Disclosed herein are various embodiments of systems and methods that may be utilized in a variety of videoconferencing applications. According to various embodiments, techniques may be utilized to dynamically allocate and adjust bandwidth utilization during a videoconferencing session.
A data network may allow for the transmission of data between two or more endpoints. The data exchanged between the endpoints may include video data, audio data, control data, and status data. Control data may be utilized in various embodiments to operate a robotic videoconferencing endpoint. Accordingly, various components of a data network connecting videoconferencing endpoints may transmit data wirelessly. Status data may refer to any type of data that is not video data, audio data, or control data.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. In particular, an “embodiment” may be a system, an article of manufacture (such as a computer readable storage medium), a method, and a product of a process.
The phrases “connected to,” and “in communication with” refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, and electromagnetic interaction. Two components may be connected to each other even though they are not in direct contact with each other and even though there may be intermediary devices between the two components.
The embodiments of the disclosure will be best understood by reference to the drawings, wherein like elements are designated by like numerals throughout. In the following description, numerous specific details are provided for a thorough understanding of the embodiments described herein. However, those of skill in the art will recognize that one or more of the specific details may be omitted, or other methods, components, or materials may be used. In some cases, operations are not shown or described in detail.
Furthermore, the described features, operations, or characteristics may be combined in any suitable manner in one or more embodiments. The order of the steps or actions of the methods described in connection with the embodiments disclosed may be varied. Thus, any order in the drawings or Detailed Description is for illustrative purposes only and is not meant to imply a required order, unless specified to require an order.
Embodiments may include various features, which may be embodied in machine-executable instructions executed by a general-purpose or special-purpose computer (or other electronic device). Alternatively, the features may be performed by hardware components that include specific logic for performing the steps or by a combination of hardware, software, and/or firmware.
Embodiments may also be provided as a computer program product including a machine-readable medium having stored thereon instructions that may be used to program a computer (or other electronic device) to perform processes described herein. The machine-readable medium may include, but is not limited to, hard drives, floppy diskettes, optical disks, CD-ROMs, DVD-ROMs, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, solid-state memory devices, or other types of media/machine-readable medium suitable for storing electronic instructions.
Data network 106 represents any type of data network that may facilitate data communication between endpoints 102 and 110. For example, network 106 may comprise a local area network or a wide area network. Network 106 may comprise an intranet, a virtual private network, or a public network, such as the Internet or other data communications networks (e.g., cellular data networks). Network 106 may further comprise routers, gateways, firewalls, wireless network adapters, and other types of networking equipment.
Various types of endpoints are contemplated, including fixed and mobile videoconferencing endpoints. In embodiments having one or more mobile endpoints, various wireless technologies may be utilized in order to allow the mobile endpoint to remain in data communication with network 106. Various embodiments disclosed herein may be utilized in connection with robotic systems employed for a variety of applications. One such embodiment is illustrated in
Endpoints 202 and 210 exchange a variety of types of data, including video data, audio data, control data, and status data via data network 206. Data network 206 represents any type of data network that may facilitate data communication between endpoints 202 and 210. For example, network 206 may comprise a local area network or a wide area network. Network 206 may comprise an intranet, a virtual private network, or a public network, such as the Internet or other data communications networks (e.g., cellular data networks). Network 206 may further comprise routers, gateways, firewalls, wireless network adapters, and other types of networking equipment.
System 200 may be employed, for example, by a medical practitioner or other care provider to monitor individuals at a remote location. According to various embodiments, data prioritization schemes may be employed so that higher priority data is transmitted with greater reliability or at a higher data rate than lower priority data. For example, in system 200 control data transmitted from second endpoint 210 to first endpoint 202 may be designated as high priority data. Such a prioritization may allow a user to remain in control of the motion of endpoint 202, even if network throughput is reduced. Status data, which may include telemetry data gathered from a patient (e.g., pulse rate, EKG, oxygenation, etc.), may also be designated as relatively high priority data. Audio data may be prioritized before video data, such that a medical practitioner and patient can maintain audible communication. Finally, video data may be transmitted using the lowest priority. According to various embodiments, audio data and video data variable compression schemes may be utilized in order to more efficiently utilize available bandwidth. During periods of decreased network throughput, a higher compression ratio may be utilized for video and/or audio data. Such compression may reduce the quality of the video and/or audio data; however, such compression may allow for continued use of system 200 even if data throughput is reduced. In still other embodiments, a video frame rate may be adjusted dynamically, prior to segmenting the data into packets. According to various embodiments, status data comprising information gathered from patient sensors (e.g. an EKG sensor, a blood oxygenation sensor, etc.) may receive the highest priority.
