The technology described in this patent document relates generally to driving light emitting diodes.
Light emitting diodes (LEDs) are widely used in portable devices (e.g., cell phones) for various applications. For example, white LEDs (WLEDs) are often used for backlighting liquid crystal display (LCD) screens and dimming keypads in portable devices. Under many circumstances, it is important to have uniform color/luminous intensity across an LCD screen. Because color and luminous intensity of an LED depend on an average current flowing through the LED, all LEDs used for backlighting the LCD screen usually need to have similar average currents to keep color/luminous uniformity.
There are many approaches for current matching of LEDs. For example, conventionally, multiple LED strings may be used in parallel, where each LED string is connected with a current sink. Current matching is achieved through trimming the current sinks. As another example, a power converter, e.g., a boost converter, can be used to drive multiple LED strings for current matching. A pulse-frequency-modulation (PFM) topology may be implemented in the power converter.
The PFM converter can operate with different switching frequencies depending on load conditions. For example, the switching frequency of the PFM converter is higher for a heavy load than that for a light load. One disadvantage of the PFM converter is that audible noise may be generated when the switching frequency is very low under a light-load/no-load condition. A pulse-width-modulation (PWM) topology, which often uses a fixed frequency, may be implemented in the power converter to reduce audible noise. However, it too has a number of disadvantages. Efficiency of a PWM converter, for example, is often much lower than that of the PFM converter. Also, the PWM converter usually needs bulky external components which are not suitable for portable devices. In addition, when a power converter is used to drive multiple LED strings, audible noise may be generated from voltage ripples when the LED strings need different output voltages and have different duty cycles.
An improved method to drive LEDs using a power converter (e.g., a PFM power converter) with reduced audible noise is highly desirable.
In accordance with the teachings described herein, systems and methods are provided for one or more light emitting diodes (LEDs) to reduce audible noise. In one embodiment, a system includes a first switching component, a system controller, and a current generator. A first switching component is configured to receive a dimming signal with a predetermined dimming frequency and configured to switch on or off one or more LEDs in response to the dimming signal, the predetermined dimming frequency being higher than the frequency band of the audible noise. The system controller is configured to receive a feedback signal related to a LED current that flows through the one or more LEDs and configured to generate a drive signal. Additionally, the current generator is configured to receive the drive signal, to generate a charging current to store energy during a charging period and to generate the LED current during a discharging period, the charging period and the discharge period being both within a dimming period corresponding to the predetermined dimming frequency.
In another embodiment, a system for driving strings of light emitting diodes (LEDs) includes a dimming controller, a first switching component, a second switching component, and a detection circuit. The dimming controller is configured to generate a first dimming signal with a first dimming frequency and a second dimming signal with a second dimming frequency. The first switching component is configured to receive the first dimming signal and configured to switch on or off a first LED string in response to the first dimming signal, the first LED string having a first voltage drop when being switched on. The second switching component is configured to receive the second dimming signal and configured to switch on or off a second LED string in response to the second dimming signal, the second LED string being coupled in parallel with the first LED string and having a second voltage drop when being switched on. The detection circuit is configured to receive a first feedback signal related to the first voltage drop and a second feedback signal related to the second voltage drop, and configured to generate a first detection signal indicating whether the first voltage drop is larger than the second voltage drop in magnitude. When the first voltage drop is larger than the second voltage drop in magnitude, the dimming controller is further configured to change the first dimming signal and the second dimming signal to keep the first LED string on when the second LED string is on. When the first voltage drop is smaller than the second voltage drop in magnitude, the dimming controller is further configured to change the first dimming signal and the second dimming signal to keep the second LED string on when the first LED string is on.
In yet another embodiment, a method is provided for driving one or more light emitting diodes (LEDs) to reduce audible noise. For example, a dimming signal with a predetermined dimming frequency is received. The one or more LEDs is switched on or off in response to the dimming signal, the predetermined dimming frequency being higher than a frequency band of the audible noise. A feedback signal related to a LED current that flows through the one or more LEDs is received. A charging current is generated to store energy during a charging period and the LED current during a discharging period, the charging period and the discharge period being both within a dimming period corresponding to the predetermined dimming frequency.
