Systems and methods for dynamic bandwidth allocation

Information

  • Patent Grant
  • 10218748
  • Patent Number
    10,218,748
  • Date Filed
    Tuesday, February 2, 2016
    8 years ago
  • Date Issued
    Tuesday, February 26, 2019
    5 years ago
Abstract
Disclosed herein are various embodiments of systems and methods that may be utilized in a variety of videoconferencing applications. According to various embodiments, techniques may be utilized to dynamically allocate and adjust bandwidth utilization during a videoconferencing session. A data network may allow for the transmission of data between two or more endpoints. The data exchanged between the endpoints may include video data, audio data, control data, and status data. Control data may be utilized in various embodiments to operate a robotic videoconferencing endpoint. Accordingly, various components of a data network connecting videoconferencing endpoints may transmit data wirelessly.
Description
BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a functional block diagram of one embodiment of a videoconferencing system, which may utilize various techniques for dynamically adjusting bandwidth utilization between two endpoints.



FIG. 2 illustrates a functional block diagram of one embodiment of a system, which may utilize various techniques for dynamically adjusting bandwidth utilization between two endpoints.



FIG. 3 illustrates a perspective view of one embodiment of a robotic videoconferencing endpoint.



FIG. 4 illustrates one embodiment of a method of monitoring network statistics in a videoconferencing session and for determining which data samples are added to the network statistics dataset during a videoconferencing session.



FIG. 5A illustrates an exemplary distribution comprising a plurality of data samples and specified boundaries that may be used in processing newly obtained data samples.



FIG. 5B illustrates one embodiment of a method for processing data samples that fall within a marginal data range.



FIG. 6 illustrates one embodiment of a method for dynamically allocating bandwidth in a videoconferencing system.



FIG. 7 illustrates a graphical user interface for displaying bandwidth utilization and dynamically established incoming and outgoing maximum bandwidth thresholds.



FIG. 8 illustrates a functional block diagram of a videoconferencing endpoint.







DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Disclosed herein are various embodiments of systems and methods that may be utilized in a variety of videoconferencing applications. According to various embodiments, techniques may be utilized to dynamically allocate and adjust bandwidth utilization during a videoconferencing session.


A data network may allow for the transmission of data between two or more endpoints. The data exchanged between the endpoints may include video data, audio data, control data, and status data. Control data may be utilized in various embodiments to operate a robotic videoconferencing endpoint. Accordingly, various components of a data network connecting videoconferencing endpoints may transmit data wirelessly. Status data may refer to any type of data that is not video data, audio data, or control data.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. In particular, an “embodiment” may be a system, an article of manufacture (such as a computer readable storage medium), a method, and a product of a process.


The phrases “connected to,” and “in communication with” refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, and electromagnetic interaction. Two components may be connected to each other even though they are not in direct contact with each other and even though there may be intermediary devices between the two components.


The embodiments of the disclosure will be best understood by reference to the drawings, wherein like elements are designated by like numerals throughout. In the following description, numerous specific details are provided for a thorough understanding of the embodiments described herein. However, those of skill in the art will recognize that one or more of the specific details may be omitted, or other methods, components, or materials may be used. In some cases, operations are not shown or described in detail.


Furthermore, the described features, operations, or characteristics may be combined in any suitable manner in one or more embodiments. The order of the steps or actions of the methods described in connection with the embodiments disclosed may be varied. Thus, any order in the drawings or Detailed Description is for illustrative purposes only and is not meant to imply a required order, unless specified to require an order.


Embodiments may include various features, which may be embodied in machine-executable instructions executed by a general-purpose or special-purpose computer (or other electronic device). Alternatively, the features may be performed by hardware components that include specific logic for performing the steps or by a combination of hardware, software, and/or firmware.


Embodiments may also be provided as a computer program product including a machine-readable medium having stored thereon instructions that may be used to program a computer (or other electronic device) to perform processes described herein. The machine-readable medium may include, but is not limited to, hard drives, floppy diskettes, optical disks, CD-ROMs, DVD-ROMs, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, solid-state memory devices, or other types of media/machine-readable medium suitable for storing electronic instructions.



FIG. 1 illustrates a diagram of one embodiment of a videoconferencing system 100, which may utilize various techniques disclosed herein for dynamically adjusting bandwidth utilization between two endpoints 102 and 110. Endpoint 102 is in communication with endpoint 110 via network 106. Each of endpoints 102 and 110 generate audio and video data, which is transmitted via network 106. Each of endpoints 102 and 110 also receive audio and video data. The audio and video data received by each of endpoints 102 and 110 may allow users of the respective endpoints to communicate visually and audibly.


Data network 106 represents any type of data network that may facilitate data communication between endpoints 102 and 110. For example, network 106 may comprise a local area network or a wide area network. Network 106 may comprise an intranet, a virtual private network, or a public network, such as the Internet or other data communications networks (e.g., cellular data networks). Network 106 may further comprise routers, gateways, firewalls, wireless network adapters, and other types of networking equipment.


Various types of endpoints are contemplated, including fixed and mobile videoconferencing endpoints. In embodiments having one or more mobile endpoints, various wireless technologies may be utilized in order to allow the mobile endpoint to remain in data communication with network 106. Various embodiments disclosed herein may be utilized in connection with robotic systems employed for a variety of applications. One such embodiment is illustrated in FIG. 2.



FIG. 2 illustrates a functional block diagram of a system 200, which may utilize various techniques disclosed herein for dynamically adjusting bandwidth utilization between two endpoints. An endpoint 202, which is illustrated and described in greater detail in connection with FIG. 3, is in communication with an endpoint 210 via a data network 206. Each of endpoints 202 and 210 may comprise suitable network adapters to enable transmission to, and receipt of data from, data network 206.


Endpoints 202 and 210 exchange a variety of types of data, including video data, audio data, control data, and status data via data network 206. Data network 206 represents any type of data network that may facilitate data communication between endpoints 202 and 210. For example, network 206 may comprise a local area network or a wide area network. Network 206 may comprise an intranet, a virtual private network, or a public network, such as the Internet or other data communications networks (e.g., cellular data networks). Network 206 may further comprise routers, gateways, firewalls, wireless network adapters, and other types of networking equipment.


System 200 may be employed, for example, by a medical practitioner or other care provider to monitor individuals at a remote location. According to various embodiments, data prioritization schemes may be employed so that higher priority data is transmitted with greater reliability or at a higher data rate than lower priority data. For example, in system 200 control data transmitted from second endpoint 210 to first endpoint 202 may be designated as high priority data. Such a prioritization may allow a user to remain in control of the motion of endpoint 202, even if network throughput is reduced. Status data, which may include telemetry data gathered from a patient (e.g., pulse rate, EKG, oxygenation, etc.), may also be designated as relatively high priority data. Audio data may be prioritized before video data, such that a medical practitioner and patient can maintain audible communication. Finally, video data may be transmitted using the lowest priority. According to various embodiments, audio data and video data variable compression schemes may be utilized in order to more efficiently utilize available bandwidth. During periods of decreased network throughput, a higher compression ratio may be utilized for video and/or audio data. Such compression may reduce the quality of the video and/or audio data; however, such compression may allow for continued use of system 200 even if data throughput is reduced. In still other embodiments, a video frame rate may be adjusted dynamically, prior to segmenting the data into packets. According to various embodiments, status data comprising information gathered from patient sensors (e.g. an EKG sensor, a blood oxygenation sensor, etc.) may receive the highest priority.


The data transmitted between endpoints 202 and 210 may be asymmetrical in quantity and/or priority. For example, in telemedicine applications, data flowing from the remote station to the robot is less critical than video and data flowing from endpoint 202 to endpoint 210. Various embodiments of system 200 may allow dynamic adjustment of bandwidth, such that the minimum allowable bandwidth from one endpoint is higher than the minimum allowable bandwidth from the other endpoint. For example, the allowable outgoing data rate from endpoint 210 may be in the range of 150 kbps to 700 kbps, but the allowable outgoing data rate from endpoint 202 may be in the range of 200 kbps to 700 kbps. For example, a data rate of less than 200 kbps may make diagnosis problematic and impede the ability to drive a robotic videoconferencing endpoint.


According to various embodiments, data may be prioritized at the application layer. According to such embodiments, the application generating video and audio and control/sensor data may be aware of the available bandwidth and may adjust the content to be transmitted accordingly. Such an application may allow for a user to customize settings to be used during a particular session or at various points within a session. For example, in one embodiment where an endpoint is used in telemedicine applications, the quality images received from an endpoint near a patient may be assigned a higher priority, depending on whether a diagnosis is made using the images. For example, if a dermatologist is utilizing a videoconferencing endpoint to obtain images of a rash on a patient's skin, image quality may be assigned a greater importance than other characteristics (e.g., a video frame rate). In another example, a physician counseling with the patient may not be relying on images to provide a diagnosis. In this example, audio data may receive a high priority, so that audio communications between the patient and physician are maintained even if network throughput declines. In still another example, during a videoconferencing session a physician may drive a robotic videoconferencing endpoint from one location in a medical facility to another location. While the videoconferencing endpoint is in motion, frame rate may be assigned a higher priority than image quality, such that a remote driver is better able to control the movement of the robotic videoconferencing endpoint. According to various embodiments, a robotic videoconferencing endpoint may be configured such that upon detection of base motion, prioritization switches from image quality to frame rate.



FIG. 3 illustrates a perspective view of one embodiment of a robotic videoconferencing endpoint 300. Videoconferencing endpoint 300 may include a robotic platform 310 that is attached to a robot housing 312. Robotic platform 310 may allow videoconferencing endpoint 300 to move in any direction. Videoconferencing endpoint 300 may include a robotic head 314 that supports a video camera 338 and a monitor 340. Robotic head 314 may allow a user to pan and tilt the video camera 338 and monitor 340 using pan and tilt actuators, as indicated by arrows 316 and 318. Robotic head 314, and robotic platform 310 may be referred to individually as robotic elements. Each of robotic head 314, and robotic platform 310 may operate in conjunction with a robotic driver that is configured to receive and implement instructions for controlling the various robotic elements.



FIG. 4 illustrates one embodiment of a method 400 for monitoring network statistics in a videoconferencing session and for determining which data samples are added to the network statistics dataset. The network statistics dataset may comprise a plurality of data samples that represent one or more quantifiable metrics of network conditions. Method 400 may be utilized during the entirety of a videoconferencing session between two or more videoconferencing endpoints. Accordingly, a network statistics dataset may be continually updated during a videoconference, and up-to-date information regarding network conditions may be utilized in connection with dynamic bandwidth allocation. According to various embodiments, such metrics may include, but are not limited to, measurements of latency, average data throughput, variations in latency over time, and the like. According to various embodiments, the network statistics dataset may include samples from the initiation of a videoconference, or only a trailing number of samples or minutes of samples.


A network statistics dataset may be established at the initiation of a session. In certain embodiments, an initial network statistics dataset may be created during an initial period in which data transmission occurs at a baseline rate. The baseline rate may be relatively minor in comparison to the theoretical throughput of the network connection between the endpoints. For example, a baseline rate in one embodiment may be established at the minimum allowable bandwidth for the endpoint, for example 150 kbps for outgoing data from endpoint 210 and 200 kbps for outgoing data from endpoint 202. The minimum allowable bandwidth has the highest probability of being stable for a given network connection. Such embodiments may allow for the creation of a robust network statistics dataset when the network connection between two or more endpoints is operating substantially below its theoretical throughput.


At 402, a data sample is obtained that represents at least one measurement of then-current network conditions. As discussed above, a data sample may, for example, comprise a measurement of latency, average data throughput, etc. In the present example, the measurement utilized is the latency associated with a ping; however, in other embodiments, similar principles may be utilized and adapted for analysis of other types of data samples. Method 400 determines at 404 whether the sample was obtained within a specified time of the start of a session. As discussed above, a network statistics dataset may be established at the initiation of the session during a period when the baseline transmission rate is significantly lower than the theoretical throughput of the network connection between the endpoints. Accordingly, if the data sample was obtained within the specified time of the start of a videoconferencing session, method 400 may proceed to determine whether the sample is within specified boundaries 410, as discussed in greater detail below.


After the passage of a specified amount time from the start of a session, method 400 may determine whether the sample was obtained within a specified time of a network probe 406. As the term is utilized herein, a network probe refers to an increase of bandwidth utilized by one or more endpoints participating in a videoconferencing session. The network probe may temporarily disturb a metric quantified by the obtained data sample, and accordingly, a sample obtained within a specified period following the network probe may be indicative of only a transitory state. According to various embodiments, a specified time may be established following a network probe during which data samples are discarded, so as to reduce the effects of such transitory samples on the network statistics dataset. If the data sample was obtained within the specified time of the network probe, the obtained sample may be discarded 414.


At 408, it may be determined whether the obtained data sample is within a specified time of a network disturbance. As the term is used herein, a network disturbance is in any event or circumstance, or combinations of events or circumstances, that temporarily affect a quantifiable metric representing network conditions. A network disturbance may include, for example, a disruption in data transmission, increased latency, increased bandwidth utilization by other users, etc. Following a network disturbance, the metric quantified by the obtained data sample may be indicative of only a transitory state. According to various embodiments, a specified time may be established following a network disturbance during which data samples are discarded, so as to reduce the effects of such transitory samples on the network statistics dataset.


At 410, the obtained data sample may be compared to specified boundaries relating to the network statistics dataset. For example, even under stable conditions, the latency of a plurality of data samples may differ significantly. In order to reduce the effect of aberrant data samples, certain criteria may be specified by a user or based on the data in the network statistics dataset. In one example, specified boundaries may exclude obtained data samples above the 90th percentile. Other boundaries may also be utilized. Further, other embodiments may utilize ranges in place of percentile boundaries.


Obtained data samples that are not discarded may then be added to the network statistics dataset at 412. Various criteria may be utilized (e.g., various time periods following the start of a session, a network probe, a network disturbance) to exclude certain obtained data samples from the network statistics dataset. Various criteria may be designed to minimize the influence of transitory conditions and other conditions which may not provide an accurate indication of the operation of the network system. According to one embodiment, the criteria may be specified so that approximately 90% of the obtained data samples included in the network statistics dataset are obtained during periods of relative stability on the network.


