Cold work is the deforming of a material at ambient temperature, often by rolling or drawing. Drawing is the process of forcing a material to change its thickness or shape by pulling the material through a die. This causes a dense array of dislocations and disorders the material structure, resulting in an increase in yield strength and a decrease in ductility. Strengthening may occur because the large number of dislocations form dense tangles that act as obstacles to further deformation. Thus controlled amounts of cold work such as drawing can be used to vary the geometry and/or properties of the material.
Continuous drawing processes can improve the production of drawn materials by incorporating multiple draw reduction dies in series, which increases the number of reductions of the material in a given pass. A problem arises in such continuous drawing processes because the drawn material increases in speed between each reduction die as it is successively drawn. Variable drawing speeds at each draw reduction die can cause the drawn material to push and/or pull a downstream drawing apparatus. Accumulators or drums are therefore used between each drawing apparatus to take up excess material, by coiling or bending, as the material is successively drawn. In the context of drawing metal tubing, coiling of the tubing may not be possible without breaking the tubing, or at least changing dimensions of the tubing (e.g., by flattening), and bending of the tubing requires substantial space and can impart unwanted stresses on the drawn metal tubing.
Disclosed herein are systems, devices, and methods for drawing materials. In certain embodiments, the systems, devices, and methods include first and second drawing machines for continuously drawing a material such as metal tubing. In certain embodiments, the first drawing machine is fixed or stationary, and the second drawing machine moves relative to the first drawing machine. The drawing speed of the first drawing machine may be controlled based on a determined position of the second drawing machine during operation.
In one aspect, the systems, devices, and methods include a method for drawing a material comprising determining a position of a second drawing machine with respect to a desired position, wherein the second drawing machine is downstream from a first drawing machine, and wherein the material is successively drawn by the first and second drawing machines, and adjusting a drawing speed of the first drawing machine from a first speed to a second speed based on the determined position of the second drawing machine. The determining may include detecting, using a sensor device, the position of the second drawing machine while the material passes from the first drawing machine to the second drawing machine. In certain implementations, the position of the second drawing machine is determined by a position of a linear bearing with respect to a guide rail upon which the linear bearing translates, and the desired position may be a center of the guide rail. In certain implementations, the material does not bend as it is successively drawn by the first and second drawing machines. In certain implementations, the material is elongated metal tubing having a hollow center.
In certain implementations, the adjusting causes the second drawing machine to move in a direction towards the desired position. The drawing speed of the first drawing machine may remain constant at the second speed until the second drawing machine reaches the desired position. In certain implementations, the drawing speed of the first drawing machine is variable from the second speed as the second drawing machine approaches the desired position. In certain implementations, the method further includes determining whether the second drawing machine is within a threshold distance of the desired position, and in response to determining that the second drawing machine is within the threshold distance, adjusting the drawing speed of the first drawing machine from the second speed to a third speed that may be between the first and second speeds. The second speed is decreased if the second speed is greater than the first speed, or the second speed is increased if the second speed is less than the first speed. In certain implementations, the adjusting causes the second drawing machine to move in a direction away from the desired position at a rate that is less than that prior to the adjusting.
In one aspect, a non-transitory computer-readable medium is provided for controlling at least in part the drawing of a material, the non-transitory computer-readable medium comprising instructions recorded thereon for determining a position of a second drawing machine with respect to a desired position, wherein the second drawing machine is downstream from a first drawing machine, and wherein the material is successively drawn by the first and second drawing machines, and adjusting a drawing speed of the first drawing machine from a first speed to a second speed based on the determined position of the second drawing machine. The determining may include detecting, using a sensor device, the position of the second drawing machine while the material passes from the first drawing machine to the second drawing machine. In certain implementations, the position of the second drawing machine is determined by a position of a linear bearing with respect to a guide rail upon which the linear bearing translates, and the desired position may be a center of the guide rail. In certain implementations, the material does not bend as it is successively drawn by the first and second drawing machines. In certain implementations, the material is elongated metal tubing having a hollow center.
In certain implementations, the adjusting causes the second drawing machine to move in a direction towards the desired position. The drawing speed of the first drawing machine may remain constant at the second speed until the second drawing machine reaches the desired position. In certain implementations, the drawing speed of the first drawing machine is variable from the second speed as the second drawing machine approaches the desired position. In certain implementations, the computer-readable medium further includes instructions recorded thereon for determining whether the second drawing machine is within a threshold distance of the desired position, and in response to determining that the second drawing machine is within the threshold distance, adjusting the drawing speed of the first drawing machine from the second speed to a third speed that is between the first and second speeds. The second speed is decreased if the second speed is greater than the first speed, or the second speed is increased if the second speed is less than the first speed. In certain implementations, the adjusting causes the second drawing machine to move in a direction away from the desired position at a rate that is less than that prior to the adjusting.
