Systems and methods for drive pressure spontaneous ventilation

Information

  • Patent Grant
  • 10668239
  • Patent Number
    10,668,239
  • Date Filed
    Tuesday, October 30, 2018
    6 years ago
  • Date Issued
    Tuesday, June 2, 2020
    4 years ago
Abstract
This disclosure describes systems and methods for providing drive pressure ventilation of a patient. The disclosure describes a novel breath type that provides a spontaneous breath type that allows for the calculation of drive pressure that does not require invasive monitoring, where drive pressure is the pressure applied to the lungs that causes them to inflate during mechanical ventilation.
Description
INTRODUCTION

Medical ventilator systems have long been used to provide ventilatory and supplemental oxygen support to patients. These ventilators typically comprise a source of pressurized gas, such air or oxygen, which is fluidly connected to the patient through a conduit or tubing. As each patient may require a different ventilation strategy, modern ventilators can be customized for the particular needs of an individual patient. For example, several different ventilator modes or settings have been created to provide better ventilation for patients in various different scenarios.


Methods and Systems for Drive Pressure Spontaneous Ventilation

This disclosure describes systems and methods for providing drive pressure ventilation of a patient. The disclosure describes a novel breath type that provides spontaneous ventilation that allows for the calculation of drive pressure that does not require invasive monitoring. To accomplish this goal, the drive pressure (DP) breath type (also referred to herein as drive pressure ventilation) briefly interrupts and smoothly transitions from a base spontaneous breath subtype, into a temporary breath subtype in response to the detection of a condition. As such, ventilator systems and methods utilizing the DP breath type as disclosed herein may adjust ventilator parameters and/or perform other actions based on a monitored dynamic drive pressure.


In part, this disclosure describes a method for drive pressure ventilation of a patient with a ventilator. The method includes:

    • ventilating the patient with the ventilator in a spontaneous breath subtype;
    • non-invasively monitoring respiratory data of the patient with at least one of a pressure sensor and a flow sensor operatively coupled to at least one of a patient circuit or a pressure generating system;
    • analyzing the respiratory data to detect a patient effort;
    • delivering inspiratory gas to the patient with the ventilator in response to a detected patient effort;
    • determining an occurrence of a condition by the ventilator based on information gathered by the ventilator,
    • in response to the condition, determining a percent support setting for the PA breath subtype based on a target setting or the respiratory data from the spontaneous breath subtype;
    • automatically and temporarily switching from the spontaneous breath subtype into the PA breath subtype for at least three breaths in response to calculating the percent support setting;
    • estimating a respiratory system compliance and a respiratory system resistance of the patient during the PA breath subtype based on the respiratory data;
    • returning to the spontaneous breath subtype after the at least three breaths;
    • calculating a drive pressure of the patient during the spontaneous breath subtype utilizing the respiratory system compliance, the a respiratory system resistance, and the respiratory data received after the return; and
    • displaying the drive pressure.


      The spontaneous breath subtype does not include a proportional assist (PA) breath subtype.


Yet another aspect of this disclosure describes a ventilator system for delivering drive pressure ventilation to a patient. The ventilator system includes a pressure generating system, a ventilation tubing system, one or more non-invasive sensors, a controller, and a display. The pressure generating system generates a flow of breathing gas. The ventilation tubing system includes a patient interface. The patient interface connects the pressure generating system to the patient. The one or more non-invasive sensors are operatively coupled to at least one of the pressure generating system or the ventilation tubing system. The one or more non-invasive sensors generate output indicative of at least one of flow, volume or pressure. The controller collects and analyzes the output to determine a condition. In response to the condition, the controller temporarily switches the ventilator system from a spontaneous breath subtype into a proportional assist (PA) breath subtype for at least one breath. The controller estimates a respiratory system compliance of the patient during the PA breath subtype based on the output collected during the PA breath subtype. Additionally, after the at least one breath, the controller switches the ventilator system from the PA breath subtype back to the spontaneous breath subtype. After a return to the spontaneous breath subtype, the controller calculates a drive pressure of the patient based on the respiratory system compliance and the output after the return. The display displays the drive pressure.


The disclosure further describes a non-transitory computer-readable medium having computer-executable instructions for performing a method of ventilating a patient with a ventilator. The method including:

    • ventilating the patient with the ventilator in a spontaneous breath subtype;
    • monitoring respiratory data of the patient with at least one of a pressure sensor and a flow sensor operatively coupled to at least one of a patient circuit or a pressure generating system;
    • analyzing the respiratory data to detect a patient effort;
    • delivering inspiratory gas to the patient with the ventilator in response to a detected patient effort;
    • determining an occurrence of a condition by the ventilator based on information gathered by the ventilator;
    • in response to the condition, automatically and temporarily switching from the spontaneous breath subtype into the PA breath subtype for at least three breaths;
    • estimating a respiratory system compliance and a respiratory system resistance of the patient during the PA breath subtype based on the respiratory data;
    • calculating a drive pressure of the patient during the spontaneous breath subtype utilizing respiratory system compliance, the respiratory system resistance, and the respiratory data received during the spontaneous breath subtype; and
    • performing an action based on the drive pressure.


      The spontaneous breath subtype does not include a PA breath subtype. A percent support setting for the PA breath subtype is determined based on at least one of a target setting, a non-invasively monitored flow, a non-invasively monitored pressure, or a noninvasively monitor tidal volume during the spontaneous breath subtype from at least one of the pressure sensor and the flow sensor by the ventilator.


These and various other features as well as advantages which characterize the systems and methods described herein will be apparent from a reading of the following detailed description and a review of the associated drawings. Additional features are set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the technology. The benefits and features of the technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawing figures, which form a part of this application, are illustrative of embodiments of systems and methods described below and are not meant to limit the scope of the invention in any manner, which scope shall be based on the claims appended hereto.



FIG. 1 is a schematic diagram illustrating an example of a ventilator in accordance with aspects of the disclosure.



FIG. 2 is flow a diagram illustrating an example of a method for ventilating a patient on a ventilator in a drive pressure breath type, in accordance with aspects of the invention.



FIG. 3 is a chart illustrating an example of a normalized respiratory mechanics plane in accordance with aspects of the disclosure.



FIG. 4 is a chart illustrating an example of a normalized respiratory plane with provided patient trend line in accordance with aspects of the disclosure.



FIG. 5 is a chart illustrating an example of a normalized respiratory plane with provided boundaries in accordance with aspects of the disclosure.





DETAILED DESCRIPTION

Although the techniques introduced above and discussed in detail below may be implemented for a variety of medical devices, the present disclosure will discuss the implementation of these techniques in the context of a medical ventilator for use in providing ventilation support to a human patient. A person of skill in the art will understand that the technology described in the context of a medical ventilator for human patients could be adapted for use with other systems such as ventilators for non-human patients and general gas transport systems.


Medical ventilators are used to provide a breathing gas to a patient who may otherwise be unable to breathe sufficiently. In modern medical facilities, pressurized air and oxygen sources are often available from wall outlets. Accordingly, ventilators may provide pressure regulating valves (or regulators) connected to centralized sources of pressurized air and pressurized oxygen. The regulating valves function to regulate flow so that respiratory gas having a desired concentration of oxygen is supplied to the patient at desired pressures and rates. Ventilators capable of operating independently of external sources of pressurized air are also available.


While operating a ventilator, it is desirable to control the percentage of oxygen in the gas supplied by the ventilator to the patient. Further, as each patient may require a different ventilation strategy, modern ventilators can be customized for the particular needs of an individual patient.


For the purposes of this disclosure, a “breath” refers to a single cycle of inspiration and exhalation delivered with the assistance of a ventilator. The term “breath type” refers to some specific definition or set of rules dictating how the pressure and flow of respiratory gas is controlled by the ventilator during a breath.


A ventilation “mode”, on the other hand, is a set of rules controlling how multiple subsequent breaths should be delivered. Modes may be mandatory, that is controlled by the ventilator, or spontaneous, that is that allow a breath to be delivered or controlled upon detection of a patient's effort to inhale, exhale or both. For example, a simple mandatory mode of ventilation is to deliver one breath of a specified mandatory breath type at a clinician-selected respiratory rate (e.g., one breath every 6 seconds). Until the mode is changed, ventilators will continue to provide breaths of the specified breath type as dictated by the rules defining the mode. For example, breath types may be mandatory mode breath types (that is, the initiation and termination of the breath is made by the ventilator) or spontaneous mode breath types (which refers to breath types in which the breath is initiated and terminated by the patient). Examples of breath types utilized in the spontaneous mode of ventilation include proportional assist (PA) breath type, volume support (VS) breath type, pressure support (PS) breath type, and etc. Examples of mandatory breath types include a volume control breath type, a pressure control breath type, and etc.


Positive pressure delivery during mechanical ventilation can be injurious to the lung. Therefore, measurements and methods that would allow for minimizing the lung injury have been utilized by mechanical ventilators to reduce lung injuries. Previously, studies showed that utilizing low tidal volume was likely to prevent ventilator-induced lung injury (VILI). However, newer studies have shown that low tidal volumes only increase the chance of patient survival (or reduce the likelihood VILI) if this low tidal volume is associated with decreases in patient drive pressure. Further, studies have shown that increases in patient drive pressure, particularly above 15 cm of H2O, are strongly associated with decreased patient survival rates. As such, patient drive pressure may be a better mechanical ventilation parameter than tidal volume for survival prediction and/or ventilation control.


Patient drive is the pressure that is applied ‘inside the lungs’ causing them to inflate. This ‘driving pressure’ is what the lungs are exposed to in order to inflate them against the compliance of the lung. For a mechanically ventilated patient, the patient drive pressure can be calculated as the pressure above baseline pressure applied by the ventilator at the patient wye (i.e., Pwye−Pend exp), minus the pressure to overcome the artificial airway (i.e., RTUBE*QLUNG), minus the pressure created by the respiratory muscles (i.e., Pmus). Accordingly, the equation for calculating drive pressure is listed below:

Pdrive=Pwye−Pend exp−RTUBE QLUNG−Pmus,  (EQ #1)

where:


Pdrive is patient drive pressure;


Pwye is pressure at the wye;


Pend exp is pressure at the end of exhalation;


RTUBE is the resistance of the endotracheal tube or tracheostomy tube;


QLUNG is lung flow; and


Pmus, is muscle pressure.


During mandatory modes of ventilation, the patient is sedated. As such, during mandatory modes of ventilation, the muscle pressure of the patient is zero since the patient is passive. Accordingly, if an inspiratory pause is applied to the patient during the mandatory mode of ventilation, such that the pressure on either side of the artificial airway (endotracheal tube or tracheostomy tube) is the same, the lung flow (QLUNG) will be zero and the above Equation #1 simplifies to:

Pdrive=Pwye−Pend exp,  (EQ #2).

However, in order for the above equation to work, the patient must be ventilated utilizing a mandatory mode of ventilation and the patient must be passive (such as sedated). As such, several ventilators are capable of calculating and displaying drive pressure during mandatory modes of ventilation on a passive patient with use of an inspiratory pause. However, if the patient is not passive, then the ventilator, even during a mandatory mode of ventilation, is not capable of calculating patient drive pressure. During a spontaneous mode of ventilation, the patient is not passive so the patient's muscle pressure varies throughout each breath and patient drive pressure is, therefore, a much more difficult calculation. Currently, the only ventilators that are capable of calculating drive pressure during a spontaneous mode of ventilation or during any mode of ventilation where the patient is not passive, requires invasive monitoring techniques.


Accordingly, the current disclosure describes a drive pressure (DP) breath type for ventilating a patient. The DP breath type (also referred to herein as drive pressure ventilation) is a spontaneous breath type that allows for the calculation of drive pressure that does not require invasive monitoring. To accomplish this goal, the DP breath type briefly interrupts and smoothly transitions from a base spontaneous breath subtype into a temporary proportional assist (PA) breath subtype for a predetermined period in response to a condition and then smoothly transitions back into the base spontaneous breath subtype. In some aspects, the DP breath type accomplishes the smooth transition by determining a percent support setting for the PA breath subtype based on the target settings of the base spontaneous breath subtype and/or based on non-invasively monitored/measured parameters. In other aspects, a predetermined percent support setting is utilized for the transition by the DP breath type. As such, ventilator systems and methods utilizing the DP breath type may adjust ventilator parameters and/or perform other actions based on a monitored drive pressure.



