1. Field of the Invention
Drying apparatus for multiple articles located in separate chambers for treatment with an ambient or heated, and/or treated air flow stream; and processes for drying multiple articles located in separate chambers using an ambient or heated, and/or treated air flow stream.
2. Description of the Prior Art
Active sports such as hockey, football, lacrosse, and the like require, in addition to sports clothing, equipment for use in playing the game and for protecting the player. Such clothing and equipment items are usually not worn to and from the sporting event or practice; but are usually transported in some sort of a portable closed container such as a sports bag or specialty container. During vigorous play such clothing and equipment items tend to become damp or wet with the player's perspiration, and also by being exposed to wet weather or wet playing conditions. After play or practice is completed, if such damp or wet gear is left in a closed container, the gear tends to be acted upon by bacteria and mold, and as a result, becoming foul smelling and rank, and subject to deterioration. Research has shown that such odors are a byproduct of bacteria and mold that grow readily in the moist, dark generally stagnant environment inside the closed container. Some of the resulting bacteria may also become a source for infections when they come into contact with an open cut or abrasion on the body of a user the next time the gear is worn. In addition, items left inside a closed container dry so slowly that they may still be wet the next time they are removed from the closed container.
In order to dry their equipment and to prevent the secondary problems noted above, athletes have taken such mundane steps as spreading their damp items out on the floor or hanging them on racks after each use, and then returning them to the container. In more aggressive efforts, they have taken the steps of removing their damp items from their containers, and then used standard or specialized equipment to dry them, and then returning them to the container. There have also been several specialized bags, devices, or containers developed to dry and sanitize athletic equipment or clothing of athletes. Some are small and portable, some are large and stationary, some are hard sided and some are made of flexible material. Of these, some are intended to dry the to-be-treated-items while others only sanitize them. Most of these known prior art systems for treating damp to-be-treated-items have some common characteristics. Further discussion of prior art drying and sanitizing containers are set forth in greater detail below in the discussion of
As is discussed below and shown in
In all of the known prior art systems, the problem of dead air spots, reduced air stream flow, and of obstructive blockages of the air flow stream still remain. It will be seen that in every system, once the drying air passes into the drying chamber, it is poorly directed to and around the to-be-treated-items. Therefore, there clearly exists a need for a more effective apparatus and method for applying an effective quality, quantity, and velocity of drying air flow stream or sanitizing agent directly to the to-be-treated-items in a system that is inexpensive and uncomplicated by multiple fans, manifolds, and distributors.
It will be seen that the drying systems of the present invention provide a solution to the aforementioned and below described problems, by providing structures and operations that can, for example, move a single air flow stream through a series of serially connected chambers, thereby resulting in an efficient, effective, inexpensive, uncomplicated drying and sanitizing structure and operation.
It is therefore an object of the present invention to provide a multiple to-be-treated-item drying system that moves an air flow stream through a series of separate, but interconnected chambers to provide an efficient, inexpensive, uncomplicated drying and/or sanitizing and/or odorizing apparatus and operation.
As used herein, a “chamber” is or defines a discrete area of volume for location within or adjacent to a container of the present invention. Each chamber will be, in general, defined by circumferentially surrounding surfaces, including a surface portion having an air flow stream inlet, and a surface portion having an air flow stream outlet. While they may, neither the inlet portion nor the outlet portion requires walls or surfaces. For all practical purposes, each chamber will include a floor portion or equivalent or a hanger or support for supporting at least one to-be-treated item. As used herein, a “support” is or defines a floor portion or equivalent or a hanger or support for supporting at least one to-be-treated item. As described in greater detail below, each chamber is in air flow stream connection in series or in parallel to at least one adjacent chamber, or to an air flow stream inlet or an air flow stream outlet and at least one adjacent chamber.
It is another object of the present invention to provide such a system, method and apparatus for drying and/or sanitizing and/or odorizing to-be-treated-items within a drying chamber including interconnected chambers within a portable container.