In one aspect, a method for drawing a material comprises determining a first parameter of a downstream drawing machine, wherein the first parameter is dependent on a second parameter of an upstream drawing machine, and wherein the material is successively drawn by the first and second drawing machines, comparing the determined first parameter of the downstream drawing machine to a desired parameter, wherein an absolute value difference between the respective parameters comprises a delta parameter, and adjusting the second parameter of the upstream drawing machine, wherein the adjusting reduces the delta parameter. In certain implementations, the first parameter is a position of the downstream drawing machine, the second parameter is a drawing speed of the first drawing machine, and the desired parameter is a desired position of the downstream drawing machine.
In one aspect, a system for drawing a material comprises a first drawing machine configured to receive the material, and a second drawing machine configured to receive the material downstream from the first drawing machine, wherein the second drawing machine comprises a frame that translates relative to a component upon which the frame is supported, and wherein the translation occurs while the first and second drawing machines are successively drawing the material. In certain implementations, the system further comprises a sensor that detects a position of the frame of the second drawing machine with respect to a desired position. In certain implementations, the system further comprises a processor configured to adjust a drawing speed of the first drawing machine from a first speed to a second speed based on the detected position of the frame of the second drawing machine.
In certain implementations, the frame is coupled to a linear bearing that translates upon the component, for example, a guide rail. In certain implementations, the first and second drawing machines are chain-type drawing machines. The first and second drawing machines may include respective chains configured to revolve at respective drawing speeds and thereby pull the material through a respective die at an entrance of the respective drawing machines. In certain implementations, the respective chains comprise a gripping element having at least one gripping portion that is sized and shaped to complement an outer diameter of the material. In certain implementations, the material does not bend as it is successively drawn by the first and second drawing machines. In some implementations, the second drawing machine comprises an upper frame and a lower frame, wherein the upper frame translates relative to the lower frame while the first and second drawing machines are successively drawing the material.
In one aspect, a system for drawing a material comprises first means for drawing the material, the first drawing means configured to receive the material, and second means for drawing the material, the second drawing means configured to receive the material downstream from the first drawing means, wherein the second drawing means comprises a frame that translates relative to support means, and wherein the translation occurs while the first and second drawing means are successively drawing the material. In certain implementations, the system further includes means for detecting a position of the frame of the second drawing means with respect to a desired position. In certain implementations, the system further includes means for adjusting a drawing speed of the first drawing means from a first speed to a second speed based on the detected position of the frame of the second drawing means.
In certain implementations, the frame is coupled to means for translating upon the support means. In certain implementations, the first and second drawing means are chain-type drawing machines. The first and second drawing means may include respective chains configured to revolve at respective drawing speeds and thereby pull the material through a respective die at an entrance of the respective drawing means. In certain implementations, the respective chains comprise means for gripping the material, the gripping means sized and shaped to complement an outer diameter of the material. In certain implementations, the material does not bend as it is successively drawn by the first and second drawing means. In some implementations, the second drawing means comprises an upper frame and a lower frame, and wherein the upper frame translates relative to the lower frame while the first and second drawing means are successively drawing the material.
Variations and modifications of these embodiments will occur to those of skill in the art after reviewing this disclosure. The foregoing features and aspects may be implemented, in any combination and subcombination (including multiple dependent combinations and subcombinations), with one or more other features described herein. The various features described or illustrated herein, including any components thereof, may be combined or integrated in other systems. Moreover, certain features may be omitted or not implemented.
The foregoing and other objects and advantages will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
To provide an overall understanding of the systems, devices, and methods described herein, certain illustrative embodiments will be described. Although the embodiments and features described herein are specifically described for use in connection with drawing systems, it will be understood that all the components, connection mechanisms, manufacturing methods, and other features outlined below may be combined with one another in any suitable manner and may be adapted and applied to systems to be used in other manufacturing processes, including, but not limited to cast-and-roll, up-casting, extrusion, and other manufacturing procedures. Furthermore, although embodiments described herein relate to drawing metal tubing that is hollow along its length, it will be understood that the systems, devices, and methods herein may be adapted and applied to systems for drawing or otherwise mechanically deforming any suitable type of material.
The systems, devices, and method described herein for drawing materials may be used in connection with materials formed from extrusion systems, including, for example, the extrusion press systems described in U.S. patent application Ser. No. 13/650,977, filed Oct. 12, 2012, the disclosure of which is hereby incorporated by reference herein in its entirety. For example, the drawing systems herein may be part of a finishing process for the extruded metal tubing formed by the above referenced extrusion press systems. The drawing systems may produce a drawn tube having any suitable number of draws, and the tubing can be finished in either straight length or coiled form.
