, 2011, 8 pages.
Notice of Allowance, U.S. Appl. No. 12/802,976, dated Dec. 9, 2011, 11 pages.
Notice of Allowance, U.S. Appl. No. 12/802,976, dated Nov. 29, 2010, 6 pages.
Notice of Allowance, U.S. Appl. No. 12/802,988, dated Nov. 15, 2018, 11 pages.
Notice of Allowance, U.S. Appl. No. 12/917,257, dated Dec. 6, 2012, 8 pages.
Notice of Allowance, U.S. Appl. No. 12/917,257, dated Feb. 15, 2013, 18 pages.
Notice of Allowance, U.S. Appl. No. 13/232,996, dated Jan. 9, 2019, 11 pages.
Notice of Allowance, U.S. Appl. No. 13/232,996, dated Mar. 20, 2019, 10 pages.
Notice of Allowance, U.S. Appl. No. 13/233,006, dated Apr. 3, 2019, 19 pages.
Notice of Allowance, U.S. Appl. No. 13/233,006, dated Jul. 12, 2019, 12 pages.
Notice of Allowance, U.S. Appl. No. 13/233,006, dated May 30, 2019, 12 pages.
Notice of Allowance, U.S. Appl. No. 13/475,596, dated Oct. 19, 2015, 29 pages.
Notice of Allowance, U.S. Appl. No. 13/475,598, dated Oct. 19, 2015, 10 pages.
Notice of Allowance, U.S. Appl. No. 13/797,950, dated Apr. 16, 2018, 117 pages.
Notice of Allowance, U.S. Appl. No. 13/797,950, dated Aug. 2, 2018, 23 pages.
Notice of Allowance, U.S. Appl. No. 13/797,984, dated Jan. 17, 2018, 146 pages.
Notice of Allowance, U.S. Appl. No. 13/797,984, dated Oct. 19, 2017, 10 pages.
Notice of Allowance, U.S. Appl. No. 13/844,355, dated Dec. 16, 2019, 2 pages.
Notice of Allowance, U.S. Appl. No. 13/844,355, dated Oct. 21, 2019, 8 pages.
Notice of Allowance, U.S. Appl. No. 14/023,302, dated May 17, 2016, 5 pages.
Notice of Allowance, U.S. Appl. No. 14/156,254, dated Nov. 11, 2015, 29 pages.
Notice of Allowance, U.S. Appl. No. 14/672,014, dated Sep. 23, 2021, 11 pages.
Notice of Allowance, U.S. Appl. No. 15/057,002, dated Apr. 16, 2019, 11 pages.
Notice of Allowance, U.S. Appl. No. 15/057,002, dated Dec. 19, 2018, 68 pages.
Notice of Allowance, U.S. Appl. No. 15/181,383, dated Jan. 25, 2019, 87 pages.
Notice of Allowance, U.S. Appl. No. 15/181,383, dated Mar. 20, 2019, 10 pages.
Notice of Allowance, U.S. Appl. No. 15/201,276, dated Jan. 23, 2019, 29 pages.
Notice of Allowance, U.S. Appl. No. 15/201,276, dated May 28, 2019, 4 pages.
Notice of Allowance, U.S. Appl. No. 15/340,914, dated Dec. 2, 2020, 9 pages.
Notice of Allowance, U.S. Appl. No. 15/340,914, dated Mar. 15, 2021, 4 pages.
Notice of Allowance, U.S. Appl. No. 15/682,076, dated Jan. 14, 2021, 11 pages.
Notice of Allowance, U.S. Appl. No. 15/682,076, dated Mar. 24, 2021, 11 pages.
Bengtsson, M., “A Pragmatic Approach to Multi-User Spatial Multiplexing”, IEEE 2002, pp. 130-134.
Besson et al., “On parameter estimation of MIMO flat-fading channels with frequency offsets,” IEEE Transactions on Transaction, Signal Processing, see also Acoustics, Speech, and Signal Processing, vol. 51, No. 3, 2003, pp. 602-613.
Bhagavatula R., et al., “Sizing up MIMO Arrays,” IEEE Vehicular Technology Magazine, 2008, vol. 3 (4), pp. 31-38.
Bjornson et al., “Massive MIMO and Small Cells: Improving Energy Efficiency by Optimal Soft-Cell Coordination”, ICT, 2013, Wireless Communications Symposium, pp. 5442-5447.
Bjornson et al., Designing Multi-User MIMO for Energy Efficiency: When is Massive MIMO the Answer?, IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, Apr. 2014, 6 pages.
Blelloch, “Introduction to Data Compression”, Carnegie Mellon University Tech. Report, Sep. 2010, pp. 1-55.
Boche et al., “Analysis of Different Precoding decoding Strategies for Multiuser Beamforming”, IEEE Vehicular Technology Conference, 2003, vol. 1, pp. 39-43.
Boche H., et al., “A General Duality Theory for Uplink and Downlink Beamforming”, 2002, vol. 1, pp. 87-91.
Bourdoux et al., “Non-reciprocal transceivers in OFDM/SDMA systems: impact and mitigation”, IEEE, 2003, pp. 183-186.
Brodersen et al., “Degrees of Freedom in Multiple Antenna Channels: A Signal Space Approach,” IEEE Transactions on Information Theory, 2005, vol. 51, No. 2, pp. 523-536.
Bydon, “Silicon Valley Inventor's Radical Rewrite of Wireless”, The Wall Street Journal, Retrieved on Jul. 28, 2011, Available Online at <http:biogs.wsj.comdigits20110728silicon-valley-inventors-radical-rewrite-of-wireless>, 2 pages.
Caire et al., “On the Achievable Throughput of a Multiantenna Gaussian Broadcast Channel”, IEEE Transactions on Information Theory, Jul. 23, 2001, vol. 49, pp. 1-46.
Caire et al., “On the achievable throughput of a multiantenna Gaussian broadcast channel,” IEEE Transactions on Information Theory, vol. 49, No. 7, Jul. 2003, pp. 1691-1706.
Caire, “On Achivable Rates in a Multi-Antenna Broadcast Downlink,” IEEE Transactions on Information Theory, 2003, vol. 49, pp. 1691-1706.
Cannon et al., “Tomographical Imaging Using Uniformly Redundant Arrays,” Applied Optics, vol. 18 No. 7, 1979 pp. 1052-1057.
Catreux et al., “Adaptive Modulation and MIMO Coding for Broadband Wireless Data Networks,” IEEE Communications Magazine, 2002, vol. 2, pp. 108-115.
Cerato et al., Hardware implementation of low-complexity detector for large MIMO, in Proc. IEEE ISCAS'2009, Taipei, May 2009, pp. 593-596.
Cetiner et al., “A Reconfigurable Spiral Antenna for Adaptive MIMO Systems,” EURASIP Journal on Wireless Communications and Networking 2005:3, 382-389, plus International Journal of Digital Multimedia Broadcasting, Special Issue on: Audio Coding, Indexing, and Effects for Broadcasting Applications, Call for Papers Hindawi Publishing Corporation, http://www.hindawi.com, p. 1, and Special Issue on: Advances in 3DTV: Theory and Practice, Call for Papers Hindawi Publishing Corporation, http://www.hindawi.com, pp. 1.
Cetiner et al., “Multifunctional Reconfigurable MEMS Integrated Antennas for Adaptive MIMO Systems,” Adaptive Antennas and MIMO Systems for Wireless Systems, IEEE Communications Magazine, vol. 42, No. 12, Dec. 2004, pp. 62-70.
Chae et al., “Adaptive MIMO Transmission Techniques for Broadband Wireless Communication Systems”, IEEE Communications Magazine, 2010, vol. 48, No. 5, pp. 112-118.
Chae et al., “Coordinated Beamforming with Limited Feedback in the MIMO Broadcast Channel,” Special Issue on Exploiting Limited Feedback in Tomorrow's Wireless Comm. Networks, IEEE Journal on Selected Areas in Communications, 2008, vol. 26, No. 8, pp. 1505-1515.
Chandrasekaran et al., “Near-Optimal Large-MIMO Detection Using Randomized MCMC and Randomized Search Algorithms,” Proceeding in Institute of Electrical and Electronics Engineers International Conference on Communications, 2011, 5 pages.
Chapter 26—Electromagnetic-Wave Propagation, Reference Data for Radio Engineers, 5th Edition, Howard W. Sams & Co., Inc., 1973, pp. 1-32.
Chen et al., “Transmit selection diversity for unitary precoded multiuser spatial multiplexing systems with linear receivers”, IEEE Trans. on Signal Processing, 2005, pp. 1-30.
Chen et al., “Transmit Selection Diversity for Unitary Precoded Multiuser Spatial Multiplexing Systems with Linear Receivers”, IEEE Trans. on Signal Processing, 2007, vol. 55, No. 3, pp. 1159-1171.
Chen, R., “Multiuser Space-Time Block Coded MIMO System with Downlink,” IEEE Communications Society, 2004, pp. 2689-2693.
Chockalingam, A., “Low-Complexity Algorithms for Large-MIMO Detection,” International Symposium on Communications, Control and Signal Processing, 2010, 6 pages.
Choi et al., “A transmit preprocessing technique for multiuser MIMO systems using a decomposition approach,” IEEE Trans. Wireless Comm, 2004, vol. 3, No. 1, pp. 20-24.
Choi et al., “Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training with Memory,” IEEE Journal of Selected Topics in Signal Processing on Signal Processing for Large-Scale MIMO Communications, 2013, 13 pages.
Choi et al., “Noncoherent Trellis Coded Quantization: A Practical Limited Feedback Technique for Massive MIMO Systems,” Nov. 8, 2013, pp. 1-14.
Choi et al., “Opportunistic space division multiple access with beam selection,” IEEE Trans. on Communications, 2006, pp. 1-23.
Choi J., et al., “Interpolation Based Transmit Beamforming for MIMO-OFDM with Limited Feedback,” IEEE Transactions on Signal Processing, 2005, vol. 53 (11), pp. 4125-4135.
Choi J., et al., “Interpolation Based Unitary Precoding for Spatial Multiplexing MIMO-OFDM with Limited Feedback,” Global Telecommunications Conference 2004 (GLOBECOM '04), IEEE, Dec. 3, 2004, pp. 214-218.
Chu et al., “Polyphase codes with good periodic correlation properties (corresp.)”, IEEE Trans. Inform. Theory, vol. 18, No. 4, Jul. 1972, pp. 531-532.
Chuah C. N., et al.,“Capacity Scaling in MIMO Wireless Systems under Correlated Fading”, IEEE Trans. Inform. Theory, 2002, vol. 48 (3), pp. 637-650.
CMCC, “Discussion on CQI definition for non-PMI/RI reporting”, 3GPP TSG-RAN WG1 #70, R1-123739, Aug. 13-17, 2012, 6 pages.
Cohn et al., “Group-theoretic Algorithms for Matrix Multiplication”, IEEE Symposium on Foundations of Computer Science, 2005, pp. 379-388.
Communication pursuant to Article 94(3) EPC for Application No. EP13856705.2, dated Mar. 13, 2018, 6 pages.
Communication pursuant to Article 94(3) EPC for European U.S. Appl. No. 10/156,954, dated Jan. 25, 2017, 5 pages.
Communication pursuant to Article 94(3) EPC, EP App. No. 19189155.5, dated Apr. 9, 2021, 6 pages.
Coopersmith et al., “Matrix Multiplication via Arithmetic Progression”, Journal of Symbolic Computation, 1990, vol. 9, pp. 251-280.
Corrected Notice of Allowability, U.S. Appl. No. 15/057,002, dated Jun. 3, 2019, 11 pages.
Corrected Notice of Allowability, U.S. Appl. No. 16/188,841, dated Oct. 28, 2020, 7 pages.
Corrected Notice of Allowability, U.S. Appl. No. 16/436,864, dated Jul. 22, 2020, 2 pages.
Corrected Notice of Allowance, U.S. Appl. No. 13/797,950, dated Nov. 13, 2018, 16 pages.
Corrected Notice of Allowance, U.S. Appl. No. 13/797,984, dated Apr. 5, 2018, 12 pages.
Corrected Notice of Allowance, U.S. Appl. No. 13/797,984, dated Feb. 8, 2018, 4 pages.
Corrected Notice of Allowance, U.S. Appl. No. 14/086,700, dated Nov. 8, 2018, 104 pages.
Corrected Notice of Allowance, U.S. Appl. No. 15/792,610, dated Oct. 6, 2020, 4 pages.
Couillet et al., “A Deterministic Equivalent for the Analysis of Correlated MIMO Multiple Access Channels,” IEEE Trans. Inform. Theory, 2011, vol. 57, No. 6, pp. 3493-3514.
Spencer et al., “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Sig. Proc, 2004, vol. 52, pp. 461-471.
Srinidhi et al., “Layered Tabu Search Algorithm for Large-MIMO Detection and a Lower Bound on ML Performance,” IEEE Trans. Commun, 2010, 5 pages.
Stancil et al., “Doubling wireless channel capacity using co-polarised, co-located electric and magnetic dipoles”, Electronics Letters, 2002, vol. 38, No. 14, pp. 746-747.
Stanley M., “Mobile Data Wave: Who Dares to Invest, Wins,” Jun. 13, 2012, 23 pages.
Sternad M., et al., “Channel Estimation and Prediction for Adaptive OFDM Downlinks [Vehicular Applications],” in Proceeding IEEE Vehicular Technology Conference, vol. 2, Oct. 2003, pp. 1283-1287.
Stevanovic et al., “Smart Antenna Systems for Mobile Communications”, Final Report, Laboratoire d'Electromagnetisme et d'Acoustique, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne Suisse, Jan. 2003, 120 pages.
Stoytchev et al., “Compact antenna arrays for MIMO applications,” IEEE Proc. IEEE Antennas and Prop. Symp., 2001, vol. 3, pp. 708-711.
Strangeways H., “Determination of the Correlation Distance for Spaced Antennas on Multipath HF Links and Implications for Design of SIMO and MIMO Systems,” School of Electronic and Electrical Engineering, University of Leeds, IEEE First European Conf. on Antennas and Prop., 2005, 12 pages.
Strangways H.J., “Investigation of signal correlation for spaced and co-located antennas on multipath HF links and implications for the design of SIMO and MIMO system,” IEEE First European Conf. on Antennas and Propagation (EuCAP 2006), Nov. 2006, pp. 1-6.
Strohmer et al., “Application of Time-Reversal with MMSE Equalizer to UWB Communications”, Proc. of IEEE Globecom, vol. 5, Nov. 2004, pp. 3123-3127.
Studer et al., “PAR-Aware Large-Scale Multi-User MIMO-OFDM Downlink”, IEEE J. Sel. Areas Commun., Sep. 4, 2012, vol. 31, No. 2, pp. 303-313.
Sulonen et al. “Comparison of MIMO Antenna Configurations in Picocell and Microcell Environments,” IEEE Journal on Selected Areas in Communications, 2003, vol. 21, No. 5, pp. 703-712.
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 12762167.0, Nov. 29, 2017, 8 pages.
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 13784690.3, Jul. 6, 2020, 5 pages.
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 13843203.4, Dec. 21, 2020, 9 pages.
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 13856705.2, Nov. 5, 2018, 7 pages.
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 14779084.4, Nov. 29, 2019, 9 pages.
Summons to attend oral proceedings, EP App. No. 10156954.9, Jan. 30, 2019, 8 pages.
Supplemental Notice of Allowability, U.S. Appl. No. 12/802,975, dated Oct. 28, 2020, 2 pages.
Supplemental Notice of Allowability, U.S. Appl. No. 15/340,914, dated Jan. 13, 2021, 5 pages.
Supplemental Notice of Allowance, U.S. Appl. No. 12/802,958, dated Dec. 3, 2018, 11 pages.
Supplementary European Search Report, EP App. No. 13790935, dated Dec. 1, 2015, 9 pages.
Supplementary Partial European Search Report and Search Opinion, EP App No. 17864744.2, dated May 13, 2020, 16 pages.
Supplementary Partial European Search Report, EP App. No. 11838640.8, dated Mar. 2, 2017, 13 pages.
Supplementary Partial Search Report, EP App. No. EP14770916, dated Oct. 21, 2016, 6 pages.
Supplementary Search Report, EP App. No. 05733294, dated Apr. 5, 2012, 4 pages.
Suraweera et al., Multi-Pair Amplify-and-Forward Relaying with Very Large Antenna Arrays, Proceedings in IEEE International Conference on Communications (ICC), Budapest, Hungary, Jun. 2013, 7 pages.
Suthisopapan et al., “Near Capacity Approaching Capacity of Large MIMO Systems by Non-Binary LDPC Codes and MMSE Detection”, in Proc. of the IEEE International Symposium on Information Theory, Mar. 2012, 7 pages.
Suzuki et al., Large-scale multiple antenna fixed wireless systems for rural areas, Proceedings in IEEE PIMRC, Sep. 2012, 6 pages.
Suzuki H., et al., Highly Spectrally Efficient Ngara Rural Wireless Broadband Access Demonstrator, Proceedings in IEEE International Symposium on Communications and Information Technologies (ISCIT), Oct. 2012, 6 pages.
Svac et al., Soft-Heuristic Detectors for Large MIMO Systems, IEEE Trans. Signal Processing, 2013, vol. 61, No. 18, pp. 4573-4586.
Svantesson T., et al., “Analysis of Electromagnetic Field Polarizations in Multiantenna Systems,” IEEE Transactions on Wireless Communications, vol. 3 (2), Mar. 2004, pp. 641-646.
Svantesson T., et al., “On Capacity and Correlation of Multi-Antenna Systems Employing Multiple Polarizations,” IEEE Antennas and Propagation Society, 2002, vol. 3, pp. 202-205.
Takeuchi et al., “On an Achievable Rate of Large Rayleigh Block-Fading MIMO Channels with No CSI,” IEEE Transactions on Information Theory, 2011, 47 pages.
Taluja et al., Diversity Limits of Compact Broadband Multi-Antenna Systems, IEEE J. Sel. Areas Communication, 2013, vol. 31, No. 2, pp. 326-337.
Tang et al., “Joint frequency offset estimation and interference cancellation for MIMO-OFDM systems [mobile radio],” 2004 IEEE 60th Vehicular Technology Conference, VTC2004-Fal, 2004, vol. 3, pp. 1553-1557.
Tanumay et al., “A Novel Monte-Carlo-Sampling-Based Receiver for Large-Scale Uplink Multiuser MIMO Systems,” IEEE Transactions on Vehicular Technology, 2013, vol. 62, No. 7, pp. 3019-3038.
Taricco et al., “Asymptotic Mutual Information Statistics of Separately-Correlated Rician Fading MIMO Channels,” IEEE Trans. Inform. Theory, Aug. 2008, vol. 54, No. 8, pp. 3490-3504.
Tarighat et al., “Compensation schemes and performance analysis of IQ imbalances in OFDM receivers,” IEEE Signal Processing, Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 2005, vol. 53, pp. 3257-3268.
Tarighat et al., “MIMO OFDM receivers for systems with IQ imbalances,” IEEE Trans. Sig. Pro, for orthogonal space-time block codes (OSTBC), 2005, vol. 53, pp. 3583-3596.
Tarokh et al., “Space-time block codes from orthogonal designs,” IEEE Trans. Info, vol. 45, 1999, pp. 1456-1467.
Tarokh et al., “Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction,” IEEE Transactions on Information Theory, 1998, vol. 44, pp. 744-765.
Teletar I. E., “Capacity of Multi-antenna Gaussian Channels”, European Transactions on Telecommunications, vol. 10, Nov. 1999, pp. 1-28.
Teukolsky S. A., “Numerical Recipes in C: The Art of Scientific Computing”, Cambridge University Press, 1992, 949 pages.