It is a further object of the present invention to provide such a structure and operation wherein the interconnected chambers form a virtual tube having a length in excess of any single length dimension or width dimension or height dimension of the container.
It is a yet another object of the present invention to provide such a virtual tube within a container in which the virtual tube is tortuously organized to provide a path for a drying and/or treating air flow stream, wherein the placement of the interconnected chambers in a tortuous pattern increases the effective length of the drying and/or treating system without changing the outside dimensions of the container.
It is a still further object of the present invention to provide such tortuous virtual tube systems including two or more interconnected chambers through which a controlled air flow stream having an adequate quality, quantity, velocity, and direction may be controlled and channeled over, around and through a number of to-be-dried and/or to-be-treated-items in several adjacent and interconnected chambers.
Another object of the present invention is to provide a multiple article drying and/or treatment container having as few as a single air flow stream inlet and a single air flow stream outlet.
Yet another object of the present invention is to provide two or more interconnected chambers, each chamber having a clog resistant air flow stream inlet and a clog resistant air flow stream outlet, such that one or more to-be-treated-items may be placed within each chamber for sequential air flow stream treatment.
Another object of the present invention is to include a porous air permeable liner around or along some or all of the separate chambers within the container to provide for an air flow stream to allow for treatment of non-porous to-be-treated-items.
A related additional object and purpose of the present invention is the provision of a porous permeable liner around or along some or all of the chambers within the container to allow a treating air flow stream to bypass any blockages that may occur in any chamber.
Another object of the present invention is to provide a source module connectable to such item treatment containers, in which the source module functions to create and push a drying or treating air flow stream which can be channeled into the container and through the chambers within the container.
A related additional object of the present invention is to provide an external source module including one or more system for generating a forced air flow stream to be connected to and moved through the chambers within the container, wherein such source module also includes a system for heating such an air flow stream, and/or for adding sanitizing materials to such an air flow stream, and/or for adding odorizers to such an air flow stream.
Another object of the present invention is to provide a drying container with an air flow stream inlet, which can be directly or indirectly attached to a source module.
Another object of the present invention is to provide a system for routing and recycling exhaust air, which exits the chambers back into the container system.
Yet another object of the present invention is to provide a source module that is capable of forcing air into an air flow stream inlet of the container and through the connected chambers within the container.
Yet another object of the present invention is to provide a source module that is capable of pulling an air flow stream through the connected chambers within the container.
Another object of the present invention is to provide methods for drying to-be-treated-items within a series of connected chambers of a portable sports equipment container by using a system of interconnected chambers that control and channel the desired quality, quantity, velocity, and direction of a drying and/or treating air flow stream through a series of to-be-dried and/or to-be-treated-items, wherein interconnected chambers form a virtual tube for an air flow stream, and whereby further the virtual tube separates and supports the to-be-treated-items while maintaining them in series within the virtual tube within the container.
As detailed below, the present invention relates to apparatus in the form of a container having two or more interconnected chambers for carrying and treating a plurality of similar or diverse to-be-treated-items with a circulating air flow stream. The air flow stream is preferably heated air for drying and/or otherwise taking care of to-be-treated-items. In preferred embodiments the container includes a plurality of interconnected chambers that are designed to serially receive and pass-along a circulating air flow stream. The container and the chambers within the container are for storing and/or transporting a plethora of articles, such as sporting equipment and athletic clothing. For example, the to-be-treated-items may be damp or wet cloth or clothing, and especially sports clothing, undergarments, towels, sporting goods, hockey gear, football gear, lacrosse gear, soccer gear, shoes, skates and the like. Clearly, substantially any and all other articles of clothing, cloth and equipment that are of appropriate size may be stored and dried or otherwise treated in the chambers of the container of the present invention. Such articles are collectively referred to herein as “to-be-treated-items”. More specifically, and as detailed below, the present invention provides such container systems in which the interconnected chambers may be perceived as forming a virtual tube for serially receiving an air flow stream for drying and or otherwise treating to-be-treated-items within the chambers. Of unique significance, such virtual tube has a total length in excess of any single exterior or interior length dimension or width dimension or height dimension of the container. As explained below, such multiple interconnected chambers forming a virtual tube are often, of necessity, organized in a tortuous pattern within a container or as a container. The addition of odorizing, and sanitizing materials, along with and carried by the treating air flow stream is also taught.