A network statistics dataset may be utilized by a videoconferencing system as an estimate of the available bandwidth of a particular network. Various thresholds may be established based upon the network statistics dataset, and one or more data values may be compared to the thresholds in order to determine whether a particular videoconferencing session is utilizing too much bandwidth or utilizing too little bandwidth. Latency may be utilized as one indicator of the condition of the network. According to one embodiment, bandwidth utilization of a videoconferencing system may be reduced when latency exceeds a specified threshold. For example, a system could reduce bandwidth usage whenever a latency measurement exceeds 350 milliseconds; however, a stable and high bandwidth connection may exceed 350 milliseconds ping time, and may result in a situation where the network connection is underutilized. According to other embodiments, a system dynamically managing bandwidth of a videoconferencing session may analyze a particular latency measurement with respect to percentile thresholds.


A network statistics dataset may be used to distinguish high latency and high bandwidth networks from networks exhibiting high latency because of network congestion. As described above, a network statistics dataset may include a plurality of the measurements. For example, a network statistics dataset may comprise a plurality of measurements of latency in a particular network. Analysis of the network statistics dataset may show latency measurements ranging from 100 milliseconds to 300 milliseconds, but 90% of latency measurements in the network statistics dataset are less than or equal to 115 milliseconds. Accordingly, 115 milliseconds may be established as a threshold value. Measurements exceeding 115 milliseconds may indicate network congestion, and may provide an indication of decreasing available bandwidth. According to other embodiments, a fixed offset may also be employed in order to avoid excluding data samples that only slightly exceed the threshold value. For example, a fixed offset of 30 milliseconds may be adopted. In embodiments utilizing a fixed offset, a network disturbance may not be recorded unless one or more data samples indicate a latency greater than the sum of the fixed offset and the threshold value. Embodiments including a fixed offset may provide greater tolerance for variation in latency, while reducing the risk of a false positive in identifying a network disturbance.


In a different example, latency measurements might range from 300 milliseconds to 420 milliseconds, with 90% of the latency measurements less than or equal to 330 milliseconds. In that example, a network disturbance would be detected when latency rises above 330 milliseconds. In this way, a system for dynamically allocating bandwidth adapts to stable high-latency connections.


As discussed above, an obtained data sample may be compared against specified boundaries in order to determine whether the obtained data sample should be included in a network statistics dataset. FIG. 5A illustrates an exemplary distribution 500 comprising a plurality of obtained data samples and specified boundaries that may be used in connection with various embodiments. In FIG. 5, the 70th and 90th percentiles of a normal distribution are shown. Depending upon where a particular measurement falls within distribution 500, a system may take various actions. For example, a data sample above the 90th percentile or some other specified percentile may be discarded. Discarding such samples may help to mitigate the effects of statistically aberrant obtained data samples. Data samples falling within these ranges may be referred to as excluded data samples.


Data samples falling between the 70th percentile and 90th percentile may not be immediately discarded, but such samples may not be immediately added to a network statistics dataset. Data samples falling within these ranges may be referred to as marginal data samples. Criteria may be specified in order to determine whether marginal data samples are discarded or added to a network statistics dataset. Various criteria may be associated with the evaluation of marginal data samples. For example, various embodiments may analyze a specified number of subsequently obtained data samples, or may analyze data samples obtained within a specified time (e.g., 60 seconds) before and/or after one or more marginal data samples is obtained.


According to one embodiment, specific criteria for evaluating marginal data samples may be based upon the results of subsequently obtained data samples. For example, a system may experience an increased latency of 100 ms, which arises over a period of 30 seconds. Without a sharp spike in latency, a network disturbance (e.g., the source of the additional latency) may not be recognized, and data samples representing the increased latency may be added to the network statistics dataset. If one or more subsequently obtained data samples within a specified period exceeds a specified threshold (e.g., the 90th percentile) the marginal data samples may be discarded. Subsequent data samples exceeding the specified threshold may indicate that the network is in an unstable condition, and that the marginal data samples do not reflect normal network conditions. If one or more subsequently obtained data samples within a specified period is below a specified threshold (e.g., the 70th percentile), the marginal data samples may be added to the network statistics dataset. Such a data sample may indicate that the marginal data samples reflect normal network conditions. Finally, if one or more subsequently obtained data samples within a specified period is between the 70th percentile and the 90th percentile, the marginal data samples may be included in the network statistics dataset.



FIG. 5B illustrates one embodiment of a method 550 for processing data samples that fall within a marginal data range. As discussed above, a marginal data range may be defined between an upper threshold and a lower threshold (e.g., the 90th percentile and the 70th percentile in FIG. 5A). At 552 a first plurality of data samples are obtained, and at 554, method 550 determines whether one or more data samples from the first plurality of data samples falls within the marginal data range. If so, a second plurality of data samples are obtained, at 556. At 558, the second plurality of data samples are analyzed to determine whether data samples from the second plurality of data samples fall within the excluded range. If so, the first plurality of data samples is discarded at 562. If no data samples from the second plurality of data samples fall within the excluded data range, the first plurality of data samples may be added to the network statistics dataset, at 560. In an alternative embodiment, upon receipt of each new sample the network statistics dataset is re-calculated based on the history of all samples collected since the start of the session, a trailing number of minutes, or sample set size.



FIG. 6 illustrates one embodiment of a method 600 for dynamically allocating bandwidth in a videoconferencing system. Method 600 illustrates an embodiment utilizing latency as a metric for evaluating network conditions. At 602, a latency measurement is obtained. It may be determined whether the obtained latency measurement is within specified boundaries, at 604. As discussed above, in connection with FIG. 5, measurements falling outside of specified ranges (e.g., above the 90th percentile) may be discarded. If the measurement falls outside of the specified boundaries, method 600 may return to 602 and obtain a new latency measurement. According to one embodiment, an increase in bandwidth may occur if a specified period of time has passed and no latency measurements have exceeded the high threshold. In this embodiment, the system presumes that because a network has remained stable for a specified time, additional bandwidth may be utilized.


It may be determined at 608 whether the latency measurement is above a high threshold. A latency measurement exceeding the high threshold may be indicative of a network disruption. Accordingly, at 610, an above high threshold count may be incremented. At 612, the above high threshold count may be compared to a fourth threshold. A fourth threshold may specify the number of above high threshold events that are detected before decreasing bandwidth, at 614.



FIG. 7 illustrates a graphical user interface 700 for displaying bandwidth utilization and dynamically established incoming and outgoing maximum bandwidth thresholds. According to various embodiments, one or more videoconferencing endpoints may display graphical user interface 700. Information regarding data being received may be displayed by a first bar graph 701, while information regarding data being sent may be displayed by a second bar graph 711. Each of bar graphs 701 and 711 may show a first bar 702 and 712, respectively, which illustrate a current data transmission rate. Bar graphs 701 and 711 may also show a second bar 704 and 714, respectively, which illustrate bandwidth allocation. Bars 702 and 712 are less than or equal to the bandwidth allocation shown by bar 704 and 714. Bar graphs 701 and 711 may also illustrate a maximum throughput 706 and 716, respectively, based on the network connection between two or more videoconferencing endpoints.


Bar graphs 701 and 711 may also include an indication 708 and 718, respectively, that shows a limiting component in the network. For example, a multicasting session might include a local user, User A (a remote user), and a robotic videoconferencing endpoint. The data transmission rate from the robotic videoconferencing endpoints may be limited to the minimum value that can be sent or received from the other videoconferencing endpoints. In the illustrated embodiment, the limit for receiving data is imposed by User A, while the limit for transmitting data is imposed by the robotic videoconferencing endpoint. In one embodiment, the designated limiting endpoint may only be displayed when a mouse cursor is hovered over the related bar graph.



FIG. 8 illustrates a functional block diagram of one embodiment of a system 800, including a videoconferencing endpoint 810 and a robotic videoconferencing endpoint 850. System 800 allows videoconferencing endpoint 810 to exchange video, audio, and other types of data with robotic videoconferencing endpoint 850.


Videoconferencing endpoint 810 includes a network connection 822, Random Access Memory (RAM) 824, processor 826, input/output ports 828, a display driver 830, a computer readable storage medium 812, and a bus 820. Bus 820 provides a connection between network connection 822, RAM 824, processor 826, and computer readable storage medium 812. Processor 826 may be embodied as a general purpose processor, an application specific processor, a microcontroller, a digital signal processor, or other similar device. Processor 826 performs logical and arithmetic operations based on program code stored within RAM 824 and/or computer readable storage medium 812.


Network connection 822 may be configured to communicate with robotic videoconferencing endpoint by way of one or more network components, such as firewall 840, network 842, firewall 844, and wireless data transceiver 846. Network connection 822 may facilitate communication using any number of available protocols and/or physical media. Network 842 may comprise an intranet, a virtual private network, or a public network, such as the Internet or other data communications networks (e.g., cellular data networks). Firewalls 840 and 844 may be disposed between videoconferencing endpoints 810 and 850. According to various embodiments, network management techniques may be utilized to successfully route data from videoconferencing endpoint 810 to robotic videoconferencing endpoint 850.


Input/output ports 828 may be configured to allow videoconferencing endpoint 810 to utilize a wide variety of peripheral devices, some of which may generate data to be transmitted to robotic videoconferencing endpoint 850. For example, peripheral devices which may be utilized may include a video camera, a microphone, a device for controlling the movement of robotic videoconferencing endpoint 850, a keyboard, a mouse, and other such devices. Input/output ports 828 may comprise a variety of types of ports, such as USB, serial, parallel, IEEE 1394, and the like.


Display driver 830 may facilitate the generation of video images to be displayed to a user videoconferencing endpoint 810. Display driver 830 may, according to various embodiments, generate video data received from robotic videoconferencing endpoint 850 and display such data to a user. Display driver 830 may also be responsible for interfacing with other display devices, for example a touch screen.


Computer readable storage medium 812 may comprise various modules for communicating with robotic videoconferencing endpoint 850. Such modules may include a bandwidth allocation module 814, and encoding/decoding module 816, a network statistics dataset module 818, and a data prioritization module 819. Each module may perform one or more tasks associated with communication with robotic video endpoint 850 and/or management of such communications. In alternative embodiments, more or fewer modules than are shown in FIG. 8 may be utilized.


Bandwidth allocation module 814 may be configured to monitor and dynamically adjust the bandwidth utilized for transmission of data between videoconferencing endpoint 810 and robotic videoconferencing endpoint 850. As discussed above, a variety of methods may be utilized for dynamically allocating and adjusting bandwidth. Bandwidth allocation module 814 may be configured to implement the various methods for bandwidth allocation disclosed herein. Bandwidth allocation module 814 may further be configured to generate a graphical user interface display, such as illustrated in FIG. 7, for displaying bandwidth utilization and dynamically established incoming and outgoing maximum bandwidth thresholds.


Encoding/decoding module 816 may be configured to encode and/or decode video data, audio data, control data, and status data exchanged between videoconferencing endpoint 810 and robotic videoconferencing endpoint 850. According to various embodiments, encoding/decoding module 816 may be configured to adjust the video frame rate, image quality, compression ratios, and other characteristics of data to be transmitted in order to conform data transmission rates to an allocated bandwidth. According to one particular embodiment, encoding/decoding module 816 may adjust a video frame rate prior to segmenting the data into data packets.


Network statistics dataset module 818 may be configured to generate a network statistics dataset and to selectively add data to the network statistics dataset. Various embodiments for generating and adding data to the network statistics dataset are disclosed herein, and network statistics dataset module 818 may be configured to perform the features described in connection with such embodiments.


Data prioritization module 819 may be configured to prioritize various types of data to be transmitted between videoconferencing endpoint 810 robotic videoconferencing endpoint 850. According to various embodiments, a variety of data prioritization schemes may be employed so that higher priority data is transmitted with greater reliability or at a higher data rate than lower priority data. For example, in system 800 control data transmitted from videoconferencing endpoint 810 to robotic videoconferencing endpoint 850 may be designated as high priority data. Such a prioritization may allow a user to remain in control of the motion of robotic videoconferencing endpoint 850 even if network throughput is reduced. Status data, which may include telemetry data gathered from a patient (e.g., pulse rate, EKG, oxygenation, etc.), may also be designated as relatively high priority data. Audio data may be prioritized before video data, such that a medical practitioner and patient can maintain audible communication in spite of decreases in network throughput. Finally, video data may be transmitted using the lowest priority.


According to various embodiments, videoconferencing endpoint 810 may be embodied as a general purpose computer including particular software and/or configured to interface with robotic videoconferencing endpoint 850. Such software may be delivered as a computer program product. Hardware resources facilitating communication with and/or control of robotic videoconferencing endpoint 850 may, according to various embodiments, comprise an audio and/or video input device coupled to input/output ports 828, or an input device specifically configured to control one or more robotic elements of robotic videoconferencing endpoint 850.


Robotic videoconferencing endpoint 850 includes a robotics driver 854, a display driver 856, RAM 858, a processor 860, input/output ports 862, a wireless data transceiver 864, a computer readable storage medium 852, and a bus 876. The function of display driver 856, RAM 858, and processor 860 may be similar to the functions described in connection with corresponding structures in videoconferencing endpoint 810. Input/output ports 862 may further be configured to receive telemetry data from a variety of sensors, which may be utilized to monitor various physical conditions. In one particular embodiment, where robotic videoconferencing endpoint 850 is utilized in a telemedicine application, input/output ports 862 may be configured to interface with a variety of medical sensors (e.g., pulse rate sensor, an EKG sensor, a blood oxygenation sensor, etc.).


Robotics driver 854 may be configured to receive and implement instructions for moving robotic videoconferencing endpoint 850. Such instructions may include driving robotic videoconferencing endpoint 850 from one place to another, manipulating one or more robotic arms, and the like.