Texas Instruments, “Aspects of Coordinated Multi-Point Transmission for Advanced E-UTRA,” Nov. 11-15, 2008, 3GPP TSG RAN WG1 #55, R1-084444, 5 pages.
The White House, “Presidential Memorandum: Unleashing the Wireless Broadband Revolution”, [retrieved on Jun. 28, 2010] Retrieved from the Internet: URL: http://www.whitehouse.gov/the-press-office/presidential-memorandum-unleashing-wireless-broadband-revolution.
Third Office Action, Chinese Patent App. No. 201280044869.5, dated Aug. 31, 2017, 15 pages.
Third Office Action, CN App. No. 201480016091.6, dated Jul. 10, 2019, 5 pages (2 pages of English Translation and 3 pages of Original Document).
Third Office Action, MX App. No. MX/a/2014/013795, dated Jul. 27, 2016, 6 pages.
Tomlinson M., “New Automatic Equaliser Employing Modulo Arithmetic,” Electronics Letters, 1971, vol. 7 (5/6), pp. 138-139.
Notice of Allowance, U.S. Appl. No. 15/792,610, dated Jul. 13, 2021, 10 pages.
Notice of Allowance, U.S. Appl. No. 15/792,610, dated Nov. 3, 2021, 2 pages.
Notice of Allowance, U.S. Appl. No. 15/792,610, dated Oct. 2, 2020, 7 pages.
Notice of Allowance, U.S. Appl. No. 15/792,610, dated Oct. 26, 2021, 2 pages.
Notice of Allowance, U.S. Appl. No. 16/188,841, dated Sep. 10, 2020, 9 pages.
Notice of Allowance, U.S. Appl. No. 16/253,028, dated Dec. 27, 2019, 10 pages.
Notice of Allowance, U.S. Appl. No. 16/436,864, dated Jun. 11, 2020, 5 pages.
Notice of Allowance, U.S. Appl. No. 16/578,265, dated Mar. 31, 2021, 7 pages.
Notice of Allowance, U.S. Appl. No. 16/719,169, dated Jun. 17, 2021, 8 pages.
Notice of Allowance, U.S. Appl. No. 16/719,169, dated Jun. 30, 2021, 2 pages.
Notice of Allowance, U.S. Appl. No. 16/719,169, dated Sep. 16, 2021, 2 pages.
Notice of Allowance, U.S. Appl. No. 17/234,699, dated Jul. 28, 2021, 7 pages.
Notice of Allowance, U.S. Appl. No. 17/308,031, dated Aug. 4, 2021, 7 pages.
Notice of Allowance, U.S. Appl. No. 17/317,856, dated Oct. 1, 2021, 2 pages.
Notice of Allowance, U.S. Appl. No. 17/317,856, dated Sep. 9, 2021, 8 pages.
Notice of Allowance, U.S. Appl. No. 17/317,856, dated Sep. 23, 2021, 8 pages.
Notice of Allowance, U.S. Appl. No. 17/361,252, dated Nov. 18, 2021, 14 pages.
Notice of Allowance, U.S. Appl. No. 12/630,627, dated Sep. 25, 2013, 11 pages.
Notice of Allowance, U.S. Appl. No. 12/802,938, dated Apr. 4, 2013, 16 pages.
Notice of Allowance, U.S. Appl. No. 12/802,938, dated May 24, 2013, 10 pages.
Notice of Allowance, U.S. Appl. No. 12/802,974, dated Feb. 28, 2017, 15 pages.
Notice of Allowance, U.S. Appl. No. 12/802,974, dated Jun. 30, 2017, 89 pages.
Notice of Allowance, U.S. Appl. No. 12/802,974, Oct. 4, 2017, 17 pages.
Notice of Allowance, U.S. Appl. No. 12/802,974, dated Sep. 29, 2016, 5 pages.
Notice of Allowance, U.S. Appl. No. 12/802,974, dated Sep. 13, 2016, 43 pages.
Notice of Allowance, U.S. Appl. No. 12/802,988, dated Sep. 25, 2018, 96 pages.
Notice of Allowance, U.S. Appl. No. 12/802,989, dated Jun. 27, 2017, 121 pages.
Notice of Allowance, U.S. Appl. No. 12/917,257, dated May 31, 2013, 12 pages.
Notice of Allowance, U.S. Appl. No. 13/232,996, dated Oct. 12, 2016, 5 pages.
Notice of Allowance, U.S. Appl. No. 13/232,996, dated Oct. 26, 2016, 4 pages.
Notice of Allowance, U.S. Appl. No. 13/461,682, dated Oct. 2, 2014, 10 pages.
Notice of Allowance, U.S. Appl. No. 13/464,648, dated Aug. 14, 2015, 21 pages.
Notice of Allowance, U.S. Appl. No. 13/464,648, dated Aug. 25, 2015, 4 pages.
Notice of Allowance, U.S. Appl. No. 13/464,648, dated Feb. 23, 2016, 15 pages.
Notice of Allowance, U.S. Appl. No. 13/464,648, dated Nov. 30, 2015, 12 pages.
Notice of Allowance, U.S. Appl. No. 13/464,648, dated Sep. 19, 2014, 5 pages.
Notice of Allowance, U.S. Appl. No. 13/464,648, dated Apr. 24, 2015, 23 pages.
Notice of Allowance, U.S. Appl. No. 13/464,648, dated Jan. 9, 2015, 11 pages.
Notice of Allowance, U.S. Appl. No. 13/475,598, dated Feb. 14, 2017, 41 pages.
Notice of Allowance, U.S. Appl. No. 13/633,702, dated Aug. 15, 2014, 11 pages.
Notice of Allowance, U.S. Appl. No. 13/633,702, dated Jan. 6, 2015, 27 pages.
Notice of Allowance, U.S. Appl. No. 13/797,971, dated Jan. 29, 2018, 15 pages.
Notice of Allowance, U.S. Appl. No. 13/797,971, dated May 4, 2017, 8 pages.
Notice of Allowance, U.S. Appl. No. 13/797,971, dated Oct. 18, 2017, 144 pages.
Notice of Allowance, U.S. Appl. No. 14/023,302, dated Apr. 27, 2016, 3 pages.
Notice of Allowance, U.S. Appl. No. 14/023,302, dated Feb. 5, 2016, 27 pages.
Notice of Allowance, U.S. Appl. No. 14/023,302, dated Oct. 9, 2015, 5 pages.
Notice of Allowance, U.S. Appl. No. 14/086,700, dated Feb. 28, 2018, 5 pages.
Notice of Allowance, U.S. Appl. No. 14/086,700, dated May 18, 2018, 21 pages.
Notice of Allowance, U.S. Appl. No. 14/086,700, dated Sep. 28, 2018, 21 pages.
Pitarokoilis, “Effect of Oscillator Phase Noise on Uplink Performance of Large MU-MIMO Systems,” in Proc. of the 50th Annual Allerton Conference on Communication, Control, and Computing, Oct. 2012, 9 pages.
Pohl et al., “Antenna spacing in MIMO indoor channels”, Proc. IEEE Veh. Technol. Conf., vol. 2,, Jun. 2002, pp. 749-753.
Pollock et al., “Antenna Saturation Effects on MIMO Capacity,” IEEE International Conference on Communications, 2003, vol. 4, pp. 2301-2305.
Ponnampalam et al., “On DL Preceding for 11ac”, IEEE 802.11-10/01119r0, Medialek, Sep. 2010, 8 pages.
Preliminary Report on Patentability and Written Opinion, App. No. PCT/US2014/025105, dated Sep. 24, 2015, 10 pages.
Proakis J., “Digital Communications Fourth edition,” 2001, pp. 9, Department of Electrical and Computer Engineering, Northeastern University, ISBN 0-07-232111-3, Cover page, Title page, Table of Contents.
Qian, “Partially Adaptive Beamforming for Correlated Interference Rejection”, IEEE Trans. on Sign. Proc., 1995, vol. 43, No. 2, pp. 506-515.
Qibi, “A Forward Link Performance Study of the 1 xEV-DO Rev. 0 System Using Field Measurements and Simulations,” Lucent Technologies. Retrieved from the Internet: http://www.cdg.org/resources/white%5Fpapers/files/white_papers/files/Luce-nt%201xEV-DO%20Rev%200%20Mar%2004.pdf, Mar. 2004, 19 pages.
Qualcomm Incorporated, “Definition of Virtual Antenna Mapping (VAM) and Applicability of S-CPICH Power Accuracy Requirement”, 3GPP TSG-WG4 Meeting 58Ad hoc #Jan. 2011, R4-112408, Apr. 11-15, 2011, 6 pages.
Qualcomm, “The 1000x data challenge, the latest on wireless, voice, services and chipset evolution”, 4G World, Oct. 31, 2012 61 pages submitted as Parts 1-3.
Rao et al., “I/Q mismatch cancellation for MIMO-OFDM systems”, In Personal, Indoor and Mobile Radio Communications, PIMRC 2004. 15th IEEE International Symposium on, vol. 4, 2004, pp. 2710-2714.
Rao et al., “Multi-antenna testbeds for research and education in wireless communications”, IEEE Communications Magazine, vol. 42, No. 12, Dec. 2004, pp. 72-81.
Rapajic et al., Information Capacity of Random Signature Multiple-Input Multiple Output Channel, IEEE Trans. Commun., 2000, vol. 48, No. 8, pp. 1245-1248.
Rappaport, T, Wireless Communications, Principles and Practice, Second Edition, Prentice Hall, 2002, ISBN 0-13-042232-0, Cover page, Title page, Table of Contents, 13 pages.
Ravindran N., et al., “MIMO Broadcast Channels with Block Diagonalization and Finite Rate Feedback”, IEEE, ICASSP Apr. 2007, pp. 111-113-111-16.
Reconfigurable Radio Systems (RRS), Radio Base Station (RBS), Software Defined Radio (SOR), Status Implementations and Costs Aspects Including Future Possibilities, Technical Report, ETSI, No. V1.1.1, 2009, 24 pages.
Rejection Decision, JP Patent App. No. JP2014264325, dated Oct. 3, 2016, 7 pages.
Requirement for Restriction/Election, U.S. Appl. No. 15/792,610, dated Nov. 29, 2018, 7 pages.
Requirement for Restriction/Election, U.S. Appl. No. 15/792,610, dated Jun. 11, 2018, 6 pages.
Riegler et al., “Asymptotic Statistics of the Mutual Information for Spatially Correlated Rician Fading MIMO Channels with Interference”, IEEE Trans. Inform. Theory, 2010, vol. 56, No. 4, pp. 1542-1559.
Robinson, S., “Toward an Optimal Algorithm for Matrix Multiplication,” Nov. 2005, vol. 38, No. 9, 3 pages.
Ruckus wireless, “Long-range 802.11 n Wi-Fi point-to-pointmultipoint backhaul,” Sep. 4, 2015, 2 pages, Retrieved from the Internet:< URL: http:www. ruckuswi reless. comproductszaneflex -outdoor7731>.
Rusek et al., “Scaling up MIMO: Opportunities and Challenges with Very Large Arrays”, IEEE Signal Proces. Mag., Jan. 2012, vol. 30, No. 1, pp. 1-30.
Rysavy P., “No silver bullets for FCC, NTIA spectrum challenge”, Daily report for executives, Bloomberg BNA, Aug. 2012, pp. 1-4, http://www.rysavy.com/Articles/2012 09 No Spectrum Silver Bullets.pdf.
Saleh et al.,“A Statistical Model for Indoor Multipath Propagation”, Institute of Electrical and Electronics Engineers Journal on Selected Areas in Communications, 1987, vol. SAC-5 (2), pp. 128-137.
Samsung, “Discussion on open-loop CoMP schemes”, 3GPP TSG RAN WG1 #58, R1-093377, 3rd Generation Partnership Project, (3GPP), Aug. 24-28, 2009, pp. 1-4.
Schafhuber D et al., “MMSE and Adaptive Prediction of Time-Varying Channels for OFDM Systems”, IEEE Trans. Wireless Commun., 2005, vol. 4, No. 2, pp. 593-602.
Schmidl et al., “Robust frequency and timing synchronization for OFDM”, IEEE Trans. Commun., vol. 45, No. 12, Dec. 1997, pp. 1613-1621.
Schubert M., et al., “Joint ‘Dirty Paper’ Pre-Coding and Downlink Beamforming,” Spread Spectrum Techniques and Applications, 2002 IEEE Seventh International Symposium, Dec. 2002, vol. 2, pp. 536-540.
Schuchert et al., “A novel I/O imbalance compensation scheme for the reception of OFDM signals,” IEEE Transaction on Consumer Electronics, 2001, pp. 313-318.
Search Report and Written Opinion, BR App. No. 112015012165-9, dated Jul. 16, 2021, 8 pages (4 pages of English Translation and 4 pages of Original Document).
Second Examination Report, AU App. No. 2017210619, dated May 31, 2019, 4 pages.
Second Office Action and Search Report, Chinese Patent App. No. 201180061132.X, dated Mar. 11, 2016, 11 pages.
Second Office Action and Search report, Chinese Patent App. No. 201280044869.5, dated Jan. 17, 2017, 19 pages.
Second Office Action and Search Report, CN App. No. 201580007666.2, dated Jul. 30, 2019, 8 pages (4 pages of English Translation and 4 pages of Original Document).
Second Office Action, CN App. No. 201780066182.4, dated May 7, 2021, 13 pages (9 pages of English Translation and 4 pages of Original Document).
Second Office Action, MX App. No. MX/a/2014/013795, dated Feb. 3, 2016, 7 pages.
Second Office Action, ON App. No. 201780066182.4, dated May 7, 2021, 13 pages (9 pages of English Translation and 4 pages of Original Document).
Serpedin et al., “Blind channel and carrier frequency offset estimation using periodic modulation precoders”, Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], vol. 48, No. 8, Aug. 2000, pp. 2389-2405.
Sharif et al., “On the capacity of MIMO broadcast channel with partial side information,” IEEE Trans. Info. Th, Feb. 2005, vol. 51, No. 2, pp. 506-522.
Shen et al., “Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization,” IEEE Transactions on Signal Processing, 2005, pp. 1-12.
Shen Z., et al., “Sum capacity of multiuser MIMO broadcast channels with block diagonalization,” IEEE Trans. Wireless Comm, 2005, 5 pages.
Shepard C., Argos: Practical Many-Antenna Base Stations, in Proc. ACM Int. Conf. Mobile Computing and Networking (MobiCom), Aug. 2012, 12 pages.
Shepard C., ArgosV2: A Flexible Many-Antenna Research Platform, Extended Abstract for demonstration in Proc. ACM Int. Conf. Mobile Computing and Networking (MobiCom), Oct. 2013, 3 pages.
Shi et al., “Coarse frame and carrier synchronization of OFDM systems: a new metric and comparison”, IEEE Trans. Wireless Commun., vol. 3, No. 4, Jul. 2004, pp. 1271-1284.
Shiu et al., “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans. Comm, 2000, vol. 48, No. 3, pp. 502-513.
Shuangqing Wei et al., “On the Asymptoticcapacity of Mimo Systems With Fixed Length Linear Antenna Arrays,” IEEE International Conference on Communications, 2003, vol. 4, pp. 2633-2637.
Simon et al., “Digital Communication Over Fading Channels”, A Unified Approach to Performance Analysis, Wiley Series in Telecommunications and Signal Processing, 2000, 10 pages.
Simon et al., “Optimizing MIMO Antenna Systems with Channel Covariance Feedback,” IEEE Journal on Selected Areas in Communications, 2003, vol. 2003, pp. 406-417.
Spencer et al., “Adaptive Antennas and MIMO Systems for Wireless Communications—An Introduction to the Multi-User MIMI Downlink”, IEEE Communications Magazine, Oct. 2004, pp. 60-67.
Wong et al., “Long Range Channel Prediction for Adaptive OFDM Systems,” Proceedings IEEE Asilomar Conf. on Signals, Systems, and Computers, vol. 1, Nov. 7-10, 2004, pp. 723-736.
Wong et al., “Performance Enhancement of Multiuser MIMO Wireless Communication Systems,” IEEE Transactions On Communications, vol. 50, No. 12, Dec. 2002, pp. 1960-1970.
Written Opinion, BR App. No. 112014027631-5, Jun. 18, 2020, 4 pages of Original document only.
Written Opinion, BR App. No. 112014028207, Jul. 21, 2021, 10 pages (5 pages of English Translation and 5 pages of Original document).
Written Opinion, BR App. No. 112015022911-5, Jul. 22, 2020, 4 pages of Original Document Only.
Written Opinion, BR App. No. 112015023223-0, Jul. 22, 2020, 5 pages of Original Document Only.
Wu et al., “Approximate Matrix Inversion for High-Throughput Data Detection in the Large-scale MIMO Uplink,” IEEE International Symposium on Circuits and Systems (ISCAS), May 2013, pp. 2155-2158.
Xiao et al., “A Comparative Study of MIMO Capacity with Different Antenna Topologies,” IEEE ICCS'02, vol. 1, Nov. 2002, pp. 431-435.
Xu J., “LTE-Advanced Signal Generation and Measurements using SystemVue,” Agilent Technologies, Dec. 23, 2010, 46 pages.
Yang et al., “On the Capacity of Large-MIMO Block-Fading Channels,” IEEE Journal on Selected Areas in Communications, vol. 31, No. 2, Feb. 2012, pp. 117-132.
Yin et al., “A Coordinated Approach to Channel Estimation in Large-scale Multiple-antenna Systems”, IEEE Journal on Selected Areas in Communications, vol. 31, No. 2, Mar. 2012, pp. 264-273.
Yin et al., “Full-Duplex in Large-Scale Wireless System,” Proceeding of the Asilomar Conference on Signals, Systems and Computers, Nov. 2013, 5 pages.
Yin et al., “Implementation trade-offs for linear detection in large-scale MIMO systems,” Proceeding Institute of Electrical and Electronics Engineers International Conference on Acoustics Speech, and Signal Processing, May 2013, 5 pages.
Yoo et al., “Multi-Antenna Downlink Channels with Limited Feedback and User Selection,” IEEE Journal on Selected Areas In Communications, Sep. 2007, vol. 25, No. 7, pp. 1478-1491.
Yoshida, Susumu, “Coherent Coordinated Multipoint Transmission Techniques for Wireless Distributed Networks”, Kyoto University, Available Online at <www.soumu.go.jp/main_content/000256555.pdf>, 2013, 5 pages (3 pages of English Translation and 2 pages of Original Document).
Yu et al., “Sum Capacity of Gaussian Vector Broadcast Channels”, IEEE Transactions on Information Theory, vol. 50, No. 9, Sep. 2004, pp. 1875-1892.
Yu et al., “Trellis Precoding for the Broadcast Channel,” IEEE GLOBECOM, 2001, vol. 2, pp. 1344-1348.
Zaidel et al., “Vector Precoding for Gaussian MIMO Broadcast Channels: Impact of Replica Symmetry Breaking”, Institute of Electrical and Electronics Engineers Transactions on Information Theory, Mar. 2012, vol. 58, No. 3, pp. 1413-1440.
Zakhour et al., “Min-Max Fair Coordinated Beamforming via Large Systems Analysis,”, in Proc. of the IEEE International Symposium on Information Theory, St. Petersburg, Jul. 2011, pp. 1990-1994.
Zamir et al., “Capacity and lattice-strategies for cancelling known interference,” Proceedings of International Symposium on Information Theory, Honolulu, Hawaii, Nov. 2000, pp. 1-32.
Zetterberg, Per, “Experimental Investigation of TDD Reciprocity based Zero-Forcing Transmit Precoding”, EURASIP Journal on Advances in Signal Processing, vol. 2011, Article ID 137541, Jun. 2010, 11 pages.