In yet another embodiment, a method is provided for driving one or more light emitting diodes (LEDs) to reduce audible noise is provided. For example, a first dimming signal with a first dimming frequency is received. A first LED string is switched on or off in response to the first dimming signal, the first LED string having a first voltage drop when being switched on. A second dimming signal with a second dimming frequency is received. A second LED string is switched on or off in response to the second dimming signal, the second LED string being coupled in parallel with the first LED string and having a second voltage drop when being switched on. A first feedback signal related to the first voltage drop and a second feedback signal related to the second voltage drop are received. A detection signal indicating whether the first voltage drop is larger than the second voltage drop in magnitude is generated. When the first voltage drop is larger than the second voltage drop in magnitude, the first dimming signal and the second dimming signal are changed to keep the first LED string on when the second LED string is on. When the first voltage drop is smaller than the second voltage drop in magnitude, the first dimming signal and the second dimming signal are changed to keep the second LED string on when the first LED string is on.
Audible noise often results from a low switching frequency of a pulse-frequency-modulation (PFM) power converter under a light-load/no-load condition. Thus, if the switching frequency of the PFM power converter is kept higher than an audible frequency range (e.g., 20 Hz-20 kHz), the audible noise can be reduced.
Specifically, the power conversion system 101 includes a system controller 106 and a current generator 108. The system controller 106 receives a feedback signal 112 that is related to a current 116 that flows through the LEDs 104 and outputs a drive signal 114 to the current generator 108. A switching period that corresponds to the switching frequency of the power conversion system 101 includes a charging period and a discharging period. The current generator 108 generates a charging current to store energy during the charging period and outputs the current 116 that flows through the LEDs 104 during the discharging period. To keep the switching frequency of the power conversion system 101 at least at the predetermined dimming frequency, the power conversion system 101 switches at least once in each dimming period corresponding to the predetermined dimming frequency. For example, the current generator 108 generates a charging current and outputs the current that flows through the LEDs 104 at least once during each dimming period.
Specifically, the system controller 205 includes a comparator 202, and a gate-driving component 206, and the current generator 203 includes a switch 208 (e.g., a transistor), an inductor 210, a capacitor 212, and a diode 222. In operation, a current sink 220 outputs the feedback signal 264 related to the current 270 to the comparator 202 which compares the feedback signal 264 with a reference signal 262 and outputs a signal 280. Based on the comparison, a drive signal 268 is output from the gate-driving component 206 to turn on or off the switch 208.
The switch 208 may, for example, be a N-channel transistor with a drain terminal coupled to a node 274 and a source terminal connected to the ground. One terminal of the inductor 210 is coupled to the node 274, and the other terminal is biased to a system voltage 225 (e.g., 3-4 V). An anode terminal of the diode 222 is coupled to the node 274.
In one embodiment, when the switch 208 is turned on, a charging period starts. The voltage of the node 274 is pulled to ground, and the diode 222 is reverse-biased. A charging current 224 is generated flowing from the inductor 210 through the switch 208, and energy is stored in the inductor 210. The capacitor 212 discharges to provide an output voltage 272 for the LEDs 232. When the switch 208 is turned off, a discharging period starts. The inductor 210 resists the current change by increasing the voltage of node 274. Then, the diode 222 is forward-biased. A current 271 is generated flowing from the inductor 210 through the diode 222, and the capacitor 212 is charged during the discharging period. For example, the current 271 is larger than the current 270 in magnitude.
The system controller 205 may further include a current-limit component 218 that monitors the charging current 224. If the charging current is larger than a particular current limit in magnitude, the current-limit component 218 outputs a signal 276 to a control component 204 to turn off the switch 208.
The system controller 205 may additionally include a current-limit-adjustment component 240 to adjust the current limit used by the current-limit component 218. For example, the switching frequency of the power conversion system 201 is proportional to a product of the current 270 and an output voltage 272. Because the switching frequency of the power conversion system 201 is kept above a minimum frequency to reduce audible noise, the output voltage 272 may become very high when the current 270 is very low under the light-load/no-load condition. The current-limit-adjustment component 240 may decrease the current limit used by the current-limit component 218, so that less energy is stored in the inductor 210 during the charging period and in turn the capacitor 212 is charged less during the discharging period. Eventually, the output voltage 272 is lowered. On the other hand, if the output voltage 272 is lower than a threshold, the current-limit-adjustment component 240 may increase the current limit used by the current-limit component 218, so that a maximum switching frequency can be maintained. For example, the current-limit-adjustment component 240 may include one or more comparators to compare the feedback signal 264 with reference voltages. As another example, the current-limit-adjustment component 240 may additionally include a digital filter. The current-limit adjustment may be implemented manually with fully programmable parameters or be implemented automatically.