Wireless data transceiver 864 may be configured to exchange data wirelessly with wireless data transceiver 846. Data may be exchanged according to a variety of wireless protocols, including but not limited to the IEEE 802.11 protocols and cellular data transmission protocols.


Computer readable storage medium 852 may comprise various modules for communicating with videoconferencing endpoint 810. Such modules may include a bandwidth allocation module 866, and encoding/decoding module 868, a network statistics dataset module 870, a robotic control module 872, and a data prioritization module 874. The functions of bandwidth allocation module 866, encoding/decoding module 868, network statistics dataset module 870, and data prioritization module 874 may be similar to corresponding modules, which are described above in connection with videoconferencing endpoint 810.


Robotic control module 872 may operate in conjunction with robotics driver 854 to facilitate control of robotic videoconferencing endpoint 850. Robotic control module 872 may be configured, according to various embodiments, to interact with one or more devices associated with videoconferencing endpoint 810 and to receive instruction from such device that allows a remote user to control robotic videoconferencing endpoint 850.


Many changes may be made to the details of the above-described embodiments without departing from the underlying principles of the present disclosure. The scope of the present invention should, therefore, be determined only by the following claims.

Claims
  • 1. A method of monitoring network statistics in a videoconferencing session, comprising: initiating a videoconferencing session between a first endpoint and a second endpoint via a network;transmitting data between the first endpoint and the second endpoint;collecting a first plurality of data samples, each of the plurality of data samples comprising a quantifiable metric representing one or more network conditions;discarding data samples from the first plurality of data samples that exceed a first percentile of the data samples in a network statistics data set;adding data samples from the first plurality of data samples to network statistics dataset;analyzing the network statistics dataset to estimate an available bandwidth of the network;identifying a network disturbance;discarding data samples collected for a specified period of time following the network disturbance; andadjusting the bandwidth used for the videoconferencing session based on the estimated available bandwidth.
  • 2. The method of claim 1, wherein the plurality of data samples comprises a plurality of latency measurements.
  • 3. The method of claim 1, wherein the first percentile is approximately equal to the 90th percentile of data samples in the network statistics dataset.
  • 4. The method of claim 1, further comprising: a second percentile, the second percentile being lower than the first percentile;identifying a data sample below the first percentile and above the second percentile;collecting a second plurality of data samples;determining that a data sample from among the second plurality of data samples exceeds a third percentile; anddiscarding the second plurality of data samples.
  • 5. The method of claim 1, further comprising: a second percentile, the second percentile being lower than the first percentile;identifying a data sample below the first percentile and above the second percentile;collecting a second plurality of data samples;determining that a data sample from among the second plurality of data samples is below a third percentile; andadding the second plurality of data samples to the network statistics dataset.
US Referenced Citations (817)
Number Name Date Kind
3821995 Aghnides Jul 1974 A
4107689 Jellinek Aug 1978 A
4213182 Eichelberger et al. Jul 1980 A
4413693 Derby Nov 1983 A
4471354 Smith Sep 1984 A
4519466 Shiraishi May 1985 A
4553309 Hess et al. Nov 1985 A
4572594 Schwartz Feb 1986 A
4625274 Schroeder Nov 1986 A
4638445 Mattaboni Jan 1987 A
4652204 Arnett Mar 1987 A
4669168 Tamura et al. Jun 1987 A
4679152 Perdue Jul 1987 A
4697278 Fleischer Sep 1987 A
4697472 Hiyane Oct 1987 A
4709265 Silverman et al. Nov 1987 A
4733737 Falamak Mar 1988 A
4751658 Kadonoff et al. Jun 1988 A
4766581 Korn et al. Aug 1988 A
4777416 George et al. Oct 1988 A
4797557 Ohman Jan 1989 A
4803625 Fu et al. Feb 1989 A
4847764 Halvorson Jul 1989 A
4875172 Kanayama Oct 1989 A
4878501 Shue Nov 1989 A
4942512 Kohno Jul 1990 A
4942538 Yuan et al. Jul 1990 A
4953159 Hayden et al. Aug 1990 A
4974607 Miwa Dec 1990 A
4977971 Crane et al. Dec 1990 A
5006988 Borenstein et al. Apr 1991 A
5040116 Evans et al. Aug 1991 A
5051906 Evans et al. Sep 1991 A
5073749 Kanayama Dec 1991 A
5084828 Kaufman et al. Jan 1992 A
5130794 Ritchey Jul 1992 A
5148591 Pryor Sep 1992 A
5153833 Gordon et al. Oct 1992 A
5155684 Burke et al. Oct 1992 A
5157491 Kassatly Oct 1992 A
5182641 Diner et al. Jan 1993 A
5186270 West Feb 1993 A
5193143 Kaemmerer et al. Mar 1993 A
5217453 Wilk Jun 1993 A
5220263 Onishi et al. Jun 1993 A
5224157 Yamada et al. Jun 1993 A
5230023 Nakano Jul 1993 A
5231693 Backes et al. Jul 1993 A
5236432 Matsen et al. Aug 1993 A
5262944 Weisner et al. Nov 1993 A
5305427 Nagata Apr 1994 A
5315287 Sol May 1994 A
5319611 Korba Jun 1994 A
5341242 Gilboa et al. Aug 1994 A
5341459 Backes Aug 1994 A
5341854 Zezulka et al. Aug 1994 A
5347306 Nitta Sep 1994 A
5347457 Tanaka et al. Sep 1994 A
5350033 Kraft Sep 1994 A
5366896 Margrey et al. Nov 1994 A
5374879 Pin et al. Dec 1994 A
5375195 Johnston Dec 1994 A
5400068 Ishida et al. Mar 1995 A
5417210 Funda et al. May 1995 A
5419008 West May 1995 A
5436542 Petelin et al. Jul 1995 A
5441042 Putman Aug 1995 A
5441047 David et al. Aug 1995 A
5442728 Kaufman et al. Aug 1995 A
5462051 Oka et al. Oct 1995 A
5486853 Baxter et al. Jan 1996 A
5510832 Garcia Apr 1996 A
5511147 Abdel-Malek Apr 1996 A
5528289 Cortjens et al. Jun 1996 A
5539741 Barraclough et al. Jul 1996 A
5544649 David et al. Aug 1996 A
5550577 Verbiest et al. Aug 1996 A
5553609 Chen et al. Sep 1996 A
5563998 Yaksich et al. Oct 1996 A
5572229 Fisher Nov 1996 A
5572999 Funda et al. Nov 1996 A
5594859 Palmer et al. Jan 1997 A
5600573 Hendricks et al. Feb 1997 A
5617539 Ludwig et al. Apr 1997 A
5619341 Auyeung et al. Apr 1997 A
5623679 Rivette et al. Apr 1997 A
5630566 Case May 1997 A
5636218 Ishikawa et al. Jun 1997 A
5652849 Conway et al. Jul 1997 A
5657246 Hogan et al. Aug 1997 A
5659779 Laird et al. Aug 1997 A
5673082 Wells et al. Sep 1997 A
5675229 Thorne Oct 1997 A
5682199 Lankford Oct 1997 A
5684695 Bauer Nov 1997 A
5701904 Simmons et al. Dec 1997 A
5734805 Isensee et al. Mar 1998 A
5739657 Takayama et al. Apr 1998 A
5748629 Caldara et al. May 1998 A
5749058 Hashimoto May 1998 A
5749362 Funda et al. May 1998 A
5754631 Cave May 1998 A
5758079 Ludwig et al. May 1998 A
5762458 Wang et al. Jun 1998 A
5764731 Yablon Jun 1998 A
5767897 Howell Jun 1998 A
5786846 Hiroaki Jul 1998 A
5787545 Colens Aug 1998 A
5793365 Tang et al. Aug 1998 A
5801755 Echerer Sep 1998 A
5802494 Kuno Sep 1998 A
5836872 Kenet et al. Nov 1998 A
5838575 Lion Nov 1998 A
5844599 Hildin Dec 1998 A
5857534 Devault et al. Jan 1999 A
5867494 Krishnaswamy et al. Feb 1999 A
5867653 Aras et al. Feb 1999 A
5871451 Unger et al. Feb 1999 A
5872922 Hogan et al. Feb 1999 A
5876325 Mizuno et al. Mar 1999 A
5911036 Wright et al. Jun 1999 A
5917958 Nunally et al. Jun 1999 A
5927423 Wada et al. Jul 1999 A
5949758 Kober Sep 1999 A
5954692 Smith et al. Sep 1999 A
5959423 Nakanishi et al. Sep 1999 A
5961446 Beller et al. Oct 1999 A
5966130 Benman Oct 1999 A
5973724 Riddle Oct 1999 A
5974446 Sonnenreich et al. Oct 1999 A
5983263 Rothrock et al. Nov 1999 A
5995119 Cosatto et al. Nov 1999 A
5995884 Allen et al. Nov 1999 A
5999977 Riddle Dec 1999 A
6006946 Williams et al. Dec 1999 A
6031845 Walding Feb 2000 A
6036812 Williams et al. Mar 2000 A
6047259 Campbell et al. Apr 2000 A
6091219 Maruo et al. Jul 2000 A
6113343 Goldenberg et al. Sep 2000 A
6133944 Braun et al. Oct 2000 A
6135228 Asada et al. Oct 2000 A
6148100 Anderson et al. Nov 2000 A
6160582 Hill Dec 2000 A
6170929 Wilson et al. Jan 2001 B1
6175779 Barrett Jan 2001 B1
6189034 Riddle Feb 2001 B1
6201984 Funda et al. Mar 2001 B1
6211903 Bullister Apr 2001 B1
6219587 Ahlin et al. Apr 2001 B1
6232735 Baba et al. May 2001 B1
6233504 Das et al. May 2001 B1
6233735 Ebihara May 2001 B1
6250928 Poggio et al. Jun 2001 B1
6256556 Zenke Jul 2001 B1
6259806 Green Jul 2001 B1
6259956 Myers et al. Jul 2001 B1
6266162 Okamura et al. Jul 2001 B1
6266577 Popp et al. Jul 2001 B1
6289263 Mukherjee Sep 2001 B1
6292713 Jouppi et al. Sep 2001 B1
6292714 Okabayashi Sep 2001 B1
6304050 Skaar et al. Oct 2001 B1
6314631 Pryor Nov 2001 B1
6317652 Osada Nov 2001 B1
6317953 Pryor Nov 2001 B1
6321137 De Smet Nov 2001 B1
6324184 Hou et al. Nov 2001 B1
6324443 Kurakake et al. Nov 2001 B1
6325756 Webb et al. Dec 2001 B1
6327516 Zenke Dec 2001 B1
6330486 Padula Dec 2001 B1
6330493 Takahashi et al. Dec 2001 B1
6346950 Jouppi Feb 2002 B1
6346962 Goodridge Feb 2002 B1
6369847 James et al. Apr 2002 B1
6373855 Downing et al. Apr 2002 B1
6381515 Inoue et al. Apr 2002 B1
6389329 Colens May 2002 B1
6400378 Snook Jun 2002 B1
6408230 Wada Jun 2002 B2
6411055 Fujita et al. Jun 2002 B1
6430471 Kintou et al. Aug 2002 B1
6430475 Okamoto et al. Aug 2002 B2
6438457 Yokoo et al. Aug 2002 B1
6445964 White et al. Sep 2002 B1
6449762 Mcelvain Sep 2002 B1
6452915 Jorgensen Sep 2002 B1
6457043 Kwak et al. Sep 2002 B1
6459955 Bartsch et al. Oct 2002 B1
6463352 Tadokoro et al. Oct 2002 B1
6463361 Wang et al. Oct 2002 B1
6466844 Ikeda et al. Oct 2002 B1
6468265 Evans et al. Oct 2002 B1
6470235 Kasuga et al. Oct 2002 B2
6474434 Bech Nov 2002 B1
6480762 Uchikubo et al. Nov 2002 B1
6491701 Tierney et al. Dec 2002 B2
6496099 Wang et al. Dec 2002 B2
6496755 Wallach et al. Dec 2002 B2
6501740 Sun et al. Dec 2002 B1
6507773 Parker et al. Jan 2003 B2
6522906 Salisbury et al. Feb 2003 B1
6523629 Buttz et al. Feb 2003 B1
6526332 Sakamoto et al. Feb 2003 B2
6529620 Thompson Mar 2003 B2
6529765 Franck et al. Mar 2003 B1
6529802 Kawakita et al. Mar 2003 B1
6532404 Colens Mar 2003 B2
6535182 Stanton Mar 2003 B2
6535793 Allard Mar 2003 B2
6540039 Yu et al. Apr 2003 B1
6543899 Covannon et al. Apr 2003 B2
6549215 Jouppi Apr 2003 B2
6563533 Colby May 2003 B1
6567038 Granot et al. May 2003 B1
6580246 Jacobs Jun 2003 B2
6581798 Liff et al. Jun 2003 B2
6584376 Van Kommer Jun 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6590604 Tucker et al. Jul 2003 B1
6594269 Polcyn Jul 2003 B1
6594552 Nowlin et al. Jul 2003 B1
6597392 Jenkins et al. Jul 2003 B1
6602469 Maus et al. Aug 2003 B1
6604019 Ahlin et al. Aug 2003 B2
6604021 Imai et al. Aug 2003 B2
6611120 Song et al. Aug 2003 B2
6643496 Shimoyama et al. Nov 2003 B1
6646677 Noro et al. Nov 2003 B2
6650748 Edwards et al. Nov 2003 B1
6666374 Green et al. Dec 2003 B1
6667592 Jacobs et al. Dec 2003 B2