Zhang et al. “On Capacity of Large-Scale MIMO Multiple Access Channels with Distributed Sets of Correlated Antennas,” IEEE Journal on Selected Areas in Communications, Sep. 26, 2012, vol. 31, No. 2, pp. 1-52.
Zhang et al., “Cochannel Interference Mitigation and Cooperative Processing in Downlink Multicell Multiuser MIMO Networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2004, No. 2, Jul. 2004, pp. 222-235.
Zhang et al., “Coordinated Multi-Cell MIMO Systems With Cellular Block Diagonalization”, IEEE 2007, pp. 1669-1673.
Zhang et al., “Electromagnetic Lens-focusing Antenna Enabled Massive MIMO”, Jun. 6, 2013, pp. 1-7.
Zhang et al., “Hermitian Precoding for Distributed MIMO Systems with Individual Channel State Information,” IEEE Journal on Selected Areas in Communications, 2013, vol. 31, No. 2, pp. 241-250.
Zhang et al., “Networked MIMO with Clustered Linear Precoding”, IEEE Transactions on Wireless Communications, vol. 8, No. 4, Apr. 2009, pp. 1910-1921.
Zheng et al., “Diversity and multiplexing: a fundamental tradeoff in multiple antenna channels,” IEEE Trans. Info. Th., 2003, vol. 49, No. 5, pp. 1073-1096.
Zhou et al., “An Improved LR-aided K-Best Algorithm for MIMO Detection,” in Proc. IEEE International Conference on Wireless Communications and Signal Processing (WCSP), Oct. 2012, 5 pages.
Zhuang et al., “Channel models for link and system level simulations”, IEEE 802.16 Broadband Wireless Access Working Group, Sep. 2004, 15 pages.
Zogg et al., “Multipath Delay Spread in a Hilly Region at 210 MHz”, IEEE Transactions on Vehicular Technology, vol. VT-36, No. 4, Nov. 1987, pp. 184-187.
Zou et al., “Li Reducing the Complexity of Quasi-Maximum-Likelihood Detectors Through Companding for Coded MIMO Systems,” IEEE Transactions on Vehicular Technology, Mar. 2012, vol. 2012, pp. 1109-1123.
Zyren J., “Overview on the 3GPP Long Term Evolution Physical Layer,” Freescale White Paper, Jul. 2007, 27 pages.
Non-Final Office Action, U.S. Appl. No. 11/256,478, dated Sep. 19, 2008, 14 pages.
Non-Final Office Action, U.S. Appl. No. 11/894,362, dated Oct. 29, 2008, 17 pages.
Non-Final Office Action, U.S. Appl. No. 11/894,394, dated Oct. 28, 2008, 13 pages.
Non-Final Office Action, U.S. Appl. No. 11/894,540, dated Apr. 29, 2009, 8 pages.
Non-Final Office Action, U.S. Appl. No. 11/894,540, dated Oct. 29, 2008, 13 pages.
Non-Final Office Action, U.S. Appl. No. 12/143,503, dated Dec. 9, 2010, 15 pages.
Non-Final Office Action, U.S. Appl. No. 12/630,627, dated Aug. 22, 2012, 23 pages.
Non-Final Office Action, U.S. Appl. No. 12/630,627, dated Mar. 16, 2011, 5 pages.
Non-Final Office Action, U.S. Appl. No. 12/637,643, dated Jun. 7, 2012, 25 pages.
Non-Final Office Action, U.S. Appl. No. 12/637,643, dated Sep. 23, 2011, 18 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,958, dated Aug. 13, 2015, 22 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,958, dated Jan. 16, 2018, 118 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,958, dated Nov. 4, 2016, 19 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,958, dated Nov. 21, 2012, 17 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,974, dated Apr. 24, 2015, 27 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,974, dated Dec. 19, 2012, 7 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,975, dated Aug. 1, 2013, 21 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,975, dated Dec. 19, 2012, 16 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,975, dated Jan. 14, 2019, 112 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,975, dated Jul. 1, 2016, 21 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,975, dated Sep. 14, 2017, 23 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,988, dated Apr. 17, 2012, 10 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,988, dated Aug. 15, 2016, 19 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,988, dated Sep. 15, 2017, 11 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,989, dated Jun. 14, 2012, 10 pages.
Non-Final Office Action, U.S. Appl. No. 12/802,989, dated Mar. 30, 2016, 35 pages.
Non-Final Office Action, U.S. Appl. No. 13/232,996, dated Jun. 20, 2016, 30 pages.
Non-Final Office Action, U.S. Appl. No. 13/232,996, dated Mar. 21, 2014, 9 pages.
Non-Final Office Action, U.S. Appl. No. 13/232,996, dated Nov. 5, 2018, 36 pages.
Non-Final Office Action, U.S. Appl. No. 13/232,996, dated Sep. 21, 2017, 15 pages.
Non-Final Office Action, U.S. Appl. No. 13/464,648, dated Feb. 12, 2013, 12 pages.
Non-Final Office Action, U.S. Appl. No. 13/475,598, dated Dec. 30, 2013, 16 pages.
Non-Final Office Action, U.S. Appl. No. 13/797,950, dated Jan. 11, 2017, 65 pages.
Non-Final Office Action, U.S. Appl. No. 13/797,950, dated May 11, 2015, 61 pages.
Non-Final Office Action, U.S. Appl. No. 13/797,971, dated May 11, 2015, 52 pages.
Non-Final Office Action, U.S. Appl. No. 13/797,971, dated Oct. 4, 2016, 56 pages.
Non-Final Office Action, U.S. Appl. No. 13/797,984, dated Feb. 28, 2017, 13 pages.
Non-Final Office Action, U.S. Appl. No. 13/797,984, dated Jan. 14, 2016, 14 pages.
Non-Final Office Action, U.S. Appl. No. 13/797,984, dated Jan. 29, 2015, 15 pages.
Non-Final Office Action, U.S. Appl. No. 13/844,355, dated Apr. 18, 2016, 21 pages.
Non-Final Office Action, U.S. Appl. No. 13/844,355, dated Aug. 27, 2018, 39 pages.
Non-Final Office Action, U.S. Appl. No. 13/844,355, dated Jun. 30, 2017, 159 pages.
Non-final Office Action, U.S. Appl. No. 13/844,355, dated Mar. 21, 2019, 31 pages.
Non-Final Office Action, U.S. Appl. No. 14/023,302, dated Jun. 11, 2015, 8 pages.
Non-Final Office Action, U.S. Appl. No. 14/086,700, dated Mar. 4, 2016, 10 pages.
Non-Final Office Action, U.S. Appl. No. 14/086,700, dated May 25, 2017, 12 pages.
Non-Final Office Action, U.S. Appl. No. 14/156,254, dated Sep. 11, 2014, 44 pages.
Non-Final Office Action, U.S. Appl. No. 14/611,565, dated Apr. 19, 2018, 141 pages.
Non-Final Office Action, U.S. Appl. No. 14/611,565, dated Apr. 4, 2019, 35 pages.
Non-Final Office Action, U.S. Appl. No. 14/611,565, dated Feb. 26, 2021, 11 pages.
Non-Final Office Action, U.S. Appl. No. 14/023,302, dated Jul. 17, 2014, 37 pages.
Non-Final Office Action, U.S. Appl. No. 14/086,700, dated Apr. 2, 2015, 12 pages.
Non-Final Office Action, U.S. Appl. No. 14/611,565, dated Aug. 31, 2015, 21 pages.
Non-Final Office Action, U.S. Appl. No. 14/611,565, dated Mar. 14, 2017, 23 pages.
Non-Final Office Action, U.S. Appl. No. 14/672,014, dated Dec. 30, 2016, 7 pages.
Non-Final Office Action, U.S. Appl. No. 14/672,014, dated Jun. 14, 2018, 129 pages.
Non-Final office action, U.S. Appl. No. 15/057,002, dated Oct. 23, 2017, 60 pages.
Non-Final Office Action, U.S. Appl. No. 15/201,276, dated Jan. 25, 2018, 77 pages.
Non-Final Office Action, U.S. Appl. No. 15/201,276, dated Mar. 1, 2017, 107 pages.
Non-Final Office Action, U.S. Appl. No. 15/340,914, dated Apr. 25, 2018, 15 pages.
Non-Final Office Action, U.S. Appl. No. 15/340,914, dated Jul. 21, 2017, 114 pages.
Non-Final Office Action, U.S. Appl. No. 15/616,817, dated Nov. 1, 2017, 14 pages.
Non-Final Office Action, U.S. Appl. No. 16/436,864, dated Mar. 4, 2020, 6 pages.
Notice of Acceptance from foreign counterpart Australian Patent Application No. 20160219662, dated May 5, 2017, 3 pages.
Notice of Acceptance from foreign counterpart Australian Patent Application No. AU20140200745, dated Sep. 19, 2016, 3 page.
Notice of Acceptance from foreign counterpart New Zealand Patent Application No. 610463 dated Aug. 5, 2015, 1 page.
Notice of Acceptance from foreign counterpart New Zealand Patent Application No. 717370, dated Jan. 10, 2018, 1 page.
Notice of Acceptance, AU App. No. 2012308632, dated Sep. 13, 2017, 4 pages.
Notice of Acceptance, AU App. No. 2017210619, dated Oct. 14, 2019, 4 pages.
Notice of Acceptance, AU App. No. 2018201553, dated Nov. 14, 2019, 4 pages.
Notice of Acceptance, AU App. No. 2018253582, dated Nov. 18, 2019, 3 pages.
Notice of Acceptance, AU Patent App. No. 2013327697, dated Feb. 15, 2017, 4 pages.
Notice of Acceptance, AU Patent App. No. 2014248533, dated Jun. 28, 2017, 4 pages.
Notice of Acceptance, New Zealand Patent App. No. 729017, dated Jun. 28, 2018, 1 page.
Notice of Acceptance, NZ App. No. 738000, dated Jun. 4, 2019, 1 page.
Notice of Acceptance, NZ App. No. 751530, dated May 1, 2020, 2 pages.
Notice of Allowance and Search Report, TW Patent App. No. 102134408, dated Feb. 17, 2017, 9 pages.
Notice of Allowance from counterpart MX Patent App. No. MX/a/2014/002900, dated Nov. 26, 2015, 4 pages. Translation attached.
Notice of Allowance, U.S. Appl. No. 12/802,976, dated Mar. 14, 2011, 9 pages.
Notice of Allowance, AU Patent App. No. 2011323559, dated May 13, 2016, 2 pages.
Notice of Allowance, CA App. No. 2,848,355, dated Apr. 3, 2020, 1 page.
Notice of Allowance, CA App. No. 2695799, dated Feb. 9, 2016, 1 page.
Notice of Allowance, CA App. No. 2816556, dated May 18, 2021, 1 page.
Notice of Allowance, Canadian Patent App. No. P14906, dated Jun. 1, 2015, 1 page.
Notice of Allowance, CN App. No. 201480016091.6, dated Apr. 24, 2020, 8 pages (3 pages of English Translation and 5 pages of Original Document).
Notice of Allowance, IL App. No. 248265, dated May 7, 2020, 3 pages.
Notice of Allowance, IL App. No. 269145, dated Aug. 23, 2020, 3 pages of Original Document Only.
Notice of Allowance, KR App. No. 10-2014-7009876, dated Oct. 4, 2019, 3 pages (1 page of English Translation and 2 pages of Original Document).
Notice of Allowance, KR App. No. 10-2015-7014235, dated Oct. 28, 2020, 3 pages (1 pages of English Translation and 2 page of Original Document).
Notice of Allowance, KR App. No. 10-2017-7002596, dated Feb. 27, 2019, 3 pages.
Notice of Allowance, KR App. No. 10-2018-7035654, dated Oct. 2, 2019, 4 pages (2 pages of English Translation and 2 pages of Original Document).
Notice of Allowance, KR Patent App. No. 2015-7002560, dated Feb. 4, 2016, 2 p. .
Notice of Allowance, KR. App. No. 10-2014-7035524, dated Oct. 14, 2020, 4 pages (1 page of English Translation and 3 pages of Original Document).
Notice of Allowance, TW App. No. 107123446, dated Nov. 20, 2019, 3 pages of Original Document Only.
Notice of Allowance, U.S. Appl. No. 16/578,265, dated Jan. 28, 2021, 7 pages.
Notice of Allowance, U.S. Appl. No. 10/817,731, dated Sep. 30, 2010, 6 pages.
Notice of Allowance, U.S. Appl. No. 10/902,978, dated Apr. 16, 2008, 7 pages.
Notice of Allowance, U.S. Appl. No. 10/902,978, dated Jun. 27, 2008, 7 pages.
Notice of Allowance, U.S. Appl. No. 11/256,478, dated Jan. 26, 2010, 9 pages.
Notice of Allowance, U.S. Appl. No. 11/256,478, dated Jul. 30, 2009, 9 pages.
Notice of Allowance, U.S. Appl. No. 14/156,254, dated Feb. 26, 2016, 21 pages.
Notice of Allowance, U.S. Appl. No. 14/156,254, dated Jul. 8, 2015, 7 pages.
Notice of Allowance, U.S. Appl. No. 14/156,254, dated Mar. 12, 2015, 5 pages.
Notice of Allowance, U.S. Appl. No. 14/156,254, dated Nov. 3, 2015, 29 pages.
Notice of Allowance, U.S. Appl. No. 15/201,276, dated Oct. 11, 2018, 5 pages.
Notice of Allowance, U.S. Appl. No. 15/201,276, dated Nov. 27, 2017, 7 pages.
Notice of Allowance, U.S. Appl. No. 15/616,817, dated Jun. 26, 2018, 131 pages.
Notice of Allowance, U.S. Appl. No. 15/616,817, dated Oct. 22, 2018, 21 pages.
Notice of Allowance, U.S. Appl. No. 15/616,817, dated Apr. 25, 2018, 10 pages.
Notice of Allowance, U.S. Appl. No. 16/253,028, dated Feb. 25, 2020, 7 pages.
Notice of Allowance, U.S. Appl. No. 16/253,028, dated Mar. 12, 2020, 7 pages.
Notice of Allowancefrom U.S. Appl. No. 12/802,958, dated Sep. 19, 2018, 22 pages.
Notice of Final Rejection, KR App. No. 10-2020-7002077, dated Oct. 15, 2020, 8 pages (4 pages of English Translation and 4 pages of Original Document).
Notice of Grant, CN App. No. 201210464974.6, dated Jul. 1, 2015, 3 pages.
Notice of Reason for Rejection, KR App. No. 10-2019-7006428, dated Jun. 28, 2021, 20 pages (11 pages of English Translation and 9 pages of Original Document).
Notice of Reasons for Refusal, JP App. No. 2019-074024, dated Aug. 3, 2020, 10 pages (6 pages of English Translation and 4 pages of Original Document).
Notice of Reasons for Refusal, JP App. No. 2019-093904, dated May 27, 2021, 5 pages (3 pages of English Translation and 2 pages of Original Document).
Notice of Reasons for Refusal, JP App. No. 2019-109413, dated Sep. 10, 2020, 8 pages (5 pages of English Translation and 3 pages of Original Document).
Notice of Reasons for Rejection, JP App. No. 2016-234908, dated May 23, 2019, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Notice of Reasons for Rejection, JP App. No. 2016-234908, dated Nov. 22, 2018, 10 pages.
Notice of Reasons for Rejection, JP Patent App. No. 20150510498, dated Sep. 26, 2016, 21 pages.
Notice of Reasons for Rejection, JP Patent App. No. 2016-501744, dated Mar. 5, 2018, 15 page.
Notice of Reasons for Rejection, KR App. No. 10- 2014-7009876, dated Mar. 25, 2019, 11 pages ..
Notice to File a Response, KR App. No. 10-2018- 7035654, dated Dec. 14, 2018, 10 pages.
Notification for Granting Patent Right, Chinese Patent App. No. 201180061132.X, dated Apr. 6, 2017, 6 pages.
Notification of Reason for Refusal, KR App. No. 10-2019-7014768, dated Jun. 27, 2019, 10 pages (5 pages of English Translation and 5 pages of Original Document).
Notification of Reason for Refusal, KR App. No. 10-2021-7002823, dated Apr. 14, 2021, 06 pages (03 pages of English Translation and 03 pages of Original Document).
Notification of Reason for Refusal, KR. App. No. 10-2016-7031260, dated Dec. 4, 2020, 12 pages (7 pages of English Translation and 5 pages of Original Document).
Notification of Reasons for Refusal, JP Patent App. No. 2017-112639, dated Aug. 13, 2018, 4 pages.
Notification of the 1st Substantive requirement, MX App. No. MX/A/2017/002906, dated Sep. 13, 2019, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Notification of the 2nd Substantive requirement, MX App. No. MX/A/2017/002906, dated Jul. 15, 2020, 10 pages (5 pages of English Translation and 5 pages of Original Document).
Notification on Grant of Patent Right for Invention, CN App. No. 201210466082.X, dated Jan. 26, 2017, 3 pages.
Oberli et al., “Maximum likelihood tracking algorithms for MIMOOFDM, in Communications,” IEEE International Conference on Networking, Jun. 20-24, 2004, vol. 4, pp. 2468-2472.
Oday, “Measured Path Loss and Multipath Propagation Characteristics in UHF and Microwave Frequency Bands for Urban Mobile Communications,” IEEE, 2001, pp. 337-341.
Office Action and Examination Search Report, CA App. No. 2885817, dated Jul. 16, 2019, 4 pages.
Office Action and Examination Search Report, CA App. No. 2904981, dated May 3, 2019, 6 pages.
Office Action and Search Report, Chinese Patent App. No. CN201380035543, dated Jan. 3, 2017, 22 pages.
Office Action and Search Report, RU App. No. 2016144927/08(072072), dated Oct. 30, 2018, 12 pages.
Office Action and Search Report, RU Patent App. No. 2014148791/28(078479), dated Apr. 13, 2017, 14 pages.
Office Action and Search Report, RU Patent App. No. 2015143188/07, dated Dec. 15, 2017, 13 pages.
Office Action and Search Report, TW App. No. 103107541, dated Dec. 6, 2017, 15 pages.
Office Action and Search Report, TW App. No. 107123446, dated Aug. 8, 2019, 27 pages (10 pages of English Translation and 17 pages of Original Document).
Office Action and Search Report, TW Patent App. No. 105143637, dated Jan. 19, 2018, 12 pages.
Office Action for EP App. No. 08798313.6, dated May 2, 2017, 7 pages.
Office Action for EP App. No. 10156950.7, dated May 9, 2017, 9 pages.
Office Action, U.S. Appl. No. 13/642,259, dated May 14, 2015, 9 pages.
Office Action, Au App. No. 2004203336, dated Jun. 5, 2009, 2 pages.
Office Action, AU App. No. 2019202296, dated May 12, 2020, 5 pages.
Office Action, CA App. No. 2514383, dated Jul. 26, 2012, 3 pages.
Office Action, CA App. No. 2816556, dated May 19, 2020, 3 pages.
“Electromagnetic-Wave Propagation”, HW Sams Publishers, Reference Data for Radio Engineers, “Electromagnetic-Wave Propagation”, 5th Edition, 1973, Chapter 26., (1973), 1-32.
“MIMO System uses SOMA for IEEE802.11”, Available Online at <http://www.electronicstalk.com/news/ime/ime149.html>, Electronicstalk, 2004, pp. 1-3.
3GPP Technical Specification Group, “Spatial channel model, SCM-134 text V6.0”, Spatial Channel Model AHG (Combined ad-hoc from 3GPP and 3GPP2), Apr. 2003, pp. 1-45.