The data transmitted between endpoints 202 and 210 may be asymmetrical in quantity and/or priority. For example, in telemedicine applications, data flowing from the remote station to the robot is less critical than video and data flowing from endpoint 202 to endpoint 210. Various embodiments of system 200 may allow dynamic adjustment of bandwidth, such that the minimum allowable bandwidth from one endpoint is higher than the minimum allowable bandwidth from the other endpoint. For example, the allowable outgoing data rate from endpoint 210 may be in the range of 150 kbps to 700 kbps, but the allowable outgoing data rate from endpoint 202 may be in the range of 200 kbps to 700 kbps. For example, a data rate of less than 200 kbps may make diagnosis problematic and impede the ability to drive a robotic videoconferencing endpoint.
According to various embodiments, data may be prioritized at the application layer. According to such embodiments, the application generating video and audio and control/sensor data may be aware of the available bandwidth and may adjust the content to be transmitted accordingly. Such an application may allow for a user to customize settings to be used during a particular session or at various points within a session. For example, in one embodiment where an endpoint is used in telemedicine applications, the quality images received from an endpoint near a patient may be assigned a higher priority, depending on whether a diagnosis is made using the images. For example, if a dermatologist is utilizing a videoconferencing endpoint to obtain images of a rash on a patient's skin, image quality may be assigned a greater importance than other characteristics (e.g., a video frame rate). In another example, a physician counseling with the patient may not be relying on images to provide a diagnosis. In this example, audio data may receive a high priority, so that audio communications between the patient and physician are maintained even if network throughput declines. In still another example, during a videoconferencing session a physician may drive a robotic videoconferencing endpoint from one location in a medical facility to another location. While the videoconferencing endpoint is in motion, frame rate may be assigned a higher priority than image quality, such that a remote driver is better able to control the movement of the robotic videoconferencing endpoint. According to various embodiments, a robotic videoconferencing endpoint may be configured such that upon detection of base motion, prioritization switches from image quality to frame rate.
A network statistics dataset may be established at the initiation of a session. In certain embodiments, an initial network statistics dataset may be created during an initial period in which data transmission occurs at a baseline rate. The baseline rate may be relatively minor in comparison to the theoretical throughput of the network connection between the endpoints. For example, a baseline rate in one embodiment may be established at the minimum allowable bandwidth for the endpoint, for example 150 kbps for outgoing data from endpoint 210 and 200 kbps for outgoing data from endpoint 202. The minimum allowable bandwidth has the highest probability of being stable for a given network connection. Such embodiments may allow for the creation of a robust network statistics dataset when the network connection between two or more endpoints is operating substantially below its theoretical throughput.
At 402, a data sample is obtained that represents at least one measurement of then-current network conditions. As discussed above, a data sample may, for example, comprise a measurement of latency, average data throughput, etc. In the present example, the measurement utilized is the latency associated with a ping; however, in other embodiments, similar principles may be utilized and adapted for analysis of other types of data samples. Method 400 determines at 404 whether the sample was obtained within a specified time of the start of a session. As discussed above, a network statistics dataset may be established at the initiation of the session during a period when the baseline transmission rate is significantly lower than the theoretical throughput of the network connection between the endpoints. Accordingly, if the data sample was obtained within the specified time of the start of a videoconferencing session, method 400 may proceed to determine whether the sample is within specified boundaries 410, as discussed in greater detail below.