6674259 Norman et al. Jan 2004 B1
6684129 Salisbury et al. Jan 2004 B2
6691000 Nagai et al. Feb 2004 B2
6693585 Macleod Feb 2004 B1
6710797 Mcnelley et al. Mar 2004 B1
6724823 Rovati et al. Apr 2004 B2
6728599 Wang et al. Apr 2004 B2
6763282 Glenn et al. Jul 2004 B2
6764373 Osawa et al. Jul 2004 B1
6769771 Trumbull Aug 2004 B2
6781606 Jouppi Aug 2004 B2
6784916 Smith Aug 2004 B2
6785589 Eggenberger et al. Aug 2004 B2
6791550 Goldhor et al. Sep 2004 B2
6798753 Doganata et al. Sep 2004 B1
6799065 Niemeyer Sep 2004 B1
6799088 Wang et al. Sep 2004 B2
6804580 Stoddard et al. Oct 2004 B1
6804656 Rosenfeld et al. Oct 2004 B1
6810411 Coughlin et al. Oct 2004 B1
6816192 Nishikawa Nov 2004 B1
6816754 Mukai et al. Nov 2004 B2
6836703 Wang et al. Dec 2004 B2
6839612 Sanchez et al. Jan 2005 B2
6840904 Goldberg Jan 2005 B2
6845297 Allard Jan 2005 B2
6852107 Wang et al. Feb 2005 B2
6853878 Hirayama et al. Feb 2005 B2
6853880 Sakagami et al. Feb 2005 B2
6871117 Wang et al. Mar 2005 B2
6879879 Jouppi et al. Apr 2005 B2
6888333 Laby May 2005 B2
6892112 Wang et al. May 2005 B2
6893267 Yueh May 2005 B1
6895305 Lathan et al. May 2005 B2
6898484 Lemelson et al. May 2005 B2
6914622 Smith et al. Jul 2005 B1
6925357 Wang et al. Aug 2005 B2
6951535 Ghodoussi et al. Oct 2005 B2
6952470 Tioe et al. Oct 2005 B1
6957712 Song et al. Oct 2005 B2
6958706 Chaco et al. Oct 2005 B2
6965394 Gutta et al. Nov 2005 B2
6990112 Brent et al. Jan 2006 B1
6995664 Darling Feb 2006 B1
7007235 Hussein et al. Feb 2006 B1
7011538 Chang Mar 2006 B2
7015934 Toyama et al. Mar 2006 B2
RE39080 Johnston Apr 2006 E
7030757 Matsuhira et al. Apr 2006 B2
7053578 Diehl et al. May 2006 B2
7055210 Keppler et al. Jun 2006 B2
7058689 Parker et al. Jun 2006 B2
7092001 Schulz Aug 2006 B2
7096090 Zweig Aug 2006 B1
7115102 Abbruscato Oct 2006 B2
7117067 Mclurkin et al. Oct 2006 B2
7123285 Smith et al. Oct 2006 B2
7123974 Hamilton Oct 2006 B1
7123991 Graf et al. Oct 2006 B2
7127325 Nagata et al. Oct 2006 B2
7129970 James et al. Oct 2006 B2
7133062 Castles et al. Nov 2006 B2
7142945 Wang et al. Nov 2006 B2
7142947 Wang et al. Nov 2006 B2
7151982 Liff et al. Dec 2006 B2
7154526 Foote et al. Dec 2006 B2
7155306 Haitin et al. Dec 2006 B2
7156809 Quy Jan 2007 B2
7158859 Wang et al. Jan 2007 B2
7158860 Wang et al. Jan 2007 B2
7158861 Wang et al. Jan 2007 B2
7161322 Wang et al. Jan 2007 B2
7162338 Goncalves et al. Jan 2007 B2
7164969 Wang et al. Jan 2007 B2
7164970 Wang et al. Jan 2007 B2
7167448 Wookey et al. Jan 2007 B2
7171286 Wang et al. Jan 2007 B2
7174238 Zweig Feb 2007 B1
7181455 Wookey et al. Feb 2007 B2
7184559 Jouppi Feb 2007 B2
7188000 Chiappetta et al. Mar 2007 B2
7199790 Rosenberg et al. Apr 2007 B2
7202851 Cunningham et al. Apr 2007 B2
7206627 Abovitz et al. Apr 2007 B2
7215786 Nakadai et al. May 2007 B2
7219364 Bolle et al. May 2007 B2
7222000 Wang et al. May 2007 B2
7227334 Yang et al. Jun 2007 B2
7256708 Rosenfeld et al. Aug 2007 B2
7262573 Wang et al. Aug 2007 B2
7283153 Provost et al. Oct 2007 B2
7289883 Wang et al. Oct 2007 B2
7292257 Kang et al. Nov 2007 B2
7292912 Wang et al. Nov 2007 B2
7305114 Wolff et al. Dec 2007 B2
7317685 Flott et al. Jan 2008 B1
7321807 Laski Jan 2008 B2
7332890 Cohen et al. Feb 2008 B2
7333642 Green Feb 2008 B2
7346429 Goldenberg et al. Mar 2008 B2
7352153 Yan Apr 2008 B2
7363121 Chen et al. Apr 2008 B1
7382399 Mccall et al. Jun 2008 B1
7386730 Uchikubo Jun 2008 B2
7391432 Terada Jun 2008 B2
7400578 Guthrie et al. Jul 2008 B2
7404140 O'Rourke Jul 2008 B2
7421470 Ludwig et al. Sep 2008 B2
7430209 Porter Sep 2008 B2
7432949 Remy et al. Oct 2008 B2
7433921 Ludwig et al. Oct 2008 B2
7437463 Valletutti Oct 2008 B1
7441953 Banks Oct 2008 B2
7467211 Herman et al. Dec 2008 B1
7483867 Ansari et al. Jan 2009 B2
7492731 Hagendorf Feb 2009 B2
7510428 Obata et al. Mar 2009 B2
7523069 Friedl et al. Apr 2009 B1
7525281 Koyanagi et al. Apr 2009 B2
7535486 Motomura et al. May 2009 B2
7557758 Rofougaran Jul 2009 B2
7587260 Bruemmer et al. Sep 2009 B2
7587512 Ta et al. Sep 2009 B2
7590060 Miceli Sep 2009 B2
7593030 Wang et al. Sep 2009 B2
7599290 Dos Remedios et al. Oct 2009 B2
7624166 Foote et al. Nov 2009 B2
7630314 Dos Remedios et al. Dec 2009 B2
7631833 Ghaleb et al. Dec 2009 B1
7643051 Sandberg et al. Jan 2010 B2
7647320 Mok et al. Jan 2010 B2
7657560 Dirienzo Feb 2010 B1
7680038 Gourlay Mar 2010 B1
7693757 Zimmerman Apr 2010 B2
7698432 Short et al. Apr 2010 B2
7703113 Dawson Apr 2010 B2
7719229 Kaneko et al. May 2010 B2
7737993 Kaasila et al. Jun 2010 B2
7739383 Short et al. Jun 2010 B1
7756614 Jouppi Jul 2010 B2
7761185 Wang et al. Jul 2010 B2
7769492 Wang et al. Aug 2010 B2
7769705 Luechtefeld Aug 2010 B1
7774158 Domingues Goncalves et al. Aug 2010 B2
7813836 Wang et al. Oct 2010 B2
7831575 Trossell et al. Nov 2010 B2
7835775 Sawayama et al. Nov 2010 B2
7860680 Arms et al. Dec 2010 B2
7861366 Hahm et al. Jan 2011 B2
7885822 Akers et al. Feb 2011 B2
7890382 Robb et al. Feb 2011 B2
7912583 Gutmann et al. Mar 2011 B2
RE42288 Degioanni Apr 2011 E
7924323 Walker et al. Apr 2011 B2
7949616 Levy et al. May 2011 B2
7956894 Akers et al. Jun 2011 B2
7957837 Ziegler et al. Jun 2011 B2
7962607 Chang Jun 2011 B1
7982763 King Jul 2011 B2
7982769 Jenkins et al. Jul 2011 B2
7987069 Rodgers et al. Jul 2011 B2
8077963 Wang et al. Dec 2011 B2
8116910 Walters et al. Feb 2012 B2
8126960 Obradovich et al. Feb 2012 B2
8170241 Roe et al. May 2012 B2
8179418 Wright et al. May 2012 B2
8180486 Saito et al. May 2012 B2
8209051 Wang et al. Jun 2012 B2
8212533 Ota Jul 2012 B2
8265793 Cross et al. Sep 2012 B2
8287522 Moses et al. Oct 2012 B2
8292807 Perkins et al. Oct 2012 B2
8320534 Kim et al. Nov 2012 B2
8340654 Bratton et al. Dec 2012 B2
8340819 Mangaser et al. Dec 2012 B2
8348675 Dohrmann Jan 2013 B2
8374171 Cho et al. Feb 2013 B2
8400491 Panpaliya et al. Mar 2013 B1
8401275 Wang et al. Mar 2013 B2
8423035 Dinan Apr 2013 B1
8423284 O'Shea Apr 2013 B2
8451731 Lee et al. May 2013 B1
8463435 Herzog et al. Jun 2013 B2
8503340 Xu Aug 2013 B1
8515577 Wang et al. Aug 2013 B2
8527094 Kumar et al. Sep 2013 B2
8532860 Daly Sep 2013 B2
8610786 Ortiz Dec 2013 B2
8612051 Norman et al. Dec 2013 B2
8639797 Pan et al. Jan 2014 B1
8670017 Stuart et al. Mar 2014 B2
8726454 Gilbert et al. May 2014 B2
8836751 Ballantyne et al. Sep 2014 B2
8849679 Wang et al. Sep 2014 B2
8849680 Wright et al. Sep 2014 B2
8861750 Roe et al. Oct 2014 B2
8897920 Wang et al. Nov 2014 B2
8902278 Pinter et al. Dec 2014 B2
9628499 Yu Apr 2017 B1
20010002448 Wilson et al. May 2001 A1
20010010053 Ben-Shachar et al. Jul 2001 A1
20010020200 Das et al. Sep 2001 A1
20010034475 Flach et al. Oct 2001 A1
20010034544 Mo Oct 2001 A1
20010037163 Allard Nov 2001 A1
20010044835 Schober Nov 2001 A1
20010048464 Barnett Dec 2001 A1
20010051881 Filler Dec 2001 A1
20010054071 Loeb Dec 2001 A1
20010055373 Yamashita Dec 2001 A1
20020015296 Howell et al. Feb 2002 A1
20020027597 Sachau Mar 2002 A1
20020027652 Paromtchik et al. Mar 2002 A1
20020033880 Sul et al. Mar 2002 A1
20020038168 Kasuga et al. Mar 2002 A1
20020044201 Alexander et al. Apr 2002 A1
20020049517 Ruffner Apr 2002 A1
20020055917 Muraca May 2002 A1
20020057279 Jouppi May 2002 A1
20020058929 Green May 2002 A1
20020059587 Cofano et al. May 2002 A1
20020063726 Jouppi May 2002 A1
20020073429 Beane et al. Jun 2002 A1
20020082498 Wendt et al. Jun 2002 A1
20020085030 Ghani Jul 2002 A1
20020095238 Ahlin et al. Jul 2002 A1
20020095239 Wallach et al. Jul 2002 A1
20020098879 Rheey Jul 2002 A1
20020104094 Alexander et al. Aug 2002 A1
20020106998 Presley et al. Aug 2002 A1
20020109770 Terada Aug 2002 A1
20020109775 White et al. Aug 2002 A1
20020111988 Sato Aug 2002 A1
20020120362 Lathan et al. Aug 2002 A1
20020128985 Greenwald Sep 2002 A1
20020130950 James et al. Sep 2002 A1
20020133062 Arling et al. Sep 2002 A1
20020141595 Jouppi Oct 2002 A1
20020143923 Alexander Oct 2002 A1
20020177925 Onishi et al. Nov 2002 A1
20020183894 Wang et al. Dec 2002 A1
20020184674 Xi et al. Dec 2002 A1
20020186243 Ellis et al. Dec 2002 A1
20030021107 Howell et al. Jan 2003 A1
20030030397 Simmons Feb 2003 A1
20030048481 Kobayashi et al. Mar 2003 A1
20030050733 Wang et al. Mar 2003 A1
20030050734 Lapham Mar 2003 A1
20030060808 Wilk Mar 2003 A1
20030063600 Noma et al. Apr 2003 A1
20030069752 Ledain et al. Apr 2003 A1
20030074674 Magliaro Apr 2003 A1
20030080901 Piotrowski May 2003 A1
20030100892 Morley et al. May 2003 A1
20030104806 Ruef et al. Jun 2003 A1
20030112823 Collins et al. Jun 2003 A1
20030114962 Niemeyer Jun 2003 A1
20030120714 Wolff et al. Jun 2003 A1
20030126361 Slater et al. Jul 2003 A1
20030135097 Wiederhold et al. Jul 2003 A1
20030135203 Wang et al. Jul 2003 A1
20030144579 Buss Jul 2003 A1
20030144649 Ghodoussi et al. Jul 2003 A1
20030151658 Smith Aug 2003 A1
20030152145 Kawakita Aug 2003 A1
20030171710 Bassuk et al. Sep 2003 A1
20030174285 Trumbull Sep 2003 A1
20030180697 Kim et al. Sep 2003 A1
20030195662 Wang et al. Oct 2003 A1
20030199000 Valkirs et al. Oct 2003 A1
20030206242 Choi Nov 2003 A1
20030212472 Mckee Nov 2003 A1
20030216833 Mukai et al. Nov 2003 A1
20030216834 Allard Nov 2003 A1
20030220541 Salisbury et al. Nov 2003 A1
20030220715 Kneifel et al. Nov 2003 A1
20030231244 Bonilla et al. Dec 2003 A1
20030232649 Gizis et al. Dec 2003 A1
20030236590 Park et al. Dec 2003 A1
20040001197 Ko et al. Jan 2004 A1
20040001676 Colgan et al. Jan 2004 A1
20040008138 Hockley, Jr. et al. Jan 2004 A1
20040010344 Hiratsuka et al. Jan 2004 A1
20040012362 Tsurumi Jan 2004 A1
20040013295 Sabe et al. Jan 2004 A1
20040017475 Akers et al. Jan 2004 A1
20040019406 Wang et al. Jan 2004 A1
20040024490 Mclurkin et al. Feb 2004 A1
20040041904 Lapalme et al. Mar 2004 A1
20040065073 Nash Apr 2004 A1
20040068657 Alexander et al. Apr 2004 A1
20040078219 Kaylor et al. Apr 2004 A1
20040080610 James et al. Apr 2004 A1
20040088077 Jouppi et al. May 2004 A1
20040088078 Jouppi et al. May 2004 A1
20040093409 Thompson et al. May 2004 A1
20040095516 Rohlicek May 2004 A1
20040098167 Yi et al. May 2004 A1
20040102167 Shim et al. May 2004 A1
20040107254 Ludwig et al. Jun 2004 A1
20040107255 Ludwig et al. Jun 2004 A1
20040117065 Wang et al. Jun 2004 A1
20040117067 Jouppi Jun 2004 A1
20040123158 Roskind Jun 2004 A1
20040135879 Stacy et al. Jul 2004 A1
20040138547 Wang et al. Jul 2004 A1
20040143421 Wang et al. Jul 2004 A1
20040148638 Weisman et al. Jul 2004 A1
20040150725 Taguchi Aug 2004 A1
20040153211 Kamoto et al. Aug 2004 A1
20040157612 Kim Aug 2004 A1
20040162637 Wang et al. Aug 2004 A1
20040167666 Wang et al. Aug 2004 A1
20040167668 Wang et al. Aug 2004 A1
20040168148 Goncalves et al. Aug 2004 A1
20040170300 Jouppi Sep 2004 A1
20040172301 Mihai et al. Sep 2004 A1
20040172306 Wohl et al. Sep 2004 A1
20040174129 Wang et al. Sep 2004 A1
20040175684 Kaasa et al. Sep 2004 A1
20040179714 Jouppi Sep 2004 A1
20040186623 Dooley et al. Sep 2004 A1
20040189700 Mandavilli et al. Sep 2004 A1
20040201602 Mody et al. Oct 2004 A1
20040205664 Prendergast Oct 2004 A1
20040215490 Duchon et al. Oct 2004 A1