FIG. 1 is a schematic diagram illustrating an example of a ventilator 100 connected to a human patient 150. Ventilator 100 includes a pneumatic system 102 (also referred to as a pressure generating system) for circulating breathing gases to and from patient 150 via the ventilation tubing system 130, which couples the patient 150 to the pneumatic system 102 via an invasive (e.g., endotracheal tube, as shown) or a non-invasive (e.g., nasal mask) patient interface 180.


Ventilation tubing system 130 (or patient circuit) may be a two-limb (shown) or a one-limb circuit for carrying gases to and from the patient 150. In a two-limb embodiment, a fitting, typically referred to as a “wye-fitting” 170, may be provided to couple a patient interface 180 (as shown, an endotracheal tube) to an inspiratory limb 132 and an expiratory limb 134 of the ventilation tubing system 130.


Pneumatic system 102 may be configured in a variety of ways. In the present example, pneumatic system 102 includes an expiratory module 108 coupled with the expiratory limb 134 and an inspiratory module 104 coupled with the inspiratory limb 132. Compressor 106 or other source(s) of pressurized gases (e.g., air, oxygen, and/or helium) is coupled with inspiratory module 104 and the expiratory module 108 to provide a gas source for ventilatory support via inspiratory limb 132.


The inspiratory module 104 is configured to deliver gases to the patient 150 according to prescribed ventilatory settings. In some embodiments, inspiratory module 104 is configured to provide ventilation according to various breath types, e.g., via a DP breath type, or via any other suitable breath types.


The expiratory module 108 is configured to release gases from the patient's lungs according to prescribed ventilatory settings. Specifically, expiratory module 108 is associated with and/or controls an expiratory valve for releasing gases from the patient 150.


The ventilator 100 may also include one or more non-invasive sensors 107 communicatively coupled to ventilator 100. Sensors are referred to herein as non-invasive when the sensors are located externally to patient. For example, sensors located in the wye=fitting 170, in the expiratory module 108, in the inspiratory module 104, or on the patient's finger are all external to the patient and are non-invasive. Sensors are referred to herein as invasive when the sensors are located within the patient or placed inside the patient's body, such as sensors located in an endotracheal tube, near a patient diaphragm, or on an esophageal balloon. While invasive sensors can provide great patient data or measurements, these sensors can often be hard to maintain or keep properly positioned. For example, an esophageal balloon can easily be knocked out of proper position in response to patient movement. Once moved, all of the data recorded from the sensors on the balloon are inaccurate. Further, if condensation or material corrupts the sensor and interferes with accurate measurements, the invasive sensor has to be removed from the body to service and/or clean it. Further, because invasive sensors are located within the patient, they usually require the patient to be sedated or undergo a surgical procedure for implantation or positioning adjustment. As such, invasive sensors are burdensome to the patient, hard to implant, hard to maintain, and hard to keep positioned when compared to non-invasive sensors. The embodiment of FIG. 1 illustrates a sensor 107 in pneumatic system 102.


Sensors 107 may communicate with various components of ventilator 100, e.g., pneumatic system 102, other sensors 107, processor 116, condition module 117, drive pressure module 118, treatment module 119, and/or any other suitable components and/or modules. In one embodiment, sensors 107 generate output and send this output to pneumatic system 102, other sensors 107, processor 116, condition module 117, drive pressure module 118, treatment module 119 and any other suitable components and/or modules. Sensors 107 may employ any suitable sensory or derivative technique for monitoring one or more patient parameters or ventilator parameters associated with the ventilation of a patient 150. Sensors 107 may detect changes in patient parameters indicative of patient triggering, for example. Sensors 107 may be placed in any suitable non-invasive location, e.g., within the ventilatory circuitry (excluding an endotracheal tube) or other devices communicatively coupled to the ventilator 100. Further, sensors 107 may be placed within the ventilatory circuitry or within components or modules of ventilator 100. For example, sensors 107 may be coupled to the inspiratory and/or expiratory modules for detecting changes in circuit pressure and/or flow. In other examples, sensors 107 may be affixed to the ventilatory tubing or may be embedded in the tubing itself. Additionally or alternatively, sensors 107 may be affixed or embedded in or near wye-fitting 170 and/or in a non-invasive patient interface. Indeed, any non-invasive sensory device useful for monitoring changes in measurable parameters during ventilatory treatment may be employed in accordance with embodiments described herein. In some aspects, the ventilator 100 does not utilize any invasive sensors or sensory devices.


As should be appreciated, with reference to the Equation of Motion, ventilatory parameters are highly interrelated and, according to embodiments, may be either directly or indirectly monitored. That is, parameters may be directly monitored by one or more sensors 107, as described above, or may be indirectly monitored or estimated/calculated using a model, such as a model derived from the Equation of Motion:










Pmus
=

Pwye
-

Pend





exp

-


(

RTUBE
+
Rrs

)


QLUNG

-



QLUNGdt

Crs



,




EQ





#3








where:


Rrs is respiratory system resistance;


Crs is respiratory system compliance; and


∫QLUNGdt is lung flow integrated over time.


The pneumatic system 102 may include a variety of other components, including mixing modules, valves, tubing, accumulators, filters, etc. Controller 110 is operatively coupled with pneumatic system 102, signal measurement and acquisition systems, and an operator interface 120 that may enable an operator to interact with the ventilator 100 (e.g., change ventilator settings, select operational modes, view monitored parameters, etc.).


In one embodiment, the operator interface 120 of the ventilator 100 includes a display 122 communicatively coupled to ventilator 100. Display 122 provides various input screens, for receiving clinician input, and various display screens, for presenting useful information to the clinician. In one embodiment, the display 122 is configured to include a graphical user interface (GUI). The GUI may be an interactive display, e.g., a touch-sensitive screen or otherwise, and may provide various windows and elements for receiving input and interface command operations. Alternatively, other suitable means of communication with the ventilator 100 may be provided, for instance by a wheel, keyboard, mouse, or other suitable interactive device. Thus, operator interface 120 may accept commands and input through display 122. Display 122 may also provide useful information in the form of various ventilatory data regarding the physical condition of a patient 150. The useful information may be derived by the ventilator 100, based on data collected by a processor 116, and the useful information may be displayed to the clinician in the form of graphs, wave representations, pie graphs, text, or other suitable forms of graphic display. For example, patient data may be displayed on the GUI and/or display 122. Additionally or alternatively, patient data may be communicated to a remote monitoring system coupled via any suitable means to the ventilator 100. In one embodiment, the display 122 may display one or more of an alert, a current drive pressure, a past drive pressure, a drive pressure graph, a recommendation, a drive pressure breach of a threshold, a ventilation parameter change, a current patient effort, a diaphragmatic pressure, a patient respiratory compliance, a patient respiratory resistance, a desired drive pressure range, a trigger sensitivity, a condition, a tidal volume, a flow, a pressure, a target setting, a breath type, a ventilation mode, and/or etc.


Controller 110 is a command and control computing devices and may include memory 112, one or more processors 116, storage 114, and/or other components of the type commonly found in command and control computing devices. Controller 110 may further include a condition module 117, a drive pressure module 118, and/or a treatment module 119 as illustrated in FIG. 1. A module as used herein may also refer to a command and control computing device. A module as used herein may refer to memory, one or more processors, storage, and/or other components of the type commonly found in command and control computing devices. In alternative embodiments, the condition module 117, the drive pressure module 118, and the treatment module 119 may be located in other components of the ventilator 100, such as the pressure generating system 102 (also known as the pneumatic system 102).


The memory 112 includes non-transitory, computer-readable storage medium that stores software that is executed by the processor 116 and which controls the operation of the ventilator 100. In an embodiment, the memory 112 includes one or more solid-state storage devices such as flash memory chips. In an alternative embodiment, the memory 112 may be mass storage connected to the processor 116 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available non-transitory medium that can be accessed by the processor 116. That is, computer-readable storage media includes non-transitory, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. For example, computer-readable storage media includes RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.


The inspiratory module 104 receives a selected DP breath type from the controller 110. The DP breath type utilizes a mix of two different breath types (referred to herein as breath subtypes) and smoothly transitions between the two different breath types. The two different breath types utilized within the DP breath type are referred to herein as a base breath subtype and a temporary breath subtype that is triggered upon the detection or occurrence of a condition. The base breath subtype is any spontaneous breath type other than the PA breath type, such as a PS or VS breath type. In some aspects, the base spontaneous breath subtype is predetermined for the DP breath type. In other aspects, the base spontaneous breath subtype is selected by the clinician. Depending upon the base spontaneous breath subtype, other inputs, such as a target setting, may be required from the clinician for operating the DP breath type. A target setting as utilized herein refers to a setting that has to be input for a breath type or breath subtype to function or work. For example, if the base spontaneous breath subtype is a PS breath type, the ventilator 100 may require a target pressure input from the clinician. For example, if the base spontaneous breath subtype is a VS breath type, ventilator 100 may require a target tidal volume input from the clinician. However, other inputs, such as patient interface type, ventilation tubing system size, PEEP levels, and/or etc. may also be required from the clinician for operating the DP breath type depending upon the type of ventilator and/or the base spontaneous breath subtype. The temporary breath subtype is a PA breath type. When the PA breath type is being utilized as the temporary breath subtype during a DP breath type, the PA breath type is referred to herein a PA breath subtype. As such, while the use of different breath types, such as PA, PS, VS are discussed herein, these breath types are not being implemented, but instead are being utilized as breath subtype or portion within the DP breath type. During the DP breath type, the controller 110 sends instructions to the inspiratory module 104 and/or the expiratory module 108 for delivering the base spontaneous breath subtype while the condition module 117 of the controller 110 monitors for a condition.


Initiation and execution of a DP breath type requires detection of an inspiratory trigger. In some aspects, a patient trigger is calculated based on a measured or monitored patient inspiration flow. Any suitable type of triggering detection for determining a patient trigger may be utilized by the ventilator 100, such as nasal detection, diaphragm detection, and/or brain signal detection. Further, the ventilator 100 may detect patient triggering via a pressure-monitoring method, a flow-monitoring method, direct or indirect measurement of neuromuscular signals, or any other suitable method. Sensors 107 suitable for this detection may include any suitable sensing device as known by a person of skill in the art for a ventilator.


According to an embodiment, a pressure-triggering method may involve the ventilator 100 monitoring the circuit pressure, and detecting a slight drop in circuit pressure. The slight drop in circuit pressure may indicate that the patient's respiratory muscles are creating a slight negative pressure that in turn generates a pressure gradient between the patient's lungs and the airway opening in an effort to inspire. The ventilator 100 may interpret the slight drop in circuit pressure as a patient trigger and may consequently initiate inspiration by delivering respiratory gases.


Alternatively, the ventilator 100 may detect a flow-triggered event. Specifically, the ventilator 100 may monitor the circuit flow, as described above. If the ventilator 100 detects a slight drop in the base flow through the exhalation module during exhalation, this may indicate, again, that the patient 150 is attempting to inspire. In this case, the ventilator 100 is detecting a drop in bias flow (or baseline flow) attributable to a slight redirection of gases into the patient's lungs (in response to a slightly negative pressure gradient as discussed above). Bias flow refers to a constant flow existing in the circuit during exhalation that enables the ventilator 100 to detect expiratory flow changes and patient triggering.


In response to a detection of a patient trigger, the controller 110 sends instruction to the inspiratory module 104 to deliver breathing gas to the patient based on the parameters of DP breath type.