Of additional significance is the fact that each chamber provides a surface or support for supporting to-be-treated-items. It follows that multiple interconnected chambers provide multiple surfaces or supports for supporting a plethora of to-be-treated-items far in excess of any single interior length dimension or width dimension or height dimension of a single chamber or of an entire container. In view of the multiple supporting surfaces or elements so provided by multiple interconnected chambers, to-be-treated-items can be placed in each of the multiple chambers in an orderly and uncluttered manner to thereby allow each item to be treated with an air flow stream without being unduly blocked or unnecessarily covered by other items, thereby allowing for more efficient and complete treatment by the air flow stream.
The container of the present invention includes an inlet opening and an outlet or exhaust opening. The interconnected chambers, whether or not in the form of a virtual tube, are between such an inlet opening and outlet or exhaust opening. The inlet opening may, but preferably does not, include prior art devices such as manifolds, diffusers, fans, injection tubes, or louvers, and does not require any of those mechanisms for its operation. The air flow stream is blown or pumped into the inlet opening or pulled through the exhaust opening and through the interconnected chambers within the container, whether or not in the form of a virtual tube. As noted above, and in more detail below, the air flow stream may be heated and odorized, and may contain a sterilizing or sanitizing agent.
In one preferred embodiment an attachable and detachable source module is provided. As used herein, a “source module” includes a unit for generating an air stream flow, such as a fan, and may also include a heating element through which the air stream flow may be passed and heated, and/or a source for providing sterilizing or sanitizing material such as ozone, and/or a odorizing source.
The chambers that form the virtual tube of the present invention are connected in a manner such that they are open to the inlet, and thence in series or in parallel to each adjacent one or more chambers and finally to an exhaust outlet. As detailed below, the individual chambers are individually accessible, and allow the to-be-treated-items to be placed on the supporting surfaces or elements therein in a manner such as to not limit the exposed surface area of each to-be-treated-item, and the to-be-treated-items are preferably not bunched together or placed in a manner that will block the passage of the treating air stream flow through each chamber, or from chamber to adjacent chamber. In use, the treating air flow stream will pass from the inlet and through each adjacent chamber in turn. The size and design of each chamber and of the container is such that substantially the entire volume of treating air can pass through and/or around to-be-treated-items supported within each of the chambers.
The virtual tube formed from the two or more adjacent chambers is always longer than any single length dimension, width dimension or height dimension of the container, and the supporting surfaces or elements are always in excess of any single interior length dimension or width dimension or height dimension of a single chamber or of an entire container. The treating air flow stream travels through the entire length of the chambers forming the virtual tube and is then expelled out of the container. As detailed below, in some preferred embodiments the treating air flow stream is recycled back to the inlet for reuse.
The structure of the treating system of the present invention allows for a large number of connected chambers capable of having a treating air stream flow traveling serially or in parallel between them, and being limited only by the volume of the chambers and the container in which the chambers are placed. As detailed below non-air stream flowing chambers may be attached to the container of the present invention.
As noted above and detailed below, provision of a source module to propagate a treating air flow stream into and through the connected chambers within the container provides ambient substantially dry air stream flow or heated air flow stream for drying, and if desired sanitizing and/or odorizing materials for treatment of to-be-treated items carried within the chambers of the container. A container of the present invention may be placed on top of or adjacent such a source module. The source module includes or may be used with a tube or other connecting element that inserts into an inlet opening or an outlet opening of the container. When placed on the source unit, the weight of the container will normally be capable of sealing the connection between the source module and the container. The connection allows the treating air stream flow to be pushed directly into the container and thence through the serially connected chambers.