20040218099 Washington Nov 2004 A1
20040222638 Bednyak Nov 2004 A1
20040224676 Iseki Nov 2004 A1
20040230340 Fukuchi et al. Nov 2004 A1
20040240981 Dothan et al. Dec 2004 A1
20040241981 Doris et al. Dec 2004 A1
20040260790 Balloni et al. Dec 2004 A1
20050003330 Asgarinejad et al. Jan 2005 A1
20050004708 Goldenberg et al. Jan 2005 A1
20050007445 Foote et al. Jan 2005 A1
20050013149 Trossell Jan 2005 A1
20050021182 Wang et al. Jan 2005 A1
20050021183 Wang et al. Jan 2005 A1
20050021187 Wang et al. Jan 2005 A1
20050021309 Alexander et al. Jan 2005 A1
20050024485 Castles et al. Feb 2005 A1
20050027567 Taha Feb 2005 A1
20050027794 Decker Feb 2005 A1
20050028221 Liu et al. Feb 2005 A1
20050035862 Wildman et al. Feb 2005 A1
20050038416 Wang et al. Feb 2005 A1
20050038564 Burick Feb 2005 A1
20050049898 Hirakawa Mar 2005 A1
20050052527 Remy et al. Mar 2005 A1
20050060211 Xiao et al. Mar 2005 A1
20050065435 Rauch et al. Mar 2005 A1
20050065438 Miller Mar 2005 A1
20050065659 Tanaka et al. Mar 2005 A1
20050065813 Mishelevich et al. Mar 2005 A1
20050071046 Miyazaki et al. Mar 2005 A1
20050073575 Thacher et al. Apr 2005 A1
20050078816 Sekiguchi et al. Apr 2005 A1
20050083011 Yang et al. Apr 2005 A1
20050099493 Chew May 2005 A1
20050104964 Bovyrin et al. May 2005 A1
20050110867 Schulz May 2005 A1
20050122390 Wang et al. Jun 2005 A1
20050125083 Kiko Jun 2005 A1
20050125098 Wang et al. Jun 2005 A1
20050149364 Ombrellaro Jul 2005 A1
20050152447 Jouppi et al. Jul 2005 A1
20050152565 Jouppi et al. Jul 2005 A1
20050154265 Miro et al. Jul 2005 A1
20050168568 Jouppi Aug 2005 A1
20050182322 Grispo Aug 2005 A1
20050192721 Jouppi Sep 2005 A1
20050204438 Wang et al. Sep 2005 A1
20050212478 Takenaka Sep 2005 A1
20050219356 Smith et al. Oct 2005 A1
20050225634 Brunetti et al. Oct 2005 A1
20050231156 Yan Oct 2005 A1
20050231586 Rodman et al. Oct 2005 A1
20050232647 Takenaka Oct 2005 A1
20050234592 Mcgee et al. Oct 2005 A1
20050264649 Chang et al. Dec 2005 A1
20050267826 Levy et al. Dec 2005 A1
20050283414 Fernandes et al. Dec 2005 A1
20050286759 Zitnick et al. Dec 2005 A1
20060007943 Fellman Jan 2006 A1
20060010028 Sorensen Jan 2006 A1
20060013263 Fellman Jan 2006 A1
20060013469 Wang et al. Jan 2006 A1
20060013488 Inoue Jan 2006 A1
20060014388 Lur et al. Jan 2006 A1
20060020694 Nag et al. Jan 2006 A1
20060029065 Fellman Feb 2006 A1
20060029092 Luo Feb 2006 A1
20060047365 Ghodoussi et al. Mar 2006 A1
20060048286 Donato Mar 2006 A1
20060052676 Wang et al. Mar 2006 A1
20060052684 Takahashi et al. Mar 2006 A1
20060056655 Wen et al. Mar 2006 A1
20060056837 Vapaakoski Mar 2006 A1
20060064212 Thorne Mar 2006 A1
20060066609 Iodice et al. Mar 2006 A1
20060071797 Rosenfeld et al. Apr 2006 A1
20060074525 Close et al. Apr 2006 A1
20060074719 Horner Apr 2006 A1
20060082642 Wang et al. Apr 2006 A1
20060087746 Lipow Apr 2006 A1
20060095158 Lee et al. May 2006 A1
20060095170 Yang et al. May 2006 A1
20060098573 Beer et al. May 2006 A1
20060103659 Karandikar et al. May 2006 A1
20060104279 Fellman et al. May 2006 A1
20060106493 Niemeyer et al. May 2006 A1
20060122482 Mariotti et al. Jun 2006 A1
20060125356 Meek et al. Jun 2006 A1
20060142983 Sorensen et al. Jun 2006 A1
20060149418 Anvari Jul 2006 A1
20060161136 Anderson Jul 2006 A1
20060161303 Wang et al. Jul 2006 A1
20060164546 Adachi Jul 2006 A1
20060171515 Hintermeister et al. Aug 2006 A1
20060173708 Vining et al. Aug 2006 A1
20060173712 Joubert Aug 2006 A1
20060178559 Kumar et al. Aug 2006 A1
20060178776 Feingold et al. Aug 2006 A1
20060178777 Park et al. Aug 2006 A1
20060189393 Edery Aug 2006 A1
20060195569 Barker Aug 2006 A1
20060224781 Tsao et al. Oct 2006 A1
20060247045 Jeong et al. Nov 2006 A1
20060259193 Wang et al. Nov 2006 A1
20060268704 Ansari et al. Nov 2006 A1
20060271238 Choi et al. Nov 2006 A1
20060271400 Clements et al. Nov 2006 A1
20060293788 Pogodin Dec 2006 A1
20070021871 Wang et al. Jan 2007 A1
20070025711 Marcus Feb 2007 A1
20070046237 Lakshmanan et al. Mar 2007 A1
20070050937 Song et al. Mar 2007 A1
20070064092 Sandbeg et al. Mar 2007 A1
20070078566 Wang et al. Apr 2007 A1
20070093279 Janik Apr 2007 A1
20070112700 Den et al. May 2007 A1
20070116152 Thesling May 2007 A1
20070117516 Saidi et al. May 2007 A1
20070120965 Sandberg et al. May 2007 A1
20070122783 Habashi May 2007 A1
20070133407 Choi et al. Jun 2007 A1
20070135967 Jung et al. Jun 2007 A1
20070142964 Abramson Jun 2007 A1
20070170886 Plishner Jul 2007 A1
20070176060 White et al. Aug 2007 A1
20070192910 Vu et al. Aug 2007 A1
20070197896 Moll et al. Aug 2007 A1
20070198128 Ziegler et al. Aug 2007 A1
20070198130 Wang et al. Aug 2007 A1
20070199108 Angle et al. Aug 2007 A1
20070216347 Kaneko et al. Sep 2007 A1
20070226949 Hahm et al. Oct 2007 A1
20070250212 Halloran et al. Oct 2007 A1
20070255706 Iketani et al. Nov 2007 A1
20070262884 Goncalves et al. Nov 2007 A1
20070273751 Sachau Nov 2007 A1
20070290040 Wurman et al. Dec 2007 A1
20070291109 Wang et al. Dec 2007 A1
20070291128 Wang et al. Dec 2007 A1
20080009969 Bruemmer et al. Jan 2008 A1
20080011904 Cepollina et al. Jan 2008 A1
20080027591 Lenser et al. Jan 2008 A1
20080033641 Medalia Feb 2008 A1
20080045804 Williams Feb 2008 A1
20080051985 D'Andrea et al. Feb 2008 A1
20080065268 Wang et al. Mar 2008 A1
20080082211 Wang et al. Apr 2008 A1
20080086241 Phillips et al. Apr 2008 A1
20080091340 Milstein et al. Apr 2008 A1
20080126132 Warner et al. May 2008 A1
20080133052 Jones et al. Jun 2008 A1
20080161969 Lee et al. Jul 2008 A1
20080174570 Jobs et al. Jul 2008 A1
20080201016 Finlay Aug 2008 A1
20080201017 Wang et al. Aug 2008 A1
20080215987 Alexander et al. Sep 2008 A1
20080229531 Takida Sep 2008 A1
20080232763 Brady Sep 2008 A1
20080255703 Wang et al. Oct 2008 A1
20080263451 Portele et al. Oct 2008 A1
20080263628 Norman et al. Oct 2008 A1
20080267069 Thielman et al. Oct 2008 A1
20080269949 Norman et al. Oct 2008 A1
20080281467 Pinter Nov 2008 A1
20080306375 Sayler et al. Dec 2008 A1
20090030552 Nakadai et al. Jan 2009 A1
20090044334 Parsell et al. Feb 2009 A1
20090049640 Lee et al. Feb 2009 A1
20090055023 Walters et al. Feb 2009 A1
20090070135 Parida et al. Mar 2009 A1
20090086013 Thapa Apr 2009 A1
20090102919 Zamierowski et al. Apr 2009 A1
20090105882 Wang et al. Apr 2009 A1
20090106679 Anzures et al. Apr 2009 A1
20090122699 Alperovitch et al. May 2009 A1
20090125147 Wang et al. May 2009 A1
20090144425 Marr et al. Jun 2009 A1
20090164255 Menschik et al. Jun 2009 A1
20090164657 Li et al. Jun 2009 A1
20090171170 Li et al. Jul 2009 A1
20090177323 Ziegler et al. Jul 2009 A1
20090177641 Raghavan Jul 2009 A1
20090237317 Rofougaran Sep 2009 A1
20090240371 Wang et al. Sep 2009 A1
20090248200 Root Oct 2009 A1
20090259339 Wright et al. Oct 2009 A1
20100010672 Wang et al. Jan 2010 A1
20100010673 Wang et al. Jan 2010 A1
20100017046 Cheung et al. Jan 2010 A1
20100019715 Roe et al. Jan 2010 A1
20100026239 Li et al. Feb 2010 A1
20100030578 Siddique et al. Feb 2010 A1
20100031156 Doyle Feb 2010 A1
20100051596 Diedrick et al. Mar 2010 A1
20100063848 Kremer et al. Mar 2010 A1
20100066804 Shoemake et al. Mar 2010 A1
20100070079 Mangaser et al. Mar 2010 A1
20100073490 Wang et al. Mar 2010 A1
20100076600 Cross et al. Mar 2010 A1
20100085874 Noy et al. Apr 2010 A1
20100088232 Gale Apr 2010 A1
20100115418 Wang et al. May 2010 A1
20100116566 Ohm et al. May 2010 A1
20100131103 Herzog et al. May 2010 A1
20100145479 Griffiths Jun 2010 A1
20100157825 Anderlind et al. Jun 2010 A1
20100171826 Hamilton et al. Jul 2010 A1
20100191375 Wright et al. Jul 2010 A1
20100228249 Mohr et al. Sep 2010 A1
20100268383 Wang et al. Oct 2010 A1
20100278086 Pochiraju et al. Nov 2010 A1
20100286905 Goncalves et al. Nov 2010 A1
20100301679 Murray et al. Dec 2010 A1
20100323783 Nonaka et al. Dec 2010 A1
20110022705 Yellamraju et al. Jan 2011 A1
20110050841 Wang et al. Mar 2011 A1
20110071675 Wells et al. Mar 2011 A1
20110071702 Wang et al. Mar 2011 A1
20110072114 Hoffert et al. Mar 2011 A1
20110149751 Li Jun 2011 A1
20110153198 Kokkas et al. Jun 2011 A1
20110172822 Ziegler et al. Jul 2011 A1
20110187875 Sanchez et al. Aug 2011 A1
20110190930 Hanrahan et al. Aug 2011 A1
20110193949 Nambakam et al. Aug 2011 A1
20110195701 Cook et al. Aug 2011 A1
20110213210 Temby et al. Sep 2011 A1
20110218674 Stuart et al. Sep 2011 A1
20110245973 Wang et al. Oct 2011 A1
20110249073 Cranfill Oct 2011 A1
20110280551 Sammon Nov 2011 A1
20110292193 Wang et al. Dec 2011 A1
20110301759 Wang et al. Dec 2011 A1
20110306400 Nguyen Dec 2011 A1
20120023506 Maeckel et al. Jan 2012 A1
20120036484 Zhang et al. Feb 2012 A1
20120059946 Wang Mar 2012 A1
20120072023 Ota Mar 2012 A1
20120072024 Wang et al. Mar 2012 A1
20120092157 Tran Apr 2012 A1
20120095352 Tran Apr 2012 A1
20120113856 Krishnaswamy May 2012 A1
20120191246 Roe et al. Jul 2012 A1
20120191464 Stuart et al. Jul 2012 A1
20120203731 Nelson et al. Aug 2012 A1
20120291809 Kuhe et al. Nov 2012 A1
20130162755 Swanson Jun 2013 A1
20130250938 Anandakumar et al. Sep 2013 A1
20130322242 Swenson Dec 2013 A1
20140047022 Chan et al. Feb 2014 A1
20140085543 Hartley et al. Mar 2014 A1
20140111517 Vela Apr 2014 A1
20140135990 Stuart et al. May 2014 A1
20140139616 Pinter et al. May 2014 A1
20140155755 Pinter et al. Jun 2014 A1
20170078171 Tapia Mar 2017 A1
20170109630 Brew Apr 2017 A1
Foreign Referenced Citations (129)
Number Date Country
1216200 May 2000 AU
2289697 Nov 1998 CA
1404695 Mar 2003 CN
1554193 Dec 2004 CN
1554985 Dec 2004 CN
1561923 Jan 2005 CN
1743144 Mar 2006 CN
101049017 Oct 2007 CN
101106939 Jan 2008 CN
101151614 Mar 2008 CN
100407729 Jul 2008 CN
101390098 Mar 2009 CN
101507260 Aug 2009 CN
101730894 Jun 2010 CN
101866396 Oct 2010 CN
101978365 Feb 2011 CN
102203759 Sep 2011 CN
101106939 Nov 2011 CN
466492 Jan 1992 EP
488673 Jun 1992 EP
981905 Jan 2002 EP
1262142 Dec 2002 EP
1304872 Apr 2003 EP
1536660 Jun 2005 EP
1573406 Sep 2005 EP
1594660 Nov 2005 EP
1763243 Mar 2007 EP
1791464 Jun 2007 EP
1800476 Jun 2007 EP
1819108 Aug 2007 EP
1856644 Nov 2007 EP
1536660 Apr 2008 EP
1928310 Jun 2008 EP
1232610 Jan 2009 EP
2027716 Feb 2009 EP
2145274 Jan 2010 EP
2214111 Aug 2010 EP
2263158 Dec 2010 EP
2300930 Mar 2011 EP
2342651 Jul 2011 EP
2431261 Apr 2007 GB
7-194609 Aug 1995 JP
7-213753 Aug 1995 JP
7-248823 Sep 1995 JP
7-257422 Oct 1995 JP
8-084328 Mar 1996 JP
8-320727 Dec 1996 JP
9-267276 Oct 1997 JP
10-79097 Mar 1998 JP
10-288689 Oct 1998 JP
11-220706 Aug 1999 JP
2000-032319 Jan 2000 JP
2000-049800 Feb 2000 JP
2000-079587 Mar 2000 JP
2000-196876 Jul 2000 JP
2001-125641 May 2001 JP
2001-147718 May 2001 JP
2001-179663 Jul 2001 JP
2001-188124 Jul 2001 JP
2001-198865 Jul 2001 JP
2001-198868 Jul 2001 JP
2001-199356 Jul 2001 JP
2002-000574 Jan 2002 JP
2002-046088 Feb 2002 JP
2002-101333 Apr 2002 JP
2002-112970 Apr 2002 JP
2002-235423 Aug 2002 JP
2002-305743 Oct 2002 JP
2002-321180 Nov 2002 JP
2002-355779 Dec 2002 JP
2004-181229 Jul 2004 JP
2004-524824 Aug 2004 JP
2004-261941 Sep 2004 JP
2004-289379 Oct 2004 JP
2005-028066 Feb 2005 JP
2005-059170 Mar 2005 JP
2005-111083 Apr 2005 JP
2006-508806 Mar 2006 JP