The drawing systems may include a first drawing machine that is fixed or stationary and a second drawing machine that moves relative to the first drawing machine. The drawing speed of the first drawing machine may be controlled based on a determined position of the second drawing machine during operation. The movement of the second drawing machine accounts for varying speeds of the drawn material. There is thus no requirement for additional components, such as accumulators or drums, to take up the slack of the material between the two drawing machines as the material is successively drawn. Although an advantage of the drawing system herein is its ability to operate without such components, it will be appreciated that aspects of the present disclosure may nonetheless be applied to systems incorporating such components. A programmable logic controller, or PLC, controls all or a subset of operations of the drawing system while the system is set in automatic mode.
The drawing systems, devices, and methods described herein may be used for drawing a seamless extruded tubing product according to various seamless tubing standards including, for example, the ASTM-B88 Standard Specification for Seamless Copper Water Tube. The seamless extruded tubing of the present disclosure may also comply with the standards under NSF/ANSI-61 for Drinking Water System Components.
After exiting the first drawing machine 120, the material 110 is fed into an entrance 142 of the second drawing machine 140. Upon exiting the second drawing machine 140 at exit 144, the material 110 has been reduced to an outer diameter d3, which is less than both outer diameter d2 and outer diameter d1. The material 110 has a leading edge 110a and extends back continuously to and beyond the portion illustrated by feed 130. Because the material 110 can be continuously drawn by the first and second drawing machines 120, 140 without interruption, there is no limit to the length of materials that may be drawn. Therefore, the feed 130 that provides the length of material may be holding equipment, such as large drums, that store lengths of the material in preparation for the drawing process. During operation of the present drawing system 100, lengths of material on the order of 1-mile, and greater, have been continuously and uninterruptedly drawn. It will be understood that any suitable length of material may be drawn by system, devices, and methods of the present disclosure.
In certain embodiments, the first drawing machine 120 is mounted to the floor and remains in a fixed position, while the second drawing machine 140 is operable to move relative to the first drawing machine 120. For example, a first portion 150 of the second drawing machine 140 can move relative to a second portion 160 of the second drawing machine 140. The first portion 150 includes a tractor-type drawing apparatus or chain-type drawing apparatus 152 supported by an upper frame 154, which sits opposite a lower frame 162 of the second portion 160. The second portion 160 further includes legs 164 that may be mounted to the floor for securing the second portion 160 in place. During the drawing process, the first portion 150 moves relative to the second portion 160 by way of a linear bearing 170 coupled to the upper frame 154 and a guide rail 180 coupled to the lower frame 162. It will be understood that any suitable component may be used to allow relative movement of the drawing machine including, for example, roller bearings, wheels, any other suitable mechanism, and any combination thereof. In some embodiments, the component supports, at least in part, the upper frame 154 of the drawing machine. The relative movement of the second drawing machine 140 is caused by friction from the material 110 when the drawing speed of the second drawing machine 140 does not match the speed at which the material 110 enters the second drawing machine 140. As the material 110 is drawn through the first drawing machine 120, the speed of the exiting material 110 varies due to changes in the cross-sectional area. The material 110 enters the second drawing machine 140, which is then pushed (in a direction away from the first drawing machine 120) or pulled (in a direction towards the first drawing machine 120) due to the varying speed. Thus a difference in drawing speed and the speed of the material can cause a displacement of the second drawing machine.
In certain embodiments, the second drawing machine 140 is operable to move relative to the first drawing machine 120 without the use of both an upper and lower frame. For example, the second portion 160 of the second drawing machine 140 may simply include a guide rail (e.g., guide rail 180) that is mounted directly to the floor. The first portion 150 may include a tractor-type drawing apparatus or chain-type drawing apparatus 152 supported by a frame (e.g., upper frame 154), as described above, although in this case the frame sits opposite the floor rather than opposite a lower frame. During the drawing process, the first portion 150 moves relative to the second portion 160 by way of the linear bearing 170 coupled to the upper frame 154 and the guide rail 180 mounted to the ground (rather than coupled to a lower frame). Such embodiments may be desirable, for example, where the second drawing machine has a relatively large tractor-type or chain-type apparatus because the need for a proportionally sized (and in some cases, proportionally weighty) lower frame is eliminated by supporting the drawing apparatus with the floor. As discussed above, any suitable component that allows relative movement of the drawing machine and supports, at least in part, the frame of the drawing machine, can be used.