A source unit also preferably includes control switches and may include one or more timer. For example, one such timer could control the blowing and heating time of the source module. A second timer could control the sanitizing and/or odorizing time of the source module. Once the container is placed adjacent to or on top of the source module with a connecting device, such as a tube inserted into the inlet or outlet of the container, the user has only to activate the source module, for example, with a switch or a timer switch to dry and/or to sanitize and/or to odorize the to-be-treated-items in the chambers of the container. It is also noted that the source module can be designed to be powered by any art known AC or DC power source, or by a combination of both.
These and other objects of the present invention will become apparent to those skilled in the art from the following detailed description and accompanying drawings, showing the contemplated novel construction, combination, and elements as herein described, and more particularly defined by the appended claims, it being understood that changes in the precise embodiments to the herein disclosed invention are meant to be included as coming within the scope of the claims, except insofar as they may be precluded by the prior art.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate complete preferred embodiments of the present invention according to the best modes presently devised for the practical application of the principles thereof, and in which:
In Type(s) 1, 2, and 3 a drying chamber is clearly defined and the air movement within the drying chamber is controlled by the placement of an air flow stream input fan and/or an exhaust fan. Type 1 is representative of Pajak U.S. Pat. No. 5,528,840 in which there is a single air flow stream input fan 22 and a single passive air flow stream outlet 24. Once the air leaves fan 22 in the inlet, the velocity and direction of the drying air is poorly controlled as it passes to-be-treated-items (not shown) until it is exhausted at opposed outlet 24. Type 2 is representative of LaPorte U.S. Pat. No. 6,263,591 in which there has been an attempt to improve the velocity and direction of the air flow stream by adding a fan 26 at the opposed exhaust outlet. Finally, in this series, in Type 3, exemplified for example in Dhaemers U.S. Pat. No. 5,369,892 (FIG. 6), the movement of the air flow stream from fan 22 is redirected back toward the inlet side of the chamber by exhaust fan 26. In all three cases, once the air flow stream leaves the inlet of the container it is subject to being blocked, slowed and diverted by any to-be-treated-items (not shown) within the drying chamber. The air flow stream may be channeled in the wrong direction by any to-be-treated-items (not shown) in the drying chamber, thus creating dead air spaces that reduce the effectiveness of the drying air. Also, the addition of exhaust fans in Type(s) 2 and 3 undesirably increases the cost of those units.
In Type(s) 4, 5 and 6, there are several different structures and methods for diffusing and dispersing the air flow stream as it is moved into the drying chamber. In Type 4, exemplified in Brotherton U.S. Pat. No. 4,812,621, louvers 28 have been added to the inlet to force the air flow stream to spread out in the container. In Type 5, as exemplified by Dhaemers U.S. Pat. No. 6,134,806 (FIG. 18), a manifold/diffuser 30 is placed in the bottom of the container to spread the air flow stream as it enters the chamber. In Type 6, exemplified in Lipscy U.S. Pat. No. 5,987,773, inlet tubes 32 have been added to a manifold 30. Inlet tubes 32 work as injectors to place the air where it is desired within the drying chamber. Although diffusing and injecting the air flow stream improves how the air comes in contact with the to-be-treated-items; unfortunately, by diffusing the air, the quantity of air that comes in contact with each to-be-treated-item is reduced by the amount of diffusion. Also, once the drying air leaves the diffuser/injector it is uncontrolled and subject to being blocked or slowed by the to-be-treated-items. The cost of the extra equipment required to diffuse the air flow stream adds unnecessary cost to the price of the apparatus.