2006-109094 Apr 2006 JP
2006-224294 Aug 2006 JP
2006-246438 Sep 2006 JP
2007-007040 Jan 2007 JP
2007007040 Jan 2007 JP
2007-081646 Mar 2007 JP
2007-232208 Sep 2007 JP
2007-316966 Dec 2007 JP
2009-125133 Jun 2009 JP
2010-064154 Mar 2010 JP
2010-532109 Sep 2010 JP
2010-246954 Nov 2010 JP
2006-0037979 May 2006 KR
2009-0012542 Feb 2009 KR
2010-0019479 Feb 2010 KR
2010-0139037 Dec 2010 KR
9306690 Apr 1993 WO
9742761 Nov 1997 WO
199851078 Nov 1998 WO
9967067 Dec 1999 WO
2000025516 May 2000 WO
2000033726 Jun 2000 WO
0131861 May 2001 WO
2003077745 Sep 2003 WO
2004008738 Jan 2004 WO
2004012018 Feb 2004 WO
2004075456 Sep 2004 WO
2006012797 Feb 2006 WO
2006044847 Apr 2006 WO
2006078611 Jul 2006 WO
2007041295 Apr 2007 WO
2007041038 Jun 2007 WO
2008100272 Aug 2008 WO
2008100272 Oct 2008 WO
2009117274 Sep 2009 WO
2009128997 Oct 2009 WO
2009145958 Dec 2009 WO
2010006205 Jan 2010 WO
2010006211 Jan 2010 WO
2010033666 Mar 2010 WO
2010047881 Apr 2010 WO
2010062798 Jun 2010 WO
2010065257 Jun 2010 WO
2010120407 Oct 2010 WO
2011028589 Mar 2011 WO
2011028589 Apr 2011 WO
2011097130 Aug 2011 WO
2011097132 Aug 2011 WO
2011109336 Sep 2011 WO
2011097132 Dec 2011 WO
2011149902 Dec 2011 WO
Non-Patent Literature Citations (193)
Entry
Jouppi et al., “BiReality: Mutually-Immersive Telepresence”, Proceedings of the 12th Annual ACM International Conference on Multimedia, Oct. 10-16, 2004, pp. 860-867.
Jouppi et al., “First Steps Towards Mutually-Immersive Mobile Telepresence”, Proceedings of the 2002 ACM Conference on Computer Supported Cooperative Work, Nov. 16-20, 2002, pp. 354-363.
Kanehiro et al., “Virtual Humanoid Robot Platform to Develop Controllers of Real Humanoid Robots without Porting”, IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, 2001, pp. 1093-1099.
Kaplan et al., “An Internet Accessible Telepresence”, Multimedia Systems Journal, vol. 5, 1996, 7 pages.
Keller et al., “Raven Interface Project”, The National Aviary's Teleconferencing Carnegie Mellon University Robot, Interaction and Visual Interface Design, School of Design, Carnegie Mellon University, 2001, 8 pages.
Khatib et al., “Robots in Human Environments”, Proceedings International Conference on Control, Automation, Robotics, and Vision ICRACV2000, 1999, 15 pages.
Knight et al., “Active Visual Alignment of a Mobile Stereo Camera Platform”, IEEE International Conference on Robotics and Automation, vol. 4, Apr. 24-28, 2000, pp. 3203-3208.
Koenen, Rob, “MPEG-4: a Powerful Standard for Use in Web and Television Environments”, (KPN Research), available online at <http://www.w3.org/Architecture/1998/06/Workshop/paper26>, Jul. 1, 1998, 4 pages.
Kurlowicz et al., “The Mini Mental State Examination (MMSE)”, Try This: Best Practices in Nursing Care to Older Adults, A series from the Hartford Institute of Geriatric Nursing, Issue No. 3, Jan. 1999, 2 pages.
Kuzuoka et al., “Can the GestureCam Be a Surrogate?”, Proceedings of the Fourth European Conference on Computer-Supported Cooperative Work, 1995, pp. 181-196.
Lane, Earl, “Automated Aides”, Available online at <http://www.cs.cum.edu/nursebot/web/press/nd4380.htm>, Oct. 17, 2000, 4 pages.
Lee et al., “A Novel Method of Surgical Instruction: International Telementoring”, World Journal of Urology, vol. 16, No. 6, Dec. 1998, pp. 367-370.
Leifer et al., “VIPRR: A Virtually in Person Rehabilitation Robot”, Proceedings of 1997 International Conference on Rehabilitation Robotics, Apr. 14-15, 1997, 4 pages.
Lemaire, Edward, “Using Communication Technology to Enhance Rehabilitation Services: A Solution Oriented User Manual”, Institute for Rehabilitation Research and Development, Terry Fox Mobile Clinic, The Rehabilitation Centre, Ottawa, Ontario, Canada, Version 2.0, available online at <http://www.irrd.ca/telehealth/distfile/distman_v2_1.pdf>, 1998-2001, 104 pages.
Library of Congress, “008-Fixed-Length Data Elements (NR)”, MARC 21 Format for Classification Data, available online at <http://www.loc.gov/marc/classification/cd008.html>, Jan. 2000, pp. 1-14.
Lim et al., “Control to Realize Human-Like Walking of a Biped Humanoid Robot”, IEEE International Conference on Systems, Man, and Cybernetics, 2000, vol. 5, 2000, pp. 3271-3276.
Linebarger et al., “Concurrency Control Mechanisms for Closely Coupled Collaboration in Multithreaded Virtual Environments”, Department of Computer Science and Engineering, Lehigh University, vol. 13, 2004, 40 pages.
Long, William F., “Robot Navigation Technology”, available online at <http://www.atp.nist.gov/eao/sp950-1/helpmate.htm>, Mar. 1999, 3 pages.
Luna, Nancy, “Robot a New Face on Geriatric Care”, ocregister.com, Aug. 6, 2003, 3 pages.
Mack, Michael J., “Minimally Invasive and Robotic Surgery”, The Journal of the American Medical Association, vol. 285, No. 5, 2001, pp. 568-572.
Mair, G. M., “Telepresence—The Technology and its Economic and Social Implications”, Technology and Society, 1997. ‘Technology and Society at a Time of Sweeping Change’. Proceedings, 1997 International Symposium, Jun. 20-21, 1997, pp. 118-124.
Martin, Anya, “Brighter Days Ahead”, Assisted Living Today, vol. 9, Nov./Dec. 2002, pp. 19-22.
McCardle et al., “The Challenge of Utilizing New Technology in Design Education”, Loughborough University, IDATER 2000, 2000, pp. 122-127.
Meng et al., “E-Service Robot in Home Healthcare”, Proceedings of the 2000 IEEE/RSJ, International Conference on Intelligent Robots and Systems, 2000, pp. 832-837.
Metz, Cade, “HP Labs”, available online at <http://www.pcmag.com/article2/0,2817,1130820,00.asp>, Jul. 1, 2003, 4 pages.
Michaud, Anne, “Introducing “Nursebot””, available online at <http://www.cs.cmu.edu/nursebot/web/press/globe 301/index.html>, 2001, 4 pages.
Microsoft Corporation, Inc., “Microsoft NetMeeting 3 Features excerpt from Official Microsoft NetMeeting 3.0 Book”, available online at <http://technet.microsoft.com/en-us/library/cc723477.aspx>, 2012, 6 pages.
Minsky, Marvin, “Telepresence”, OMNI Magazine, Jun. 1980, 6 pages.
Montemerlo, Reddy Whittaker, “Telepresence: Experiments in Next Generation Internet”, available online at <http://www.ri.cmu.edu/creative/archives.htm>, Oct. 20, 1998, 3 pages.
Murphy, Robin R., “Introduction to A1 Robotics”, A Bradford Book, The MIT Press, Cambridge, Massachusetts, London, England, 2000, 487 pages.
Nakajima et al., “A Multimedia Teleteaching System using an Electronic Whiteboard for Two Way Communication of Motion Videos and Chalkboards”, 2nd IEEE International Workshop on Robot and Human Communication, 1993, pp. 436-441.
Nakazato et al., “Group-Based Interface for Content-Based Image Retrieval”, Proceedings of the Working Conference on Advanced Visual Interfaces, 2002, pp. 187-194.
Nakazato et al., “ImageGrouper: A Group-Oriented User Interface for Content-Based Image Retrieval and Digital Image Arrangement”, Journal of Visual Languages & Computing, vol. 14, No. 4, Aug. 2003, pp. 45-46.
NERSC, “Berkeley Lab's RAGE Telepresence Robot Captures R&D100 Award”, Available online at <https://www.nersc.gov/news-publications/news/nersc-center-news/2002/berkeley-lab-s-rage-telepresence-robot-captures-r-and-d100-award/>, Jul. 2, 2002, 2 pages.
Nomadic Technologies Inc., “Nomad XR4000 Hardware Manual”, Release 1.0, Mar. 1999, 34 pages.
Noritsugu et al., “Application of Rubber Artificial Muscle Manipulator as a Rehabilitation Robot”, Mechatronics, IEEE/ASME Transactions, vol. 2, No. 4, Dec. 1997, pp. 259-267.
North, Michael, “Telemedicine: Sample Script and Specifications for a Demonstration of Simple Medical Diagnosis and Treatment Using Live Two-Way Video on a Computer Network”, Greenstar Corporation, 1998, 5 pages.
Ogata et al., “Development of Emotional Communication Robot: WAMOEBA-2R—Experimental Evaluation”, Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, 2000, pp. 175-180.
Ogata et al., “Emotional Communication Robot: WAMOEBA-2R—Emotion Model and Evaluation Experiments”, Proceedings of the International Conference on Humanoid Robots, 2000, pp. 1-16.
Oh et al., “Autonomous Battery Recharging for Indoor Mobile Robots”, Proceedings of Australian Conference on Robotics and Automation, 2000, pp. 1-6.
Ojha, Anand K., “An application of Virtual Reality in Rehabilitation”, Proceedings of the 1994 IEEE Southeastcon 94. Creative Technology Transfer—A Global Affair, Apr. 1994, pp. 4-6.
Osborn, Jim, “Quality of Life Technology Center”, QoLT Research Overview: A National Science Foundation Engineering Research Center, Carnegie Mellon University of Pittsburgh, 2 pages.
Panusopone et al., “Performance comparison of MPEG-4 and H.263+ for streaming video applications”, Circuits Systems Signal Processing, vol. 20, No. 3, 2001, pp. 293-309.
Paulos et al., “A World Wide Web Telerobotic Remote Environment Browser”, Available online at <http://www.w3.org/Conferences/WWW4/Papers/326/>, 1995, 15 pages.
Paulos et al., “Designing Personal Tele-Embodiment”, Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, May 16-20, 1998, pp. 3173-3178.
Paulos, Eric J., “Personal Tele-Embodiment”, Dissertation, Doctor of Philosophy in Computer Science in the Graduate Division of the University of California at Berkeley, 2001, 282 pages.
Paulos, Eric John, “Personal Tele-Embodiment”, OskiCat Catalog Record, UCB Library Catalog, 2001, 3 pages.
Paulos et al., “Personal Tele-Embodiment”, Chapter 9 in Goldberg, et al., ed. “Beyond webcams”, MIT Press, Jan. 4, 2002, pp. 155-167.
Paulos, Eric John, “Personal Tele-Embodiment”, Introductory and cover pages from 2001 Dissertation including Contents table, together with e-mails relating thereto from UC Berkeley Libraries, as shelved at UC Berkeley Engineering Library (Northern Regional library Facility), May 8, 2002, 25 pages (including 4 pages of e-mails).
Paulos et al., “PRoP: Personal Roving Presence”, ACM:CHI Proceedings of CHI '98, 1998, 8 pages.
Cleary et al., “State of the Art in Surgical Robotics: Clinical Applications and Technology Challenges”, Feb. 24, 2002, pp. 1-26.
CMU Course 16×62, “Robot user's manual”, (describing the Nomad Scout), Carnegie Mellon University, Feb. 1, 2001, 11 pages.
CNN, “Floating ‘Droids’ to Roam Space Corridors of the Future”, Available online at <http://edition.cnn.com/2000/TECH/space/01/12/psa/>, Jan. 12, 2000, 3 pages.
cnn.com, “Paging Dr.Robot: Machine Helps Doctors with Patients”, Sep. 30, 2003, 3 pages.
Crowley, Susan L., “Hello to Our Future”, AARP Bulletin, Jan. 2000, 12 pages.
Dalton, Barnaby, “Techniques for Web Telerobotics”, PhD Thesis, University of Western Australia, 2001, 243 pages.
Dario et al., “A Robot Workstation for Diagnosis and Physical Therapy”, IEEE Catalog No. 88TH0234-5, 1989, pp. 67-72.
Davies, Brian, “Robotics in Minimally Invasive Surgery”, IEE Colloquium on Through the Keyhole: Microengineering in Minimally Invasive Surgery, 1995, pp. 1-2.
Davis, Erik, “Telefriend, Meet iRobot, The Smartest Webcam on Wheels”, Wired Magazine, Issue 8.09, Available online at <http://www.wired.com/wired/archive/8.09/irobot.html?pg=1&topic=&topic_set=>, Sep. 2000, 3 pages.