During ventilation with the base spontaneous breath subtype, the condition module 117 monitors input to determine the occurrence of one or more conditions. In some aspects, the condition module 117 monitors the measurements from the non-invasive sensors. In other aspects, the condition module 117 monitors other received ventilator data or calculations to determine the occurrence of the condition. In some aspects, the condition may be any event that is indicative of a change in patient respiratory system compliance and/or patient respiratory system resistance, such as a predetermined pressure differential, volume differential, a tidal volume differential, a specific flow waveform shape, a specific volume waveform shape, a specific pressure waveform shape, a predetermined change in pressure, a predetermined change in flow, a predetermined change in tidal volume and/or etc. For example, the condition may be a change in non-invasively monitored flow, pressure, and/or of volume of at least 25%. In other aspects, the condition is an expiration of a set period or predetermined number of breaths, since the last PA breath subtype switch or since the start of the last PA breath subtype. For example, the condition may be the expiration of 30, 60, 90, or 120 minutes or the occurrence of 400, 300, or 200 breaths since the last temporary switch into the PA breath subtype or the start of the last PA breath subtype. In other examples, the condition module 117 monitors for the following condition to occur: 1) expiration of 1 hour since the last PA breath subtype; or 2) a 25% change in one of non-invasively measured pressure, flow, or tidal volume during the base spontaneous breath subtype. If the DP breath type was just initialized, the conditions discussed above may be monitored from the start of ventilation or the start of the DP breath type instead of since the last temporary switch into the PA breath subtype or the start of the last PA breath subtype. If the condition module 117 detects a condition, the condition module 117 of the controller 110 determines a percent support setting and sends instructions to the pressure generating pneumatic system 102 to provide a short temporary switch into a PA breath subtype utilizing the determined percent support setting.


In some aspects, the condition module 117 determines a percent support setting by utilizing a predetermined or preset percent support setting. In other aspects, the condition module 117 determines a percent support setting based on a target setting for the base spontaneous breath subtype. For example, if the target pressure for the PS breath type is 10 cm H2O, then the condition module 117 will determine a percent supporting setting to achieve approximately the same pressure level. In another example, if the target volume for a VS breath type is 400 ml, then the condition module 117 will determine a percent support setting to achieve approximately the same volume level. In other aspects, the percent setting is determined by the condition module 117 based on outputs from the non-invasive sensor. For example, if inspiratory pressure measurement is 9.8 cm H2O from inspiratory pressure sensor, then the condition module 117 will determine a percent support setting to achieve approximately the same pressure level. In further aspects, the condition module 117 may utilize additional ventilator parameters or inputs to the target setting and/or the outputs from the non-invasive sensor to determine a percent support setting, such as mask type, patient circuit diameter, and etc.


The PA breath subtype is an effort-based breath type that dynamically determines the amount of ventilatory support to deliver based on a continuous estimation/calculation of patient effort and respiratory characteristics. Patient effort as discussed in the PA breath type is not a muscle pressure (Pmus). In contrast, the patient effort during the PA breath type refers to resistive and elastic pressure drops. The resulting dynamically generated profile is computed in real- or quasi-real-time and used by the ventilator as a set of points for control of applicable parameters.


Initiation and execution of an effort-based breath type, such as PA breath type or PA breath subtype, has two operation prerequisites: (1) detection of an inspiratory trigger; and (2) detection and measurement of an appreciable amount of patient respiratory effort to constitute a sufficient reference above a ventilator's control signal error deadband. Advanced, sophisticated triggering technologies detect initiation of inspiratory efforts efficiently. Patient effort is calculated based on measured patient inspiration flow. Patient effort is utilized to calculate a target airway pressure for the inspiration. The delivered airway pressure as used herein is the airway pressure measured at the ventilator-patient interface. The target airway pressure is resistive pressure (Presistive) plus elastic pressure (Pelastic) plus positive end exhalation pressure (PEEP), where Presistive and Pelastic are scaled by the percent support setting.


A PA breath type or subtype refers to a type of ventilation in which the ventilator acts as an inspiratory amplifier that provides pressure support based on the patient's effort. Usually, the degree of amplification (the “percent support setting”) during a PA breath type is set by an operator or clinician, for example as a percentage based on the patient's effort. However, during the DP breath type, the condition module 117 determines the percent support setting provided during the PA breath subtype.


In one implementation of a PA breath subtype, the ventilator may continuously monitor the patient's instantaneous inspiratory flow and instantaneous net lung volume, which are indicators of the patient's inspiratory effort. These signals, together with ongoing estimates of the patient's lung compliance and lung/airway resistance and the Equation of Motion







(

Pmus
=

Pwye
-

Pend





exp

-


(

RTUBE
+
Rrs

)


QLUNG

-



QLUNGdt

Crs



)

,





allow the ventilator to estimate/calculate a patient effort and derive therefrom a target airway pressure to provide the support that assists the patient's inspiratory muscles to the degree selected by the operator as the percent support setting. In this equation, the patient effort is inspiratory muscle pressure and is negative. The percent support setting as determined by the condition module 117 divides the total work of breathing calculated between the patient and the ventilator.


Unlike other spontaneous breath subtypes, the PA breath subtype can calculate compliance and resistance without having to utilize an invasive sensor. As such, the PA breath subtype is a spontaneous breath type that is able to calculate dynamic respiratory system compliance and respiratory system resistance. In other spontaneous breath subtypes, an invasive sensor located in an esophageal balloon is needed. However, as discussed above, an esophageal balloon can easily become dislodged if the patient moves affecting sensor accuracy, is highly invasive to implant, and/or is uncomfortable for a spontaneously breathing patient. Due to the disruptive nature of the esophageal balloon, the esophageal balloon is rarely utilized during a spontaneous breath subtype.


Due to the unique configuration of the PA breath subtype, the PA breath subtype is capable of determining a patient respiratory system compliance and/or resistance in an end exhalation hold of 300 ms or 0.3 seconds, which will usually go unnoticed by a spontaneously breathing patient. In a typical PA breath type, this 300 ms end expiratory hold is provided intermittently at random. During the DP breath type, the 300 ms end expiratory hold is provided in the first, second, third, or fourth breath of the temporary PA breath subtype portion of the DP breath type. Any additional 300 ms holds are provided after a predetermined number of breaths or after a set time period during the PA breath subtype. In other words, the PA breath subtype does not provide the 300 ms end expiratory hold at random but instead at predetermined intervals. As such, the DP breath type is able to calculate patient respiratory compliance and patient respiratory system resistance without having to utilize an invasive sensor measurement. The DP breath type utilizes the following equation to determine patient respiratory system compliance:

CRAW=(VLUNG/Pressure_delta).


The DP breath type utilizes the following equation to determine patient respiratory system resistance:

RRAW=RRAW+ET−RET,

where:


RRAW is patient respiratory system resistance;


RRAW+ET is the combined resistance of the patient respiratory system and the endotracheal tube/tracheostomy tube resistance; and


RET is endotracheal tube/tracheostomy tube resistance.


RRAW+ET is the difference in lung pressure and wye pressure divided by the estimated lung flow. The lung pressure is based upon the lung pressure at the beginning of exhalation minus exhaled volume times the elastance. Wye pressure is estimated as the measured pressure inside the ventilator compensated for inspiratory limb resistance.


During the PA breath subtype, the drive pressure module 118 calculates patient respiratory resistance and/or compliance based on non-invasive sensor output. The condition module 117 provides the PA breath subtype for at least one breath. In some aspects, the condition module 117 provides the PA breath subtype for at least three breaths. In some aspects, the condition module 117 provides the PA breath subtype until a predetermined number of patient respiratory compliance and/or resistance measurements have been made by the ventilator 100. In some aspects, the condition module 117 provides the PA breath subtype until at least two or three patient respiratory compliance and/or resistance measurements have been made by the ventilator 100. In other aspects, the condition module 117 provides the PA breath subtype until at least one, two, three, four, or five patient respiratory compliance and/or resistance measurements have been made by the ventilator 100. The predetermined number of patient respiratory compliance and/or resistance measurements can be completed in 1 breath, 2 breaths, 3 breaths, 5 breaths, 7 breaths, 8 breaths, 10 breaths, 12 breaths, 15 breaths, 20 breaths, 25 breaths or 30 breaths. In other aspects, a predetermined number of patient respiratory compliance and/or resistance measurements can be completed by the condition module 117 in 4 to 12 breaths.


After the temporary PA breath subtype portion has been completed (e.g., the predetermined number of patient respiratory compliance and/or resistance measurements have been made by the ventilator 100), the condition module 117 switches the ventilation of the patient back to the previously utilized base spontaneous breath subtype.


After the return to the previously utilized base spontaneous breath subtype, the drive pressure module 118 monitors respiratory data of the patient, such as the non-invasive sensor output. In some aspects, the drive pressure module 118 estimates a dynamic drive pressure waveform of the patient during the spontaneous breath subtype based on the respiratory data and the respiratory system compliance and/or compliance. Next, the drive pressure module 118 calculates a drive pressure of the patient during the spontaneous breath subtype utilizing the respiratory system compliance and/or the respiratory system resistance, and the respiratory data. The drive pressure calculated by the drive pressure module 118 can be dynamic and/or static.


In some aspects, equations (1) and (3) can be combined to get the following drive pressure equation:

Pdrive=Rrs QLUNG+1/Crs∫QLUNGdt,  EQ #4.

If equation #4 above is evaluated at the end of the inspiratory phase, and QLUNG is assumed to be zero (e.g., at the transition point between inspiration and exhalation), the integral of QLUNG is the tidal volume, Vt. Based on these assumptions, a static drive pressure is calculated by the drive pressure module 118 of control 110 by utilizing the following equation:

Pdrive=1/Crs Vt=Vt/Crs,  EQ #5.

In further aspects, a dynamic drive pressure is calculated by the drive pressure module 118 of control 110 by utilizing the following equation:

Pmus=Pwye−Pend exp−(RTUBE+Rrs)QLUNG−1/Crs∫QLUNGdt,  EQ #6

where:


Pmus=respiratory muscle pressure;


Pwye=pressure at the patient wye;


Pend exp=pressure at the end of the expiratory phase;


RTUBE=resistance of the artificial airway;


Rrs=patient respiratory resistance;


QLUNG=lung flow; and


Crs=compliance of the respiratory system.


As can be seen from the above equations, at the end of the inspiratory phase where QLUNG=0 and ∫QLUNGdt=tidal volume, dynamic and static drive pressure are the same. However, when the lung flow is non-zero, the driving pressure includes a component related to the resistance of the patient respiratory system. Under some conditions, this can result in the maximum driving pressure being higher than the driving pressure at the end of the inspiratory phase. In these situations, the use of the driving pressure at the end of inspiration (or static drive pressure) may not fully represent the impact of the ventilator 100 on lung injury. As such, the dynamic drive pressure measurement is a better or more accurate measurement for determining and/or preventing lung injury than the static drive pressure measurement.


The drive pressure module 118 measures the drive pressure repeatedly throughout a breath. In some aspects, the drive pressure module 118 measures drive pressure every servo cycle, such as every 2 milliseconds, 5 millisecond, or 10 milliseconds. The servo cycle is the amount of time required by the processor 116 or controller 110 of the ventilator 100 to perform a calculation in response to a received measured pressure or flow. In some aspects, the sensors 107 send output or measurements every servo cycle.


The drive pressure module 118 communicates the drive pressure to other modules, such as the treatment module 119 and condition module 117, controller 110, the pneumatic system 102, and/or the display 122.


The treatment module 119 performs an action in response to receiving the drive pressure. The action may include generating a display of the drive pressure, evaluating the drive pressure, generating an alert based on the drive pressure, providing a recommendation based on the drive pressure, and/or changing ventilator parameters based on the drive pressure. For example, the treatment module 119 may send instruction to the display to display 122 a determined drive pressure. In other aspects, the treatment module 119 may generate a graph of the drive pressure, such as a waveform or bar graph of the drive pressure. For instance, the treatment module 119 may generate a graph or waveform of drive pressure versus time.


In some aspects, the treatment module 119 evaluates the drive pressure by comparing the drive pressure to a threshold. If the treatment module 119 determines that the drive pressure breaches the threshold, the treatment module 119 performs an action in response to this determination. As discussed above, the action may include a display of the drive pressure and/or the breach, generating an alert based on the breach, providing a recommendation based on the breach, and/or changing ventilator parameters based on the breach. If the treatment module 119 determines that the drive pressure does not breach the threshold, the treatment module 119 continues to evaluate the received drive pressures from the drive pressure module 118. In further aspects, if the treatment module 119 determines that the drive pressure does not breach the threshold, the treatment module 119 may also provide a recommendation to the clinician based on the drive pressure meeting the threshold.