In Type(s) 7, 8 and 9 several different methods of recycling all or part of the warm drying treating air flow stream or sanitizing agent back into the treating chamber are shown. In Type 7, exemplified in Dhaemers U.S. Pat. No. 5,369,892 (FIG. 22), the treating air is pumped from fan 22 to the bottom of the treating chamber by a closed conduit that is located outside of the treating chamber to a bottom inlet manifold/diffuser 30. After passing through the chamber, the air exits through exhaust port 24 and is recaptured within a partially ventilated mixing chamber 34. The recaptured air is then pumped or drawn back into the conduit for reuse. In Type 8, exemplified in Dhaemers U.S. Pat. No. 5,546,678 (FIG. 19), the air is blown into the treatment chamber that has multiple outlets 24. One of the outlets exhausts to the atmosphere, while the others exhaust through porous walls into conduits that travel outside the drying chamber back to the inlet fan 22. There is an internal mixing chamber in which fresh air and recycled air combine to form an air flow stream that is then blown into the drying chamber. In Type 9, exemplified in Dawson U.S. Pat. No. 5,666,743 (FIG. 4), all of the treating air is captured and recycled. The walls of the treating chamber are vented to allow exhaust air to pass into conduits that travel outside the drying chamber back to the inlet fan 22.
In view of this typical prior art, it will be seen that there is a need for treating systems to provide a solution to the aforementioned problems and limitations by providing structures and operations that can, for example, using a single fan that moves a single treating air flow stream through a series of serially connected chambers, thereby resulting in an efficient, inexpensive, uncomplicated drying and sanitizing structure and operation, having a series of connected chambers of a container, by using a system of baffles and interconnected chambers that control and channel the desired quality, quantity, velocity, and direction of a drying air flow stream toward and through a series of to-be-treated-items, wherein the baffles and interconnected chambers form a virtual tube for an air flow stream, whereby the virtual tube separates and supports the to-be-treated-items while maintaining them in series or in parallel within the virtual tube within the container. In addition, there is a need for treating systems that provide greater amounts of surface area or support elements on which to support to-be-treated-items. As a point of reference, none of the nine drying systems set forth diagrammatically in
In the accompanying drawings like reference characters designate like or corresponding parts in the several drawing figures. As a follow on to the teaching of the diagrammatic representations of the prior art in
By contrast, the diagrammatic representation of a drying system set forth in
Now referring to
In
Additionally, a non-treating, normally non-detachable helmet storage chamber 82 is provided. In preferred embodiments helmet storage chamber 82 is lined with a padded material (not shown) to prevent damage to the helmet during transport. Helmet storage chamber 82 is positioned so that it may optionally be included in the virtual tube series. While not shown in this embodiment, treating air flow stream 44 can be added into helmet storage chamber 82 by simply adding some conduit passages between the adjacent chamber carrying portions and the helmet chamber 82. Helmet storage container 82 may also be made as a detachable compartment while still retaining the option of including it in the virtual tube. Hook and loop material could be used to removeably attach helmet chamber 82 to chamber carrying portions 38 of carrier bag container 56.
Circumferential hook and loop material around the conduit connections is adequate to seal conduit passages leading from and to the chamber carrying portions 38, thus allowing 82 to function as an additional chamber carrying portion when connected to carrier bag container 56. Wheels 88 and 90 are provided on the bottom of carrier bag container 56 to allow carrier bag container 56 to be rolled, much like conventional modern luggage. Front support legs 84 and 86 provide support and balance to carrier bag container 56 when standing in an upright position.
In
As now illustrated in
In addition,
Treating air flow stream 44 then passes into interconnected chamber carrying portion 62. The chamber carrying portion is accessible through zippers 114. In this embodiment chamber carrying portion 62 is subdivided by a divider panel 110 that helps keep its contents supported in a lower and an upper section. Divider panel 110 has a conduit passage 100 that allows the treating air flow stream 44 to pass from the lower section of chamber carrying portion 62 to the upper section of chamber carrying portion 62. Divider 110 is preferably comprised of a durable fabric, and while it divides chamber carrying portion 62 into two sub-chambers, these two sub-chambers essentially function as one chamber for drying purposes because conduit passage 100 allows air flow stream 44 to flow through them with little resistance. Divider 110 may also be made of a permeable mesh fabric that will allow treating air flow stream 44 to pass from the lower section of chamber carrying portion 62 to the upper section of chamber carrying portion 62, thus functionally replacing conduit passage 100. It is here noted that the divider panel 110 which subdivides chamber carrying portion 62 is not required for the virtual tube operation of the present invention. The divider panel 110 is placed in chamber carrying portion 62 because, as taught below, fairly heavy hockey kneepads will be placed in chamber carrying portion 62. Divider panel 110 provides additional support for the heavy kneepads during movement of carrier bag container 56. Therefore, divider panel 110 could be removed, or changed without affecting the operation of the present invention.