Dean et al., “1992 AAAI Robot Exhibition and Competition”, Articles, AI Magazine, vol. 14, No. 1, 1993, 15 pages.
Digiorgio, James, “Is Your Emergency Department of the Leading Edge?”, Chicago Hospital News, vol. 2, No. 12, 2005, 3 pages.
Dudenhoeffer et al., “Command and Control Architectures for Autonomous Micro-Robotic Forces”, FY00 Project Report, Idaho National Engineering and Environmental Laboratory Human Systems Engineering and Sciences Department, Idaho Falls, Apr. 2001, 43 pages.
Elhajj et al., “Real-Time Haptic Feedback in Internet-Based Telerobotic Operation”, IEEE International Conference on Electro/Information Technology, available online at <http://www.egr.msu.edu/˜ralab-web/cgi_bin/internet-teleoperation.php>, Jun. 2000, 10 pages.
Elhajj et al., “Supermedia in Internet-Based Telerobotic Operations”, Management of Multimedia on the InternetLecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg, vol. 2216, Oct. 29-Nov. 1, 2001, pp. 359-372.
Elhajj et al., “Synchronization and Control of Supermedia Transmission via the Internet”, Proceedings of 2001 International Symposium on Intelligent Multimedia Video and Speech Processing, May 2-4, 2001, pp. 320-323.
Ellison et al., “Telerounding and Patient Satisfaction Following Surgery”, vol. 199, No. 4, Oct. 2004, pp. 523-530.
Evans et al., “The Trackless Robotic Courier”, PYXIS HelpMate®, 2007, 3 pages.
Fels et al., “Developing a Video-Mediated Communication System for Hospitalized Children”, Telemedicine Journal, vol. 5, No. 2, 1999, 30 pages.
Fetterman et al., “Videoconferencing Over the Internet”, 2001, 8 pages.
Fiorini et al., “Health Care Robotics: A Progress Report”, IEEE International Conference on Robotics and Automation, Apr. 20-25, 1997, pp. 1271-1276.
Fong, Terrence, “Collaborative Control: A Robot-Centric Model for Vehicle Teleoperation”, Doctoral Dissertation, Technical Report CMU-RI-TR-01-34, Robotics Institute, Carnegie Mellon University, Nov. 2001, 197 pages.
Fulbright et al., “SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste of Storage Facilities”, Autonomous Robots, vol. 2, 1995, pp. 225-235.
Gaidioz et al., “Synchronizing Network Probes to Avoid Measurement Intrusiveness with the Network Weather Service”, Proceedings of the Ninth International Symposium on High-Performance Distributed Computing, 2000, pp. 147-154.
Garner et al., “The Application of Telepresence in Medicine”, BT Technology Journal, vol. 15, No. 4, Oct. 1, 1997, pp. 181-187.
Ghiasi et al., “A Generic Web-based Teleoperations Architecture: Details and Experience”, Proceedings of SPIE, Telemanipulator and Telepresence Technologies VI, vol. 3840, No. 234, Sep. 19, 1999, 14 pages.
Goldberg et al., “Collaborative Teleoperation via the Internet”, IEEE International Conference on Robotics and Automation (ICRA), vol. 2, 2000, pp. 2019-2024.
Goldberg et al., “Desktop Teleoperation via the World Wide Web”, IEEE International Conference on Robotics and Automation, vol. 1, May 21-27, 1995, pp. 654-659.
Goldenberg et al., “Telemedicine in Otolaryngology”, American Journal of Otolaryngology, vol. 23,No. 1, 2002, pp. 35-43.
Goldman, Lea, “Machine Dreams”, available online at <http://www.forbes.com/global/2002/0527/043.html>, May 27, 2002, 5 pages.
Gostai, “Gostai Jazz: Robotic Telepresence”, available online at <http://www.robotshop.com/media/files/pdf/gostai-azz-information-sheet.pdf>, 4 pages.
Gump, Michael D., “Robot Technology Improves VA Pharmacies”, U.S. Medicine Informational Central, Jul. 2001, 3 pages.
Al-Kassab et al., “A Review of Telemedicine”, Journal of Telemedicine and Telecare, vol. 5, Supplement 1, 1999, pp. 103-106.
Han et al., “Construction of an Omnidirectional Mobile Robot Platform Based on Active Dual-Wheel Caster Mechanisms and Development of a Control Simulator”, Journal of Intelligent and Robotic Systems, vol. 29, Issue 3, Nov. 2000, pp. 257-275.
Handley et al., “RFC 2327—SDP: Session Description Protocol”, available online at <http://www.faqs.org/rfcs/rfc2327.html>, Apr. 1998, 22 pages.
Hanebeck et al., “ROMAN: A Mobile Robotic Assistant for Indoor Service Applications”, IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, Sep. 7-11, 1997, pp. 518-525.
Harmo et al., “Moving Eye-Interactive Telepresence Over Internet With a Ball Shaped Mobile Robot”, available online at <http://automation.tkk.fi/files/tervetaas/MovingEye4.pdf>, 2000, 6 pages.
Haule et al., “Control Scheme for Delayed Teleoperation Tasks”, IEEE Pacific Rim Conference on Communications, Computers, and Signal Processing, May 17-19, 1995, pp. 157-160.
Hees, William P., “Communications Design for a Remote Presence Robot”, CSCI E-131b, Final Project, Jan. 14, 2002, 12 pages.
Herias et al., “Flexible Virtual and Remote Laboratory for Teaching Robotics”, Current Developments in Technology-Assisted Education, Jun. 2006, pp. 1959-1963.
Holmberg et al., “Development of a Holonomic Mobile Robot for Mobile Manipulation Tasks”, International Journal of Robotics Research, vol. 19, No. 11, Nov. 2000, pp. 1066-1074.
Ishiguro et al., “Integrating a Perceptual Information Infrastructure with Robotic Avatars: A Framework for Tele-Existence”, IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, 1999, pp. 1032-1038.
Ishihara et al., “Intelligent Microrobot DDS (Drug Delivery System) Measured and Controlled by Ultrasonics”, Intelligent Robots and Systems '91. Intelligence for Mechanical Systems, IEEE/RSJ International Workshop, vol. 2, Nov. 3-5, 1991, pp. 1145-1150.
ITU, “Call Completion Supplementary Services for H.323”, ITU-T, Telecommunication Standardization Sector of ITU, H.450.9, Series H: Audiovisual and Multimedia Systems, Nov. 2000, 63 pages.
ITU, “Call Intrusion Supplementary Service for H.323”, ITU-T, Telecommunication Standardization Sector of ITU, H.450.11, Series H: Audiovisual and Multimedia Systems, Mar. 2001, 59 pages.
ITU, “Packet-Based Multimedia Communications Systems”, ITU-T, Telecommunication Standardization Sector of ITU, H.323, Series H: Audiovisual and Multimedia Systems, Feb. 1998, 128 pages.
ITU, “Transmission of Non-Telephone Signals: A Far End Camera Control Protocol for Videoconferences Using H.224”, ITU-T, Telecommunication Standardization Sector of ITU, H.281, Nov. 1994, 12 pages.
Ivanova, Natali, “Master's Thesis: Internet Based Interface for Control of a Mobile Robot”, Department of Numerical Analysis and Computer Science, 2003, 59 pages.
Jacobs et al., “Applying Telemedicine to Outpatient Physical Therapy”, AMIA, Annual Symposium Proceedings, 2002, 1 page.
Jenkins et al., “Telehealth Advancing Nursing Practice”, Nursing Outlook, vol. 49, No. 2, Mar. 2001, pp. 100-105.
Johanson, Mathias, “Supporting Video-Mediated Communication Over the Internet”, Department of Computer Engineering, Chalmers University of Technology, Gothenburg, Sweden, 2003, 222 pages.
Screenshot Showing Google Date for Lemaire Telehealth Manual, screenshot retrieved on Dec. 18, 2014, 1 page.
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. I of IV, Jun. 24, 2013, pp. A1-A6357.
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. II of IV, Jun. 24, 2013, pp. A6849-A10634.
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. III of IV, Jun. 24, 2013, pp. A10654-A15517.
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. IV of IV, Jun. 24, 2013, pp. A15677-A18127.
Appeal from the U.S. District Court for the Central District of California in No. 11-CV-9185, Judge Percy Anderson, May 9, 2014, pp. 1-48.
Civil Minutes—General: Case No. CV 11-9185PA (AJWx), InTouch Tech., Inc. v. VGO Commons, Inc., Sep. 10, 2012, 7 pages.
Defendant VGO Communications, Inc.'s Invalidity Contentions Pursuant to the Feb. 27, 2012 Civil Minute Order, May 2, 2012, 143 pages.
Defendant—Counterclaimant VGO Communications, Inc.'s Supplemental Invalidity Contentions Pursuant to the Feb. 27, 2012 Civil Minute Order, May 14, 2012, 228 pages.
“Google translation of: Innovations Report”, From research project to television star: Care-O-bot in ZDF series, available online at <http://www.innovations-report.de/specials/printa.php?id=5157>, Sep. 28, 2001, 2 pages.
“Magne Charge”, Smart Power for Electric Vehicles, Aug. 26, 1997, 2 pages.
“More Online Robots: Robots that Manipulate”, available online at <http://ford.ieor.berkeley.edu/ir/robots_a2.html>, Retrieved on Nov. 23, 2010, Aug. 2001, 2 pages.
“MPEG File Format Summary”, available online at <http://www.fileformat.info/format/mpeg/egff.htm>, Feb. 1, 2001, 8 pages.
“Nomad Scout Language Reference Manual”, Nomadic Technologies, Software Version 2.7, Part No. DOC00002, Jul. 12, 1999, 47 pages.
“Nomad Scout User's Manual”, Nomadic Technologies, Software Version 2.7, Part No. DOC00004, Jul. 12, 1999, pp. 1-59.
Opening Brief for Plaintiff-Appellant InTouch Technologies, Inc., Appeal from the U.S. District Court for the Central District of California in Case No. 11-cv-9185, Judge Percy Anderson, Apr. 12, 2013, 187 pages.
PictureTel Adds New Features and Functionality to Its Award-Winning Live200 Desktop Videoconferencing System, PR Newswire Association, LLC, Gale, Cengage Learning, Jun. 13, 1997, 5 pages.
Reply Brief for Defendant-Appellee VGO Communications, Inc., Appeal from the U.S. District Court for the Central District of California, in Case No. 2:11-cv-9185, Judge Percy Anderson, May 28, 2013, 75 pages.
Reply Brief for Plaintiff-Appellant InTouch Technologies, Inc., Appeal from the U.S. District Court for the Central District of California in Case No. 11-cv-9185, Judge Percy Anderson, Jun. 14, 2013, 39 pages.
“ROBART I, II, III”, Spawar, Systems Center Pacific, 1998, 8 pages.
Using your Infrared Cell Phone Camera, available online at <http://www.catsdomain.com/xray/about.htm>, Courtesy of Internet Wayback Machine, Jan. 30, 2010, 4 pages.
West et al., “Design of Ball Wheel Mechanisms for Omnidirectional Vehicles with Full Mobility and Invariant Kinematics”, Journal of Mechanical Design, vol. 119, Jun. 1997, pp. 153-161.
Yamasaki et al., “Applying Personal Robots and Active Interface to Video Conference Systems”, 6th International Conference on Human Computer Interaction, vol. B, 1995, pp. 243-248.
Yamauchi, Brian, “PackBot: A Versatile Platform for Military Robotics”, Proceedings of SPIE for Military Robotics, 2004, pp. 228-237.
Weiss et al., “PEBBLES: A Personal Technology for Meeting Education, Social and Emotional Needs of Hospitalised Children”, Personal and Ubiquitous Computing, vol. 5, No. 3, Aug. 2001, pp. 157-168.
ACM Digital Library Record, “Autonomous Robots vol. 11 Issue 1”, available online at <http://dl.acm.org/citation.cfm?id=591550&picked=prox&cfid=360891374&cftoken=35225929>, Jul. 2001, 2 pages.
Active Media, Inc., “Saphira Software Manual”, Saphira Version 5.3, 1997, 105 pages.
Activmedia Robotics, “Pioneer 2/PeopleBot TM”, Operations Manual , Version 9, Oct. 2001, 78 pages.