The drive pressure threshold may be a drive pressure of 15 cm of H2O or less, a drive pressure of 10 cm of H2O or less, or a drive pressure of 5 cm of H2O to 15 cm of H2O. This list is exemplary and is not meant to be limiting. Any suitable drive pressure range for optimal patient ventilation may be utilized by the treatment module 119, controller 110, and/or ventilator 100. The threshold may be predetermined, selected by the ventilator based on other patient information, or selected or input by a clinician.


In response to a drive pressure or a breach of a threshold by the drive pressure, the treatment module 119 may generate an alert. The alert may be a visual, audio, or any other type of sensory notification that notifies a clinician that the patient's drive pressure has breached a predetermined threshold. In response to a drive pressure meeting a threshold, or a breach of a threshold, the treatment module 119 may provide a recommendation. The recommendation may be changes to ventilator parameters, such as target settings, other ventilator settings, changes in breath type, changes in breath subtype, and/or changes in ventilator mode. For example, if the drive pressure exceeds a threshold, such as is greater than 15 cm of H2O, the treatment module 119 may recommend a decrease in tidal volume, a decrease in flow, a decrease in pressure, an increase in PEEP, and/or a decrease in PEEP to try and bring the drive pressure within the desired levels. For example, if the drive pressure exceeds a threshold, such as is less than 2 cm of H2O, the treatment module 119 may recommend an increase in tidal volume, an increase in flow, an increase in pressure, and/or a increase in PEEP because such changes may be beneficial for the patient and have no or very low risk of causing lung injury. Alternatively, the treatment module 119 may automatically modify the ventilation parameters listed above based on drive pressure or the result of a comparison of drive pressure to a threshold. The ventilation parameter may include a target setting, oxygen percentage, rise time, trigger sensitivity, peak flow rate, peak inspiratory pressure, tidal volume, and/or PEEP. In some aspects, the treatment module 119 may adjust ventilation parameters to maintain the drive pressure within a target range, such as the threshold. An automatic change in ventilation parameter may be sent by treatment module 119 to the display 122 or other modules to notify the clinician of the change.


As discussed above, method 200 illustrates a method for drive pressure ventilation of a patient with a ventilator. Accordingly, method 200 ventilates a patient with a DP breath type. Method 200 provides a spontaneous breath type that allows for the calculation of dynamic drive pressure and does not require invasive monitoring. To accomplish this goal, the method 200 briefly interrupts and smoothly transitions from a base spontaneous breath subtype, other than a PA breath subtype, into the PA breath subtype in response to a condition and then smoothly transitions back into the base spontaneous breath subtype when a patient respiratory system compliance and/or resistance has been calculated. Method 200 accomplishes the smooth transition by determining a percent support setting for the PA breath subtype. As such, method 200 may adjust ventilator parameters and/or perform other actions based on a monitored dynamic drive pressure.


As illustrated, method 200 includes a spontaneous ventilation operation 201. During the spontaneous ventilation operation 201, the ventilator ventilates the patient utilizing a spontaneous breath subtype. The spontaneous breath subtype is any spontaneous breath type other than a PA breath type.


As illustrated, method 200 includes a spontaneous collection operation 202. During the spontaneous collection operation 202, the ventilator collects and analyzes non-invasive sensor output during the spontaneous breath subtype. In other words, during spontaneous collection operation 202, the ventilator non-invasively monitors respiratory data of the patient. Non-invasive sensor output or respiratory data refers to the output or measurements generated by non-invasive sensors. As such, in some aspects, during spontaneous collection operation 202, the ventilator collects flow rate, tidal volume, and/or pressure measurements from non-invasive sensors located in the ventilator 100 and/or ventilation tubing system 130. In some aspects during spontaneous collection operation 202, the ventilator 100 estimates a pressure or flow at the wye-fitting 170 based on an analysis of the non-invasive sensor output. In other aspects, other parameters are derived by the ventilator 100 during spontaneous collection operation 202 based on analysis of the of the non-invasive sensor output.


During spontaneous ventilation operation 201 and spontaneous collection operation 202, the ventilator analyzes the non-invasive sensor output or respiratory data to detect a patient effort. During spontaneous ventilation operation 201 and spontaneous collection operation 202, the ventilator delivers inspiratory gas to the patient with the ventilator in response to a detected patient effort. The inspiratory gas is delivered according to the spontaneous breath subtype.


At DP operation 204, a drive pressure of the patient is calculated or estimated during the spontaneous breath subtype utilizing a calculated or estimated compliance measurement and/or resistance measurement determined during the last PA breath subtype and the output from the sensors during the spontaneous breath subtype. The calculation and/or estimation of the compliance measurement and/or resistance measurement is discussed in more detail below and performed during analyze operation 212 and compliance operation 214. In some aspects, the ventilator during DP operation 204 may calculate or estimate the muscle pressure of the patient during the spontaneous breath subtype based on the compliance measurement and/or resistance measurement. During DP operation 204, the ventilator calculates or estimates a dynamic drive pressure. For example, as discussed above, the ventilator during DP operation 204 may calculate or estimate the dynamic drive pressure by utilizing Equation #6 listed above. In some aspects, the ventilator during DP operation 204 is also capable of calculating or estimating static drive pressure by utilizing Equation #5 listed above.


Method 200 also includes a determination operation 206. At determination operation 206, the ventilator determines if a condition occurred. In some aspects, the ventilator during determination operation 206 monitors the non-invasive sensor output to determine if the condition has occurred. In other aspects, the ventilator during determination operation 206 monitors the number of delivered breath or the passage of time to determine if a condition has occurred. If the ventilator determines that the condition occurred at determination operation 206, the ventilator selects to perform support setting operation 208. If the ventilator determines that the condition did not occur during determination operation 206, the ventilator selects to perform action operation 220. The condition may be the expiration of a predetermined amount of time, the delivery of a predetermined number of breaths, and/or a change in one or more monitored parameters that indicates that a change in patient respiratory system compliance and/or resistance has occurred. In some aspects, the condition is a change in monitored pressure, monitored tidal volume, or monitored flow of at least 25%. In other aspects, the condition is expiration of 1 hour from the last use of the PA breath subtype without a change in monitored pressure, monitored tidal volume, or monitored flow of at least 25% since the last PA breath subtype. In further aspects, the condition is the delivery of 200 breaths from the last use of the PA breath subtype without a change in monitored pressure, monitored tidal volume, or monitored flow of at least 25% since the last PA breath subtype.


As illustrated, method 200 includes support setting operation 208. At support setting operation 208 the ventilator determines a percent support setting for a PA breath subtype. In some aspects, at support setting operation 208, the ventilator utilizes a predetermined support setting. In other aspects, at support setting operation 208 the ventilator selects a support setting based on at least one of a target setting from the spontaneous breath subtype or the non-invasively measured respiratory data collected during the spontaneous breath subtype. In further aspects, the ventilator during support setting operation 208 determines other settings for the PA breath subtype. For example, a PEEP level for the PA breath subtype may be set based on a PEEP level utilized in the spontaneous breath subtype.


Next, switch operation 210 is performed by the ventilator. At switch operation 210 the ventilator automatically and temporarily switches from the spontaneous breath subtype into the PA breath subtype for at least one breath utilizing the determined or calculated percent support setting. In some aspects, at switch operation 210 the ventilator automatically and temporarily switches from the spontaneous breath subtype into the PA breath subtype for at least three breaths utilizing the determined or calculated percent support setting. The PA breath subtype is performed for at least one breath, at least two breaths, or at least three breaths. In some aspects, the PA breath subtype is delivered by the ventilator during switch operation 210 until at least one patient respiratory system compliance and/or resistance measurement has been obtained. In some aspects, the PA breath subtype is delivered by the ventilator during switch operation 210 until at least two different patient respiratory system compliance and/or resistance measurements have been obtained. In some aspects, the PA breath subtype is delivered by the ventilator during the switch operation 210 until 5, 4, 3, or 2 patient respiratory system compliance and/or resistance measurements have been obtained. As such, the ventilator may deliver ventilation utilizing the PA breath subtype for at most 4 breaths, 8 breaths, 10 breaths, 12 breaths, 15 breaths, 20 breaths, 30 breaths, 40 breaths, or 50 breaths.


Accordingly, method 200 also includes PA collect and analyze operation 212. The ventilator during the PA collect and analyze operation 212, collects and analyzes the non-invasively measured respiratory data during the PA breath subtype. Next, a compliance operation 214 is performed by the ventilator. During the compliance operation 214, the ventilator calculates or estimates the patient respiratory system compliance and/or resistance based on the non-invasively measured respiratory data taken during the PA breath subtype during the PA collect and analyze operation 212. If multiple patient respiratory system compliance and/or resistance measurements are taken by the ventilator during compliance operation 214, the ventilator determines a compliance measurement and/or a resistance measurement based on these multiple measurements. For example, if multiple patient respiratory system compliance measurements are taken, the ventilator may average the measurements or select the middle or last obtained measurement to be utilized as the PA breath subtype calculated compliance measurement for use during DP operation 204.


Method 200 also includes a return operation 216. At return operation 216 the ventilator switches from the PA breath subtype back to the previously utilized spontaneous breath subtype. As discussed above, the ventilator returns the spontaneous breath subtype after a predetermined number of patient respiratory system compliance or resistance measurements have been obtained during the PA breath subtype, after a predetermined number of breaths, or after a predetermined amount of time. Next, spontaneous ventilation operation 201 is performed again.


Method 200 also includes action operation 220. At action operation 220, the ventilator performs an action based on drive pressure. The action may include generating a display of the drive pressure, evaluating the drive pressure, generating an alert based on the drive pressure, providing a recommendation based on the drive pressure, and/or changing ventilator parameters based on the drive pressure. In some aspects, the ventilator may generate a graph of the drive pressure for display during action operation 220, such as a waveform or bar graph of the drive pressure. In some aspects, the ventilator evaluates the drive pressure by comparing the drive pressure to threshold during action operation 220. If the ventilator determines that the drive pressure breaches the threshold during action operation 220, ventilator performs an action in response to this determination. As discussed above the action may include a display of the drive pressure and/or the breach, generating an alert based on the breach, providing a recommendation based on the breach, and/or changing ventilator parameters based on the breach. If the ventilator determines that the drive pressure does not breach the threshold during action operation 220, the ventilator continues to evaluate the calculated or estimated drive pressure. In further aspects, if the ventilator during action operation 220 determines that the drive pressure does not breach the threshold, the ventilator may also provide a recommendation to the clinician based on the drive pressure meeting the threshold.


In response to a drive pressure or a breach of a threshold by the drive pressure, the ventilator may generate an alert during action operation 220. In response to a drive pressure meeting a threshold, or a breach of a threshold, the ventilator may provide a recommendation. Alternatively, the ventilator during action operation 220 may automatically modify the ventilation parameters listed above based on drive pressure or the result of a comparison of drive pressure to a threshold.


In some embodiments, a microprocessor-based ventilator that accesses a computer-readable medium having computer-executable instructions for performing the method of ventilating a patient with a medical ventilator is disclosed. This method includes repeatedly performing the steps disclosed in method 200 above and/or as illustrated in FIG. 2. In some aspects, method 200 is performed by the ventilator 100 described above with reference to FIG. 1.


In another example, FIG. 3 is a chart illustrating a normalized respiratory mechanics plane (R-M Plane). FIG. 3 depicts the relationship between tidal volume (ml) and distending pressure (ΔP in cmH2O). Distending pressure is calculated by subtracting the Positive End Expiratory Pressure (PEEP) from Plateau Pressure (PPLAT), as illustrated by the X-axis of FIG. 3. In the context of patient ventilation, the following equation would operationalize the relationship: VT=ΔP*CL, where CL represents the compliance (elasticity) of the patient lung-thorax system. The units of CL for FIGS. 3 and 4 are volume/pressure or ml/cmH2O. Thus, if CL is known, the volume (ml) is found by multiplying CL by ΔP. An examination of the equation VT=ΔP*CL reveals that CL becomes a constant with the units of VT/ΔP. i.e., CL is visualized as the positive slope of a line originating at 0,0, rising linearly up and to the right (should a separate slide be made). With a simple transformation of the units for the Y-axis, volume/predicted body weight (PBW) (the volume units for lung protective ventilation (ml/kg) and likewise expressing CL as CL/kg provides the chart illustrated in FIG. 3. FIG. 3 assumes the following:


1) The term ml/kg applied to all patients is valid and


2) The term CL/kg applied to all patients is also valid.