3GPP TR 25.876 V7.0.0 (Mar. 2007), Technical Report, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network”; Multiple Input Multiple Output in UTRA; (Release 7), pp. 2-76.
3GPP TR 25.912, “Feasibility Study for Evolved UTRA and UTRAN”, V9.0.0 (Oct. 2009), Oct. 2009, pp. 1-66.
3GPP TR 25.913, “Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E- UTRAN)”, V8.0.0 (Jan. 2009), Jan. 2009, pp. 1-20.
3GPP TR 36.819, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Coordinated multi-point operation for LTE physical layer aspects (Release 11)”, Dec. 20, 2011, 69 pages.
3GPP TS 36.211 V8.7.0 (May 2009), Technical Specification, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8), pp. 1-83.
3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network, Coordinated multi-point operation for LTE physical layer aspects (Release 11)”, 3GPP Draft; DRAFT36819-B10, 3rd Generation Partnership Project; (3GPP), Dec. 20, 2011, V11.1.0, pp. 1-69.
3GPP, “LTE”, downloaded from http://www.3gpp.org/LTE on Aug. 14, 2014, 4 pages.
3GPP, “UMTS”, Universal Mobile Telecommunications System, pp. 1-2, printed on Nov. 17, 2014, Retrieved from the Internet: < URL: www.3gpp.orgarticleumts>.
3GPP, ETS1136 212 V9.1.0 (2010), “Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and Channel Coding (3GPP TS 36.212 VERION 9.1.0 Release 9) 3GPP, ETS1136 212 V9.1.C (2010)” 63 pages.
3GPP, TS 36.201, “Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer—General Description (Release 11),” Oct. 2012, pp. 1-14.
3GPP, TS 36.211, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 11),” pp. 1-107, Oct. 2012, submitted as Part 1 and Part 2.
3GPP, TS 36.212, Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 11) pp. 1-80, Oct. 2012, submitted as Part 1 and Part 2.
3GPP, TS 36.212.V8.7.0 (May 2009), “Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel Coding (Release 8) 3GPP, TS 36.212.V8.7.0 (May 2009),” May 2009, 60 pages.
3GPP, TS 36.213, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 11),” Oct. 2012, 145 pages.
3GPP, TS 36.808, “Evolved Universal Terrestrial Radio Access (E-UTRA); Carrier Aggregation (Release 10)”, v10.0.0, Jun. 2012, 28 pages.
Abandonment, U.S. Appl. No. 13/475,598, Feb. 8, 2016, 1 page.
Abandonment, U.S. Appl. No. 14/086,700, Dec. 26, 2017, 2 pages.
Abbasi N., “Capacity estimation of HF-MIMO systems”, International Conference on Ionospheric Systems and Techniques, 2009, 5 pages.
Adrian et al., “Quantum Tagging: Authenticating Location via Quantum Information and Relativistic Signalling Constraints,” , Phys. Rev. A84, 012326 (2011), arXiv: 1008.2147, 2010, 9 pages.
Advisory Action for U.S. Appl. No. 12/802,989, dated May 4, 2017, 3 pages.
Advisory Action, U.S. Appl. No. 13/844,355, dated Jul. 17, 2019, 3 pages.
Advisory Action, U.S. Appl. No. 14/611,565, dated Feb. 7, 2020, 3 pages.
Advisory Office Action, U.S. Appl. No. 14/611,565, dated Nov. 10, 2020, 3 pages.
Aggarwal et al., “On the Design of Large Scale Wireless Systems,” IEEE Journal of Selected Areas Communications, 2013, vol. 31. No. 2, pp. 215-225.
Airgo, “Homepage: Airgo—Wireless without Limits”, Available Online at <http:www.airgonetworks.com>, printed on Apr. 9, 2004, 1 page.
Akbudak et al., “COMP in Heterogeneous networks: A Low-Complexity Linear Transceiver Design,” Workshop on Cooperative and Cognitive Mobile Networks, Communications (ICC), 2012 IEEE International Conference on, IEEE, Jun. 10, 2012, pp. 5624-5629.
Aktas et al., “Scaling Results on the Sum Capacity of Cellular Networks with MIMO Links”, IEEE Transactions on Information Theory, 2006, vol. 52, pp. 3264-3274.
Akyildiz et al., “The Evolution to 4G Cellular Systems: LTE-Advanced,” Physical Communication, vol. 3, 2010, pp. 217-244.
Alamouti et al., “A simple transmit diversity technique for wireless communications,” IEEE Journal on Selected Areas in Communications, 1998, vol. 16, No. 8, pp. 1451-1458.
Allowance Receipt, MX App. No. MX/a/2019/010059, May 3, 2021, 3 pages (Original Document Only).
Alrabadi et al., “Beamforming via Large and Dense Antenna Arrays above a Clutter,” Institute of Electrical and Electronics Engineers Journal on Selected Areas in Communications, 2013, vol. 31, No. 2, pp. 314-325.
Andersen et al., “The MIMO Cube—a Compact MIMO Antenna,” IEEE Proceedings of Wireless Personal Multimedia Communications International Symposium, vol. 1, Oct. 2002, pp. 112-114.
Andersen J. B., “Antenna Arrays in Mobile Communications: Gain, diversity, and Channel Capacity.1,” IEEE Antennas and Propagation Magazine, vol. 42, No. 2, Apr. 2000, pp. 12-16.
Anderson et al., “Beamforming in large-scale MIMO Multiuser Links Under a Per-node Power Constraint,” Proceedings in International Symposium on Wireless Communication Systems, Aug. 2012, pp. 821-825.
Andrews et al., “Tripling the Capacity of Wireless Communications using Electromagnetic Polarization”, Nature, vol. 409, Jan. 2001, pp. 316-318.
Andrews J. G., “Seven Ways That Hetnet are a Cellular Paradigm Shift,” IEEE Communications Magazine, Mar. 2013, [online], Retrieved from the Internet: http://users.ece.utexas.edu/-jandrews/pubs/And HetNetCommMag2012v3.pdf, pp. 136-144.
Anritsu, “LTE resource guide”, 18 pages, 2009, www.us.anritsu.com.
Araujo et al., “Channel Estimation for Millimeter-Wave Very-Large MIMO Systems,” EUSPICO 2014, in proceedings, Sep. 1-5, 2014, 5 pages.
Arnau et al., “Dissection of Multibeam Satellite Communications with a Large-scale Antenna System Toolbox,” European Wireless 2014 (EW2014), May 14-16, 2014, pp. 548-553.
Arraycomm, “Field-Proven Results,” Improving wireless economics through MAS software, printed on Mar. 28, 2011, www.arraycomm.comserve.phppage=proof, 3 pages.
Artigue C., et al.,“On the Precoder Design of Flat Fading MIMO Systems Equipped with MMSE Receivers: A Large System Approach”, IEEE Trans. Inform. Theory, 2011, vol. 57 (7), pp. 4138-4155.
AT&T, “1946: First Mobile Telephone Call” 1 page, Jun. 17, 1946, Available Online at <http:www.corp.att.comattlabsreputationtimeline46mobile.html>.
Baker M., “LTE-Advanced Physical Layer,” Alcatel-Lucent, Dec. 2009, 48 pages.
Barbieri A., et al., “Coordinated Downlink Multi-point Communications in Heterogeneous Cellular Networks”, (Qualcomm), Information Theory and App. Workshop, Feb. 2012, pp. 7-16.
BelAir Networks, “Small cells”, Available Online at <URL:http:www.belairnetworks.comsitesdefaultfilesVVPSmallCells.pdf>, 2007 , 4 pages.
Benedetto et al., “Analysis of the effect of the I/Q baseband i-lter mismatch in an OFDM modem,” Wireless personal communications, 2000, pp. 175-186.
Bengtsson E. L., “UE Antenna Properties and Their Influence on Massive MIMO System Performance,” 2002, 5 pages.
Office Action, CA App. No. 2816556, dated May 30, 2019, 3 pages.
Office Action, CA App. No. 2945987, dated Apr. 13, 2021, 3 pages.
Office Action, CA App. No. 3025857, dated Dec. 8, 2020, 5 pages.
Office Action, CN App. No. 200510088676.1, dated Feb. 5, 2010, 18 pages.
Office Action, CN App. No. 200510088676.1, dated Jan. 25, 2011, 8 pages.
Office Action, CN App. No. 200510088676.1, dated Mar. 20, 2009, 24 pages.
Office Action, CN App. No. 200510088676.1, dated Oct. 26, 2010, 4 pages.
Office Action, CN App. No. 200880102933.4, dated Dec. 7, 2012, 20 pages.
Office Action, CN App. No. 201380061515.6, dated Apr. 23, 2019, 2 pages.
Office Action, CN Patent App. No. 201180061132.X, dated May 27, 2015, 6 pages.
Office Action, CN Patent App. No. 201180061132.X, dated Oct. 10, 2016, 11 pages.
Office Action, EP App. No. 05254757.7, dated Dec. 3, 2012, 6 pages.
Office Action, EP App. No. 05254757.7, dated Dec. 21, 2018, 4 pages.
Office Action, EP App. No. 05254757.7, dated Nov. 11, 2019, 5 pages.
Office Action, EP App. No. 05254757.7, dated Sep. 2, 2020, 5 pages.
Office Action, EP App. No. 08798313.6, dated Oct. 24, 2017, 8 pages.
Office Action, EP App. No. 10156950.7, dated Dec. 12, 2017, 9 pages.
Office Action, EP App. No. 10156950.7, dated Jan. 7, 2020, 6 pages.
Office Action, EP App. No. 10184659, dated Dec. 4, 2017, 5 pages.
Office Action, EP App. No. 10184659, dated Nov. 11, 2019, 5 pages.
Office Action, EP App. No. 10184659.0, dated Dec. 21, 2018, 4 pages.
Office Action, EP App. No. 10184659.0, dated Sep. 2, 2020, 5 pages.
Office Action, EP App. No. 12762167.0, dated Sep. 30, 2016, 6 pages.
Office Action, EP App. No. 13784690.3, dated Apr. 15, 2019, 4 pages.
Office Action, EP App. No. 13784690.3, dated Aug. 23, 2018, 6 pages.
Office Action, EP App. No. 13790935, dated Oct. 23, 2019, 8 pages.
Office Action, EP App. No. 13790935.4, dated Feb. 4, 2019, 11 pages.
Office Action, EP App. No. 13843203.4, dated Feb. 25, 2019, 6 pages.
Office Action, EP App. No. 13843203.4, dated Mar. 23, 2018, 5 pages.
Office Action, EP App. No. 13856705.2, dated Jul. 18, 2017, 5 pages.
Office Action, EP App. No. 14770916.6, dated Mar. 13, 2018, 5 pages.
Office Action, EP App. No. 15746217.7, dated Feb. 1, 2021, 10 pages.
Office Action, EP App. No. 15780522.7, dated Jun. 7, 2021, 8 pages.
Office Action, EP App. No. 15780522.7, dated Mar. 19, 2020, 6 pages.
Office Action, EP App. No. 17844265.3, dated May 10, 2021, 9 pages.
Office Action, EP App. No. 18186156.8, dated Jul. 30, 2019, 5 pages.
Office Action, EP App. No. 18186156.8, dated Jun. 12, 2020, 6 pages.
Office Action, EP App. No. 19159810.1, dated Oct. 4, 2021, 7 pages.
Office Action, IL App. No. 235518, dated Apr. 7, 2019, 4 pages.
Office Action, IL App. No. 241319, dated Nov. 26, 2019, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Office Action, IL App. No. 248265, dated Feb. 26, 2020, 4 pages (2 pages of English Translation and 2 pages of Original Document).
Office Action, IL App. No. 248265, dated Oct. 25, 2018, 6 pages.
Office Action, IL App. No. 253541, dated Nov. 29, 2018, 4 pages.
Office Action, IL App. No. 269145, dated Jun. 16, 2020, 4 pages (2 pages of English Translation and 2 pages of Original Document).
Office Action, IL App. No. 270106, dated May 19, 2020, 8 pages (4 pages of English Translation and 4 pages of Original Document).
Office Action, JP App No. 2019-168511, dated Dec. 24, 2020, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Office Action, JP App. No. 2007-506302, dated Jan. 11, 2011, 5 pages.
Office Action, JP App. No. 20150162819, dated Oct. 3, 2016, 6 pages.
Office Action, JP App. No. 2016-550718, dated Jan. 10, 2019, 4 pages.
Office Action, JP App. No. 2016-562961, dated Feb. 6, 2020, 7 pages (4 pages of English Translation and 3 pages of Original Document).
Mattheijssen P., “Antenna-Pattern Diversity versus Space Diversity for use at Handhelds,” IEEE Trans. on Yeh. Technol, 2004, vol. 53 (4), pp. 1035-1042.
Mazrouei-Sebdani et al., Vector Perbutation Precoding and User Scheduling for Network MIMO, 2011, Wireless Communications and Networking Conference (WCNC), 2011 IEEE, pp. 203-208.
McKay et al., “Multiplexing/beamforming switching for coded MIMO in spatially correlated channels based on Closed-Form BER Approximations,” IEEE Transactions on Vehicular Technology, 2007, vol. 56, No. 5, pp. 2555-2567.
McKay Mr., et al., “A throughput-based adaptive MIMO BICM approach for spatially-correlated channels,” IEEE to appear in Proc. ICC, 2006, 5 pages.
McLean et al., “A re-examination of the fundamental limits on the radiation Q of electrically small antennas”, IEEE Trans. Antennas Propagat., vol. 44, n.5,, (May 1996), pp. 672-676.
Mikrotik, “Routerboard,” Retrieved from the Internet: URL: http:routerboard.com, 2015, 30 pages.
Minn et al., “A robust timing and frequency synchronization for OFDM systems”, IEEE Trans. Wireless Commun., vol. 2, No. 4, Jul. 2003, pp. 822-839.
Mitsubishi Electric, “Leakage-based Precoding for CoMP in LTE-A,” 3GPP RAN1 #56, R1-090596, Feb. 9-13, 2009, 14 pages.
Miyakawa et al., “A Method of Code Conversion for Digital Communication Channels with Intersymbol Interference,” Transactions of the Institute of Engineers of Japan, vol. 52-A (6), 1969, pp. 272-273.
Mohammed et al., “A Low-Complexity Precoder for Large Multiuser MISO Systems”, IEEE Vehicular Technology Conference, 2008, pp. 797-801.
Mohammed et al., “Per-Antenna Constant Envelope Precoding for Large Multi-User MIMO Systems,” IEEE Transactions on Communications, Jan. 2012, vol. 61, No. 3, pp. 1-24.
Mohammed et al., “Single-User Beamforming in Large-Scale MISO Systems with Per-Antenna Constant-Envelope Constraints,” IEEE Transactions on Wireless Communications, Sep. 2012, vol. 2012, pp. 3992-4005.
Mohammed S. K., et al., “Constant-Envelope Multi-User Precoding for Frequency-Selective Massive MIMO Systems,” IEEE Wireless Communications Letters, 2013, vol. 2(5), pp. 547-550.
Molisch et al., “MIMO Systems with Antenna Selection,” IEEE Microwave Magazine, vol. 5, No. 1, Mar. 2004, pp. 46-56.
Montgomery B.G., “Analog RF-over-fiber technology, Syntonics LLC,” 2008, pp. 2-51,Available Online at <http:chesapeakebayaoc.orgdocumentsSyntonics_AOC_RF_over-Fiber_19_Jan_08.pdf>.
Monziano et al., “Introduction to Adaptive Arrays,” New York, Wiley, 1980, Table of Contents 21 pages.
Moose et al., “A technique for orthogonal frequency division multiplexing frequency offset correction”, IEEE Trans. Commun., vol. 42, No. 10, Oct. 1994, pp. 2908-2914.
Morelli et al., “An improved frequency offset estimator for OFDM applications”, IEEE Commun. Lett., vol. 3, No. 3, Mar. 1999, pp. 75-77.
Morelli et al., “Frequency ambiguity resolution in OFDM systems,” IEEE Commun. Lett, 2000, vol. 4, No. 4, pp. 134-136.
Morgan Stanley, “Mobile data wave: who dares to invest, wins”, Jun. 13, 2012.
Morris et al., “Network model for MIMO systems with coupled antennas and noisy amplifiers,” IEEE Transactions on Antennas and Propagation, 2005, vol. 53, pp. 545-552.
Morris et al., “The Impact of Array Configuration on MIMO Wireless Channel Capacity,” Proc. IEEE Antennas and Propagation Symposium, Jun. 2002, vol. 3, pp. 214-217.
Motorola, “Long Term Evolution (LTE): A Technical Overview,” 2007, Retrieved from the Internet: http:business.motorola.comexperienceltepdfLTETechnicalOverview.pdf, 15 pages.
Moustakas et al., “Optimizing Multiple-Input Single-Output (MISO) Communication Systems with General Gaussian channels: Nontrivial Covariance and Nonzero Mean”, Institute of Electrical and Electronics Engineers Transactions on Information Theory, 2003, vol. 49, pp. 2770-2780.
Moustakas et al.,“MIMO Capacity Through Correlated Channels in the Presence of Correlated Interferers and Noise: A (Not so) Large N Analysis”, Institute of Electrical and Electronics Engineers Transformations and Information Theory, 2003, vol. 49, No. 10, pp. 2545-2561.
Muharar et al., “Downlink Beamforming with Transmit-Side Channel Correlation: A Large System Analysis,” in Proc. IEEE International Conference on Communications (ICC), Kyoto, Japan, Jun. 2011, 5 pages.
Muller et al., “Blind Pilot Decontamination,” IEEE Journal of Selected Topics in Signal Processing on Signal Processing for Large-Scale MIMO Communications, 2013, 31 pages.
Muller et al., “Vector Precoding for Wireless MIMO Systems and its Replica Analysis,” IEEE J. Sel. Areas Commun, 2008, vol. 26, No. 3, pp. 530-540.
Nam J., et al., “Joint Spatial Division and Multiplexing: Realizing Massive MIMO Gains with Limited Channel State Information,” in Proceedings Conference on Information Sciences and Systems, IEEE, Mar. 2012, 6 pages.
Narasimhan et al., “M-ary Detection and q-ary Decoding in Large-Scale MIMO: A Non-Binary Belief Propagation Approach,” Oct. 16, 2013, 7 pages.
Nec, “Self organizing networks”, White paper, Feb. 2009, 5 pages.
Netsukuku, printed on Sep. 30, 2015, Retrieved from the Internet: URL: http:netsukuku.freaknet.org., 8 pages.
Ngo et al., Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems, IEEE Transactions on Communications, May 21, 2012, vol. 61 No. 4, pp. 1436-1449.
Ngo et al., EVD-Based Channel Estimations for Multicell Multiuser MIMO with Very Large Antenna Arrays, IEEE International Conference on Acoustics, Speed and Signal Processing (ICASSP), Kyoto, Japan, Mar. 2012, 5 pages.
Ngo et al., Massive MU-MIMO Downlink TDD Systems with Linear Precoding and Downlink Pilots, Proceedings in Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, Illinois, Oct. 2013.
Ngo et al., The multicell multiuser MIMO uplink with very large antenna arrays and a finite-dimensional channel, IEEE Transactions Communications, 2013, vol. 61, No. 6, pp. 2350-2361.
Ngo et al., Uplink Performance Analysis of Multicell MU-MIMO Systems with ZF Receivers, Jun. 2012, pp. 1-32.
Nguyen et al., “Precoding for Multicell MIMO Systems with Compressive Rank-q Channel Approximation”, in Proc. IEEE PIMRC, Fundamentals and Phy Track, London, UK, Sep. 2013, pp. 1227-1232.