After the passage of a specified amount time from the start of a session, method 400 may determine whether the sample was obtained within a specified time of a network probe 406. As the term is utilized herein, a network probe refers to an increase of bandwidth utilized by one or more endpoints participating in a videoconferencing session. The network probe may temporarily disturb a metric quantified by the obtained data sample, and accordingly, a sample obtained within a specified period following the network probe may be indicative of only a transitory state. According to various embodiments, a specified time may be established following a network probe during which data samples are discarded, so as to reduce the effects of such transitory samples on the network statistics dataset. If the data sample was obtained within the specified time of the network probe, the obtained sample may be discarded 414.
At 408, it may be determined whether the obtained data sample is within a specified time of a network disturbance. As the term is used herein, a network disturbance is in any event or circumstance, or combinations of events or circumstances, that temporarily affect a quantifiable metric representing network conditions. A network disturbance may include, for example, a disruption in data transmission, increased latency, increased bandwidth utilization by other users, etc. Following a network disturbance, the metric quantified by the obtained data sample may be indicative of only a transitory state. According to various embodiments, a specified time may be established following a network disturbance during which data samples are discarded, so as to reduce the effects of such transitory samples on the network statistics dataset.
At 410, the obtained data sample may be compared to specified boundaries relating to the network statistics dataset. For example, even under stable conditions, the latency of a plurality of data samples may differ significantly. In order to reduce the effect of aberrant data samples, certain criteria may be specified by a user or based on the data in the network statistics dataset. In one example, specified boundaries may exclude obtained data samples above the 90th percentile. Other boundaries may also be utilized. Further, other embodiments may utilize ranges in place of percentile boundaries.
Obtained data samples that are not discarded may then be added to the network statistics dataset at 412. Various criteria may be utilized (e.g., various time periods following the start of a session, a network probe, a network disturbance) to exclude certain obtained data samples from the network statistics dataset. Various criteria may be designed to minimize the influence of transitory conditions and other conditions which may not provide an accurate indication of the operation of the network system. According to one embodiment, the criteria may be specified so that approximately 90% of the obtained data samples included in the network statistics dataset are obtained during periods of relative stability on the network.
A network statistics dataset may be utilized by a videoconferencing system as an estimate of the available bandwidth of a particular network. Various thresholds may be established based upon the network statistics dataset, and one or more data values may be compared to the thresholds in order to determine whether a particular videoconferencing session is utilizing too much bandwidth or utilizing too little bandwidth. Latency may be utilized as one indicator of the condition of the network. According to one embodiment, bandwidth utilization of a videoconferencing system may be reduced when latency exceeds a specified threshold. For example, a system could reduce bandwidth usage whenever a latency measurement exceeds 350 milliseconds; however, a stable and high bandwidth connection may exceed 350 milliseconds ping time, and may result in a situation where the network connection is underutilized. According to other embodiments, a system dynamically managing bandwidth of a videoconferencing session may analyze a particular latency measurement with respect to percentile thresholds.
A network statistics dataset may be used to distinguish high latency and high bandwidth networks from networks exhibiting high latency because of network congestion. As described above, a network statistics dataset may include a plurality of the measurements. For example, a network statistics dataset may comprise a plurality of measurements of latency in a particular network. Analysis of the network statistics dataset may show latency measurements ranging from 100 milliseconds to 300 milliseconds, but 90% of latency measurements in the network statistics dataset are less than or equal to 115 milliseconds. Accordingly, 115 milliseconds may be established as a threshold value. Measurements exceeding 115 milliseconds may indicate network congestion, and may provide an indication of decreasing available bandwidth. According to other embodiments, a fixed offset may also be employed in order to avoid excluding data samples that only slightly exceed the threshold value. For example, a fixed offset of 30 milliseconds may be adopted. In embodiments utilizing a fixed offset, a network disturbance may not be recorded unless one or more data samples indicate a latency greater than the sum of the fixed offset and the threshold value. Embodiments including a fixed offset may provide greater tolerance for variation in latency, while reducing the risk of a false positive in identifying a network disturbance.
In a different example, latency measurements might range from 300 milliseconds to 420 milliseconds, with 90% of the latency measurements less than or equal to 330 milliseconds. In that example, a network disturbance would be detected when latency rises above 330 milliseconds. In this way, a system for dynamically allocating bandwidth adapts to stable high-latency connections.
As discussed above, an obtained data sample may be compared against specified boundaries in order to determine whether the obtained data sample should be included in a network statistics dataset.