The displacement of the second drawing machine 140 is measured using a sensor 190. As shown in
The sensor 190 of the present disclosure may be any suitable transducer for detecting and reporting a parameter, including various position sensors (whether linear, angular, or multi-axis), potentiometers, including rheostats or variable resistor sensors, any other suitable transducers, or any combination thereof. Furthermore, the sensor 190 may be positioned in any suitable location for detecting and reporting a parameter, including locations on the drawing machine or locations away from the drawing machine. The location of the sensor 190 in
During operation, in certain embodiments an operator controls the drawing speed of the second drawing machine 140, and the PLC system controls the drawing speed of the first drawing machine 120 based upon the linear position of the second drawing machine 140. As a material is drawn through the first drawing machine 120, the speed of the exiting material varies due to changes in the cross-sectional area of the drawn material. This difference in speed is generally proportional to the change in the cross-sectional area. The material enters the second drawing machine 140, which is then pushed (in a direction away from the first drawing machine 120) or pulled (in a direction towards the first drawing machine 120) due to the varying speed. The second drawing machine 140 is allowed to linearly float on rails (e.g., approximately three feet in length) and a linear transducer is used to track the position. This position is used to control the drawing speed of the first drawing machine 120. For example, the drawing speed of the first drawing machine 120 is adjusted to keep the second drawing machine 140 in a desired position, such as the center position 172 of the guide rail 180. If the drawing speed of the first drawing machine 120 is faster than the drawing speed of the second drawing machine, the material will begin to push the second drawing machine 140 forward of the center position of the rails and the drawing speed of the first drawing machine 120 would be lowered. Conversely, if the first drawing machine is running slower than the second drawing machine, the material will pull the second drawing machine off center then the drawing speed of the first drawing machine 120 would be increased.
An advantage of the drawing system 100 of the present disclosure is that the distance DT between the two drawing machines 120, 140 may be relatively small compared to that required in other drawing systems having two drawing machines in a line with accumulators or other take-up components between the drawing machines. This relatively small distance DT, on the order of a few feet, including for example as little as 5 feet, or less, allows the drawing process to be performed using fewer operators than other systems. For example, a single operator can stand at a terminal near the second drawing machine and observe all aspects of the drawing process. In some embodiments, for example, a translating drawing machine may have approximately 2 feet of travel, which would result in a distance DT of approximately 5-7 feet from a stationary drawing machine. At other distances, for example 6 feet, the travel would be approximately 6-8 feet. As discussed above, although an advantage of the drawing systems herein is the ability to operate without components such as accumulators, it will be appreciated that aspects of the present disclosure may nonetheless be applied to systems incorporating such components. Furthermore, although the drawing machines can be placed as close as a few feet from one another, in some embodiments, the drawing machines can be placed relatively farther apart, on the order of tens of feet or even hundreds of feet, according to system design and the translating drawing machine can be designed for any suitable length of travel.
For receiving and pulling on the material 110, the tractor-type drawing apparatus 152 includes a plurality of gripping elements 210. The gripping elements 210 are formed from a block 212 coupled to the chain 202 and attached to a gripper 214. In certain embodiments, the gripper 214 is directly coupled to the chain 202 without using block 212. In certain embodiments, the gripper 214 has a plurality of gripping portions, each of which is operable to grip the material 110 as it passes through the drawing machine 140. For example, as shown in
Also shown in
Process 300 begins at step 310, where a material to be drawn is loaded onto the first drawing machine 120. In certain embodiments, that material is elongated metal tubing that is hollow along the length of the metal tubing. The first time the elongated tubing is loaded onto the first drawing machine 120, a point is formed at the leading edge 110a of the material 110, for example, by flattening the tube in the horizontal direction and then crushing the tube in the vertical direction. This allows the tubing to be threaded through the die. In certain embodiments, a floating plug or floating mandrel is positioned within the metal tubing prior to forming the point. During operation the floating plug/mandrel sets the inner diameter of the passing tubing while remaining on the upstream side of the die because its diameter is large enough to prevent it from passing through the die.