Adams, Chris, “Simulation of Adaptive Behavior (SAB'02)”, Mobile Robotics Research Group, The Seventh International Conference, retrieved on Jan. 22, 2014, available online at <http://www.dai.ed.ac.uk/groups/mrg/MRG.html>, Aug. 4-11, 2002, 1 page.
Ando et al., “A Multimedia Self-service Terminal with Conferencing Functions”, Robot and Human Communication, Tokyo, Proceedings of 4th IEEE International Workshop, Jul. 5-7, 1995, pp. 357-362.
Android Amusement Corp., “What Marketing Secret Renting Robots from Android Amusement Corp!”, (Advertisement), 1982, 1 page.
Apple Inc., “I Phone”, iPhone Series, XP002696350, Sep. 21, 2012, pp. 1-29.
Applebome, Peter, “Planning Domesticated Robots for Tomorrow's Household”, New York Times, available online at <http://www.theoldrobots.com/images17/dc17.jpg>, Mar. 4, 1982, pp. 21 and 23.
Bar-Cohen et al., “Virtual Reality Robotic Telesurgery Simulations Using MEMICA Haptic System”, Proceedings of SPIE's 8th Annual International Symposium on Smart Structures and Materials, Mar. 5-8, 2001, pp. 1-7.
Barrett, Rick, “Video Conferencing Business Soars as Companies Cut Travel; Some Travel Cuts Are Permanent”, available online at <http://www.ivci.com/international_videoconferencing_news_videoconferencing_news_19.html>, May 13, 2002, 2 pages.
Bartholomew, “Pharmacy Apothecary”, available online at <http://classes.bnf.fr/ema/grands/034.htm>, retrieved on Jul. 26, 2012, 2 pages.
Baue et al., “Remote Telesurgical Mentoring: Feasibility and Efficacy”, IEEE, Proceedings of the 33rd Hawaii International Conference on System Sciences, 2000, pp. 1-9.
Bauer, Jeffrey C., “Service Robots in Health Care: The Evolution of Mechanical Solutions to Human Resource Problems”, Bon Secours Health System Inc., Technology Early Warning System(TEWS), Future of Service Robots in Health Care, Jun. 2003, pp. 1-10.
Bischoff, Rainer, “Design Concept and Realization of the Humanoid Service Robot HERMES”, Field and Service Robotics, Springer, 1998, pp. 485-492.
Blackwell, Gerry, “Video: A Wireless LAN Killer App?”, available online at <http://www.wi-fiplanet.com/columns/article.php/1010261/Video-A-Wireless-LAN-Killer>, Apr. 16, 2002, 4 pages.
Blaer et al., “TopBot: Automated Network Topology Detection With a Mobile Robot”, IEEE, Proceedings of the 2003 International Conference on Robotics 7 Automation, Taipei, Taiwan, Sep. 14-19, 2003, pp. 1582-1587.
Bradner, S., “The Internet Standards Process—Revision 3”, Network Working Group, Request for Comments: 2026, BCP: 9, Obsoletes: 1602, Category: Best Current Practice, Oct. 1996, pp. 1-36.
Brenner, Pablo, “A technical tutorial on the IEEE 802.11 protocol”, Breezecom Wireless Communications, 1997, pp. 1-24.
Breslow et al., “Effect of a Multiple-Site Intensive Care Unit Telemedicine Program on Clinical and Economic Outcome an Alternative Paradigm for Intensivist Staffing”, Critical Care Med, vol. 32, No. 1, Jan. 2004, pp. 31-38.
Brooks, Rodney, “A Robust Layered Control System for a Mobile Robot”, IEEE, Journal of Robotics and Automation, vol. 2, No. 1, Mar. 1986, pp. 14-23.
Brooks, Rodney Allen, “Remote Presence”, Abstracts from Flesh & Machines, How Robots Will Change Us, Feb. 2002, pp. 131-147.
Celi et al., “The eICU: It's Not Just Telemedicine”, Critical Care Medicine vol. 29, No. 8 (Supplement), Aug. 2001, pp. 183-189.
Cheetham et al., “Interface Development for a Child's Video Conferencing Robot”, available online at <www.ryerson.ca/pebbles/publications/paper-iea200hfes-last.pdf>, 2000, 4 pages.
Christensen et al., “BeeSoft User's Guide and Reference”, Robots for the Real World™, Real World Interface, Inc ., Sep. 26, 1997, 203 pages.
Chu et al., “Detection of Target Mobile Signal Strength”, Technical Development, Motorola Inc, Jan. 1999, pp. 205-206.
Paulos et al., “Social Tele-Embodiment: Understanding Presence”, Autonomous Robots, vol. 11, Issue 1, Kluwer Academic Publishers, Jul. 2001, pp. 87-95.
Paulos et al., “Ubiquitous Tele-Embodiment: Applications and Implications”, International Journal of Human Computer Studies, vol. 46, No. 6, Jun. 1997, pp. 861-877.
Paulos, Eric John Canny, “Video of PRoP 2 at Richmond Field Station”, www.prop.org Printout of Home Page of Website and two-page Transcript of the audio portion of said PRoP Video, May 2001, 2 pages.
PictureTel Corporation, “PictureTel Live200 for Windows NT Product Guide”, 1997, 63 pages.
Pin et al., “A New Family of Omnidirectional and Holonomic Wheeled Platforms for Mobile Robots”, IEEE Transactions on Robotics and Automation, vol. 10, No. 4, Aug. 1994, pp. 480-489.
Piquepaille, Roland, “This Blog and its RSS Feed Are Moving”, Roland Piquepaille's Technology Trends, How new technologies are modifying our way of life, Oct. 31, 2004, 2 pages.
Zipperer, Lorri, “Robotic Dispensing System”, ISMP Medication Safety Alert!, vol. 4, No. 17, Aug. 25, 1999, 2 pages.
Zorn Benjamin G., “Ubiquitous Telepresence”, Department of Computer Science, University of Colorado, 1996, 13 pages.
Zambroski, James, “CMU, Pitt Developing ‘Nursebot’”, available online at <http://www.cs.cmu.edu/˜nursebot/web/press/tribunereview.html>, Oct. 27, 2000, 3 pages.
Zamrazil, Kristie, “Telemedicine in Texas: Public Policy Concerns”, Focus Report, House Research Organization, Texas House of Representatives, No. 76-22, May 5, 2000, pp. 1-16.
Yong et al., “Robot Task Execution with Telepresence Using Virtual Reality Technology”, 1998 International Conference on Mechatronic Technology, Nov. 30-Dec. 2, 1998, pp. 1-8.
Radvision, “Making Sense of Bandwidth the Netsense Way”, Network Congestion in Unmanaged Networks Bandwidth Estimation and Adaptation Techniques,White Paper, Radvision's Netsense Technology, 2010, 7 pages.
Reynolds et al., “Review of Robotic Telemedicine Utilization in Intensive Care Units (ICUs)”, 11th Annual ATA Symposium, Tampa, Florida, 2011, 1 page.
Roach, Adam, “Automatic Call Back Service in SIP”, Internet Engineering Task Force, Internet Draft, Category: Informational, Mar. 2000, 8 pages.
Rovetta et al., “A New Telerobotic Application: Remote Laparoscopic Surgery Using Satellites and optical fiber Networks for Data Exchange”, International Journal of Robotics Research, vol. 15, No. 3, Jun. 1, 1996, pp. 267-279.
Roy et al., “Towards Personal Service Robots for the Elderly”, Workshop on Interactive Robots and Entertainment (WIRE 2000), available online at <http://www.ri.cmu.edu/pb_files/pub2/roy_nicholas_2000_1/roy_nicholas_2000_1.pdf>, vol. 25, Apr. 30-May 1, 2000, 7 pages.
Sachs et al., “Virtual Visit: Improving Communication for Those Who Need it Most”, Studies in Health Technology and Informatics, vol. 94, Medicine Meets Virtual Reality 11, 2003, pp. 302-308.
Salemi et al., “MILO: Personal Robot Platform”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Aug. 2005, pp. 4089-4094.
Sandt et al., “Perceptions for a Transport Robot in Public Environments”, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, Sep. 7-11, 1997, pp. 360-365.
Sawyer, Robert J., “Inventing the Future: 2000 Years of Discovery”, available online at <http://www.sfwriter.com/pritf.htm>, Jan. 2, 2000, 2 pages.
Schraft et al., “Care-O-bot™: The Concept of a System for Assisting Elderly or Disabled Persons in Home Environments”, IEEE Proceedings of the 24th Annual Conference of the Industrial Electronics Society, IECON '98, Aug. 31-Sep. 4, 1998, pp. 2476-2481.
Weiss et al., “Telework and Video-Mediated Communication: Importance of Real-Time, Interactive Communication for Workers with Disabilities”, available online at <http://www.telbotics.com/research_3.htm>, retrieved on Nov. 23, 2010, 3 pages.
Schultz et al., “Web Interfaces for Mobile Robots in Public Places”, IEEE Robotics & Automation Magazine, vol. 7, No. 1, Mar. 2000, pp. 48-56.
Shimoga et al., “Touch and Force Reflection for Telepresence Surgery”, Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Nov. 1994, pp. 1049-1050.
Siegwart et al., “Interacting Mobile Robots on the Web”, Proceedings of the 1999 IEEE International Conference on Robotics and Automation, May 1999, pp. 1-7.
Simmons et al., “Xavier: An Autonomous Mobile Robot on the Web”, IEEE Robotics and Automation Magazine, 1999, pp. 43-48.
Stephenson, Gary, “Dr. Robot Tested at Hopkins”, available online at <http://www.hopkinsmedicine.org/press/2003/august/030805.htm>, Aug. 5, 2003, 2 pages.
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Complications of Urologic Laparoscopic Surgery: Recognition, Management and Prevention, Dec. 2002, 17 pages.
Suplee, Curt, “Mastering the Robot”, The Washington Post, Washington Post Staff Writer, Sep. 17, 2000, 5 pages.
Tahboub et al., “Dynamics Analysis and Control of a Holonomic Vehicle With Continuously Variable Transmission”, Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control, vol. 124, Mar. 2002, pp. 118-126.
Telepresence Research, Inc., “The Telepresence Mobile Robot System”, available online at <http://www.telepresence.com/telepresence-research/TELEROBOT/>, Feb. 20, 1995, 3 pages.
Tendick et al., “Human-Machine Interfaces for Minimally Invasive Surgery”, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 6, Oct. 30-Nov. 2, 1997, pp. 2771-2776.
Theodosiou et al., “MuLVAT: A Video Annotation Tool Based on XML-Dictionaries and Shot Clustering”, 19th International Conference, Artificial Neural Networks—ICANN 2009, Part II, Sep. 14-17, 2009, pp. 913-922.
Thrun et al., “Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva”, International Journal of Robotics Research, vol. 19, 2000, pp. 1-35.
TIME, LISTS, “Office Coworker Robot”, Best Inventions of 2001, available online at <http://content.time.com/time/specials/packages/article/0,28804,1936165_1936255_1936640,00.html>, Nov. 19, 2001, 2 pages.
Tipsuwan et al., “Gain Adaptation of Networked Mobile Robot to Compensate QoS Deterioration”, 28th Annual Conference of the Industrial Electronics Society, vol. 4, Nov. 5-8, 2002, pp. 3146-3151.
Tsui et al., “Exploring Use Cases for Telepresence Robots”, 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Mar. 2011, pp. 11-18.
Tyrrell et al., “Teleconsultation in Psychology: The Use of Videolinks for Interviewing and Assessing Elderly Patients”, Age and Ageing, vol. 30, No. 3, May 2001, pp. 191-195.
Tzafestas et al., “VR-Based Teleoperation of a Mobile Robotic Assistant: Progress Report”, Technical Report DEMO 2000/13, Institute of Informatics and Telecommunications, National Center for Scientific Research “Demokritos”, Nov. 2000, pp. 1-23.
UMASS Lowell Robotics Lab, “Robotics Lab @ UMASS Lowell”, Brochure, 2011, 2 pages.
Urquhart, Kim, “InTouch's Robotic Companion ‘Beams Up’ Healthcare Experts”, Medical Device Daily, vol. 7, No. 39, Feb. 27, 2003, pp. 1, 4.
Video Middleware Cookbook, “H.350 Directory Services for Multimedia”, 2 pages.
Weaver et al., “Monitoring and Controlling Using the Internet and Java”, Proceedings of the 25th Annual Conference of the IEEE Industrial Electronics Society, vol. 3, 1999, pp. 1152-1158.
Related Publications (1)
Number Date Country
20160156680 A1 Jun 2016 US
Continuations (1)
Number Date Country
Parent 12959550 Dec 2010 US
Child 15013656 US