Data samples falling between the 70th percentile and 90th percentile may not be immediately discarded, but such samples may not be immediately added to a network statistics dataset. Data samples falling within these ranges may be referred to as marginal data samples. Criteria may be specified in order to determine whether marginal data samples are discarded or added to a network statistics dataset. Various criteria may be associated with the evaluation of marginal data samples. For example, various embodiments may analyze a specified number of subsequently obtained data samples, or may analyze data samples obtained within a specified time (e.g., 60 seconds) before and/or after one or more marginal data samples is obtained.
According to one embodiment, specific criteria for evaluating marginal data samples may be based upon the results of subsequently obtained data samples. For example, a system may experience an increased latency of 100 ms, which arises over a period of 30 seconds. Without a sharp spike in latency, a network disturbance (e.g., the source of the additional latency) may not be recognized, and data samples representing the increased latency may be added to the network statistics dataset. If one or more subsequently obtained data samples within a specified period exceeds a specified threshold (e.g., the 90th percentile) the marginal data samples may be discarded. Subsequent data samples exceeding the specified threshold may indicate that the network is in an unstable condition, and that the marginal data samples do not reflect normal network conditions. If one or more subsequently obtained data samples within a specified period is below a specified threshold (e.g., the 70th percentile), the marginal data samples may be added to the network statistics dataset. Such a data sample may indicate that the marginal data samples reflect normal network conditions. Finally, if one or more subsequently obtained data samples within a specified period is between the 70th percentile and the 90th percentile, the marginal data samples may be included in the network statistics dataset.
It may be determined at 608 whether the latency measurement is above a high threshold. A latency measurement exceeding the high threshold may be indicative of a network disruption. Accordingly, at 610, an above high threshold count may be incremented. At 612, the above high threshold count may be compared to a fourth threshold. A fourth threshold may specify the number of above high threshold events that are detected before decreasing bandwidth, at 614.
Bar graphs 701 and 711 may also include an indication 708 and 718, respectively, that shows a limiting component in the network. For example, a multicasting session might include a local user, User A (a remote user), and a robotic videoconferencing endpoint. The data transmission rate from the robotic videoconferencing endpoints may be limited to the minimum value that can be sent or received from the other videoconferencing endpoints. In the illustrated embodiment, the limit for receiving data is imposed by User A, while the limit for transmitting data is imposed by the robotic videoconferencing endpoint. In one embodiment, the designated limiting endpoint may only be displayed when a mouse cursor is hovered over the related bar graph.
Videoconferencing endpoint 810 includes a network connection 822, Random Access Memory (RAM) 824, processor 826, input/output ports 828, a display driver 830, a computer readable storage medium 812, and a bus 820. Bus 820 provides a connection between network connection 822, RAM 824, processor 826, and computer readable storage medium 812. Processor 826 may be embodied as a general purpose processor, an application specific processor, a microcontroller, a digital signal processor, or other similar device. Processor 826 performs logical and arithmetic operations based on program code stored within RAM 824 and/or computer readable storage medium 812.
Network connection 822 may be configured to communicate with robotic videoconferencing endpoint by way of one or more network components, such as firewall 840, network 842, firewall 844, and wireless data transceiver 846. Network connection 822 may facilitate communication using any number of available protocols and/or physical media. Network 842 may comprise an intranet, a virtual private network, or a public network, such as the Internet or other data communications networks (e.g., cellular data networks). Firewalls 840 and 844 may be disposed between videoconferencing endpoints 810 and 850. According to various embodiments, network management techniques may be utilized to successfully route data from videoconferencing endpoint 810 to robotic videoconferencing endpoint 850.
Input/output ports 828 may be configured to allow videoconferencing endpoint 810 to utilize a wide variety of peripheral devices, some of which may generate data to be transmitted to robotic videoconferencing endpoint 850. For example, peripheral devices which may be utilized may include a video camera, a microphone, a device for controlling the movement of robotic videoconferencing endpoint 850, a keyboard, a mouse, and other such devices. Input/output ports 828 may comprise a variety of types of ports, such as USB, serial, parallel, IEEE 1394, and the like.