In some embodiments, the point is threaded through the die and into a mobile point grabber that is positioned behind the die. For example, in some embodiments, there is a void between grippers (e.g., void 290 of
At step 320 the material is drawn using the first drawing machine 120. The material passes through a die, the diameter of which sets the new outer diameter of the material. The tractor-type or chain-type drawing apparatus applies a force to pull the material through the die. For example, the material fits into grooves of a plurality of gripping elements (e.g., gripping element 210 of
At step 330 the once-drawn material is received in the second drawing machine 140. The first time the material is received by the second drawing machine 140, the process is similar to that described above with respect to the first drawing machine 120. For example, the point already formed at the leading edge 110a of the material 110 may again be flattened and/or crushed to allow the tubing to be threaded through the second die (which in this case has a relatively smaller diameter than that of the first die). In some embodiments, the point already formed for the first drawing machine is removed and a new point is formed. As discussed above, a floating plug or floating mandrel may be positioned within the metal tubing prior to forming the point. During operation the floating plug/mandrel sets the inner diameter of the passing tubing while remaining on the upstream side of the die because its diameter is large enough to prevent it from passing through the die. Removing the point already formed for the first drawing machine allows the placement of a second floating plug or floating mandrel into the tubing. In some embodiments, the second floating plug/mandrel is already positioned into the tubing, for example, at the same time as placing the first floating plug/mandrel, and in such cases the same point can be used rather than forming a new point.
In some embodiments, the point is threaded through the second die and into a mobile point grabber that is positioned behind the second die. As discussed above, there may be a void between grippers (e.g., void 290 of
At step 340 the material is drawn using the second drawing machine. This process may be similar to that discussed above at step 320. The material passes through a die, the diameter of which sets the new outer diameter of the material. The tractor-type or chain-type drawing apparatus applies a force to pull the material through the die. For example, the material fits into grooves of a plurality of gripping elements, which operate collectively to pull the material along the length of the drawing machine 120. The length of the drawing machine 120 prevents doing all of the work at a single point, where undesirable stresses could cause deformations in the material at that point. In certain embodiments, lubricant can be applied to the material. For example, lubricant may be applied to the outer diameter of the material as it is drawn through the second drawing machine. In some embodiments, lubricant is applied to the inner diameter of the material before it is drawn through the drawing machine.
At step 350 a position of the second drawing machine is determined relative to a desired position, and at step 360 a drawing speed of the first drawing machine is adjusted based upon the determined position. The steps for adjusting the drawing speed of the first drawing machine based on a determined position of the second drawing machine are shown in
Any suitable coordinate system may be used, and in some cases the discussion herein may also describe movement of the second drawing machine (or any component thereof including the linear bearing) in terms of an absolute distance and a direction from the desired position. Moreover, as discussed above, in some embodiments the sensor may be coupled to the object it senses (e.g., the linear bearing). In such embodiments, a similar coordinate system may be used where negative and positive displacement similarly indicates, respectively, movement of the second drawing machine away from and towards the first drawing machine.
Returning to decision block 404, the PLC system determines whether the displacement is negative. If the displacement is negative, the second drawing machine has moved in a direction away from the first drawing machine, and at step 408 the PLC system decreases the draw speed of the first drawing machine. In some embodiments, the draw speed of the first drawing machine can be reduced all the way to zero, for example, during start-up and shut-down phases. If the displacement is not negative, the PLC system then determines at step 406 whether the displacement is positive. If the displacement is positive, the second drawing machine has moved in a direction towards the first drawing machine, and at step 410 the PLC system increases the draw speed of the first drawing machine. If at step 406 the displacement is not positive, the process returns to step 402. In certain embodiments, after the draw speed of the first drawing machine has been decreased (at step 408) or increased (at step 410), the process returns to step 402 to again determine the position of the linear bearing with respect to a desired position on the guide rail. The subroutine 430 may then repeat the process as described. In some embodiments, this results in a continuous and gradual change in speed until the second drawing tractor is in the desired position.
In certain embodiments, subroutine 430 may continue to subroutine 440. For example, at step 412, the PLC system determines whether the linear bearing has started moving in a direction towards the desired position. This would indicate that the change in draw speed at step 408 has caused the linear bearing to change directions, from moving away from the desired position (in this case away from the first drawing machine) to moving towards the desired position (in this case towards the first drawing machine). If the linear bearing has not started moving in a direction towards the desired position, the draw speed is again decreased at step 408, a process that repeats until a change in direction is detected. Once the linear bearing has started moving in a direction towards the desired position, then at step 416, the PLC system maintains the current draw speed of the first drawing machine until the linear bearing reaches the desired position on the guide rail.
The process at step 414 is similar to that at step 412. At step 414, the PLC system determines whether the linear bearing has started moving in a direction towards the desired position. This would indicate that the change in draw speed at step 410 has caused the linear bearing to change directions, from moving away from the desired position (in this case towards the first drawing machine) to moving towards the desired position (in this case away from the first drawing machine). If the linear bearing has not started moving in a direction towards the desired position, the draw speed is again increased at step 410, a process that repeats until a change in direction is detected. Once the linear bearing has started moving in a direction towards the desired position, then at step 416, the PLC system maintains the current draw speed of the first drawing machine until the linear bearing reaches the desired position on the guide rail. In certain embodiments, after step 416, the process may return to step 402 to again determine the position of the linear bearing with respect to a desired position on the guide rail. Subroutines 430 and 440 may then repeat the process as described.