As such, the following can be stated (where VL is lung volume):


1) If VL/kg and ΔP are known, CL/kg=(VL/kg)/ΔP;


2) If VL/kg and CL/kg are known, ΔP=(VL/kg)/(CL/kg); and


3) If ΔP and CL/kg are known, VL/kg=ΔP*CL/kg.


Accordingly, any matched pair of coordinates for ml/kg and ΔP on FIG. 3 locates a unique point on the R-M Plane and that point lies on a line whose slope is ≈CL/kg. Furthermore, all such matched coordinates whose ratio is equivalent (≈) will also lie on that CL/kg slope. Recognizing that valid estimates for ΔP and VL/kg are available, the intersection of orthogonal projections of these two values identifies a probable estimate of the patient's current CL/kg. A current estimate of a patient's actual CL is found by multiplying the normalized value by the patient's estimated PBW.


Given the structure of the R-M Plane, it's now possible to indicate how the patient's status can be monitored and identified, either by a software algorithm or by using boundary conditions set by the clinician. If the clinician were interested in maintaining lung-protective ventilation, upper and lower, horizontal boundaries would alert when VT/kg were too low or too high. Ventilator notifications could identify key changes and suggest corrections. A patient with ARDS might be decompensating with ever worsening compliance. Boundary violations could notify the clinician of this occurring.


In another aspect, a feature of the recurring points could be utilized with FIG. 3, to indicate the trajectory the patient's change as illustrated in FIG. 4. FIG. 4 is a chart illustrating a normalized respiratory mechanics plane with provided patient temporal status. The connection between sequential points would indicate rate of change and a notification could be provided by the ventilator to the clinician based on this rate of change. In FIG. 4 the repeated values for VT/kg, ΔP and CL/kg are captured and processed every 5 minutes or so. At the end of each interval, software analyzes the patient's sensor data and indicates the patient's location on the R-M Plane. Identical sets of values would produce equivalent points. However, as shown in FIG. 4, if a new point differed by X from the last one, a new point whose structure/identity would differ from the last one is plotted on the chart. In some aspects, each point is time stamped on the chart. The three vertical array points, illustrated in FIG. 4, indicate that the insufflation pressure remained constant but the patient's CL was increasing coincident with increasing VL. Given that the sequential values for VT/kg, ΔP and CL/kg could change in any of several logical trajectories, a temporal indicator on the R-M plane can apprise a clinician of the patient's status.



FIG. 5 is a chart illustrating a normalized respiratory mechanics plane with provided boundaries. Similar to FIG. 3, FIG. 5 depicts the relationship between tidal volume (ml) and distending pressure (ΔP in cmH2O) and provides boundaries that show better and worse ventilation areas on the chart. In some aspects, FIG. 5 could be displayed at each start-up on request. FIG. 5 reinforces in the clinician's mind the areas of better or worse ventilation. In some aspects, once the patient's PBW is known, the depiction of FIG. 5 is converted to the given patient or defaulted to the normalized patient as shown in FIG. 3.


In some embodiments, the ventilator system includes: means for ventilating a patient with the ventilator in a spontaneous breath subtype; means for non-invasively monitoring respiratory data of the patient with at least one of a pressure sensor and a flow sensor operatively coupled to at least one of a patient circuit or a pressure generating system; means for analyzing the respiratory data to detect a patient effort; means for delivering inspiratory gas to the patient with the ventilator in response to a detected patient effort; means for determining an occurrence of a condition by the ventilator based on information gathered by the ventilator; in response to the condition, means for determining a percent support setting for a PA breath subtype based on a target setting or the respiratory data from the spontaneous breath subtype; means for automatically and temporarily switching from the spontaneous breath subtype into the PA breath subtype for at least one breath in response to calculating the percent support setting; means for estimating a respiratory system compliance and/or respiratory system resistance of the patient during the PA breath subtype based on the respiratory data; means for returning to the spontaneous breath subtype after the at least three breaths; means for calculating a drive pressure of the patient during the spontaneous breath subtype utilizing the respiratory system compliance and/or the respiratory system resistance and the respiratory data; and means for performing an action based on the drive pressure. The spontaneous breath subtype does not include a proportional assist (PA) breath type.


Those skilled in the art will recognize that the methods and systems of the present disclosure may be implemented in many manners and as such are not to be limited by the foregoing exemplary embodiments and examples. In other words, functional elements being performed by a single or multiple components, in various combinations of hardware and software or firmware, and individual functions, can be distributed among software applications at either the client or server level or both. In this regard, any number of the features of the different embodiments described herein may be combined into single or multiple embodiments, and alternate embodiments having fewer than or more than all of the features herein described are possible. Functionality may also be, in whole or in part, distributed among multiple components, in manners now known or to become known. Thus, myriad software/hardware/firmware combinations are possible in achieving the functions, features, interfaces and preferences described herein. Moreover, the scope of the present disclosure covers conventionally known manners for carrying out the described features and functions and interfaces, and those variations and modifications that may be made to the hardware or software firmware components described herein as would be understood by those skilled in the art now and hereafter.


Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the appended claims. While various embodiments have been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the present invention. Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the appended claims.

Claims
  • 1. A ventilator system for delivering drive pressure ventilation to a patient, the ventilator system comprising: a pressure generating system that generates a flow of breathing gas;a ventilation tubing system including a patient interface for connecting the pressure generating system to the patient;one or more non-invasive sensors operatively coupled to at least one of the pressure generating system or the ventilation tubing system, wherein the one or more non-invasive sensors generate output indicative of at least one of flow, volume or pressure;a controller that collects and analyzes the output to determine a condition, wherein the controller is configured to: in response to the condition, temporarily switch the ventilator system from a spontaneous breath subtype into a proportional assist (PA) breath subtype for at least one breath;estimate a respiratory system compliance of the patient during the PA breath subtype based on the output collected during the PA breath subtype;after the at least one breath, switch the ventilator system from the PA breath subtype back to the spontaneous breath subtype;after a return to the spontaneous breath subtype, calculate a drive pressure of the patient based on the respiratory system compliance and the output after the return, wherein the drive pressure is a pressure represented in cmH2O that is applied within the patient's lungs to cause inflation; anda display for displaying the drive pressure.
  • 2. The ventilator system of claim 1, wherein the controller is further configured to: compare the drive pressure to a threshold to form a comparison;determine that the drive pressure breaches the threshold based on the comparison; andprovide an alert.
  • 3. The ventilator system of claim 2, wherein the controller is further configured to: adjust a ventilation parameter for the ventilator system.
  • 4. The ventilator system of claim 3, wherein the ventilation parameter is at least one of oxygen percentage, rise time, trigger sensitivity, peak flow rate, peak inspiratory pressure, tidal volume, PEEP, or a target setting.
  • 5. The ventilator system of claim 1, wherein the controller is further configured to: utilize a predetermined percent support setting for the PA breath subtype.
  • 6. A non-transitory computer-readable medium having computer-executable instructions for performing a method of ventilating a patient with a ventilator, the method comprising: ventilating the patient with the ventilator in a spontaneous breath subtype, wherein the spontaneous breath subtype does not include a proportional assist (PA) breath subtype;monitoring respiratory data of the patient with at least one of a pressure sensor and a flow sensor operatively coupled to at least one of a patient circuit or a pressure generating system;analyzing the respiratory data to detect a patient effort;delivering inspiratory gas to the patient with the ventilator in response to a detected patient effort;determining an occurrence of a condition by the ventilator based on information gathered by the ventilator;in response to the condition, automatically and temporarily switching from the spontaneous breath subtype into the PA breath subtype for at least three breaths, wherein a percent support setting for the PA breath subtype is determined based on at least one of a target setting, a non-invasively monitored flow, a non-invasively monitored pressure, or a noninvasively monitor tidal volume during the spontaneous breath subtype from at least one of the pressure sensor and the flow sensor;estimating a respiratory system compliance and a respiratory system resistance of the patient during the PA breath subtype based on the respiratory data;calculating a drive pressure of the patient during the spontaneous breath subtype utilizing respiratory system compliance, the respiratory system resistance, and the respiratory data received during the spontaneous breath subtype, wherein the drive pressure is a pressure represented in cmH2O that is applied within the patient's lungs to cause inflation; andperforming an action based on the drive pressure.
  • 7. The method of claim 6, wherein the action includes providing a drive pressure alert.
  • 8. The method of claim 6, wherein the action includes providing a recommendation.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 62/586,077, filed Nov. 14, 2017, and claims priority to U.S. Provisional Application Ser. No. 62/725,490, filed Aug. 31, 2018, the complete disclosures of which are hereby incorporated herein by reference in their entireties.