Display driver 830 may facilitate the generation of video images to be displayed to a user videoconferencing endpoint 810. Display driver 830 may, according to various embodiments, generate video data received from robotic videoconferencing endpoint 850 and display such data to a user. Display driver 830 may also be responsible for interfacing with other display devices, for example a touch screen.
Computer readable storage medium 812 may comprise various modules for communicating with robotic videoconferencing endpoint 850. Such modules may include a bandwidth allocation module 814, and encoding/decoding module 816, a network statistics dataset module 818, and a data prioritization module 819. Each module may perform one or more tasks associated with communication with robotic video endpoint 850 and/or management of such communications. In alternative embodiments, more or fewer modules than are shown in
Bandwidth allocation module 814 may be configured to monitor and dynamically adjust the bandwidth utilized for transmission of data between videoconferencing endpoint 810 and robotic videoconferencing endpoint 850. As discussed above, a variety of methods may be utilized for dynamically allocating and adjusting bandwidth. Bandwidth allocation module 814 may be configured to implement the various methods for bandwidth allocation disclosed herein. Bandwidth allocation module 814 may further be configured to generate a graphical user interface display, such as illustrated in
Encoding/decoding module 816 may be configured to encode and/or decode video data, audio data, control data, and status data exchanged between videoconferencing endpoint 810 and robotic videoconferencing endpoint 850. According to various embodiments, encoding/decoding module 816 may be configured to adjust the video frame rate, image quality, compression ratios, and other characteristics of data to be transmitted in order to conform data transmission rates to an allocated bandwidth. According to one particular embodiment, encoding/decoding module 816 may adjust a video frame rate prior to segmenting the data into data packets.
Network statistics dataset module 818 may be configured to generate a network statistics dataset and to selectively add data to the network statistics dataset. Various embodiments for generating and adding data to the network statistics dataset are disclosed herein, and network statistics dataset module 818 may be configured to perform the features described in connection with such embodiments.
Data prioritization module 819 may be configured to prioritize various types of data to be transmitted between videoconferencing endpoint 810 robotic videoconferencing endpoint 850. According to various embodiments, a variety of data prioritization schemes may be employed so that higher priority data is transmitted with greater reliability or at a higher data rate than lower priority data. For example, in system 800 control data transmitted from videoconferencing endpoint 810 to robotic videoconferencing endpoint 850 may be designated as high priority data. Such a prioritization may allow a user to remain in control of the motion of robotic videoconferencing endpoint 850 even if network throughput is reduced. Status data, which may include telemetry data gathered from a patient (e.g., pulse rate, EKG, oxygenation, etc.), may also be designated as relatively high priority data. Audio data may be prioritized before video data, such that a medical practitioner and patient can maintain audible communication in spite of decreases in network throughput. Finally, video data may be transmitted using the lowest priority.
According to various embodiments, videoconferencing endpoint 810 may be embodied as a general purpose computer including particular software and/or configured to interface with robotic videoconferencing endpoint 850. Such software may be delivered as a computer program product. Hardware resources facilitating communication with and/or control of robotic videoconferencing endpoint 850 may, according to various embodiments, comprise an audio and/or video input device coupled to input/output ports 828, or an input device specifically configured to control one or more robotic elements of robotic videoconferencing endpoint 850.
Robotic videoconferencing endpoint 850 includes a robotics driver 854, a display driver 856, RAM 858, a processor 860, input/output ports 862, a wireless data transceiver 864, a computer readable storage medium 852, and a bus 876. The function of display driver 856, RAM 858, and processor 860 may be similar to the functions described in connection with corresponding structures in videoconferencing endpoint 810. Input/output ports 862 may further be configured to receive telemetry data from a variety of sensors, which may be utilized to monitor various physical conditions. In one particular embodiment, where robotic videoconferencing endpoint 850 is utilized in a telemedicine application, input/output ports 862 may be configured to interface with a variety of medical sensors (e.g., pulse rate sensor, an EKG sensor, a blood oxygenation sensor, etc.).
Robotics driver 854 may be configured to receive and implement instructions for moving robotic videoconferencing endpoint 850. Such instructions may include driving robotic videoconferencing endpoint 850 from one place to another, manipulating one or more robotic arms, and the like.