The treating air flow stream 44 then passes out chamber carrying portion 62 through outlet 102 and then in inlet 104 into chamber carrying portion 64, which in this embodiment is above chamber carrying portion 60. Conduit passages 102 and 104 form a mated pair that are joined in air flow stream 44 contact when carrier bag container 56 is assembled, as shown in
After treating air flow stream 44 enters through conduit passage 104, it then passes into and through interconnected chamber carrying portion 64. Chamber carrying portion 64 is accessible through zipper 116. After treating air flow stream 44 travels through chamber carrying portion 64 it exits via conduit passage 106. Air flow stream 44 enters chamber carrying portion 66 through conduit passage 108 which forms a mated pair with conduit passage 106 when carrier bag container 56 is assembled, as shown in
Similarly, if desired, all air passages between chamber carrying portions can be constructed with a mesh screen to prevent stored to-be-treated-items from blocking or being blown through the passages. Treating air flow stream 44 travels the length of chamber carrying portion 66, and is then is exhausted from carrier bag container 56 through conduit passage outlet passage 112. As further disclosed below, chamber carrying portion 66 is designed to serve as the ice skate carrying chamber. As shown, chamber carrying portion 66 has two opposing mirror image sections, one to accommodate each skate. As illustrated access zippers 118 are placed on each end of chamber carrying portion 66 in order to facilitate the handling and positioning of each of the relatively large, heavy and sharp bladed skates into chamber carrying portions 66.
In
Handle 146, is a general lifting handle, while telescopic pulling handle 150 allows a user to pull carrier bag container 56 on wheels 88 and 90, as shown in
As illustrated, this entire system defines a virtual tube for air flow stream 44, in which the virtual tube defines a length of travel for air flow stream 44 in excess of any single length dimension or width dimension or height dimension of carrier bag container 56.
To further clarify and illustrate the virtual tube concept of the present invention, referring to
To further illustrate the concept that the chamber carrying portions 60, 62, 64, and 66 are the equivalent of a virtual tube,
As shown earlier in
With the forgoing structure and operation in mind, it will be understood that if damp or wet to-be-treated items, such as hockey athletic gear, is placed in a chamber carrying portion of the present invention in its actual carrier bag container 56 configuration, it will be functionally the same as placing it in a virtual tube, such as those shown in
The method and apparatus of the present invention allows for substantially any number of connected chamber carrying portions 38, as shown in
Now again referring to
Further in
Referring again to
Carrier bag container 56, resting atop the source module 58, is shown with an air mixing chamber 168, in
Now referring to
It is noted that although carrier bag container 56 which has been described above is optimized for hockey gear and equipment, other containers and configurations of serially attached chamber carrying portions organized may be designed using the basic principle of the provision of a virtual tube that has a length of travel for a treating air flow stream that is in excess of any single length dimension or width dimension or height dimension of the container that carries the virtual tube.
As detailed below, connection of source module 58 to carrier bag container 56, as first shown in
Source module 58 is shown in an enlarged perspective view in
A rear view of source unit 58 is shown in
As shown, adjacent to blower fan 188, within source module 58, is a heater unit 190 that may be used to heat air flow stream 44 after it is drawn in by blower fan 188. In the preferred embodiment of the present invention heater unit 190 is a two-element resistive heater that can produce variable amounts of heat, say 1,000 watts of heat during a drying cycle, of say 250 watts of heat during a sanitizing cycle or no heat during an odorizing cycle or during drying using only ambient air. Equivalent heaters or heaters that produce more or less heat can be utilized if different heating or drying requirements are needed. Heater unit 190 is connected to a plenum structure 192.