US Referenced Citations (705)
Number Name Date Kind
3669108 Sundblom et al. Jun 1972 A
4127123 Bird Nov 1978 A
4448192 Stawitcke et al. May 1984 A
4527557 DeVries et al. Jul 1985 A
4637385 Rusz Jan 1987 A
4655213 Rapoport et al. Apr 1987 A
4752089 Carter Jun 1988 A
4773411 Downs Sep 1988 A
4805612 Jensen Feb 1989 A
4805613 Bird Feb 1989 A
4821709 Jensen Apr 1989 A
4921642 LaTorraca May 1990 A
4954799 Kumar Sep 1990 A
4986268 Tehrani Jan 1991 A
5044362 Younes Sep 1991 A
5057822 Hoffman Oct 1991 A
5072737 Goulding Dec 1991 A
5107830 Younes Apr 1992 A
5148802 Sanders et al. Sep 1992 A
5150291 Cummings et al. Sep 1992 A
5161525 Kimm et al. Nov 1992 A
5165398 Bird Nov 1992 A
5237987 Anderson et al. Aug 1993 A
5239995 Estes et al. Aug 1993 A
5271389 Isaza et al. Dec 1993 A
5279549 Ranford Jan 1994 A
5299568 Forare et al. Apr 1994 A
5301921 Kumar Apr 1994 A
5303698 Tobia et al. Apr 1994 A
5307795 Whitwam et al. May 1994 A
5313937 Zdrojkowski May 1994 A
5319540 Isaza et al. Jun 1994 A
5325861 Goulding Jul 1994 A
5333606 Schneider et al. Aug 1994 A
5339807 Carter Aug 1994 A
5343857 Schneider et al. Sep 1994 A
5351522 Lura Oct 1994 A
5353788 Miles Oct 1994 A
5357946 Kee et al. Oct 1994 A
5368019 LaTorraca Nov 1994 A
5383449 Forare et al. Jan 1995 A
5385142 Brady et al. Jan 1995 A
5390666 Kimm et al. Feb 1995 A
5398676 Press et al. Mar 1995 A
5401135 Stoen et al. Mar 1995 A
5402796 Packer et al. Apr 1995 A
5407174 Kumar Apr 1995 A
5413110 Cummings et al. May 1995 A
5433193 Sanders et al. Jul 1995 A
5438980 Phillips Aug 1995 A
5443075 Holscher Aug 1995 A
5452714 Anderson et al. Sep 1995 A
5492113 Estes et al. Feb 1996 A
5507282 Younes Apr 1996 A
5513631 McWilliams May 1996 A
5517983 Deighan et al. May 1996 A
5520071 Jones May 1996 A
5524615 Power Jun 1996 A
RE35295 Estes et al. Jul 1996 E
5531221 Power Jul 1996 A
5535738 Estes et al. Jul 1996 A
5540222 Younes Jul 1996 A
5542415 Brody Aug 1996 A
5544674 Kelly Aug 1996 A
5549106 Gruenke et al. Aug 1996 A
5551418 Estes et al. Sep 1996 A
5572993 Kurome et al. Nov 1996 A
5582163 Bonassa Dec 1996 A
5596984 O'Mahony et al. Jan 1997 A
5598838 Servidio et al. Feb 1997 A
5630411 Holscher May 1997 A
5632269 Zdrojkowski May 1997 A
5632270 O'Mahony et al. May 1997 A
5645048 Brodsky et al. Jul 1997 A
5660171 Kimm et al. Aug 1997 A
5664560 Merrick et al. Sep 1997 A
5664562 Bourdon Sep 1997 A
5671767 Kelly Sep 1997 A
5672041 Ringdahl et al. Sep 1997 A
5673689 Power Oct 1997 A
5692497 Schnitzer et al. Dec 1997 A
5694923 Hete et al. Dec 1997 A
5704345 Berthon-Jones Jan 1998 A
5715812 Deighan et al. Feb 1998 A
5720278 Lachmann et al. Feb 1998 A
5735267 Tobia Apr 1998 A
5743253 Castor et al. Apr 1998 A
5752506 Richardson May 1998 A
5762480 Adahan Jun 1998 A
5765558 Psaros et al. Jun 1998 A
5771884 Yarnall et al. Jun 1998 A
5782233 Niemi et al. Jul 1998 A
5791339 Winter Aug 1998 A
5794615 Estes Aug 1998 A
5794986 Gansel et al. Aug 1998 A
5803065 Zdrojkowski et al. Sep 1998 A
5813399 Lsaza et al. Sep 1998 A
5823187 Estes et al. Oct 1998 A
5826575 Lall Oct 1998 A
5829441 Kidd et al. Nov 1998 A
5864938 Gansel et al. Feb 1999 A
5865168 Isaza Feb 1999 A
5868133 DeVries et al. Feb 1999 A
5878744 Pfeiffer Mar 1999 A
5881717 Isaza Mar 1999 A
5881723 Wallace et al. Mar 1999 A
5884622 Younes Mar 1999 A
5884623 Winter Mar 1999 A
5901704 Estes et al. May 1999 A
5904141 Estes et al. May 1999 A
5909731 O'Mahony et al. Jun 1999 A
5915379 Wallace et al. Jun 1999 A
5915380 Wallace et al. Jun 1999 A
5915382 Power Jun 1999 A
5918597 Jones et al. Jul 1999 A
5921238 Bourdon Jul 1999 A
5927274 Servidio et al. Jul 1999 A
5934274 Merrick et al. Aug 1999 A
5957130 Krahbichler et al. Sep 1999 A
5970975 Estes et al. Oct 1999 A
5975081 Hood et al. Nov 1999 A
6024089 Wallace et al. Feb 2000 A
6029664 Zdrojkowski et al. Feb 2000 A
6029665 Berthon-Jones Feb 2000 A
6041777 Faithfull et al. Mar 2000 A
6041780 Richard et al. Mar 2000 A
6047860 Sanders Apr 2000 A
6076523 Jones et al. Jun 2000 A
6105575 Estes et al. Aug 2000 A
6116240 Merrick et al. Sep 2000 A
6116464 Sanders Sep 2000 A
6123073 Schlawin et al. Sep 2000 A
6135105 Lampotang et al. Oct 2000 A
6135106 Dirks et al. Oct 2000 A
6142150 O'Mahoney et al. Nov 2000 A
6161539 Winter Dec 2000 A
6196222 Heinonen et al. Mar 2001 B1
6209540 Sugiura et al. Apr 2001 B1
6213119 Brydon et al. Apr 2001 B1
6220245 Takabayashi et al. Apr 2001 B1
6240919 MacDonald et al. Jun 2001 B1
6253765 Hognelid et al. Jul 2001 B1
6257234 Sun Jul 2001 B1
6269812 Wallace et al. Aug 2001 B1
6273444 Power Aug 2001 B1
6283119 Bourdon Sep 2001 B1
6302105 Wickham et al. Oct 2001 B1
6302851 Gedeon Oct 2001 B1
6305372 Servidio Oct 2001 B1
6305373 Wallace et al. Oct 2001 B1
6305374 Zdrojkowski et al. Oct 2001 B1
6321748 O'Mahoney Nov 2001 B1
6325785 Babkes et al. Dec 2001 B1
6345619 Finn Feb 2002 B1
6357438 Hansen Mar 2002 B1
6360745 Wallace et al. Mar 2002 B1
6369838 Wallace et al. Apr 2002 B1
6371113 Tobia et al. Apr 2002 B1
6412483 Jones et al. Jul 2002 B1
6427689 Estes et al. Aug 2002 B1
6431169 do Val et al. Aug 2002 B1
6439229 Du et al. Aug 2002 B1
6467477 Frank et al. Oct 2002 B1
6467478 Merrick et al. Oct 2002 B1
6484719 Berthon-Jones Nov 2002 B1
6526970 DeVries et al. Mar 2003 B2
6532956 Hill Mar 2003 B2
6532957 Berthon-Jones Mar 2003 B2
6539940 Zdrojkowski et al. Apr 2003 B2
6546930 Emerson et al. Apr 2003 B1
6553991 Isaza Apr 2003 B1
6553992 Berthon-Jones et al. Apr 2003 B1
6557553 Borrello May 2003 B1
6557554 Sugiura May 2003 B1
6571795 Bourdon Jun 2003 B2
6575163 Berthon-Jones Jun 2003 B1
6578575 Jonson Jun 2003 B1
6581597 Sugiura Jun 2003 B2
6588422 Berthon-Jones et al. Jul 2003 B1
6595213 Bennarsten Jul 2003 B2
6609517 Estes et al. Aug 2003 B1
6612995 Leonhardt et al. Sep 2003 B2
6622726 Du Sep 2003 B1
6626175 Jafari et al. Sep 2003 B2
6629527 Estes et al. Oct 2003 B1
6629934 Mault et al. Oct 2003 B2
6631716 Robinson et al. Oct 2003 B1
6640806 Yurko Nov 2003 B2
6644310 Delache et al. Nov 2003 B1
6651657 Manigel et al. Nov 2003 B1
6668824 Isaza et al. Dec 2003 B1
6672300 Grant Jan 2004 B1
6675797 Berthon-Jones Jan 2004 B1
6675801 Wallace et al. Jan 2004 B2
6679258 Strom Jan 2004 B1
6688307 Berthon-Jones Feb 2004 B2
6708691 Hayek Mar 2004 B1
6718974 Moberg Apr 2004 B1
6725447 Gilman et al. Apr 2004 B1
6739337 Isaza May 2004 B2
6755193 Berthon-Jones et al. Jun 2004 B2
6758217 Younes Jul 2004 B1
6761167 Nadjafizadeh et al. Jul 2004 B1
6761168 Nadjafizadeh et al. Jul 2004 B1
6796305 Banner et al. Sep 2004 B1
6810876 Berthon-Jones Nov 2004 B2
6814074 Nadjafizadeh et al. Nov 2004 B1
6820613 Wenkebach Nov 2004 B2
6823866 Jafari et al. Nov 2004 B2
6837242 Younes Jan 2005 B2
6837244 Yagi et al. Jan 2005 B2
6854462 Berthon-Jones et al. Feb 2005 B2
6860858 Green et al. Mar 2005 B2
6866040 Bourdon Mar 2005 B1
6877511 DeVries et al. Apr 2005 B2
6899103 Hood et al. May 2005 B1
6910480 Berthon-Jones Jun 2005 B1
6915803 Berthon-Jones et al. Jul 2005 B2
6920878 Sinderby et al. Jul 2005 B2
6932084 Estes et al. Aug 2005 B2
6948497 Zdrojkowski et al. Sep 2005 B2
6960854 Nadjafizadeh et al. Nov 2005 B2
6976487 Melker et al. Dec 2005 B1
6997881 Green et al. Feb 2006 B2
7000610 Bennarsten et al. Feb 2006 B2
7000612 Jafari et al. Feb 2006 B2
7013892 Estes et al. Mar 2006 B2
7021310 Sinderby et al. Apr 2006 B1
7032589 Kerechanin, II et al. Apr 2006 B2
7036504 Wallace et al. May 2006 B2
7040321 Göbel May 2006 B2
7055522 Berthon-Jones Jun 2006 B2
7066173 Banner et al. Jun 2006 B2
7077131 Hansen Jul 2006 B2
RE39225 Isaza et al. Aug 2006 E
7096866 Be'eri et al. Aug 2006 B2
7100607 Zdrojkowski et al. Sep 2006 B2
7100609 Berthon-Jones et al. Sep 2006 B2
7117438 Wallace et al. Oct 2006 B2
7137389 Berthon-Jones Nov 2006 B2
7152598 Morris et al. Dec 2006 B2
7162296 Leonhardt et al. Jan 2007 B2
7210478 Banner et al. May 2007 B2
7225013 Geva et al. May 2007 B2
7246618 Habashi Jul 2007 B2
7255103 Bassin Aug 2007 B2
7267121 Ivri Sep 2007 B2
7270126 Wallace et al. Sep 2007 B2
7270128 Berthon-Jones et al. Sep 2007 B2
7296573 Estes et al. Nov 2007 B2
7305987 Schöller et al. Dec 2007 B2
7305988 Acker Dec 2007 B2
7320320 Berthon-Jones Jan 2008 B2
7334578 Biondi et al. Feb 2008 B2
7367337 Berthon-Jones et al. May 2008 B2
7369757 Farbarik May 2008 B2
7370650 Nadjafizadeh et al. May 2008 B2
RE40402 Leonhardt et al. Jun 2008 E
7425201 Euliano Sep 2008 B2
7428902 Du et al. Sep 2008 B2
7455717 Sprinkle Nov 2008 B2
7460959 Jafari Dec 2008 B2
7475685 Dietz et al. Jan 2009 B2
7484508 Younes Feb 2009 B2
7487773 Li Feb 2009 B2
7509957 Duquette et al. Mar 2009 B2
7516742 Stenzler et al. Apr 2009 B2
7520279 Berthon-Jones Apr 2009 B2
7533670 Freitag et al. May 2009 B1
7556038 Kirby et al. Jul 2009 B2
7588031 Truschel et al. Sep 2009 B2
7588543 Euliano Sep 2009 B2
7610914 Bolam et al. Nov 2009 B2
7617824 Doyle Nov 2009 B2
7621270 Morris et al. Nov 2009 B2
7621271 Brugnoli Nov 2009 B2
7644713 Berthon-Jones Jan 2010 B2
7654802 Crawford, Jr. et al. Feb 2010 B2
7672720 Heath Mar 2010 B2
7678058 Patangay et al. Mar 2010 B2