Nguyen S., et al., “Compressive Sensing-Based Channel Estimation for Massive Multiuser MIMO Systems” in proceeding IEEE WCNC, 2013, 6 pages.
Nguyen, et al., “Multiuser Transmit Beamforming via Regularized Channel Inversion: A Large System Analysis” IEEE Global Communications Conference, New Orleans, LO, US, Dec. 2008, pp. 1-4.
NICTA, “InterfereX”, Available Online at <http://www.interfereX.com, Jun. 22, 2015, 3 pages.
Nokia Siemens Networks, “2020: Beyond 4g, Radio Evolution for the Gigabit Experience”, White Paper, 2011, www.nokiasiemensnetworks.com, 16 pages.
Non Final Office Action, U.S. Appl. No. 16/505,593, dated Sep. 10, 2020, 12 pages.
Non-Final Office Action, U.S. Appl. No. 13/844,355, dated Aug. 12, 2019, 14 pages.
Non-Final Office Action, U.S. Appl. No. 10/817,731, dated Jan. 4, 2008, 14 pages.
Non-Final Office Action, U.S. Appl. No. 10/817,731, dated Jan. 21, 2009, 23 pages.
Non-Final Office Action, U.S. Appl. No. 10/817,731, dated Mar. 15, 2010, 26 pages.
Non-Final Office Action, U.S. Appl. No. 10/817,731, dated May 18, 2007, 16 pages.
Non-Final Office Action, U.S. Appl. No. 10/902,978, dated Apr. 10, 2008, 8 pages.
Non-Final Office Action, U.S. Appl. No. 10/902,978, dated Nov. 6, 2007, 11 pages.
IEEE 802.22, “IEEE 802.22 Working Group on Wireless Regional Area Networks”, Retrieved on Aug. 14, 2014, Available Online at <http:www.ieee802.org/22/>, 1 page.
IntelliCell: A Fully Adaptive Approach to Smart Antennas, ArrayComm, Incorporated, WP-ISA-031502-2.0, 2002, pp. 1-18.
Intention to Grant, EP App. No. 13790935.4, dated Jun. 24, 2020, 8 pages.
Intention to Grant, EP App. No. 14770916.6, dated Apr. 28, 2021, 8 pages.
International Preliminary Report on Patentability and Written Opinion, App. No. PCT/US2013/071749, dated Jun. 4, 2015, 7 pages.
International Preliminary Report on Patentability and Written Opinion, App. No. PCT/US2014/025102, dated Sep. 24, 2015, 10 pages.
International Preliminary Report on Patentability and Written Opinion, App. No. PCT/US2014/025108, dated Sep. 24, 2015, 8 pages.
International Preliminary Report on Patentability and Written Opinion, App. No. PCT/US2014/025123, dated Sep. 24, 2015, 10 pages.
International Preliminary Report on Patentability and Written Opinion, App. No. PCT/US2015/014511, dated Aug. 18, 2016, 5 pages.
International Preliminary Report on Patentability from foreign counterpart PCT/US2013/061493, dated Apr. 16, 2015, 7 pages.
International Preliminary Report on Patentability, App. No. PCT/US11/58663, dated May 7, 2013, 26 pages.
International Preliminary Report on Patentability, App. No. PCT/US2012/054937, dated Mar. 27, 2014, 13 pages.
International Preliminary Report on Patentability, App. No. PCT/US2013/039580, dated Nov. 4, 2014, 7 pages.
International Preliminary Report on Patentability, App. No. PCT/US2013/041726, dated Nov. 18, 2014, 6 pages.
International Preliminary Report on Patentability, PCT App. No. PCT/US06/41009, dated Apr. 23, 2008, 4 pages.
International Preliminary Report on Patentability, PCT App. No. PCT/US2005/11033, dated Jun. 3, 2008, 7 pages.
International Preliminary Report on Patentability, PCT App. No. PCT/US2008/073780, dated Feb. 24, 2010, 10 pages.
International Preliminary Report on Patentability, PCT App. No. PCT/US2015/023436, dated Oct. 27, 2016, 6 pages.
International Preliminary Report on Patentability, PCT App. No. PCT/US2017/047963, dated Mar. 7, 2019, 8 pages.
International Preliminary Report on Patentability, PCT App. No. PCT/US2017/058291, dated May 9, 2019, 7 pages.
International Search Report and the Written Opinion, App. No. PCT/US15/14511, dated May 18, 2015, 7 pages.
International Search Report and the Written Opinion, App. No. PCT/US2013/061493, dated Dec. 6, 2013, 9 pages.
International Search Report and Written Opinion, App. No. PCT/US13/41726, dated Jul. 16, 2013, 7 pages.
International Search Report and Written Opinion, App. No. PCT/US2012/054937, dated Apr. 2, 2013, 17 pages.
International Search Report and Written Opinion, App. No. PCT/US2013/039580, dated Aug. 20, 2013, 12 pages.
International Search Report and Written opinion, App. No. PCT/US2013/071749, dated Apr. 8, 2014, 9 pages.
International Search Report and Written opinion, App. No. PCT/US2014/025102, dated Jul. 18, 2014, 11 pages.
International Search Report and Written opinion, App. No. PCT/US2014/025105, dated Jul. 14, 2014, 12 pages.
International Search Report and Written Opinion, App. No. PCT/US2014/025108, dated Sep. 19, 2014, 10 Pages.
International Search Report and Written opinion, App. No. PCT/US2014/025123, dated Jul. 18, 2014, 11 pages.
International Search Report and Written Opinion, App. No. PCT/US2015/023436, dated Aug. 19, 2015, 10 pages.
International Search Report and Written Opinion, App. No. PCT/US2017/047963, dated Nov. 3, 2017, 9 pages.
International Search Report and Written Opinion, App. No. PCT/US2017/058291, dated Mar. 8, 2018, 12 pages.
International Search Report and Written Opinion, PCT App. No. PCT/US 06/41009, dated May 24, 2007, 6 pages.
International Search Report and Written opinion, PCT App. No. PCT/US05/11033, dated May 2, 2008, 10 pages.
International Search Report and Written Opinion, PCT App. No. PCT/US11/58663, dated Mar. 29, 2012, 27 pages.
International Search Report and Written Opinion, PCT App. No. PCT/US2008/073780, dated Nov. 19, 2008.
International Search Report and Written Opinion, PCT App. No. PCT/US2021/026431, dated Jun. 29, 2021, 6 pages.
ITU, “ISM Band,” Available Online at <http://www.itu.int/ITUR/ terrestrial/faq/index.html#g013>, dated Aug. 14, 2014, pp. 1-8.
J. Duplicity, et al., “MU-MIMO in LTE systems”, EURASIP Journal on Wireless Communications and Networking, dated Mar. 2011, 10 pages.
J. G. Proakis, Communication System Engineering, Prentice Hall, 1994, 11 pages.
Jafar et al., “Channel Capacity and Beamforming for Multiple Transmit and Receive Antennas with Covariance Feedback,” Proc. IEEE Int. Cont. on Comm, Jun. 2001, vol. 7, pp. 2266-2270.
Jafar et al., “Transmitter Optimization and Optimality of Beamforming for Multiple Antenna Systems,” IEEE Trans Wireless Comm, Jul. 2004, vol. 3, No. 4, pp. 1165-1175.
Jakes W. C., Microwave Mobile Communications, IEEE Press, 1974, Table of Contents, 4 pages.
Jindal N., et al., “Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels”, IEEE Trans. on Information Theory, vol. 51, May 2005, pp. 1783-1794.
Jindal, N , “MIMO Broadcast Channels With Finite-Rate Feedback,” IEEE Trans. on Info. Theory, vol. 52, pp. 5045-5060, Nov. 2006.
Jing J., et al. “A Downlink Max-SINR Precoding for Massive MIMO System,” International Journal of Future Generation Communication and Networking, Jun. 2014, vol. 7 (3), pp. 107-116.
Jorswieck et al., “Channel Capacity and Capacity-Range of Beamforming in MIMO Wireless Systems under Correlated Fading with Covariance Feedback,” IEEE Transactions on Wireless Communications, Sep. 2004, vol. 3, pp. 1543-1553.
Jose et al. “Pilot Contamination and Precoding in Multi-cell TDD Systems,” IEEE Transactions on Wireless Communications, 2011, vol. 10, No. 8, pp. 2640-2651.
Jose J., “Channel Estimation and Linear Precoding in Multiuser Multiple-Antenna TDD Systems,” IEEE Transactions on Vehicular Technology, 2011, vol. 60, No. 5, pp. 2102-2116.
Coulson et al., “Maximum likelihood synchronization for OFDM using a pilot symbol: analysis,” IEEE Journal on Selected Areas in Communications, 2001, vol. 19, No. 12, pp. 2495-2503.
Dahlman E., et al., “4G: LTE/LTE-Advanced for Mobile Broadband”, Elsevier, 2011, Cover page, Title page, Copyright page, Table of Contents, 21 pages.
Dai et al., “Carrier frequency offset estimation for OFDM/SDMA systems using consecutive pilots,” IEEE Proceedings Communications, 2005, vol. 152, pp. 624-632.
Dai et al., “Reduced-complexity performance-lossless (quasi-)maximum-likelihood detectors for S-QAM modulated MIMO systems,” Electronics Letters, 2013, vol. 49, No. 11, pp. 724-725.
Dai et al., “Reducing the Complexity of Quasi-ML Detectors for MIMO Systems Through Simplified Branch Metric and Accumulated Branch Metric Based Detection,” Communications Letters, 2013, vol. 17, No. 5, pp. 916-919.
Daniel, J., “Introduction to public safety: RF Signal Distribution Using Fiber Optics”, Available Online at <http://www.rfsolutions.com/fiber.pdf>, 2009, 13 pages,.
Datta et al., “A Hybrid RTS-BP Algorithm for Improved Detection of Large-MIMO M-QAM Signals,” in Proc. IEEE National Conference on Communication, 2011, 6 pages.
Datta et al., “A Novel MCMC Based Receiver for Large-Scale Uplink Multiuser MIMO Systems,” Jan. 2012, 37 pages.
Datta et al., “Random-Restart Reactive Tabu Search Algorithm for Detection in Large-MIMO Systems,” IEEE Communications Letters, 2010, vol. 14, No. 12, pp. 1107-1109.
Debbah et al., “MIMO Channel Modelling and the Principle of Maximum Entropy,” IEEE Transactions on Information Theory, 2005, vol. 51, No. 5, pp. 1667-1690.
Decision of Grant a Patent, JP App. No. 2016120928, dated Apr. 10, 2017, 6 pages.
Decision of Grant, JP Patent App. No. 2015-510498, dated Jun. 14, 2017, 6 pages.
Decision of Grant, RU App. No. 2014151216, dated Jan. 31, 2017, 18 pages.
Decision of Grant, RU App. No. 2016144927, dated Nov. 29, 2019, 8 pages of Original Document Only.
Decision of Refusal, JP App. No. 2016-562961, dated Oct. 28, 2020, 5 pages (4 pages of English Translation and 1 page of Original Document).
Decision of Refusal, KR App. No. 2010-7006265, dated Apr. 23, 2015, 2 pages.
Decision of Refusal. JP App. No. 2014530763, dated Dec. 19, 2016, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Decision to grant a European patent, EP App. No. 10156950.7, dated May 8, 2020, 2 pages.
Decision to grant a European patent, EP App. No. 11838640.8, dated Feb. 7, 2019, 2 pages.
Decision to Grant a Patent, EP App. No. 13790935.4, dated Sep. 24, 2020, 2 pages.
Decision to Grant a Patent, JP App. No. 2017-082862, dated Dec. 10, 2018, 7 pages.
Decision to Grant a patent, JP App. No. 2017-110950, dated Nov. 15, 2017, 6 pages.
Decision to Grant, EP App. No. 14770916.6, dated May 28, 2021, 2 pages.
Degen et al., “Performance evaluation of MIMO systems using dual-polarized antennas,” International Conference on Telecommunications, 2003, vol. 2, pp. 1520-1525.
Delfas N., “Mobile Data Wave: Who Dares to Invest, Wins,” Morgan Stanley Research Global, Jun. 13, 2012, pp. 1-62.
Derrick et al., “Energy-Efficient Resource Allocation in OFDMA Systems with Large Numbers of Base Station Antennas”, 2011, 30 pages.
Devasirvatham, et al., “Time Delay Spread Measurements at 850 MHz and 1 7 GHz Inside a Metropolitan Office Building”, Electronics Letters, Feb. 2, 1989, vol. 25, No. 3, pp. 194-196.
Devasirvatham, et al., Radio Propagation Measurements at 850MHz. 1.7GHZ and 4GHz Inside Two Dissimilar Office Buildings, Electronics Letter Mar. 29, 1990 vol. 26 No. 7, pp. 445-447.
Devasirvatham., “Time Delay Spread and Signal Level Measurements of 850 MHz Radio Waves in Building Environments,” IEEE Transactions on Antennas and Propagation, 1986, vol. AP-34 (11), pp. 1300-1305.
Devillers et al., “Mutual coupling effects in multiuser massive MIMO base stations”, IEEE Antennas and Propagation Society International Symposium (APSURSI), Jul. 2012, 2 pages.
Dietrich et al., “Spatial, polarization, and pattern diversity for wireless handheld terminals,” Proc. IEEE Antennas and Prop. Symp, 2001, vol. 49, pp. 1271-1281.
Dighe et al., “Analysis of Transmit-Receive Diversity in Rayleigh Fading”, IEEE Transactions on Communications, vol. 51, No. 4, Apr. 2003, pp. 694-703.
DigitalAir wireless, “GeoDesy Laser Links 1.25Gbps Full Duplex”, Available Onlibne at <http:www.digitalairwireless.comoutdoor-wireless-networkspoint-to-point-wirelesslaser-fso-linksgeodesy-fso-laser-links.html> , Retreived on Oct. 2, 2015, 4 pages.
DigitalAir wireless, “Outdoor Wireless”, Available Online at <URL: http:www.digitalairwireless.comoutdoor-wireless-networks.html>, Retreived on Sep. 29, 2015, 5 pages.
Ding et al., “On the Sum Rate of Channel Subspace Feedback for Multi-Antenna Broadcast Channels,” in Proc., IEEE Globecom, vol. 5, Nov. 2005, pp. 2699-2703.
Divisional Notification, CN App. No. 201710491990.7, dated Jul. 13, 2020, 4 pages (2 pages of English Translation and 2 pages of Original Document).
Dohler et al., “A Step towards MIMO: Virtual Antenna Arrays,” European Cooperation in the Field of Scientific and Technical Research, 2003, 9 pages.
Dong et al., “Multiple-input multiple output wireless communication systems using antenna pattern diversity,” Proceedings of IEEE Globe Telecommunications Conference, 2002, vol. 1, pp. 997-1001.
Dumont J., et al. “On the Capacity Achieving Transmit Covariance Matrices for MIMO Rician Channels: An Asymptotic Approach,” IEEE Transactions on Information Theory, 2010, vol. 56 (3), pp. 1048-1069.
Dupuy, et al., “On the Capacity Achieving Covariance Matrix for Frequency Selective MIMO Channels Using the Asymptotic Approach”, IEEE Trans. Inform. Theory 2010, pp. 2153-2157.
Dupuy, et al., On the Capacity Achieving Covariance Matrix for Frequency Selective MIMO Channels Using the Asymptotic Approach, IEEE Trans. Inform. Theory, 2011, vol. 57 (9), pp. 5737-5753.
Durgin, “Space-Time Wireless Channels”, Prentice Hall Communications Engineering and Emerging Technologies Series, 2003, Upper Saddle River, NJ, Cover page, Title pages, Copyright page, Table of Contents, Preface, 16 pages, USA.
Eklund et al., “IEEE Standard 802.16: A Technical Overview of the WirelessMAN Air Interface for Broadband Wireless Access,” IEEE Communications Magazine, Available Online at <http://ieee802.org/16/docs/02/C80216-02_05.pdf>, Jun. 2002, 12 pages.
Ekstrom et al., “Technical Solutions for the 3G Long-Term Evolution”, IEEE Communications Magazine, 2006, pp. 38-45.
Erceg et al., “TGn Channel Models,” IEEE 802.11-03940r4, May 2004, 45 pages.
Ericsson, The evolution of EDGE, Available Online at <http:www.ericsson.com/res/docs/whitepapersevolution_to_edge.pdf>, Feb. 2007, 18 pages.
ETSI Reconfigurable Radio Systems: Status and Future Directions on Software Defined Radio and Cognitive Radio Standards, IEEE Communications Magazine, IEEE Service Center, Sep. 2010, vol. 48, No. 9, pp. 78-86.
ETSI, “Mobile Technologies GSM”, Available Online at <http://www.etsi.org/WebSite/Technologies/gsm.asp>, Retreived on Aug. 14, 2014, 2 pages.
European Search Report and Search Opinion, EP App. No. 05254757.7, Sep. 13, 2005, 9 pages.
European Search Report and Search Opinion, EP App. No. 17844265.3, Feb. 21, 2020, 12 pages.
Forenza et al., “Switching Between OSTBC and Spatial Multiplexing with Linear Receivers in Spatially Correlated MIMO Channels”, IEEE, 2006, pp. 1-5.
Foschin et al., “Coordinating multiple antenna cellular networks to achieve enormous spectral efficiency”, Proceedings of the IEEE, Aug. 2006, vol. 153, No. 4, pp. 548-555.
Foschini et al., “Simplified processing for high spectral efficiency wireless communication employing multi-element arrays”, IEEE Jour. Select. Areas in Comm., vol. 17, No. 11, Nov. 1999, pp. 1841-1852.
Foschini et al., “The Value of Coherent Base Station Coordination”, Conference on In-formation Sciences and Systems (CISS 2005), Mar. 16-18, 2005, 6 pages.
Fourth Office Action, CN App. No. 201480016091.6, dated Dec. 10, 2019, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Further Examination Report (Postponed Acceptance), New Zealand Patent App. No. 728719, dated Jan. 31, 2018, 2 pages.
Further Examination Report, New Zealand App. No. 701567, dated Aug. 24, 2016, 6 pages.
Further Examination Report, New Zealand App. No. 701691, dated Sep. 26, 2016, 3 pages.
Further Examination Report, New Zealand Patent App. No. 717370, dated Aug. 3, 2017, 4 pages.
Fusco et al., “Blind Frequency offset Estimation for OFDM/OQAM Systems,” IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 2007, vol. 55, pp. 1828-1838.
Gao et al., “Linear Pre-Coding Performance in Measured Very-Large MIMO Channels,” IEEE Vehicular Technology, 2011, pp. 1-5.
Garcia et al., “Channel Model for Train to Train Communication Using the 400 MHz Band”, in Proc. of IEEE Vehicular Technology Conference, May 2008, pp. 3082-3086.
Gesbert et al., “From Theory to Practice: An Overview of MIMO Space-Time Coded Wireless Systems,” IEEE Journal on Selected Areas in Communications, 2003, vol. 21, No. 3, pp. 281-302.
Gesbert et al., “Multi-Cell MIMO Cooperative Networks: A New Look at Interference,” IEEE Journal on Selected Areas in Communications, Dec. 2010, vol. 28, No. 9, pp. 1380-1408.
Gesbert et al., “Outdoor MIMO Wireless Channels: Models and Performance Prediction”, IEEE Transactions on Communications, vol. 50, No. 12, Dec. 2002, pp. 1926-1934.
Ghogho et al., “Training design for multipath channel and frequency offset estimation in MIMO systems”, Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], vol. 54, No. 10, Oct. 2006, pp. 3957-3965.
Glazunov et al., “Experimental Characterization of the Propagation Channel along a Very Large Virtual Array in a Reverberation Chamber”, Progress In Electromagnetics Research B, Jan. 2014, vol. 59, pp. 205-217.