As shown, adjacent to heater unit 190 and within plenum 192, is housed a sanitizing unit 194. In this embodiment sanitizing unit 194 is a comprised of pair of bulbs that are designed to produce ultraviolet (UV) radiation which converts a portion of the oxygen in the incoming ambient air in their vicinity and in the air passing by them to sanitizing/germicidal ozone. When cover 174 is in place it shields the UV light to prevent a user from looking directly at the UV radiation, and thereby protects the eyes of a user. In addition to providing shielding from UV radiation, top cover 174 serves as the cover of the plenum to complete a channel for air flow stream 44. The air flow stream 44 channel increases its contact time and proximity with the UV radiation and the sanitizing ozone that is produced, as well as directing it toward outlet fixture tube 176. An odorizing unit 196 can also be connected to the plenum 192 to add a desirable scent, at the end of the drying or sanitizing cycle, carried via the air flow stream 44, to the to-be-treated-items within the chamber carrying portions. Charcoal or a state-of-the-art filter could also be placed in the air flow stream 44 channel of source module 58 to filter out undesirable odors. Should there be a problem, rear access panel 180 allows a user to reach and replace the UV light bulbs in sanitizing unit 194 inside source module 58.
A ballast unit 200, which serves to supply the correct current to the UV light bulbs, is located within source module 58. In addition, there is an indicator light 198 that indicates if the UV light bulbs are on. All of the electrical components within source module 58 are connected and interconnected to power cord 182 as necessary using state-of-the-art electrical wires, wire harness 202 and components. It should be noted that source module 58 could also be designed to operate using state-of-the-art DC as its input power source, or could be designed to use both AC and DC form different components. The ability to use DC power is advantageous, for example, when transporting the system of the present invention in an automobile.
In preferred embodiments, source module 58 includes two timers 204 and 208. For example, in this preferred embodiment timer 204 is for selecting the time for sanitizing and/or odorizing to be treated items, and second timer 208 is for selecting the time for drying to be treated items with ambient or heated air. In this embodiment, once container 56 is placed on top of source module 58, with fixture tube 176 inserted into inlet receptacle 94, the user only has to press a button 206 or 210, associated with timers 204 and 208 respectively, to initiate drying and/or sanitizing and/or odorizing to-be-treated-items in the chamber carrying portions 60, 62, 64, and 66 that form an extended length virtual tube in container 56.
First timer 204 can be a multiple hour timer, say a twelve-hour timer for example, with analog sub-time settings that are used to control the length of the sanitizing cycle, for example, while using a lower amount of heat and a slower air velocity while ozone saturated air is delivered for up to, say a 12-hour period. Second timer 208 is for the drying cycle using, for example, a high heat flow stream 44 supplied at a higher velocity for, say, about one hour. The length of the sanitizing or heating cycle can be changed as needed by calibrating timers 204 and 208 each for the desired time period. As previously noted, the drying and/or sanitizing and/or odorizing air flow stream 44 leaves source module 58 through cylindrical tube 176 that is inserted into air flow stream inlet receptacle 94 on the bottom of the container 56.
For ease of operation, timers 204 and/or 208 can be set prior to starting the treating process. It should be noted that timers 204 and 208 may be provided as either digital or analog timers with various configurations. The container 56 is left in place while the module is going through the drying and/or sanitizing cycles. The module shuts off automatically when the drying and/or sanitizing cycles are completed. The container 56 can be maintained on top of the module 58 until the next use.
It should also be noted that a variety of other modifications may be employed for the source module. For example, a pause/resume switch, not shown, could be added to control the cycles, if desired.