7678061 Lee et al. Mar 2010 B2
7682312 Lurie Mar 2010 B2
7690378 Turcott Apr 2010 B1
7694677 Tang Apr 2010 B2
7697990 Ujhazy et al. Apr 2010 B2
7708016 Zaiser et al. May 2010 B2
7717110 Kane et al. May 2010 B2
7717111 Schneider et al. May 2010 B2
7717113 Andrieux May 2010 B2
7722546 Madaus et al. May 2010 B2
D618356 Ross Jun 2010 S
7727160 Green et al. Jun 2010 B2
7730886 Berthon-Jones Jun 2010 B2
7751894 Freeberg Jul 2010 B1
7763097 Federspiel et al. Jul 2010 B2
7770578 Estes et al. Aug 2010 B2
7784461 Figueiredo et al. Aug 2010 B2
7793659 Breen Sep 2010 B2
7802571 Tehrani Sep 2010 B2
7810496 Estes et al. Oct 2010 B2
7810497 Pittman et al. Oct 2010 B2
7819815 Younes Oct 2010 B2
7823588 Hansen Nov 2010 B2
7841343 Deane Nov 2010 B2
7849854 DeVries et al. Dec 2010 B2
7855716 McCreary et al. Dec 2010 B2
7866318 Bassin Jan 2011 B2
7874293 Gunaratnam et al. Jan 2011 B2
D632796 Ross et al. Feb 2011 S
D632797 Ross et al. Feb 2011 S
7891354 Farbarik Feb 2011 B2
7893560 Carter Feb 2011 B2
7914459 Green et al. Mar 2011 B2
D638852 Skidmore et al. May 2011 S
7934499 Berthon-Jones May 2011 B2
7984714 Hausmann et al. Jul 2011 B2
D643535 Ross et al. Aug 2011 S
7992557 Nadjafizadeh et al. Aug 2011 B2
8001967 Wallace et al. Aug 2011 B2
D645158 Sanchez et al. Sep 2011 S
8015974 Christopher Sep 2011 B2
8021310 Sanborn et al. Sep 2011 B2
D649157 Skidmore et al. Nov 2011 S
D652521 Ross et al. Jan 2012 S
D652936 Ross et al. Jan 2012 S
D653749 Winter et al. Feb 2012 S
8113062 Graboi et al. Feb 2012 B2
8122885 Berthon-Jones Feb 2012 B2
D655405 Winter et al. Mar 2012 S
D655809 Winter et al. Mar 2012 S
D656237 Sanchez et al. Mar 2012 S
8136521 Matthews Mar 2012 B2
8181648 Perine et al. May 2012 B2
8210173 Vandine Jul 2012 B2
8210174 Farbarik Jul 2012 B2
8240684 Ross et al. Aug 2012 B2
8267085 Jafari et al. Sep 2012 B2
8272379 Jafari et al. Sep 2012 B2
8272380 Jafari et al. Sep 2012 B2
8302600 Andrieux et al. Nov 2012 B2
8302602 Andrieux et al. Nov 2012 B2
8353844 Jin Jan 2013 B2
D692556 Winter Oct 2013 S
D693001 Winter Nov 2013 S
8603006 Mulqueeny et al. Dec 2013 B2
8617083 Euliano Dec 2013 B2
8646447 Martin Feb 2014 B2
D701601 Winter Mar 2014 S
8672858 Euliano Mar 2014 B2
8826907 Masic Sep 2014 B2
8876728 Baloa Welzien Nov 2014 B2
8910632 Tiedje Dec 2014 B2
8920333 Younes Dec 2014 B2
8950399 Handzsuj Feb 2015 B2
8960192 Welzien et al. Feb 2015 B2
D731048 Winter Jun 2015 S
D731049 Winter Jun 2015 S
D731065 Winter Jun 2015 S
D736905 Winter Aug 2015 S
9155852 Soliman et al. Oct 2015 B2
D744095 Winter Nov 2015 S
9220856 Martin Dec 2015 B2
9392964 Mulqueeny Jul 2016 B2
9592356 Truschel Mar 2017 B2
9808591 Esmaeil-zadeh-Azar Nov 2017 B2
9839760 Bonassa Dec 2017 B2
9895083 Zheng Feb 2018 B2
9925346 Dong et al. Mar 2018 B2
9950129 Glenn et al. Apr 2018 B2
9956363 Masic May 2018 B2
9987457 Winter et al. Jun 2018 B2
10022084 Nonaka Jul 2018 B2
10165966 Banner Jan 2019 B2
10207068 Jafari et al. Feb 2019 B2
10293126 Berry May 2019 B2
20050034727 Shusterman et al. Feb 2005 A1
20050039748 Andrieux Feb 2005 A1
20050139212 Bourdon Jun 2005 A1
20060155336 Heath Jul 2006 A1
20060174884 Habashi Aug 2006 A1
20060235324 Lynn Oct 2006 A1
20060249148 Younes Nov 2006 A1
20060278223 Younes Dec 2006 A1
20070000494 Banner et al. Jan 2007 A1
20070017515 Wallace et al. Jan 2007 A1
20070028921 Banner et al. Feb 2007 A1
20070044796 Zdrojkowski et al. Mar 2007 A1
20070044799 Hete et al. Mar 2007 A1
20070077200 Baker Apr 2007 A1
20070215146 Douglas et al. Sep 2007 A1
20070227537 Bemister et al. Oct 2007 A1
20070272241 Sanborn et al. Nov 2007 A1
20070284361 Nadjafizadeh et al. Dec 2007 A1
20080011301 Qian Jan 2008 A1
20080017198 Ivri Jan 2008 A1
20080045813 Phuah et al. Feb 2008 A1
20080053441 Gottlib et al. Mar 2008 A1
20080053443 Estes et al. Mar 2008 A1
20080053444 Estes et al. Mar 2008 A1
20080072896 Setzer et al. Mar 2008 A1
20080072901 Habashi Mar 2008 A1
20080072902 Setzer et al. Mar 2008 A1
20080078390 Milne et al. Apr 2008 A1
20080083644 Janbakhsh et al. Apr 2008 A1
20080092894 Nicolazzi et al. Apr 2008 A1
20080097234 Nicolazzi et al. Apr 2008 A1
20080110461 Mulqueeny et al. May 2008 A1
20080142012 Farnsworth et al. Jun 2008 A1
20080163872 Negele et al. Jul 2008 A1
20080185002 Berthon-Jones et al. Aug 2008 A1
20080196720 Kollmeyer et al. Aug 2008 A1
20080202528 Carter et al. Aug 2008 A1
20080216832 Carter et al. Sep 2008 A1
20080216833 Pujol et al. Sep 2008 A1
20080234595 Ranieri et al. Sep 2008 A1
20080257349 Hedner et al. Oct 2008 A1
20080283061 Tiedje Nov 2008 A1
20080295839 Habashi Dec 2008 A1
20090020120 Schatzl et al. Jan 2009 A1
20090020121 Bassin Jan 2009 A1
20090038616 Mulcahy et al. Feb 2009 A1
20090056719 Newman, Jr. Mar 2009 A1
20090084381 DeVries et al. Apr 2009 A1
20090095298 Gunaratnam et al. Apr 2009 A1
20090107502 Younes Apr 2009 A1
20090114224 Handzsuj et al. May 2009 A1
20090159082 Eger Jun 2009 A1
20090165795 Nadjafizadeh et al. Jul 2009 A1
20090171176 Andersohn Jul 2009 A1
20090173347 Berthon-Jones Jul 2009 A1
20090188502 Tiedje Jul 2009 A1
20090199855 Davenport Aug 2009 A1
20090205661 Stephenson et al. Aug 2009 A1
20090205663 Vandine et al. Aug 2009 A1
20090221926 Younes Sep 2009 A1
20090229611 Martin et al. Sep 2009 A1
20090241951 Jafari et al. Oct 2009 A1
20090241952 Nicolazzi et al. Oct 2009 A1
20090241953 Vandine et al. Oct 2009 A1
20090241955 Jafari et al. Oct 2009 A1
20090241956 Baker, Jr. et al. Oct 2009 A1
20090241957 Baker, Jr. Oct 2009 A1
20090241958 Baker, Jr. Oct 2009 A1
20090241962 Jafari et al. Oct 2009 A1
20090247848 Baker, Jr. Oct 2009 A1
20090247849 McCutcheon et al. Oct 2009 A1
20090247853 Debreczeny Oct 2009 A1
20090247891 Wood Oct 2009 A1
20090287070 Baker, Jr. Nov 2009 A1
20090301486 Masic Dec 2009 A1
20090301487 Masic Dec 2009 A1
20090301490 Masic Dec 2009 A1
20090301491 Masic et al. Dec 2009 A1
20100011307 Desfossez et al. Jan 2010 A1
20100024820 Bourdon Feb 2010 A1
20100051026 Graboi Mar 2010 A1
20100051029 Jafari et al. Mar 2010 A1
20100065055 Morris et al. Mar 2010 A1
20100065057 Berthon-Jones Mar 2010 A1
20100069761 Karst et al. Mar 2010 A1
20100071689 Thiessen Mar 2010 A1
20100071692 Porges Mar 2010 A1
20100071695 Thiessen Mar 2010 A1
20100071696 Jafari Mar 2010 A1
20100071697 Jafari et al. Mar 2010 A1
20100078017 Andrieux et al. Apr 2010 A1
20100078026 Andrieux et al. Apr 2010 A1
20100081119 Jafari et al. Apr 2010 A1
20100081955 Wood, Jr. et al. Apr 2010 A1
20100137380 Maybaum Jun 2010 A1
20100137723 Patangay et al. Jun 2010 A1
20100137729 Pierry et al. Jun 2010 A1
20100137730 Hatlestad Jun 2010 A1
20100139660 Adahan Jun 2010 A1
20100145201 Westbrook et al. Jun 2010 A1
20100147303 Jafari et al. Jun 2010 A1
20100152553 Ujhazy et al. Jun 2010 A1
20100152560 Turcott Jun 2010 A1
20100170512 Kuypers et al. Jul 2010 A1
20100174200 Wood et al. Jul 2010 A1
20100174207 Lee et al. Jul 2010 A1
20100180898 Schneider et al. Jul 2010 A1
20100186741 Aylsworth et al. Jul 2010 A1
20100186742 Sherman et al. Jul 2010 A1
20100186743 Kane et al. Jul 2010 A1
20100186744 Andrieux Jul 2010 A1
20100191076 Lewicke et al. Jul 2010 A1
20100191137 Brada et al. Jul 2010 A1
20100192094 Jeha et al. Jul 2010 A1
20100198086 Kuo et al. Aug 2010 A1
20100199991 Koledin Aug 2010 A1
20100210924 Parthasarathy et al. Aug 2010 A1
20100218764 Kwok et al. Sep 2010 A1
20100218765 Jafari et al. Sep 2010 A1
20100218766 Milne Sep 2010 A1
20100218767 Jafari et al. Sep 2010 A1
20100218773 Thornton Sep 2010 A1
20100222692 McCawley et al. Sep 2010 A1
20100224190 Tilley et al. Sep 2010 A1
20100228133 Averina et al. Sep 2010 A1
20100228134 Martikka et al. Sep 2010 A1
20100229863 Enk Sep 2010 A1
20100234750 Ariav et al. Sep 2010 A1
20100236553 Jafari et al. Sep 2010 A1
20100236554 Prete Sep 2010 A1
20100236555 Jafari et al. Sep 2010 A1
20100241009 Petkie Sep 2010 A1
20100242961 Mougel et al. Sep 2010 A1
20100242965 Berthon-Jones Sep 2010 A1
20100249549 Baker, Jr. et al. Sep 2010 A1
20100249630 Droitcour et al. Sep 2010 A1
20100249631 Aoki et al. Sep 2010 A1
20100249632 Lee et al. Sep 2010 A1
20100249633 Droitcour et al. Sep 2010 A1
20100252037 Wondka et al. Oct 2010 A1
20100252039 Cipollone et al. Oct 2010 A1
20100252040 Kapust et al. Oct 2010 A1
20100252041 Kapust et al. Oct 2010 A1
20100252042 Kapust et al. Oct 2010 A1
20100252043 Freitag Oct 2010 A1
20100256463 Greenwald et al. Oct 2010 A1
20100258116 Federspiel et al. Oct 2010 A1
20100258124 Madaus et al. Oct 2010 A1
20100258126 Ujhazy et al. Oct 2010 A1
20100258127 HK Oct 2010 A1
20100262032 Freeberg Oct 2010 A1
20100275920 Tham et al. Nov 2010 A1
20100282259 Figueiredo et al. Nov 2010 A1
20100288279 Seiver et al. Nov 2010 A1
20100288283 Campbell et al. Nov 2010 A1
20100300446 Nicolazzi et al. Dec 2010 A1
20100307499 Eger et al. Dec 2010 A1
20110011400 Gentner et al. Jan 2011 A1
20110017214 Tehrani Jan 2011 A1
20110023878 Thiessen Feb 2011 A1
20110023879 Vandine et al. Feb 2011 A1
20110023880 Thiessen Feb 2011 A1
20110023881 Thiessen Feb 2011 A1
20110029910 Thiessen Feb 2011 A1