The power conversion system 201 may include other system protection mechanisms, such as over-voltage protection, and over-temperature protection. For example, an over-voltage protector 242 may be implemented to monitor the output voltage 272 and outputs a signal 277 to the control component 204 to turn off the power conversion system 201 if the output voltage 272 exceeds a threshold.
To keep the switching frequency of the power conversion system 201 at least at the dimming frequency, the switch 208 may be forced to switch on at least once during each dimming period corresponding to the dimming frequency. In one embodiment, the signal 280 generated by the comparator 202 is set to a particular logic level (e.g., a logic high level) at the beginning of a dimming period to ensure that the switch 208 is turned on at least once during the dimming period. In another embodiment, the control component 204 implements an OR gate to force the switch 208 to turn on at least once during a dimming period, as shown in
Specifically, the timing diagram of
Multiple LED strings, which each include one or more LEDs, are often used in portable devices. The power conversion system 201 may be used to drive multiple LED strings which are connected in parallel, where different dimming signals may be used for switching on or off the LED strings, respectively. Audible noise, however, may be generated from output voltage ripples on the capacitor 212, i.e., time-varying components of the output voltage.
Different LED strings may have different voltage drops when being turned on, and the output voltage 272 may change when different LED strings are turned off at different times during a same dimming period. As shown in
An automatic-detection scheme can be used for driving LED strings to reduce output voltage ripples.
A power conversion system 601, including a current generator 603 and a system controller 605, receives the detection signal 682 and generates an output voltage 672 to drive the LED strings 632 and 636. In one embodiment, as shown in
In operation, the dimming controller 614 outputs the dimming signals 676 and 680 to the switches 616 and 630, respectively. For example, the dimming signals 676 and 680 have a same dimming frequency which may be higher than the audible frequency range. Current sinks 620 and 626 output the feedback signals 664 and 674 respectively to the detection component 638. The detection component 638 determines, based on the feedback signals 664 and 674, which LED string has a larger voltage drop. For example, if the LED string 632 has a larger voltage drop than the LED strings 636, the dimming controller 614 reconfigures the dimming signals 676 and 680 to keep the LED string 632 on whenever the LED string 636 is on. Thus, when the LED string 636 is turned off, the output voltage 672 of the power conversion system 601 is still regulated to drive the LED string 632. The output voltage ripple can be reduced to ameliorate the capacitor hamming noise.
For example, the LED string 632 has a larger voltage drop when being turned on than the LED string 636. As shown in
A power conversion system 701, including a current generator 703 and a system controller 705, receives the detection signal 782 and generates an output voltage 772 to drive the LED strings 732, 734 and 736. In one embodiment, as shown in
In operation, the dimming controller 714 outputs the dimming signals 776, 778 and 780 to the switches 716, 728 and 730, respectively. Current sinks 720, 779 and 726 output the feedback signals 764, 775 and 774 respectively to the detection component 738. The detection component 738 determines, based on the feedback signals 764, 775 and 774, which LED string has a largest voltage drop. For example, if the LED string 732 has a larger voltage drop than the LED strings 734 and 736, the dimming controller 714 reconfigures the dimming signal 776, 778 and 780 to keep the LED string 732 on whenever either the LED string 734 or the LED string 736 is on. Thus, when either the LED string 734 or the LED string 736 is turned off, the output voltage 772 of the power conversion system 701 is still regulated to drive the LED string 732. Then the output voltage ripple can be reduced to ameliorate the capacitor hamming noise.
This written description uses examples to disclose the invention, include the best mode, and also to enable a person skilled in the art to make and use the invention. The patentable scope of the invention may include other examples that occur to those skilled in the art. For example, systems and methods disclosed herein may be applied for different color displays, such as liquid crystal displays, light emitting diode displays, electroluminescent displays, plasma display panels, organic light emitting diode displays, surface-conduction electron-emitter displays, and nanocrystal displays. As an example, systems and methods can be configured as disclosed herein to enhance color saturation with much lower computational demand.
This is a division of U.S. application Ser. No. 13/356,796, filed Jan. 24, 2012, which claims priority from U.S. Provisional Application No. 61/437,978, filed Jan. 31, 2011. All the above applications are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61437978 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13356796 | Jan 2012 | US |
Child | 14815212 | US |