Wireless data transceiver 864 may be configured to exchange data wirelessly with wireless data transceiver 846. Data may be exchanged according to a variety of wireless protocols, including but not limited to the IEEE 802.11 protocols and cellular data transmission protocols.
Computer readable storage medium 852 may comprise various modules for communicating with videoconferencing endpoint 810. Such modules may include a bandwidth allocation module 866, and encoding/decoding module 868, a network statistics dataset module 870, a robotic control module 872, and a data prioritization module 874. The functions of bandwidth allocation module 866, encoding/decoding module 868, network statistics dataset module 870, and data prioritization module 874 may be similar to corresponding modules, which are described above in connection with videoconferencing endpoint 810.
Robotic control module 872 may operate in conjunction with robotics driver 854 to facilitate control of robotic videoconferencing endpoint 850. Robotic control module 872 may be configured, according to various embodiments, to interact with one or more devices associated with videoconferencing endpoint 810 and to receive instruction from such device that allows a remote user to control robotic videoconferencing endpoint 850.
Many changes may be made to the details of the above-described embodiments without departing from the underlying principles of the present disclosure. The scope of the present invention should, therefore, be determined only by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3821995 | Aghnides | Jul 1974 | A |
4107689 | Jellinek | Aug 1978 | A |
4213182 | Eichelberger et al. | Jul 1980 | A |
4413693 | Derby | Nov 1983 | A |
4471354 | Smith | Sep 1984 | A |
4519466 | Shiraishi | May 1985 | A |
4553309 | Hess et al. | Nov 1985 | A |
4572594 | Schwartz | Feb 1986 | A |
4625274 | Schroeder | Nov 1986 | A |
4638445 | Mattaboni | Jan 1987 | A |
4652204 | Arnett | Mar 1987 | A |
4669168 | Tamura et al. | Jun 1987 | A |
4679152 | Perdue | Jul 1987 | A |
4697278 | Fleischer | Sep 1987 | A |
4697472 | Hiyane | Oct 1987 | A |
4709265 | Silverman et al. | Nov 1987 | A |
4733737 | Falamak | Mar 1988 | A |
4751658 | Kadonoff et al. | Jun 1988 | A |
4766581 | Korn et al. | Aug 1988 | A |
4777416 | George et al. | Oct 1988 | A |
4797557 | Ohman | Jan 1989 | A |
4803625 | Fu et al. | Feb 1989 | A |
4847764 | Halvorson | Jul 1989 | A |
4875172 | Kanayama | Oct 1989 | A |
4878501 | Shue | Nov 1989 | A |
4942512 | Kohno | Jul 1990 | A |
4942538 | Yuan et al. | Jul 1990 | A |
4953159 | Hayden et al. | Aug 1990 | A |
4974607 | Miwa | Dec 1990 | A |
4977971 | Crane et al. | Dec 1990 | A |
5006988 | Borenstein et al. | Apr 1991 | A |
5040116 | Evans et al. | Aug 1991 | A |
5051906 | Evans et al. | Sep 1991 | A |
5073749 | Kanayama | Dec 1991 | A |
5084828 | Kaufman et al. | Jan 1992 | A |
5130794 | Ritchey | Jul 1992 | A |
5148591 | Pryor | Sep 1992 | A |
5153833 | Gordon et al. | Oct 1992 | A |
5155684 | Burke et al. | Oct 1992 | A |