When appropriate or desired, source module 58 can also be connected indirectly to container 56. For example, as shown in
In
It will be appreciated that in alternative embodiments, source unit 58 could be replaced by any art known or future equivalent blowing or drawing equipment such as a vacuum cleaner, hair dryer or any other mechanism that would push or pull air through container 56 and the chamber carrying portions.
Although the present invention has been described with reference to preferred embodiments, numerous modifications and variations can be made and still the result will come within the scope of the invention. No limitation with respect to the specific embodiments disclosed herein is intended or should be inferred.
The foregoing exemplary descriptions and the illustrative preferred embodiments of the present invention have been explained in the drawings and described in detail, with varying modifications and alternative embodiments being taught. While the invention has been so shown, described and illustrated, it should be understood by those skilled in the art that equivalent changes in form and detail may be made therein without departing from the true spirit and scope of the invention, and that the scope of the present invention is to be limited only to the claims except as precluded by the prior art. Moreover, the invention as disclosed herein may be suitably practiced in the absence of the specific elements which are disclosed herein.
The present application claims the benefit under title 35 United States Code, Section ii 9(e) of U.S. provisional application No. 60/611,444 filed Sep. 20, 2004 entitled “Drying and Sanitizing Sports Bag”.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2005/034086 | 9/20/2005 | WO | 00 | 4/13/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/034430 | 3/30/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1172708 | Hoard | Feb 1916 | A |
1353358 | Steenfeldt-Lindholm | Sep 1920 | A |
1871773 | Abel | Aug 1932 | A |
3552035 | Olin | Jan 1971 | A |
3752373 | Smith | Aug 1973 | A |
4100682 | Corrigan | Jul 1978 | A |
4110916 | Bemrose | Sep 1978 | A |
5185939 | Kimura | Feb 1993 | A |
5369892 | Dhaemers | Dec 1994 | A |
5413199 | Clement | May 1995 | A |
5555640 | Ou | Sep 1996 | A |
5730006 | Conley | Mar 1998 | A |
5930915 | Dhaemers | Aug 1999 | A |
6134806 | Dhaemers | Oct 2000 | A |
6263591 | LaPorte | Jul 2001 | B1 |
6327792 | Hebert | Dec 2001 | B1 |
6446809 | Flynn | Sep 2002 | B2 |
6780101 | Buhler et al. | Aug 2004 | B2 |
6840068 | Pasin et al. | Jan 2005 | B2 |
6889449 | Silver | May 2005 | B2 |
20020067108 | Doan et al. | Jun 2002 | A1 |
20030188943 | Freedman | Oct 2003 | A1 |
20030205601 | Kilduff | Nov 2003 | A1 |
20040134087 | Meyer | Jul 2004 | A1 |
20040211227 | Jackson et al. | Oct 2004 | A1 |
20050127056 | Petkov et al. | Jun 2005 | A1 |
20050160617 | Fouts, II | Jul 2005 | A1 |
20050281494 | Allen et al. | Dec 2005 | A1 |
20080118411 | D'Arinzo | May 2008 | A1 |
20080134538 | McFarland | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
2580617 | Mar 2006 | CA |
107044 | Oct 1924 | CH |
29612232 | Oct 1996 | DE |
1472968 | Mar 2004 | EP |
500932 | Mar 1920 | FR |
892596 | Apr 1944 | FR |
6949 | Jan 1911 | GB |
191329774 | Jan 1914 | GB |
523437 | Jul 1940 | GB |
2003-164697 | Jun 2003 | JP |
Entry |
---|
International Search Report for PCT/US2005/034086 dated May 5, 2006. |
Written Opinion for PCT/US2005/034086, dated May 11, 2006. |
Extended EPO Search Report for EPO App 05800734.5, dated Apr. 29, 2009. |
Office Action for EPO App 05800734, dated Jun. 29, 2011. |
Office Action dated Apr. 16, 2012, issued in European Application No. 05800734.5. |
Number | Date | Country | |
---|---|---|---|
20080134538 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
60611444 | Sep 2004 | US |