Goldman D., “Sorry, America: Your Wireless Airwaves are Full”, CNN Money, Available Online at <http://money.cnn.com/2012/02/21/technology/spectrum crunch/index.html>, 2012, 3 pages.
Gopalakrishnan et al., “An Analysis of Pilot Contamination on Multi-User MIMO Cellular Systems with Many Antennas,” Proceedings in Signal Processing Advances in Wireless Communications, 2011, pp. 381-385.
Govindasamy et al., “Asymptotic Spectral Efficiency of the Uplink in Spatially Distributed Wireless Networks with Multi-Antenna Base Stations,” IEEE Transactions on Communications, 2013, vol. 61, No. 7, 100 pages.
GSMA, “GSM technology” Printed on Aug. 14, 2014, Available Online at <http://www.gsmworld.com/technology/index.htm>, 1 page.
Guey et al., “Modeling and Evaluation of MIMO Systems Exploiting Channel Reciprocity in TDD Mode,” VTC 2004-Fall, IEEE 60th, Oct. 2004, pp. 4265-4269.
Guillaud et al., “A Practical Method for Wireless Channel Reciprocity Exploitation Through Relative Calibration”, IEEE Proceedings of Sign Processing, Aug. 2005, vol. 1, pp. 403-406.
Guillaud et al., “A Specular Approach to MIMO Frequency selective Channel Tracking and Prediction,” Fifth IEEE Workshop on Signal Processing Advances in Wireless Communications, Jul. 11-14, 2004, pp. 59-63.
Gunashekar G., “Investigations into the Feasibility of MIMO Techniques within the HF Band: Preliminary Results,” Radio Science, 2009, 33 pages.
Guthy et al., “Large System Analysis of Projection Based Algorithms for the MIMO Broadcast Channel”, in Proc. of the IEEE Intl Symp. Inform. Theory, Austin, U.S.A., Jun. 2010, 5 pages.
Guthy et al., “Large System Analysis of Sum Capacity in the Gaussian MIMO Broadcast Channel”, IEEE J. Sel. Areas Communication, 2013, vol. 31, No. 2, pp. 149-159.
Guthy et al., “Large System Analysis of the Successive Encoding Successive Allocation Method for the MIMO BC”, Proc. of the International ITG Workshop on Smart Antennas, Bremen, Germany, Feb. 2010.
Hachem et al., “A New Approach for Mutual Information Analysis of Large Dimensional Multi-Antenna Channels,” IEEE Transactions on Information Theory, 2008, vol. 54, No. 9, pp. 3987-4004.
Hakkarainen et al., “Widely-Linear Beamforming and RF Impairment Suppression in Massive Antenna Arrays”, Journal of Communications and Networks, 2013, vol. 15, No. 4, pp. 383-397.
Hallen H., “Long-Range Prediction of Fading Signals”, Institute of Electrical and Electronics Engineers Signal Processing Magazine, 2000, vol. 17, No. 3, pp. 62-75.
Haring, L. , “Residual carrier and sampling frequency synchronization in multiuser OFDM systems”, VTC-Spring. IEEE 63rd Vehicular Technology Conference, vol. 4, 2006, pp. 1937-1941.
Hazlett et al., “Radio Spectrum for a Hungry Wireless World”, Sep. 22, 2011, 41 pages.
Heath et al., “Antenna selection for spatial multiplexing systems with linear receivers,” IEEE Trans. Comm, 2001, vol. 5, pp. 142-144.
Heath et al., “Switching between diversity and multiplexing in MIMO systems”, IEEE Trans. Comm., vol. 53, No. 6, Jun. 2005, pp. 962-968.
Heath et al., “Switching between Multiplexing and Diversity Based on Constellation Distance,” Proc. of Allerton Conf on 208, Comm. Control and Comp, Oct. 4-6, 2000, pp. 212-221.
Heath R et al., “Exploiting Limited Feedback in Tomorrow's Wireless Communication Networks,” IEEE Journal on Sel. Areas in Comm., Special Issue on Exploiting Limited Feedback in Tomorrow's Wireless Communication Networks, 2008, vol. 26, No. 8, pp. 1337-1340.
Hewlett Packard, “GPS and Precision Timing Applications”, Application Note 1272, May 1996, pp. 1-28.
High Frequency Active Auroroal Research Program—Homepage, Available Online at <http:www.haarp.alaska.edu>, Printed on Apr. 9, 2004, 1 page.
Hochwald et al., “A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication—Part I: Channel Inversion and Regularization”, Institute of Electrical and Electronics Engineers Transactions on Communications, 2005, vol. 53, No. 1, pp. 195-202.
Hochwald et al., “A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication—Part II: Perturbation”, Institute of Electrical and Electronics Engineers Transactions on Communications, 2005, vol. 53, No. 3, pp. 537-544.
Hochwald et al., “Multi-Antenna Channel Hardening and its Implications for Rate Feedback and Scheduling”, Institute of Electrical and Electronics Engineers Transactions on Information Theory, 2004, vol. 50, No. 9, pp. 1893-1909.
Hong et al. “Joint Base Station Clustering and Beamformer Design for Partial Coordinated Transmission in Heterogenous Networks,” IEEE Journal on Selected Areas in Communications, 2013, vol. 31, No. 2, pp. 226-240.
Hosseini et al., “Massive MIMO and Small Cells: How to Densify Heterogeneous Networks,” Wireless Communications Symposium, IEEE ICC, 2013, pp. 5442-5447.
Hoydis et al., “Iterative Deterministic Equivalents for the Performance Analysis of Communication Systems,” Dec. 18, 2011, pp. 1-43.
Huang et al., “Joint Beamforming and Power Control in Coordinated Multicell: Max-Min Duality, Effective Network and Large System Transition,” IEEE Transactions on Wireless Communications, 2013, pp. 1-14.
Huawei, et al., “COMP Clarification of definitions and TP,” R1-084351, Nov. 10-14, 2008, 3GPP TSG RAN WG1 Meeting #55, 7 pages.
Huff et al., “A Novel Radiation Pattern and Frequency Reconfigurable Single Tum Square Spiral Microstrip Antenna”, IEEE Microwave and Wireless Components Letters, vol. 13, No. 2, Feb. 2003, pp. 57-59.
Huh et al., Multi-cell MIMO Downlink with Cell Cooperation and Fair Scheduling: A Large-System Limit Analysis, IEEE Transactions on Information Theory, 2011, vol. 57, No. 12, pp. 7771-7786.
Huh H., et al., Achieving “Massive MIMO” Spectral Efficiency with a Not-so-Large Number of Antennas. IEEE Transactions on Wireless Communications, Sep. 2012, vol. 11 (9), pp. 3226-3239.
Tran et al. “A Conic Quadratic Programming Approach to Physical Layer Multicasting for Large-Scale Antenna Arrays,” IEEE Signal Processing Letters, Jan. 1, 2014, vol. 21, No. 1, pp. 114-117.
Truong K.T., et al. “Effects of Channel Aging in Massive MIMO Systems,” Joumal of Communications and Networks, Special Issue on Massive MIMO, 2013, vol. 15 (4), pp. 338-351.
Truong K.T., et al., “The Viability of Distributed Antennas for Massive MIMO Systems,” Proceedings of the Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 3-6, 2013, pp. 1318-1323.
Tsakalaki et al., “On the Beamforming Performance of Large-Scale Antenna Arrays”, Proc. Loughborough Antennas and Propagation Conference (LAPC), Nov. 12-13, 2012, 4 pages.
Tse et al., “Diversity-multiplexing tradeoff in multiple-access channels”, IEEE Trans. Info. Th., Mar. 2004, vol. 50, No. 9, pp. 1859-1874.
Tse et al., “Performance Tradeoffs between Maximum Ratio Transmission and Switched-Transmit Diversity”, in Proc. 11.sup.th IEEE International Symposium on Personal, Indoor and Mobile Radio Communication, vol. 2, Sep. 2000, pp. 1485-1489.
Tureli et al., “OFDM blind carrier offset estimation: ESPRIT”, IEEE Trans. Commun., vol. 48, No. 9, Sep. 2000, pp. 1459-1461.
Tyler et al., “Adaptive antennas: the Calibration Problem”, IEEE Comm. Mag., Dec. 2004, pp. 114-122.
Ubuquiti, “airFiber”, Available Online at <http:f/www.ubnt.com/airfiber>, Retreived on Sep. 4, 2015, 10 pages.
Ubuquiti, “airMAX”, Available Online at <http:www.ubnt.comairmax>, 2015, 10 pages.
Uthansakul P., et al.,MIMO antenna selection using CSI from reciprocal channel, Int. Journal of Elect. and Info. Eng., 2010, vol. 4, No. 10, pp. 482-491.
Valkama et al., “Advanced methods for 1/Q imbalance compensation in communication receivers,” IEEE Transactions on Signal Processing, vol. 49, No. 10, 2001, pp. 2335-2344.
Van De Beek et al., “ML estimation of time and frequency offset in OFDM systems”, Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions, vol. 45, No. 7, Jul. 1997, pp. 1800-1805.
Van et al., “Beamforming: A Versatile Approach to Spatial Filtering,” IEEE ASSP Magazine, 1988, pp. 4-24.
Vance, A., “Steve Perlman's wireless fix”, Businessweek, Available Online at <http://www.businessweek.com/magazine/the-edison-of-silicon-valley-727-2011.html>, Jul. 2011, 10 pages.
Vaughan R. G., “On Optimum Combining at the Mobile,” IEEE Transactions on Vehicular Technology, Nov. 1988, vol. 37, No. 4, pp. 181-188.
Vaughn R., et al., “Switched parasitic elements for antenna diversity,” IEEE Transactions on Antennas and Propagation, 1999, vol. 47, pp. 399-405.
Venkatesan et al., “A WiMAX-Based Implementation of Network MIMO for Indoor Wireless Systems,” EURASIP Journal on Advances in Signal Processing, 2009, vol. 2009, 11 pages.
Venkatesan et al., “Network MIMO: Overcoming InterCell Interference in Indoor Wireless Systems,” Asilomar Conference on Signals, 2007, vol. 2007, pp. 83-87.
Vieira et al., “A flexible 100-antenna testbed for Massive MIMO,” in Proc IEEE Globecom 2014 Workshop-Massive MIMO: From Theory to Practice, Austin, Texas, USA, Dec. 2014, pp. 287-293.
Vishwanath, S, “Duality, Achievable Rates, and Sum-Rate Capacity of Gaussian MIMO Broadcast Channels,” IEEE Trans. Info. Th., vol. 49, No. 10, pp. 2658-2668, Oct. 2003.
Visotsky E., et al., “Space-Time Transmit Precoding with Imperfect Feedback,” IEEE Transactions on Information Theory, 2001, vol. 47, pp. 2632-2639.
Visuri et al “Colocated Antenna Arrays: Design Desiderata for Wireless Communications,” 2002, vol. 2002, pp. 580-584.
Viswanath et al., “Opportunistic beamforming using dump antennas,” IEEE Transactions on Information Theory, 2002, vol. 48, pp. 1277-1294.
Viswanath, “Sum Capacity of the Vector Gaussian Broadcast Channel and Uplink-Downlink Duality,” IEEE Transactions on Information Theory, 2003, vol. 49, No. 8, pp. 1912-1921.
Wagner et al., “Large System Analysis of Linear Precoding in MISO Broadcast Channels with Limited Feedback,” IEEE Transactions on Information Theory, 2012, vol. 58, No. 7, pp. 4509-4537.
Waldschmidt et al., “Compact MIMO-arrays based on polarisation-diversity”, Proc. IEEE Antennas and Prop. Symp., 2003, vol. 2, pp. 499-502.
Waldschmidt et al., “Complete RF system model for analysis of compact MIMO arrays,” IEEE Trans. on Vehicular Technologies, 2004, vol. 53, pp. 579-586.
Wallace et al., “Statistical Characteristics of Measured MIMO Wireless Channel Data and Comparison to Conventional Models,” Proceedings IEEE Vehicular Technology Conference, Oct. 2001, vol. 2 (7-11), pp. 1078-1082.
Wallace et al., “Termination-dependent diversity performance of coupled antennas: Network theory analysis,”, IEEE Trans. Antennas Propagat., vol. 52, Jan. 2004, pp. 98-105.
Wang Z., “Performance of Uplink Multiuser Massive MIMO system,” International Conference on Acoustics Speech and Signal Processing, Florence, Italy, Nov. 6, 2013, 5 pages.
Wang Z., et al., “Enhanced downlink MU-Comp schemes for TD-LTE-Advanced,” Wireless Communications and Networking Conference (WCNC), IEEE, 2010, 6 pages.
Wannstrom J., “Carrier Aggregation Explained,” 3GPP, Available Online at <http://www.3gpp.org/Carrier-Aggregation-explained>, Jun. 2013, 6 pages.
Warrington et al. “Measurement and Modeling of HF Channel Directional Spread Characteristics for Northerly Paths”, Radio Science, vol. 41, RS2006, DOI:10.1029/2005RS003294, 2006, pp. 1-13.
Webpass, Buildings online, Available Online at <http://www.webpass.net/buildings?city=san+francisco&column=address&order-asc>, Retrieved on Sep. 4, 2015, 3 pages.
Weedon W.H., et al., “MEMS-switched reconfigurable antennas”, IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), vol. 3, 2001, pp. 654-657.
Wen et al., “On the Sum-Rate of Multiuser MIMO Uplink Channels with Jointly-Correlated Rician fading”, IEEE Trans. Commun., 2011, vol. 59, No. 10, pp. 2883-2895.
Wenck et al., “Asymptotic Mutual Information for Rician MIMO-MA Channels with Arbitrary Inputs: A Replica Analysis”, IEEE Trans. Commun., 2010, vol. 58, No. 10, pp. 2782-2788.
Wennestrom et al., “An Antenna Solution for MIMO Channels: The Switched Parasitic Antenna,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, vol. 1, 2001, pp. 159-163.
Werner, Kari, et al., “LTE-Advanced 8×8 MIMO Measurements in an Indoor Scenario”, Proceedings of ISAP2012, Nagoya, Japan, Oct. 29, 2012, pp. 750-753.
Werner, Karl, et al., “LTE-Advanced 8×8 MIMO Measurements in an Indoor Scenario”, Proceedings of ISAP2012, Nagoya, Japan, Oct. 29, 2012, pp. 750-753.
Wheeler et al., “Small antennas,” IEEE Transactions on Antennas and Propagation, 1975, vol. AP-23, No. 4, pp. 462-469.
Wi-Fi alliance, Homepage, Available Online at <www.wi-fi.org>, Retrieved on Aug. 14, 2014, pp. 1-3.
Wikipedia, “Advanced Mobile Phone System”, Available Online at <https://en.wikipedia.org/wiki/AdvancedMobilePhoneSystem>, 2014, 6 pages.
Wikipedia, “IS-95” Available Online at <http:en.wikipedia.orgwikiIS-95>, 2014, 6 pages.
WiMAX forum, Available Online at <http://www.wimaxforum.org/>, Aug. 14, 2014, 1 page.
Wired, Has OnLive's Steve Perlman Discovered Holy Grail of Wireless?, Jun. 30, 2011 Retrieved from the Internet: http:www.wired.comepicenter201106perlman-holy-grail-wireless.
Wong et al., “A joint-channel diagonalization for multiuser MIMO antenna systems”, IEEE Trans. Wireless Comm., vol. 2, Jul. 2003, pp. 773-786.
Wong et al., “Exploiting Spatia-Temporal Correlations in MIMO Wireless Channel Prediction,” Dec. 2006, IEEE GLOBECOM Conference, 5 pages.
Wong et al., “Joint Channel Estimation and Prediction for OFDM Systems,” Proceedings in IEEE Global Telecommunications Conference, St. Louis, MO, 2005, pp. 2255-2259.
Jungnickel et al., “Capacity of MIMO systems with closely spaced antennas”, IEEE Comm. Lett., vol. 7, Aug. 2003, pp. 361-363.
Kamata et al., “Effects of IQ Imbalance and an Effective Compensation Scheme in the MIMO OFDM Communication System,” Proceedings of the 2005 Institute of Electronics, Information and Communication General Conference, Mar. 7, 2005, B-5-90, 5 pages.
Kang et al., “Water-Filling Capacity and Beamforming Performance of MIMO Systems With Covariance Feedback,” IEEE Workshop on Signal Processing Advances in Wireless Communications, Jun. 2003, pp. 556-560.
Kannan et al., “Separation of cochannel signals under imperfect timing and carrier synchronization”, IEEE Trans. Veh. Technol., vol. 50, No. 1, Jan. 2001, pp. 79-96.
Karakayali et al. “Network Coordination for Spectrally Efficient Communications in Cellular Systems,” IEEE Wireless Communications Magazine, 2006, vol. 13, No. 4, pp. 56-61.
Karakayali et al., “On the Maximum Common Rate Achievable in a Coordinated Network,” Proceedings of the International Conference on Communications (ICC'06), Mar. 3, 2006, vol. 9, pp. 1-6.
Kayama et al., “Demodulation Reference Signal Design and Channel Estimation for LTE-Advanced Uplink,” Advances in Vehicular Networking Technologies, 2011, pp. 418-432.
Kellerman F. C., “LDPC OFDM Space-Time Multipath Fading Channel Results,” Proceedings SPIE , Digital Wireless Communications, XP-002672064, 2003, vol. 5100, pp. 19-30.
Kent, Adrian, et al., “Quantum Tagging: Authenticating Location via Quantum Information and Relativistic Signaling Constraints”. 2010, 9 pages. Phys. Rev. A84, 012326 (2011), DOI: 10.1103/PhysRevA.84.012326, arXiv:1008.2147.
Kermoal et al., “A Stochastic MIMO Radio Channel Model With Experimental Validation,” IEEE Journal on Selected Areas in Communications, 2002, vol. 20, No. 6, pp. 1211-1226.
Khaled N., et al., “Interpolation Based Multi-Mode Precoding for MIMO-OFDM Systems with Limited Feedback,” IEEE Transactions on Wireless Communications, vol. 6 (3), Mar. 2007, pp. 1003-1013.
Knievel C, “Low Complexity Receiver for Large-MIMO Space Time Coded Systems”, in Proc. IEEE VTC-Fall'2011, Sep. 2011, 5 pages.
Knievel C., et al., “On Particle Swarm Optimization for MIMO Channel Estimation”, Article ID 614384, Journal of Electrical and Computer Engineering, 2012, vol. 2012, 10 pages.
Kouassi B. et al., “Reciprocity-Based Cognitive Transmissions using a MU Massive MIMO Approach”, 2013, pp. 1331-1335.
Kountouris M., et al., “HetNets and Massive MIMO: Modeling, Potential Gains, and Performance Analysis,” in Proc. IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, Sep. 2013, 5 pages.
Krim et al., “Two Decades of Array Signal Processing Research,” IEEE Signal Proceedings Magazine, 1996, pp. 67-94.
Krishnan et al., “Cellular Systems with Many Antennas: Large System Analysis under Pilot Contamination,” in Proceedings of the 50th Annual Allerton Conference on Communication, Control, and Computing, 2012, pp. 1220-1224.
Kumagawa et al., “A Study of Introducing Distributed Transmit Power Control to Distributed Antenna System,” 2011, 30 pages.
Kumar et al. “Asymptotic Performance of Linear Receivers in MIMO Fading Channels”, IEEE Information Theory Workshop, Feb. 19, 2009, 48 pages.
Lang et al., “Design and development of a 5.25 GHz software defined wireless OFDM communication platform”, IEEE Communications Magazine, vol. 42, No. 6, Jun. 2004, pp. 6-12.