20110036352 Estes et al. Feb 2011 A1
20110041849 Chen et al. Feb 2011 A1
20110041850 Vandine et al. Feb 2011 A1
20110126829 Carter et al. Jun 2011 A1
20110126832 Winter et al. Jun 2011 A1
20110126834 Winter et al. Jun 2011 A1
20110126835 Winter et al. Jun 2011 A1
20110126836 Winter et al. Jun 2011 A1
20110126837 Winter et al. Jun 2011 A1
20110128008 Carter Jun 2011 A1
20110132361 Sanchez Jun 2011 A1
20110132362 Sanchez Jun 2011 A1
20110132364 Ogilvie et al. Jun 2011 A1
20110132365 Patel et al. Jun 2011 A1
20110132366 Ogilvie et al. Jun 2011 A1
20110132367 Patel Jun 2011 A1
20110132368 Sanchez et al. Jun 2011 A1
20110132369 Sanchez Jun 2011 A1
20110132371 Sanchez et al. Jun 2011 A1
20110133936 Sanchez et al. Jun 2011 A1
20110138308 Palmer et al. Jun 2011 A1
20110138309 Skidmore et al. Jun 2011 A1
20110138311 Palmer Jun 2011 A1
20110138315 Vandine et al. Jun 2011 A1
20110138323 Skidmore et al. Jun 2011 A1
20110146681 Jafari et al. Jun 2011 A1
20110146683 Jafari et al. Jun 2011 A1
20110154241 Skidmore et al. Jun 2011 A1
20110175728 Baker, Jr. Jul 2011 A1
20110196251 Jourdain et al. Aug 2011 A1
20110197888 Deutsch et al. Aug 2011 A1
20110209702 Vuong et al. Sep 2011 A1
20110209704 Jafari et al. Sep 2011 A1
20110209707 Terhark Sep 2011 A1
20110213215 Doyle et al. Sep 2011 A1
20110230780 Sanborn et al. Sep 2011 A1
20110249006 Wallace et al. Oct 2011 A1
20110259330 Jafari et al. Oct 2011 A1
20110259332 Sanchez et al. Oct 2011 A1
20110259333 Sanchez et al. Oct 2011 A1
20110265024 Leone et al. Oct 2011 A1
20110271960 Milne et al. Nov 2011 A1
20110273299 Milne et al. Nov 2011 A1
20120000467 Milne et al. Jan 2012 A1
20120000468 Milne et al. Jan 2012 A1
20120000469 Milne et al. Jan 2012 A1
20120000470 Milne et al. Jan 2012 A1
20120029317 Doyle et al. Feb 2012 A1
20120030611 Skidmore Feb 2012 A1
20120060841 Crawford, Jr. et al. Mar 2012 A1
20120071729 Doyle et al. Mar 2012 A1
20120090611 Graboi et al. Apr 2012 A1
20120096381 Milne et al. Apr 2012 A1
20120133519 Milne et al. May 2012 A1
20120136222 Doyle et al. May 2012 A1
20120137249 Milne et al. May 2012 A1
20120137250 Milne et al. May 2012 A1
20120157872 Welzien et al. Jun 2012 A1
20120167885 Masic et al. Jul 2012 A1
20120185792 Kimm et al. Jul 2012 A1
20120197578 Vig et al. Aug 2012 A1
20120197580 Vij et al. Aug 2012 A1
20120211008 Perine et al. Aug 2012 A1
20120216809 Milne et al. Aug 2012 A1
20120216810 Jafari et al. Aug 2012 A1
20120216811 Kimm Aug 2012 A1
20120226444 Milne Sep 2012 A1
20120247471 Masic et al. Oct 2012 A1
20120272960 Milne Nov 2012 A1
20120272961 Masic et al. Nov 2012 A1
20120272962 Doyle et al. Nov 2012 A1
20120277616 Sanborn et al. Nov 2012 A1
20120279501 Wallace et al. Nov 2012 A1
20120304995 Kauc Dec 2012 A1
20120304997 Jafari et al. Dec 2012 A1
20130000644 Thiessen Jan 2013 A1
20130006133 Doyle et al. Jan 2013 A1
20130006134 Doyle et al. Jan 2013 A1
20130008443 Thiessen Jan 2013 A1
20130025596 Jafari et al. Jan 2013 A1
20130025597 Doyle et al. Jan 2013 A1
20130032151 Adahan Feb 2013 A1
20130042869 Andrieux et al. Feb 2013 A1
20130047983 Andrieux et al. Feb 2013 A1
20130047989 Vandine et al. Feb 2013 A1
20130053717 Vandine et al. Feb 2013 A1
20130074844 Kimm et al. Mar 2013 A1
20130081536 Crawford, Jr. et al. Apr 2013 A1
20130104896 Kimm et al. May 2013 A1
20130146055 Jafari et al. Jun 2013 A1
20130152923 Andrieux et al. Jun 2013 A1
20130158370 Doyle et al. Jun 2013 A1
20130159912 Baker, Jr. Jun 2013 A1
20130167842 Jafari et al. Jul 2013 A1
20130167843 Kimm et al. Jul 2013 A1
20130174846 Stenqvist Jul 2013 A1
20130186397 Patel Jul 2013 A1
20130186400 Jafari et al. Jul 2013 A1
20130186401 Jafari et al. Jul 2013 A1
20130192599 Nakai et al. Aug 2013 A1
20130220324 Jafari et al. Aug 2013 A1
20130233314 Jafari et al. Sep 2013 A1
20130233319 Winter et al. Sep 2013 A1
20130239038 Skidmore et al. Sep 2013 A1
20130239967 Jafari et al. Sep 2013 A1
20130255682 Jafari et al. Oct 2013 A1
20130255685 Jafari et al. Oct 2013 A1
20130276788 Masic Oct 2013 A1
20130283197 Skidmore Oct 2013 A1
20130284172 Doyle et al. Oct 2013 A1
20130284173 Masic et al. Oct 2013 A1
20130284177 Li et al. Oct 2013 A1
20130327331 Bourdon Dec 2013 A1
20130333697 Carter et al. Dec 2013 A1
20130333703 Wallace et al. Dec 2013 A1
20130338514 Karst et al. Dec 2013 A1
20130345532 Doyle et al. Dec 2013 A1
20140000606 Doyle et al. Jan 2014 A1
20140012150 Milne et al. Jan 2014 A1
20140034054 Angelico et al. Feb 2014 A1
20140034056 Leone et al. Feb 2014 A1
20140041656 Jourdain et al. Feb 2014 A1
20140048071 Milne et al. Feb 2014 A1
20140048072 Angelico et al. Feb 2014 A1
20140121553 Milne et al. May 2014 A1
20140123979 Doyle May 2014 A1
20140130798 Milne et al. May 2014 A1
20140182590 Platt et al. Jul 2014 A1
20140224250 Sanchez et al. Aug 2014 A1
20140251328 Graboi et al. Sep 2014 A1
20140261409 Dong et al. Sep 2014 A1
20140261410 Sanchez et al. Sep 2014 A1
20140261424 Doyle et al. Sep 2014 A1
20140276176 Winter Sep 2014 A1
20140290657 Vandine et al. Oct 2014 A1
20140309507 Baker, Jr. Oct 2014 A1
20140345616 Masic Nov 2014 A1
20140360497 Jafari et al. Dec 2014 A1
20140366879 Kimm et al. Dec 2014 A1
20140373845 Dong Dec 2014 A1
20150034082 Kimm et al. Feb 2015 A1
20150045687 Nakai et al. Feb 2015 A1
20150090258 Milne et al. Apr 2015 A1
20150090264 Dong Apr 2015 A1
20150107584 Jafari et al. Apr 2015 A1
20150217069 Novotni et al. Aug 2015 A1
20150231351 Jonson Aug 2015 A1
20160045694 Esmaeil-zadeh-Azar Feb 2016 A1
20160106938 Jourdain et al. Apr 2016 A1
20160114115 Glenn et al. Apr 2016 A1
20160135713 Chbat et al. May 2016 A1
20160243324 Doyle et al. Aug 2016 A1
20160250427 Jafari et al. Sep 2016 A1
20160256643 Graboi et al. Sep 2016 A1
20160256656 Glenn et al. Sep 2016 A1
20160354566 Thiessen Dec 2016 A1
20170095627 Jafari et al. Apr 2017 A1
20170164872 Sanborn et al. Jun 2017 A1
20170182269 Masic et al. Jun 2017 A1
20170296765 Dong et al. Oct 2017 A1
20180036500 Esmaeil-zadeh-Azar Feb 2018 A1
20180193578 Glenn et al. Jul 2018 A1
20180207378 Masic Jul 2018 A1
20180207379 Masic Jul 2018 A1
20180256838 Doyle et al. Sep 2018 A1
20190143059 Sanborn May 2019 A1
Foreign Referenced Citations (35)
Number Date Country
982043 Mar 2000 EP
1491227 Dec 2004 EP
858352 Jan 2005 EP
1515767 Aug 2009 EP
2000175886 Jun 2000 JP
2008000436 Jan 2008 JP
2008178695 Aug 2008 JP
5608675 Oct 2014 JP
5858927 Feb 2016 JP
9014852 Dec 1990 WO
9214505 Sep 1992 WO
9308857 May 1993 WO
199715343 May 1997 WO
9812965 Apr 1998 WO
199951292 Oct 1999 WO
199962580 Dec 1999 WO
200010634 Mar 2000 WO
200078380 Dec 2000 WO
0100264 Jan 2001 WO
0100265 Jan 2001 WO
200174430 Oct 2001 WO
2002028460 Apr 2002 WO
2002032488 Apr 2002 WO
2003008027 Jan 2003 WO
4047621 Jun 2004 WO
2005004780 Jan 2005 WO
2007082384 Jul 2007 WO
2007102866 Sep 2007 WO
2007145948 Dec 2007 WO
2010081223 Jul 2010 WO
2010121313 Oct 2010 WO
2011145014 Nov 2011 WO
2013137797 Sep 2013 WO
2016189069 Dec 2016 WO
2017055959 Apr 2017 WO
Non-Patent Literature Citations (13)
Entry
7200 Series Ventilator, Options, and Accessories: Operator's Manual. Nellcor Puritan Bennett, Part No. 22300 A, Sep. 1990, pp. 1-196.
7200 Ventilatory System: Addendum/Errata. Nellcor Puritan Bennett, Part No. 4-023576-00, Rev. A, Apr. 1998, pp. 1-32.
800 Operator's and Technical Reference Manual. Series Ventilator System, Nellcor Puritan Bennett, Part No. 4-070088-00, Rev. L, Aug. 2010, pp. 1-476.
840 Operator's and Technical Reference Manual. Ventilator System, Nellcor Puritan Bennett, Part No. 4-075609-00, Rev. G, Oct. 2006, pp. 1-424.
Amato, Marcelo et al., “Driving Pressure and Survival in the Acute Respiratory Distress Syndrome”, The NE Journal of Medicine, 372;8, Feb. 19, 2015, 9 pages.
Georgopoulos, Dimitris et al., “Driving Pressure during assisted mechanical ventilation—Is it controlled by patient brain?”, Resp Phys & Neur 228 (2016); 69-75.
Grieco, Domenico et al., “Should we use driving pressure to set tidal volume?”, Current Opinion, Review, www.co-criticalcare.com, vol. 23, No. 1, Feb. 2017, 7 pages.
Kacmarek, Robert M. et al., “Physiology of Ventilatory Support”, Chapter 43, found online at: https://clinicalgate.com/physiology-of-ventilatory-support/, published on Jan. 6, 2015, 19 pgs.
PCT International Search Report and Written Opinion in International Application PCT/US2018/058226, dated Dec. 21, 2018, 19 pages.
YouTube Video: “Accurately setting PEEP with transpulmonary pressure”, Hamilton Medical, found online at: https://www.youtube.com/watch?v=GH1rtU-1hJc#action=share, 5:09, published on Mar. 2, 2015.
Canadian Office Action in Application 3046571, dated Jul. 24, 2019, 4 pages.
Puritan Bennett 980 Series Ventilator Operator's Manual, Covidien, Jan. 29, 2014, Part. No. 10077893 A Jan. 2014, 506 pages.
Canadian Office Action in Application 3046571, dated Nov. 6, 2019, 4 pages.
Related Publications (1)
Number Date Country
20190143058 A1 May 2019 US
Provisional Applications (2)
Number Date Country
62586077 Nov 2017 US
62725490 Aug 2018 US