5157491 | Kassatly | Oct 1992 | A |
5182641 | Diner et al. | Jan 1993 | A |
5186270 | West | Feb 1993 | A |
5193143 | Kaemmerer et al. | Mar 1993 | A |
5217453 | Wilk | Jun 1993 | A |
5220263 | Onishi et al. | Jun 1993 | A |
5224157 | Yamada et al. | Jun 1993 | A |
5230023 | Nakano | Jul 1993 | A |
5231693 | Backes et al. | Jul 1993 | A |
5236432 | Matsen et al. | Aug 1993 | A |
5262944 | Weisner et al. | Nov 1993 | A |
5305427 | Nagata | Apr 1994 | A |
5315287 | Sol | May 1994 | A |
5319611 | Korba | Jun 1994 | A |
5341242 | Gilboa et al. | Aug 1994 | A |
5341459 | Backes | Aug 1994 | A |
5341854 | Zezulka et al. | Aug 1994 | A |
5347306 | Nitta | Sep 1994 | A |
5347457 | Tanaka et al. | Sep 1994 | A |
5350033 | Kraft | Sep 1994 | A |
5366896 | Margrey et al. | Nov 1994 | A |
5374879 | Pin et al. | Dec 1994 | A |
5375195 | Johnston | Dec 1994 | A |
5400068 | Ishida et al. | Mar 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5419008 | West | May 1995 | A |
5436542 | Petelin et al. | Jul 1995 | A |
5441042 | Putman | Aug 1995 | A |
5441047 | David et al. | Aug 1995 | A |
5442728 | Kaufman et al. | Aug 1995 | A |
5462051 | Oka et al. | Oct 1995 | A |
5486853 | Baxter et al. | Jan 1996 | A |
5510832 | Garcia | Apr 1996 | A |
5511147 | Abdel-Malek | Apr 1996 | A |
5528289 | Cortjens et al. | Jun 1996 | A |
5539741 | Barraclough et al. | Jul 1996 | A |
5544649 | David et al. | Aug 1996 | A |
5550577 | Verbiest et al. | Aug 1996 | A |
5553609 | Chen et al. | Sep 1996 | A |
5563998 | Yaksich et al. | Oct 1996 | A |
5572229 | Fisher | Nov 1996 | A |
5572999 | Funda et al. | Nov 1996 | A |
5594859 | Palmer et al. | Jan 1997 | A |
5600573 | Hendricks et al. | Feb 1997 | A |
5617539 | Ludwig et al. | Apr 1997 | A |
5619341 | Auyeung et al. | Apr 1997 | A |
5623679 | Rivette et al. | Apr 1997 | A |
5630566 | Case | May 1997 | A |
5636218 | Ishikawa et al. | Jun 1997 | A |
5652849 | Conway et al. | Jul 1997 | A |
5657246 | Hogan et al. | Aug 1997 | A |
5659779 | Laird et al. | Aug 1997 | A |
5673082 | Wells et al. | Sep 1997 | A |
5675229 | Thorne | Oct 1997 | A |
5682199 | Lankford | Oct 1997 | A |
5684695 | Bauer | Nov 1997 | A |
5701904 | Simmons et al. | Dec 1997 | A |
5734805 | Isensee et al. | Mar 1998 | A |
5739657 | Takayama et al. | Apr 1998 | A |
5748629 | Caldara et al. | May 1998 | A |
5749058 | Hashimoto | May 1998 | A |
5749362 | Funda et al. | May 1998 | A |
5754631 | Cave | May 1998 | A |
5758079 | Ludwig et al. | May 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5764731 | Yablon | Jun 1998 | A |
5767897 | Howell | Jun 1998 | A |
5786846 | Hiroaki | Jul 1998 | A |
5787545 | Colens | Aug 1998 | A |
5793365 | Tang et al. | Aug 1998 | A |
5801755 | Echerer | Sep 1998 | A |
5802494 | Kuno | Sep 1998 | A |
5836872 | Kenet et al. | Nov 1998 | A |
5838575 | Lion | Nov 1998 | A |
5844599 | Hildin | Dec 1998 | A |
5857534 | Devault et al. | Jan 1999 | A |
5867494 | Krishnaswamy et al. | Feb 1999 | A |
5867653 | Aras et al. | Feb 1999 | A |
5871451 | Unger et al. | Feb 1999 | A |
5872922 | Hogan et al. | Feb 1999 | A |