In situations where the linear bearing does not quickly return to the desired position after decreasing (at step 408) or increasing (at step 410) the draw speed, subroutine 440 prevents the PLC system from making large-magnitude changes in the draw speed of the first drawing tractor. This situation is illustrated in
As shown in
In certain embodiments, subroutine 440 may continue to subroutine 450. For example, at step 418 the PLC system determines whether the linear bearing is within a threshold distance of the desired position. For example, with reference to position 5(d) of
Although the drawing process has been described in the context of detecting the position of a downstream drawing machine with respect to a desired position, it will be understood that any suitable parameter of the downstream drawing machine that is dependent on a parameter of the upstream drawing machine can be determined and then used to adjust the drawing process by adjusting the parameter of the upstream drawing machine. For example, a parameter may be any measurable value of a form of energy, including electrical, mechanical, electromagnetic, chemical, acoustic, and thermal energy, and any combination thereof. In some embodiments, the determined parameter of the downstream drawing machine is compared to a desired parameter. For example, a detected position is compared to a desired position. This may involve comparing a difference between the determined parameter and the desired parameter. In embodiments where the parameters can have positive or negative values (e.g., positive and negative displacement), an absolute value difference between the determined parameter and the desired parameter is used. This difference represents a delta value or delta parameter between the measured parameter and the desired parameter. In order to minimize or reduce this delta parameter, the parameter of the upstream drawing machine (upon which the parameter of the downstream drawing machine depends) is adjusted. For example, in the context of measuring the position of the downstream drawing machine, as discussed above, the position is dependent on the drawing speed of the upstream drawing machine. Adjusting the upstream parameter (e.g., drawing speed) may reduce the delta parameter (e.g., the positional offset from a desired position).
Returning to process 300 of
At step 380 the multiply-drawn material is post-processed. For example, the material may be tested, sorted, identified, cut to length, and/or straightened. The drawing systems may produce a drawn tube having any suitable number of draws, and the tubing can be finished in either straight length or coiled form. With respect to drawn metal tubing, at the testing and sorting step, the tube is eddy current tested. A length encoder provides information to the PLC system, which identifies the position of any defects and optionally paints the defects. The PLC system then sorts cut-to-length-tube having eddy current indications that indicate no defects are present. At the identification step, the tubing may be indent marked and/or painted along its length. For painting, the PLC system uses a length encoder to provide feedback to the painting system so that the printed message is properly printed for various line speeds. Cutting the tubing to length also involves using a length encoder to control the cut length. The straightening process is generally a non-powered process, and the tube is manually pushed through a straightening unit (although this process could be automated). It will be understood that any suitable post-processing techniques may be applied following the drawing steps of the present disclosure.
As discussed above, the drawing system 100 has two drawing machines in a line, where the first drawing machine is stationary and the second drawing machine is movable relative to the first drawing machine. It will be understood that there are many variations to this system. For example,
In certain embodiments, both of the drawing machines may be moveable relative to one another. For example, a second system 620 includes first and second drawing machines 622, 624 that are both movable relative to one another via components 622a, 624a. For example, referring to
Instructions for carrying out the methods of this disclosure for extruding a material may be encoded on a machine-readable medium, to be executed by a suitable computer or similar device to implement the methods of the disclosure for programming or configuring PLCs or other programmable devices with a configuration as described above. For example, a personal computer may be equipped with an interface to which a PLC can be connected, and the personal computer can be used by a user to program the PLC using suitable software tools.
The magnetic domains of coating 802 of medium 800 are polarized or oriented so as to encode, in manner which may be conventional, a machine-executable program, for execution by a programming system such as a personal computer or other computer or similar system, having a socket or peripheral attachment into which the PLC to be programmed may be inserted, to configure appropriate portions of the PLC, including its specialized processing blocks, if any, in accordance with the present disclosure.
In the case of a CD-based or DVD-based medium, as is well known, coating 812 is reflective and is impressed with a plurality of pits 813, arranged on one or more layers, to encode the machine-executable program. The arrangement of pits is read by reflecting laser light off the surface of coating 812. A protective coating 814, which preferably is substantially transparent, is provided on top of coating 812.
In the case of magneto-optical disk, as is well known, coating 812 has no pits 813, but has a plurality of magnetic domains whose polarity or orientation can be changed magnetically when heated above a certain temperature, as by a laser (not shown). The orientation of the domains can be read by measuring the polarization of laser light reflected from coating 812. The arrangement of the domains encodes the program as described above.