Lee et al., “Coordinated Multipoint Transmission and Reception in LTE-Advanced: Deployment Scenarios and Operational Challenges,” IEEE Communications Magazine, Feb. 2012, pp. 148-155.
Lee et al., “Frequency-offset estimation for MIMO and OFDM systems using orthogonal training sequences”, IEEE Trans. Veh. Technol., vol. 56, No. 1, Jan. 2007, pp. 146-156.
Lee et al., “MIMO Technologies in 3GPP LTE and LTE-Advanced,” EURASIP Journal on Wireless Communications and Networking, 2009, 10 pages.
Lee et al., “Network Massive MIMO for Cell-Boundary Users: From a Precoding Normalization Perspective”, IEEE Goblecom Workshops, 2012.
Lee J., “Introduction of LTE-Advanced DL/UL MIMO,” Samsung Electronics, Sep. 2009, 18 pages.
Lee J., et al., “A Compressed Analog Feedback Strategy for Spatially Correlated Massive MIMO Systems,” in Proceedings IEEE Vehicular Technology Conference (VTC), Quebec, Canada, Sep. 2012, pp. 1-6.
Letter Restarting Period for Response from U.S. Appl. No. 13/233,006, nailed Apr. 15, 2016, 9 pages.
Ll et al., “MIMO techniques in WiMAX and LTE: a feature overview”, IEEE Communications Magazine, May 2010, pp. 86-92.
Li P., et al., Multiple Output Selection-LAS Algorithm in Large MIMO Systems, IEEE Commun., 2010, vol. 14 (5), pp. 399-401.
Liang et al., “Asymptotic Performance of MMSE Receivers for Large Systems Using Random Matrix Theory,” IEEE Transactions on Information Theory, 2007, vol. 53, No. 11, pp. 4173-4190.
Liang et al., “Block-iterative Generalized Decision Feedback Equalizers (BI-GDFE) for Large MIMO Systems: Algorithm Design and Asymptotic Performance Analysis,” IEEE Transactions on Signal Processing, 2006, vol. 54, No. 6, pp. 2035-2048.
Liang Y., et al., “Interference Suppression in Wireless Cellular Networks through Picocells,” Annual Conference on Social Studies Communication and Education, 2007, vol. 2007, pp. 1041-1045.
Liang Y., et al., “On the Relationship Between MMSE-SIC and Bi-GDFE Receivers for Large Multiple-Input Multiple-Output Channels,” IEEE Transactions on Signal Processing, 2008, vol. 56 (8), pp. 3627-3637.
Lindstrom M., (Ericsson), “LTE-Advanced Radio Layer 2 and RRC Aspects,” 3GPP TSG-RAN WG2, Dec. 17-18, 2009, 38 pages.
Liu G., “Time and frequency offset estimation for distributed multiple-input multiple-output orthogonal frequency division multiplexing system,” Institute of Engineering and Technology Communications, 2010, vol. 4, No. 6, pp. 708-715.
Love D J., et al., “Grassmannian Beamforming for Multiple-Input Multiple-Output Wireless Systems”, IEEE Trans. on Info. Theory special issue on MIMO Communication, 2003, vol. 49, pp. 2735-2747.
Love et al., “An Overview of Limited Feedback in Wireless Communication Systems,” Special Issue on Exploiting Limited Feedback in Tomorrow's Wireless Communication Networks, IEEE Journal on Sel. Areas in Comm., 2008, vol. 26, No. 8, pp. 1341-1365.
Love et al., “Like deck chairs on the Titanic: why spectrum reallocation won't avert the coming data crunch but technology might keep the wireless industry afloat”, Feb. 2012, pp. 705-719.
Lozano A., et al., “Fundamental Limits of Cooperation”, Mar. 2012, 27 pages.
Luise et al., “Carrier frequency acquisition and tracking for OFDM systems”, IEEE Trans. Commun., vol. 44, No. 11, Nov. 1996, pp. 1590-1598.
Luise et al., “Low-complexity blind carrier frequency recovery for OFDM signals over frequency-selective radio channels,” IEEE Transactions. Communications, 2002, vol. 50, No. 7, pp. 1182-1188.
M. Baker, “LTE-Advanced physical layer”, Alcatel-Lucent, Dec. 2009, 48 pages.
M. Costa, “Writing on dirty paper,” IEEE Transactions on Information Theory, vol. 29, No. 3, May 1983, pp. 439-441.
Marek S., “AT&T's Rinne talks about carrier aggregation trials, small cells and more”, Retrieved from the Intemet. URL: http:www.fiercebroadbandwireless.comstoryatts-rinne-talks about-carrieraggregation-trials-small-cells-and-more2012-11-08, 3 pages.
Martinez A. O., et al. “Very Large Aperture Massive MIMO: a Measurement Based Study”, Dec. 8, 2014, 6 pages.
Martinez et al., “Energy Detection Using Very Large Antenna Array Receivers,” 48th Asilomar Conference on Signals, Systems, and Computers Proceedings, Nov. 2-5, 2014, 5 pages.
Marzetta et al., “Noncooperative Cellular Wireless with Unlimited Nos. of Base Station Antennas,” IEEE Transactions on Wireless Communications, 2010, vol. 9(11), pp. 3590-3600.
Masouros et al., “Large-Scale MIMO Transmitters in Fixed Physical Spaces: The Effect of Transmit Correlation and Mutual Coupling”, IEEE Trans. Commun., 2013, vol. 61, No. 7, pp. 2794-2804.
Matthaiou et al. “Sum Rate Analysis of ZF Receivers in Distributed MIMO Systems,” IEEE Joumal on Selected Areas in Communications, 2013, vol. 31 (2), pp. 180-191.
Matthaiou et al., “Sum Rate Analysis of ZF Receivers in Distributed MIMO Systems with Rayleigh/Lognormal Fading,” 2012 IEEE International Conference on Communications, ICC 2012, Ottawa, Jun. 10-15, pp. 3857-3861.
Office Action, JP App. No. 2018-222367, dated Jun. 8, 2020, 7 pages (4 pages of English Translation and 3 pages of Original Document).
Office Action, JP App. No. 2019-039195, dated Jun. 17, 2019, 8 pages (4 pages of English Translation and 4 pages of Original Document).
Office Action, JP App. No. 2019-093904, dated Jul. 6, 2020, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Office Action, JP App. No. 2019-238040, dated Feb. 25, 2021, 7 pages (4 pages of English Translation and 3 pages of Original Document).
Office Action, JP Patent App. No. 2012-057351, dated Jul. 1, 2013, 6 pages.
Office Action, JP Patent App. No. 2012-057351, dated Mar. 10, 2014, 2 pages.
Office Action, JP Patent App. No. 2013-156855, dated Apr. 17, 2015, 6 pages.
Office Action, JP Patent App. No. 2013-537753, dated Sep. 7, 2015, 9 pages.
Office Action, KR App. No. 10-2014-7035524, dated Oct. 21, 2019, 11 pages (6 pages of English Translation and 5 pages of Original Document).
Office Action, KR App. No. 10-2015-7028298, dated Jul. 27, 2020, 14 pages (8 pages of English Translation and 6 pages of Original Document).
Office Action, KR App. No. 10-2015-7029455, dated Jul. 27, 2020, 14 pages (8 pages of English Translation and 6 pages of Original Document).
Office Action, KR App. No. 1020107006265, dated Jul. 29, 2014, 10 pages.
Office Action, KR Patent App. No. 20050070079, dated Jul. 29, 2011, 3 pages.
Office Action, KR Patent App. No. 2015-7002560, dated May 21, 2015, 10 pages.
Office Action, MX Patent App. No. MX/a/2014/002900, dated May 25, 2015, 7 pages.
Office Action, MX Patent App. No. MX/a/2014/013377, dated Mar. 22, 2016, 20 pages.
Office Action, MX Patent App. No. MX/a/2014/013377, dated Nov. 30, 2017, 4 pages.
Office Action, MX Patent App. No. MX/a/2015/002992, dated Nov. 8, 2016, 4 pages.
Office Action, New Zealand Patent App. No. 610463, dated Jan. 22, 2014, 2 pages.
Office Action, RU App. No. 2014151216, dated Sep. 30, 2016, 12 pages.
Office Action, RU App. No. 2019104259, dated Aug. 20, 2020, 14 pages (7 pages of English Translation and 7 pages of Original Document).
Office Action, RU Patent App. No. 2016144927, dated Dec. 21, 2016, 6 pages.
Office Action, TW App No. 102117728, dated Nov. 29, 2016, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Office Action, TW App. No. 094125985, dated Jan. 6, 2012, 7 pages.
Office Action, TW App. No. 100139880, dated Jan. 26, 2017, 7 pages.
Office Action, TW App. No. 103107541, dated Sep. 28, 2018, 7 pages.
Office Action, TW App. No. 108118765, dated Apr. 16, 2020, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Office Action, TW App. No. 108130461, dated Oct. 30, 2020, 16 pages (7 pages of English Translation and 9 pages of Original Document).
Office Action, TW App. No. 108148122, dated Jul. 8, 2020, 19 pages (8 pages of English Translation and 11 pages of Original Document).
Office Action, TW App. No. 109105764, dated Sep. 9, 2020, 47 pages (21 pages of English Translation and 26 pages of Original Document).
Office Action, TW Patent App. No. 101133865, dated Oct. 28, 2016, 5 pages.
Office Action, TW Patent App. No. 102116145, dated Mar. 31, 2017, 7 pages.
Office Action, U.S. Appl. No. 12/802,988, dated Aug. 14, 2013, 26 pages.
Onggosanusi et al., High Rate Space—Time Block Coded Scheme: Performance and Improvement in Correlated Fading Channels, Proc. IEEE Wireless Comm. and Net. Conf, Mar. 2002, vol. 1, pp. 194-199.
Optimized Markov Chain Monte Carlo for Signal Detection in MIMO Systems: An Analysis of the Stationary Distribution and Mixing Time, Signal Processing, vol. 62, No. 17, Sep. 2014.
Ozgur et al., “Spatial Degrees of Freedom of Large Distributed MIMO Systems and Wireless Ad Hoc Networks”, Institute of Electrical and Electronics Engineers Journal on Selected Areas in Communications, 2013, vol. 31, No. 2, pp. 202-214.
Pan, et al., “Precoding and Power allocation for Cooperative MIMO systems”, International Conference on Wireless Communications, Networking and Mobile Computing, IEEE, 2006, 4 pages.
Panasonic, “Target scenarios for new carrier types,” 3GPP TSG-RAN WGI#72, R1-130684, Jan. 28, 2013-Feb. 1, 2013, 7 pages.
Papadogiannis et al. “Efficient Selective Feedback Design for Multicell Cooperative Networks,” Institute of Electrical and Electronics Engineers Transactions on Vehicular Technology, 2010, vol. 60, No. 1, pp. 196-205.
Papadopoulos et al., Achieving Large Spectral Efficiencies from MU-MIMO with Tens of Antennas: Location-Adaptive TDD MU-MIMO Design and User Scheduling, in Proc. IEEE Asilomar Conf. on Signals, Systems, and Computers (ACSSC), Pacific Grove, CA, Nov. 2010, pp. 636-643.
Parkvall et al., “LTE Advanced-Evolving LTE Towards IMT-Advanced,” Ericsson, IEEE VTC, Sep. 2008, 5 pages.
Partial Supplementary Search Report, EP App. No. 15780522.7, dated Oct. 20, 2017, 7 pages.
Paulraj et al., “Introduction to Space-Time Wireless Communications”, 2003, 33 Pages.
Paulraj, “Is OFDMA, MIMO and OS the right stuff for mobile broad-band?” 63 pages, http://www.ieeevtc.org/vtc2005fal1/presentations/paulraj.pdf, Sep. 2005.
Payami et al., Channel Measurements and Analysis for Very Large Array Systems at 2.6 GHz, in Proc. 6th European Conference on Antennas and Propagation, EuCAP 2012, Prague, Czech Republic, Mar. 26, 2012, 5 pages.
Per-Erik et al., “VDSL2: Next Important Broadband Technology”, Ericsson Review No. 1, 2006, pp. 36-47.
Perlman et al., “Distributed-Input Distributed-Output (Dido), Wireless Technology: A New Approach to Multiuser Wireless,” Retrieved from http://www.rearden.com/DIDO/DIDO White Paper 110727.pdf, Aug. 2011, 19 pages.
Piazza et al., “Design and Evaluation of a Reconfigurable Antenna Array for MIMO Systems”, IEEE Transactions on Antennas and Propagation, 2008, vol. 56, No. 3, pp. 869-881.
Ping-Heng., et al., “Compressive Sensing Based Channel Feedback Protocols for Spatially-Correlated Massive Antenna Arrays”, in Proc. IEEE Wireless Communications and Networking Conference (WCNC 2012), Apr. 2012, pp. 492-497.
Pitarokoilis et al., “On the Optimality of Single Carrier Transmission in Large-Scale Antenna Systems,” IEEE Wireless Commun. Lett., Aug. 2012, vol. 1, No. 4, pp. 276-279.
Final Office Action, U.S. Appl. No. 12/802,958, dated Apr. 29, 2016, 33 pages.
Final Office Action, U.S. Appl. No. 12/802,958, dated Jun. 25, 2013, 48 pages.
Final Office Action, U.S. Appl. No. 12/802,958, dated Jun. 7, 2017, 18 pages.
Final Office Action, U.S. Appl. No. 12/802,974, dated Aug. 1, 2014, 23 pages.
Final Office Action, U.S. Appl. No. 12/802,974, dated Nov. 30, 2015, 22 pages.
Final Office Action, U.S. Appl. No. 12/802,975, dated Aug. 4, 2014, 40 pages.
Final Office Action, U.S. Appl. No. 12/802,975, dated Dec. 14, 2015, 26 pages.
Final Office Action, U.S. Appl. No. 12/802,975, dated Dec. 22, 2016, 29 pages.
Final Office Action, U.S. Appl. No. 12/802,975, dated Jun. 22, 2018, 27 pages.
Final Office Action, U.S. Appl. No. 12/802,975, dated Oct. 18, 2019, 21 pages.
Final Office Action, U.S. Appl. No. 12/802,988, dated Aug. 2, 2013, 13 pages.
Final Office Action, U.S. Appl. No. 12/802,988, dated Feb. 8, 2017, 13 pages.
Final Office Action, U.S. Appl. No. 12/802,988, dated Jan. 13, 2016, 11 pages.
Final Office Action, U.S. Appl. No. 12/802,988, dated Jan. 22, 2018, 11 pages.
Final Office Action, U.S. Appl. No. 12/802,988, dated Oct. 21, 2014, 13 pages.
Final Office Action, U.S. Appl. No. 12/802,988, dated Sep. 5, 2012, 8 pages.
Final Office Action, U.S. Appl. No. 12/802,989, dated Aug. 25, 2015, 24 pages.
Final Office Action, U.S. Appl. No. 12/802,989, dated Jun. 12, 2014, 17 pages.
Final Office Action, U.S. Appl. No. 12/802,989, dated Nov. 2, 2016, 14 pages.
Final Office Action, U.S. Appl. No. 12/802,989, dated Nov. 27, 2012, 12 pages.
Final Office Action, U.S. Appl. No. 13/232,996, dated Apr. 11, 2017, 149 pages.
Final Office Action, U.S. Appl. No. 13/232,996, dated Jul. 31, 2013, 12 pages.
Final Office Action, U.S. Appl. No. 13/232,996, dated Mar. 21, 2018, 20 pages.
Final Office Action, U.S. Appl. No. 13/232,996, dated Nov. 12, 2015, 14 pages.
Final Office Action, U.S. Appl. No. 13/232,996, dated Oct. 23, 2014, 15 pages.
Final Office Action, U.S. Appl. No. 13/464,648, dated Aug. 1, 2013, 10 pages.
Final Office Action, U.S. Appl. No. 13/475,598, dated Aug. 27, 2014, 30 pages.
Final Office Action, U.S. Appl. No. 13/797,950, dated Aug. 24, 2017, 74 pages.
Final Office Action, U.S. Appl. No. 13/797,950, dated Feb. 2, 2016, 65 pages.
Final Office Action, U.S. Appl. No. 13/797,971, dated Oct. 9, 2015, 52 pages.
Final Office Action, U.S. Appl. No. 13/797,984, dated Aug. 20, 2015, 15 pages.
Final Office Action, U.S. Appl. No. 13/797,984, dated Sep. 29, 2016, 13 pages.
Final Office Action, U.S. Appl. No. 13/844,355, dated Aug. 12, 2015, 20 pages.
Final Office Action, U.S. Appl. No. 13/844,355, dated Dec. 15, 2016, 23 pages.
Final Office Action, U.S. Appl. No. 13/844,355, dated Feb. 7, 2018, 24 pages.
Final Office Action, U.S. Appl. No. 13/844,355, dated Feb. 21, 2019, 34 pages.
Final Office Action, U.S. Appl. No. 13/844,355, dated Jun. 3, 2019, 26 pages.
Final Office Action, U.S. Appl. No. 14/023,302, dated Mar. 2, 2015, 5 pages.
Final Office Action, U.S. Appl. No. 14/086,700, dated Oct. 14, 2016, 11 pages.
Final Office Action, U.S. Appl. No. 14/086,700, dated Sep. 2, 2015, 9 pages.
Final Office Action, U.S. Appl. No. 14/611,565, dated May 10, 2021, 7 pages.
Final Office Action, U.S. Appl. No. 14/611,565, dated Dec. 4, 2019, 19 pages.
Final Office Action, U.S. Appl. No. 14/611,565, dated Jun. 16, 2016, 22 pages.
Final Office Action, U.S. Appl. No. 14/611,565, dated Oct. 25, 2017, 25 pages.
Final Office Action, U.S. Appl. No. 14/611,565, dated Oct. 25, 2018, 20 pages.
Final Office Action, U.S. Appl. No. 14/611,565, dated Sep. 3, 2020, 7 pages.
Final Office Action, U.S. Appl. No. 14/672,014, dated Oct. 16, 2017, 9 pages.
Final Office Action, U.S. Appl. No. 14/672,014, dated Oct. 2, 2019, 10 pages.
Final Office Action, U.S. Appl. No. 15/057,002, dated Jul. 16, 2018, 13 pages.
Final Office Action, U.S. Appl. No. 15/181,383, dated Jan. 11, 2018, 8 pages.
Final Office Action, U.S. Appl. No. 15/340,914, dated Jan. 3, 2019, 67 pages.
Final Office Action, U.S. Appl. No. 15/682,076, dated Oct. 30, 2019, 26 pages.
Final Office Action, U.S. Appl. No. 15/792,610, dated Dec. 16, 2019, 8 pages.
Final Office Action, U.S. Appl. No. 16/188,841, dated Jul. 7, 2020, 17 pages.
Final Office Action, U.S. Appl. No. 16/208,895, dated Apr. 6, 2021, 8 pages.
Final Office Action, U.S. Appl. No. 17/317,856, dated Aug. 20, 2021, 33 pages.
Final Office Action, U.S. Appl. No. 13/233,006, dated Dec. 19, 2017, 114 pages.
Final Office Action, U.S. Appl. No. 13/233,006, dated Feb. 18, 2014, 18 pages.
Final Office Action, U.S. Appl. No. 13/233,006, dated Nov. 5, 2015, 10 pages.
Final Office Action, U.S. Appl. No. 13/233,006, dated Nov. 13, 2018, 9 pages.
Final Office Action, U.S. Appl. No. 13/233,006, dated Oct. 12, 2016, 10 pages.
First Exam Report, New Zealand App. No. 701567, dated Feb. 3, 2016, 4 pages.