A PLC 700 programmed according to the present disclosure may be used in many kinds of electronic devices. One possible use is in a data processing system 1000 shown in
System 1000 can be used in a wide variety of applications, including as instrumentation for a drawing system, or any other suitable application where the advantage of using programmable or reprogrammable logic is desirable. PLC 700 can be used to perform a variety of different logic functions. For example, PLC 700 can be configured as a processor or controller that works in cooperation with processor 1001. PLC 700 may also be used as an arbiter for arbitrating access to a shared resources in system 1000. In yet another embodiment, PLC 700 can be configured as an interface between processor 1001 and one of the other components in system 1000. It should be noted that system 1000 is only exemplary. For example, in certain embodiments a user terminal may be provided near the drawing system. In other embodiments, a networked arrangement may be provided that may allow the user terminal to be remote from the drawing system.
The computing device 1100 may be configured in a distributed architecture, where databases and processors are housed in separate units or locations. The computing device 1100 may also be implemented as a server located either on site at the drawing system facility or external to the drawing system facility. Some such units perform primary processing functions and contain at a minimum a general controller or a processor 1102 and a system memory 1108. In such an embodiment, each of these units is attached via the network interface unit 1104 to a communications hub or port (not shown) that serves as a primary communication link with other servers, client or user computers and other related devices. The communications hub or port may have minimal processing capability itself, serving primarily as a communications router. A variety of communications protocols may be part of the system, including, but not limited to: Ethernet, SAP, SAS™, ATP, BLUETOOTH™, GSM and TCP/IP.
The CPU 1102 comprises a processor, such as one or more conventional microprocessors, and one or more supplementary co-processors, such as math co-processors, for offloading workload from the CPU 1102. The CPU 1102 is in communication with the network interface unit 1104 and the input/output controller 1106, through which the CPU 1102 communicates with other devices such as other servers, user terminals, or devices. The network interface unit 1104 and/or the input/output controller 1106 may include multiple communication channels for simultaneous communication with, for example, other processors, servers or client terminals. Devices in communication with each other need not be continually transmitting to each other. On the contrary, such devices need only transmit to each other as necessary, may actually refrain from exchanging data most of the time, and may require several steps to be performed to establish a communication link between the devices.
The CPU 1102 is also in communication with the data storage device 1114. The data storage device 1114 may comprise an appropriate combination of magnetic, optical and/or semiconductor memory, and may include, for example, RAM, ROM, flash drive, an optical disc such as a compact disc and/or a hard disk or drive. The CPU 1102 and the data storage device 1114 each may be, for example, located entirely within a single computer or other computing device; or connected to each other by a communication medium, such as a USB port, serial port cable, a coaxial cable, an Ethernet type cable, a telephone line, a radio frequency transceiver or other similar wireless or wired medium or combination of the foregoing. For example, the CPU 1102 may be connected to the data storage device 1114 via the network interface unit 1104.
The CPU 1102 may be configured to perform one or more particular processing functions. For example, the computing device 1100 may be configured, via the PLC, for controlling at least in part one or more aspects of the first drawing machine 120, second drawing machine 140, additional drawing machines 710, and/or other finishing machines 720.
The data storage device 1114 may store, for example, (i) an operating system 1116 for the computing device 1100; (ii) one or more applications 1118 (e.g., computer program code and/or a computer program product) adapted to direct the CPU 1102 in accordance with the present invention, and particularly in accordance with the processes described in detail with regard to the CPU 1102; and/or (iii) database(s) 1120 adapted to store information that may be utilized to store information required by the program.
The operating system 1116 and/or applications 1118 may be stored, for example, in a compressed, an uncompiled and/or an encrypted format, and may include computer program code. The instructions of the program may be read into a main memory of the processor from a computer-readable medium other than the data storage device 1114, such as from the ROM 1112 or from the RAM 1110. While execution of sequences of instructions in the program causes the CPU 1102 to perform the process steps described herein, hard-wired circuitry may be used in place of, or in combination with, software instructions for implementation of the processes of the present invention.
The term “computer-readable medium” as used herein refers to any non-transitory medium that provides or participates in providing instructions to the processor of the computing device (or any other processor of a device described herein) for execution. Such a medium may take many forms, including but not limited to, non-volatile media and volatile media. Non-volatile media include, for example, optical, magnetic, or opto-magnetic disks, or integrated circuit memory, such as flash memory. Volatile media include dynamic random access memory (DRAM), which typically constitutes the main memory. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM or EEPROM (electronically erasable programmable read-only memory), a FLASH-EEPROM, any other memory chip or cartridge, or any other non-transitory medium from which a computer can read.