First Exam Report, New Zealand Patent App. No. 717370, dated Apr. 8, 2016, 2 pages.
First Examination Report from counterpart AU Patent App. No. 2011323559, dated Oct. 12, 2015, 3 pages.
First Examination Report, AU App. No. 2018253582, dated Jun. 3, 2019, 3 pages.
First Examination Report, AU Patent App. No. 2014248533, dated Mar. 1, 2017, 5 pages.
First Examination Report, AU Patent App. No. 2020256510, dated Aug. 10, 2015, 3 pages.
First Examination Report, AU Patent App. No. AU2017245425 , dated May 9, 2018, 9 pages.
First Examination Report, New Zealand App. No. 729017, dated Jun. 30, 2017, 3 pages.
First Examination Report, New Zealand App. No. 742186, dated Jun. 28, 2018, 4 pages.
First Examination Report, New Zealand App. No. 743604, dated Jul. 10, 2018, 5 pages.
First Examination Report, New Zealand Patent App. No. 728719, dated May 31, 2017, 4 pages.
First Examination Report, NZ App. No. 622137, dated Aug. 28, 2014, 2 pages.
First Examination Report, NZ App. No. 701691, dated Feb. 10, 2016, 4 pages.
First Examination Report, NZ App. No. 751530, dated Oct. 18, 2019, 3 pages.
First Examination Report, NZ App. No. 757995, dated Nov. 1, 2019, 2 pages.
First Examination Report,, AU Patent App. No. AU2011323559, dated Sep. 30, 2015, 3 pages.
First Office Action and Search report, Chinese Patent App. No. 201380026522.2, dated Mar. 27, 2017, 20 pages.
First Office Action and Search Report, Chinese Patent App. No. 201480016091.6, dated Apr. 25, 2018, 17 pages.
First Office Action and Search Report, CN App. No. 201210466082.X, dated Apr. 3, 2015, 26 pages.
First Office Action and Search Report, CN App. No. 201580007666.2, dated Jan. 11, 2019, 13 pages.
First Office Action and Search Report, CN App. No. 201580019760.X, dated Jun. 5, 2019, 12 pages (6 pages of English Translation and 6 pages of Original Document).
First Office Action and Search Report, TW App. No. 100139880, dated Feb. 26, 2016, 27 pages.
First Office Action Report, Chinese Patent App. No. 201310407419.4, dated Nov. 20, 2015, 8 pages.
First Office Action, EP Patent App. No. 12762167.0, dated Jan. 4, 2016, 4 pages.
First Office Action, EP Patent App. No. 201380035543.0, dated Feb. 15, 2016, 8 pages.
First Office Action, JP Patent App. No. JP2014264325, dated Nov. 12, 2015, 4 pages.
First Office Action, KR Patent App. No. 10-2015-7033311, dated Feb. 16, 2016, 12 pages.
First Office Action, MX Patent App. No. MX/a/2014/002900, dated Apr. 24, 2015, 3 pages.
First Office Action, MX Patent App. No. MXa2014013795, dated Nov. 1, 2016, 3 pages.
First Office Action, MX Patent App. No. MXa2014013795, Oct. 30, 2015, 7 pages.
First Office Action, RU Patent App. No. 2011131821, dated Jun. 26, 2015, 8 pages.
First Office Action, TW Patent App. No. 102117728, dated Aug. 9, 2016, 11 pages.
Fletcher et al., “Mutual coupling in multi-element array antennas and its influence on MIMO channel capacity,” IEEE Electronics Letters, 2003, vol. 39 (4), pp. 342-344.
Forenza A., et al., “Impact of antenna geometry on MIMO communication in indoor clustered channels,” Proc. IEEE Antennas and Prop Symp, 2004, vol. 2, pp. 1700-1703.
Forenza et al., “Adaptive MIMO Transmission for Exploiting the Capacity of Spatially Correlated Channels,” IEEE Trans. on Veh. Tech, 2007, vol. 56, No. 2, pp. 619-630.
Forenza et al., “Adaptive MIMO transmission scheme: Exploiting the spatial selectivity of wireless channels”, Proceedings Institute of Electrical and Electronics Engineers Vehicular Technology Conference, 2005, vol. 5, pp. 3188-3192.
Forenza et al., “Benefit of Pattern Diversity via 2-element Array of Circular Patch Antennas in Indoor Clustered MIMO Channels”, IEEE Trans. on Communications, vol. 54, No. 5, May 2006, pp. 943-954.
Forenza et al., “Link Adaptation and Channel Prediction in Wireless OFDM Systems,” Proceeding of IEEE International Midwest Symposium on Circuits and Systems, 2002, pp. 211-214.
Forenza et al., “Optimization Methodology for Designing 2-CPAs Exploiting Pattern Diversity in Clustered MIMO Channels”, Institute of Electrical and Electronics Engineers Transactions on Communications, 2008, vol. 56, No. 10, pp. 1748-1759.
European Search Report and Search Opinion, EP App. No. 17864744.2, dated Aug. 14, 2020, 15 pages.
European Search Report, EP App. No. 10156954.9-2411, dated Sep. 2, 2010, 5 pages.
European Search Report, EP App. No. 19159810.1, dated Sep. 25, 2019, 8 pages.
Examination Report from counterpart AU Patent App. No. AU2014200745, dated Sep. 25, 2015, 3 pages.
Examination Report No. 1, AU App. No. 2012308632, dated Oct. 11, 2016, 3 pages.
Examination report No. 1, AU App. No. 2015214278, dated Jun. 5, 2018, 4 pages.
Examination report No. 1, AU App. No. 2015248161, dated Jul. 2, 2018, 5 pages.
Examination Report No. 1, AU App. No. 2019203120, dated Jul. 3, 2020, 4 pages.
Examination Report No. 1, AU App. No. 2020200070, dated Sep. 8, 2020, 4 pages.
Examination Report No. 2, AU App. No. 2012308632, dated Jun. 6, 2017, 5 pages.
Examination Report No. 2, NZ App. No. 761315, dated Aug. 5, 2020, 3 pages.
Examination Report No. 3, AU App. No. 2019200838, dated Aug. 4, 2020, 5 pages.
Examination report No. 4, AU App. No. 2013347803, dated Jan. 25, 2018, 6 pages.
Examination Report, AU App. No. 2016219662, dated Sep. 9, 2016, 2 pages.
Examination report, AU App. No. 2018241100, dated Sep. 27, 2019, 2 pages.
Examination Report, AU App. No. 2020201409, dated Apr. 16, 2021, 6 pages.
Examination report, Indian Patent App. No. 3496/CHENP/2013, dated Oct. 29, 2018, 7 pages.
Examination Report, NZ App. No. 622137, dated Dec. 21, 2016, 3 pages.
Examiner Report, CA App. No. 2885817, dated Jul. 17, 2020, 5 pages.
Examiner's Report from counterpart AU Patent App. No. 2013256044, dated May 9, 2016, 2 pages.
Examiner's Report, CA App. No. 2539333, dated Dec. 4, 2012, 15 pages.
Examiner's Report, CA App. No. 28656772, dated Jan. 7, 2016, 3 pages.
Examiner's Report, CA App. No. CA2695799, dated Apr. 1, 2015, 4 pages.
Examiner's Report, CA App. No. 2892555, dated Sep. 15, 2020, 2 pages.
Extended European Search Report, EP App. No. 08798313.6, dated Nov. 14, 2012, 10 pages.
Extended European Search Report, EP App. No. 10156950.7, dated Nov. 6, 2012, 10 pages.
Extended European Search Report, EP App. No. 10184659.0, dated Nov. 29, 2012, 8 pages.
Extended European Search Report, EP App. No. 11838640.8, dated May 31, 2017, 15 pages.
Extended European Search Report, EP App. No. 18186156.8, dated Nov. 26, 2018, 7 pages.
Extended Search Report, EP App. No. 13843203.4, dated Feb. 15, 2016, 8 pages.
Extended Search Report, EP App. No. 13856705.2, dated Mar. 2, 2016, 10 pages.
Extended Search Report, EP App. No. 14770916.6, dated Jan. 24, 2017, 12 pages.
Extended Search Report, EP App. No. 14779084.4, dated Sep. 29, 2016, 8 pages.
Extended Search Report, EP App. No. 15746217.7, dated Jan. 22, 2018, 18 pages.
Extended Search Report, EP App. No. 15780522.7, dated Feb. 6, 2018, 13 pages.
Extended Search Report, EP App. No. EP13784690.3, dated Nov. 23, 2015, 4 pages.
Fakhereddin et al., “Combined effect of polarization diversity and mutual coupling on MIMO capacity,” Proc. IEEE Antennas and Prop. Symp, 2003, vol. 2, pp. 495-498.
FCC, “Open commission meeting”, Available Online at <http:reboot.fcc.govopen-meetings2010september>, Sep. 23, 2010, 3 pages.
FCC, Broadband action agenda, National Broadband Plan, Available Online at <http://www.broadband.gov/plan/national-broadband-plan-action-agenda.pdf>, 2010, pp. 1-8.
Federal Communications Commission, “Authorization of Spread Spectrum Systems under Parts 15 and 90 of the FCC Rules and Regulations”, Jun. 1985, 18 pages.
Federal Communications Commission, “Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields,” OET Bulletin 65, Ed. 97-01, Aug. 1997, 84 pages.
Fella Adlane, “Adaptive WiMAX Antennas: The promise of higher ROI,” Available Online at <http:www.wimax.comcommentaryspotlightspotlight8-08-2005searchterm=Adlane Fella>, Printed on May 9, 2008, pp. 1-3.
Feng et al., “Self-organizing networks (SON) in 3GPP LTE”, Nom or Research, May 2008, pp. 1-15.
Final Office Action with partial English translation, JP Patent App. No. 2005223345, dated Feb. 18, 2014, 23 pages.
Final Office Action, JP App. No. 2005-223345, dated May 12, 2011, 12 pages.
Final Office Action, U.S. Appl. No. 10/817,731, dated Jul. 9, 2008, 21 pages.
Final Office Action, U.S. Appl. No. 10/817,731, dated Sep. 11, 2009, 36 pages.
Final Office Action, U.S. Appl. No. 12/630,627, dated Apr. 2, 2013, 23 pages.
Final Office Action, U.S. Appl. No. 12/630,627, dated Oct. 20, 2011, 13 pages.
Final Office Action, U.S. Appl. No. 12/802,958, dated Apr. 15, 2015, 24 pages.
3GPP TSG-RAN WG1 #70, “Uplink timing advance”, Qualcomm Incorporated, R1-123695, Aug. 13-17, 2012, 6 pages.
Decision of Refusal, JP App. No. 2019-093904, Feb. 7, 2022, 4 pages (2 pages of English Translation and 2 pages of Original Document).
Examination Search Report, CA App. No. 2945987, Jan. 27, 2023, 3 pages.
Final Office Action, U.S. Appl. No. 14/611,565, Jul. 12, 2022, 12 pages.
Final Office Action, U.S. Appl. No. 16/208,895, Jul. 28, 2022, 5 pages.
Final Office Action, U.S. Appl. No. 17/498,666, Apr. 22, 2022, 17 pages.
Final Office Action, U.S. Appl. No. 17/528,811, May 10, 2023, 12 pages.
Intention to Grant, EP App. No. 05254757.7, Mar. 1, 2023, 6 pages.
Intention to Grant, EP App. No. 10184659, Mar. 1, 2023, 6 pages.
International Preliminary Report on Patentability, PCT App. No. PCT/US2021/026431, Oct. 20, 2022, 5 pages.
Non Final Office Action, U.S. Appl. No. 17/528,811, Oct. 26, 2022, 14 pages.
Non-Final Office Action, U.S. Appl. No. 14/611,565, Jan. 4, 2023, 13 pages.
Non-Final Office Action, U.S. Appl. No. 16/208,895, Sep. 8, 2022, 7 pages.
Non-Final Office Action, U.S. Appl. No. 17/224,977, Feb. 22, 2023, 7 pages.
Non-Final Office Action, U.S. Appl. No. 17/498,666, Aug. 18, 2022, 7 pages.
Non-Final Office Action, U.S. Appl. No. 17/498,666, Dec. 29, 2021, 22 pages.
Non-Final Office Action, U.S. Appl. No. 17/541,809, Feb. 8, 2022, 9 pages.
Non-Final Office Action, U.S. Appl. No. 17/946,856, Mar. 17, 2023, 12 pages.
Non-Final Office Action, U.S. App. No. 17/948,193, Nov. 22, 2022, 23 pages.
Non-Final Office Action, U.S. Appl. No. 18/109,207, Apr. 25, 2023, 15 pages.
Non-Final Office Action, U.S. Appl. No. 16/208,895, Apr. 15, 2022, 6 pages.
Notice of Acceptance, AU App. No. 2017350850, Aug. 10, 2022, 4 pages.
Notice of Allowance, U.S. Appl. No. 16/208,895, Feb. 8, 2023, 6 pages.
Notice of Allowance, U.S. Appl. No. 16/208,895, Jul. 21, 2023, 5 pages.
Notice of Allowance, U.S. Appl. No. 17/100,875, Apr. 22, 2022, 8 pages.
Notice of Allowance, U.S. Appl. No. 17/100,875, Aug. 10, 2022, 9 pages.
Notice of Allowance, U.S. Appl. No. 17/379,985, Dec. 15, 2021, 7 pages.
Notice of Allowance, U.S. Appl. No. 17/498,666, Oct. 13, 2022, 7 pages.
Notice of Allowance, U.S. Appl. No. 17/498,666, Sep. 29, 2022, 10 pages.
Notice of Allowance, U.S. Appl. No. 17/532,967, Jun. 14, 2023, 10 pages.
Notice of Allowance, U.S. Appl. No. 17/532,967, Jun. 28, 2023, 2 pages.
Notice of Allowance, U.S. Appl. No. 17/541,809, Mar. 15, 2022, 5 pages.
Notice of Allowance, U.S. Appl. No. 17/586,765, Apr. 7, 2022, 7 pages.
Notice of Allowance, U.S. Appl. No. 17/586,765, Jul. 27, 2022, 7 pages.
Notice of Allowance, U.S. App. No. 17/948,193, Dec. 21, 2022, 5 pages.
Notice of Final Rejection, KR App. No. 10-2015-7028298, Mar. 14, 2022, 8 pages (4 pages of English Translation and 4 pages of Original Document).
Office Action and Search Report, CN App. No. 201780052444.1, Sep. 20, 2022, 20 pages (11 pages of English Translation and 9 pages of Original Document).
Office Action, EP App. No. 05254757.7, Apr. 21, 2022, 6 pages.
Office Action, EP App. No. 10184659, Apr. 21, 2022, 6 pages.
Office Action, EP App. No. 15746217.7, Jan. 26, 2023, 6 pages.
Office Action, EP App. No. 17864744.2, Oct. 27, 2022, 9 pages.
Office Action, IL App. No. 272481, Nov. 9, 2022, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Office Action, JP App. No. 2022-081379, May 24, 2023, 8 pages (4 pages of English Translation and 4 pages of Original Document).
Office Action, MX App. No. MX/A/2019/001966, Mar. 16, 2022, 5 pages of original document only.
Office Action, TW App. No. 110125850, Dec. 16, 2021, 7 pages (4 pages of English Translation and 3 pages of Original Document).
Office Action, TW App. No. 111124746, Mar. 15, 2023, 3 pages (Only English Translation).
Decision to grant, EP App. No. 05254757.7, Aug. 10, 2023, 2 pages.
Decision to grant, EP App. No. 10184659, Aug. 10, 2023, 2 pages.
Final Office Action, U.S. Appl. No. 14/611,565, Sep. 28, 2023, 15 pages.
Final Office Action, U.S. Appl. No. 17/224,977, Oct. 27, 2023, 9 pages.
Intention to grant, EP App. No. 17844265.3, Aug. 8, 2023, 7 pages.
Intention to Grant, EP App. No. 17844265.3, Jan. 5, 2024, 7 pages.
Intention to grant, EP App. No. 17844265.3, Mar. 30, 2023, 7 pages.
Intention to grant, EP App. No. 19159810.1, Aug. 4, 2023, 7 pages.
Intention to grant, EP App. No. 19159810.1, Mar. 16, 2023, 7 pages.
Non-Final Office Action, U.S. Appl. No. 17/528,811, Dec. 6, 2023, 12 pages.
Non-Final Office Action, U.S. Appl. No. 18/144,838, Aug. 23, 2023, 18 pages.
Notice of Allowance, U.S. Appl. No. 16/208,895, Oct. 4, 2023, 2 pages.
Notice of Allowance, U.S. Appl. No. 17/532,967, Nov. 27, 2023, 7 pages.
Notice of Allowance, U.S. Appl. No. 17/946,856, Jan. 10, 2024, 5 pages.
Notice of Allowance, U.S. Appl. No. 17/946,856, Nov. 22, 2023, 8 pages.
Notice of Allowance, U.S. Appl. No. 17/946,856, Sep. 6, 2023, 8 pages.
Notice of Allowance, U.S. Appl. No. 17/946,856, Sep. 21, 2023, 5 pages.
Notice of Allowance, U.S. Appl. No. 18/144,838, Jan. 18, 2024, 7 pages.
Notice of Allowance, U.S. Appl. No. 18/144,838, Oct. 10, 2023, 4 pages.
Notice of Allowance, U.S. Appl. No. 18/144,838, Sep. 20, 2023, 7 pages.
Office Action, EP App. No. 15780522.7, Apr. 5, 2023, 7 pages.
Office Action, EP App. No. 15780522.7, Jan. 26, 2024, 7 pages.
Notice of Allowance received for Israel Patent Application No. 291825, mailed on Jan. 2, 2024, 2 pages.
Notice of Allowance received for Taiwanese Patent Application No. 111133396, mailed on Dec. 26, 2023, 4 pages of Original Document Only.
Office Action received for Canadian Patent Application No. 2938253, mailed on Dec. 29, 2023 4 pages.
Office Action received for Canadian Patent Application No. 3170717, mailed on Nov. 27, 2023, 3 pages.
Office Action received for Chinese Patent Application No. 202210479592.4, mailed on Apr. 18, 2024, 12 pages of original document only.
Office Action received for Indian Patent Application No. 201947016714, mailed on Jan. 1, 2024, 1 page.
Office Action received for Indian Patent Application No. 3008/CHENP/2015, mailed on Jan. 5, 2024, 3 pages.
Office Action received for Indian Patent Application No. 5512/CHENP/2015, mailed on Oct. 16, 2023 1 page.
Office Action received for Indian Patent Application No. 8134/CHENP/2014, mailed on Jan. 8, 2024 5 pages.
Office Action received for Korean Patent Application No. 10-2022-7042645, mailed on Apr. 22, 2024, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Office Action received for Taiwanese Patent Application No. 111107760, mailed on May 15, 2024, 9 pages (4 pages of English Translation and 5 pages of Original Document).
Office Action received for Taiwanese Patent Application No. 112109799, mailed on Dec. 28, 2023, 5 pages of Original Document Only.
European Application No. 24166023.2, Extended European Search Report mailed Jul. 19, 2024.
Office Action, EP App. No. 15780522.7, Jun. 25, 2024, 7 pages.
Related Publications (1)
Number Date Country
20220085494 A1 Mar 2022 US
Provisional Applications (3)
Number Date Country
62413944 Oct 2016 US
62380126 Aug 2016 US
61980479 Apr 2014 US
Divisions (1)
Number Date Country
Parent 15792610 Oct 2017 US
Child 17532941 US
Continuation in Parts (2)
Number Date Country
Parent 15682076 Aug 2017 US
Child 15792610 US
Parent 14672014 Mar 2015 US
Child 15682076 US