Various forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to the CPU 1102 (or any other processor of a device described herein) for execution. For example, the instructions may initially be borne on a magnetic disk of a remote computer (not shown). The remote computer can load the instructions into its dynamic memory and send the instructions over an Ethernet connection, cable line, or even telephone line using a modem. A communications device local to a computing device (e.g., a server) can receive the data on the respective communications line and place the data on a system bus for the processor. The system bus carries the data to main memory, from which the processor retrieves and executes the instructions. The instructions received by main memory may optionally be stored in memory either before or after execution by the processor. In addition, instructions may be received via a communication port as electrical, electromagnetic or optical signals, which are exemplary forms of wireless communications or data streams that carry various types of information.
The foregoing is merely illustrative of the principles of the disclosure, and the systems, devices, and methods can be practiced by other than the described embodiments, which are presented for purposes of illustration and not of limitation. It is to be understood that the systems, devices, and methods disclosed herein, while shown for use in extrusion press systems, may be applied to systems, devices, and methods to be used in other manufacturing procedures including, but not limited to, cast-and-roll, up-casting, other extrusion, and other manufacturing procedures. Furthermore, the disclosure could be implemented as a post-processing step of another manufacturing process, including other extrusion processes, or could be implemented concurrently with another manufacturing process.
Variations and modifications will occur to those of skill in the art after reviewing this disclosure. The disclosed features may be implemented, in any combination and subcombination (including multiple dependent combinations and subcombinations), with one or more other features described herein. The various features described or illustrated above, including any components thereof, may be combined or integrated in other systems. Moreover, certain features may be omitted or not implemented.
Examples of changes, substitutions, and alterations are ascertainable by one skilled in the art and could be made without departing from the scope of the information disclosed herein. All references cited herein are incorporated by reference in their entirety and made part of this application.
Number | Name | Date | Kind |
---|---|---|---|
411060 | Robertson | Sep 1889 | A |
666048 | Foote | Dec 1900 | A |
2002966 | Sparks | May 1935 | A |
2596552 | Heimann | May 1952 | A |
2650495 | Norton | Sep 1953 | A |
2698683 | Martin et al. | Jan 1955 | A |
2929499 | Turner | Mar 1960 | A |
2988211 | Kent et al. | Jun 1961 | A |
3222900 | Helsing | Dec 1965 | A |
3260095 | Flanagan | Jul 1966 | A |
3339396 | Carlson | Sep 1967 | A |
3605466 | Kilcoin | Sep 1971 | A |
3779055 | Goyffon | Dec 1973 | A |
3798954 | Asari | Mar 1974 | A |
3852875 | McAmis et al. | Dec 1974 | A |
4154081 | Boshold | May 1979 | A |
4178982 | Sevastakis | Dec 1979 | A |
4223548 | Wagner et al. | Sep 1980 | A |
4300378 | Thiruvarudchelvan | Nov 1981 | A |
4316373 | Zilges et al. | Feb 1982 | A |
4399676 | Noyori et al. | Aug 1983 | A |
4606211 | Noyori et al. | Aug 1986 | A |
4622841 | Yoshida | Nov 1986 | A |
4662203 | Kanatani et al. | May 1987 | A |
4687422 | Fuchs, Jr. | Aug 1987 | A |
4805434 | Komp et al. | Feb 1989 | A |
4825677 | Bessey et al. | May 1989 | A |
5188676 | Taylor | Feb 1993 | A |
5467631 | Eberts et al. | Nov 1995 | A |
5666846 | Chen et al. | Sep 1997 | A |
5678442 | Ohba et al. | Oct 1997 | A |
5855136 | Hausler et al. | Jan 1999 | A |
6018975 | Frigerio | Feb 2000 | A |
6164112 | Frigerio | Dec 2000 | A |
6216506 | Stevens et al. | Apr 2001 | B1 |
6715332 | Klingen | Apr 2004 | B2 |
7073363 | Hergemoller | Jul 2006 | B2 |
7448245 | Muschalik et al. | Nov 2008 | B2 |
7640774 | Hashizume et al. | Jan 2010 | B2 |
8210017 | Suzuki et al. | Jul 2012 | B2 |
20020189315 | Klingen et al. | Dec 2002 | A1 |
20050210948 | Bultmann | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
57130718 | Aug 1982 | JP |
Entry |
---|
‘Control System’ Wikipedia Article publically available Aug. 28, 2012 found using the Way Back Machine (https://archive.org/web/). |
International Search Report and Written Opinion dated Jan. 7, 2015 for PCT/US2014/056727. |
Number | Date | Country | |
---|---|---|---|
20150082847 A1 | Mar 2015 | US |