5876325 | Mizuno et al. | Mar 1999 | A |
5911036 | Wright et al. | Jun 1999 | A |
5917958 | Nunally et al. | Jun 1999 | A |
5927423 | Wada et al. | Jul 1999 | A |
5949758 | Kober | Sep 1999 | A |
5954692 | Smith et al. | Sep 1999 | A |
5959423 | Nakanishi et al. | Sep 1999 | A |
5961446 | Beller et al. | Oct 1999 | A |
5966130 | Benman | Oct 1999 | A |
5973724 | Riddle | Oct 1999 | A |
5974446 | Sonnenreich et al. | Oct 1999 | A |
5983263 | Rothrock et al. | Nov 1999 | A |
5995119 | Cosatto et al. | Nov 1999 | A |
5995884 | Allen et al. | Nov 1999 | A |
5999977 | Riddle | Dec 1999 | A |
6006946 | Williams et al. | Dec 1999 | A |
6031845 | Walding | Feb 2000 | A |
6036812 | Williams et al. | Mar 2000 | A |
6047259 | Campbell et al. | Apr 2000 | A |
6091219 | Maruo et al. | Jul 2000 | A |
6113343 | Goldenberg et al. | Sep 2000 | A |
6133944 | Braun et al. | Oct 2000 | A |
6135228 | Asada et al. | Oct 2000 | A |
6148100 | Anderson et al. | Nov 2000 | A |
6160582 | Hill | Dec 2000 | A |
6170929 | Wilson et al. | Jan 2001 | B1 |
6175779 | Barrett | Jan 2001 | B1 |
6189034 | Riddle | Feb 2001 | B1 |
6201984 | Funda et al. | Mar 2001 | B1 |
6211903 | Bullister | Apr 2001 | B1 |
6219587 | Ahlin et al. | Apr 2001 | B1 |
6232735 | Baba et al. | May 2001 | B1 |
6233504 | Das et al. | May 2001 | B1 |
6233735 | Ebihara | May 2001 | B1 |
6250928 | Poggio et al. | Jun 2001 | B1 |
6256556 | Zenke | Jul 2001 | B1 |
6259806 | Green | Jul 2001 | B1 |
6259956 | Myers et al. | Jul 2001 | B1 |
6266162 | Okamura et al. | Jul 2001 | B1 |
6266577 | Popp et al. | Jul 2001 | B1 |
6289263 | Mukherjee | Sep 2001 | B1 |
6292713 | Jouppi et al. | Sep 2001 | B1 |
6292714 | Okabayashi | Sep 2001 | B1 |
6304050 | Skaar et al. | Oct 2001 | B1 |
6314631 | Pryor | Nov 2001 | B1 |
6317652 | Osada | Nov 2001 | B1 |
6317953 | Pryor | Nov 2001 | B1 |
6321137 | De Smet | Nov 2001 | B1 |
6324184 | Hou et al. | Nov 2001 | B1 |
6324443 | Kurakake et al. | Nov 2001 | B1 |
6325756 | Webb et al. | Dec 2001 | B1 |
6327516 | Zenke | Dec 2001 | B1 |
6330486 | Padula | Dec 2001 | B1 |
6330493 | Takahashi et al. | Dec 2001 | B1 |
6346950 | Jouppi | Feb 2002 | B1 |
6346962 | Goodridge | Feb 2002 | B1 |
6369847 | James et al. | Apr 2002 | B1 |
6373855 | Downing et al. | Apr 2002 | B1 |
6381515 | Inoue et al. | Apr 2002 | B1 |
6389329 | Colens | May 2002 | B1 |
6400378 | Snook | Jun 2002 | B1 |
6408230 | Wada | Jun 2002 | B2 |
6411055 | Fujita et al. | Jun 2002 | B1 |
6430471 | Kintou et al. | Aug 2002 | B1 |
6430475 | Okamoto et al. | Aug 2002 | B2 |
6438457 | Yokoo et al. | Aug 2002 | B1 |
6445964 | White et al. | Sep 2002 | B1 |
6449762 | Mcelvain | Sep 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6457043 | Kwak et al. | Sep 2002 | B1 |
6459955 | Bartsch et al. | Oct 2002 | B1 |
6463352 | Tadokoro et al. | Oct 2002 | B1 |
6463361 | Wang et al. | Oct 2002 | B1 |
6466844 | Ikeda et al. | Oct 2002 | B1 |
6468265 | Evans et al. | Oct 2002 | B1 |
6470235 | Kasuga et al. | Oct 2002 | B2 |
6474434 | Bech | Nov 2002 | B1 |
6480762 | Uchikubo et al. | Nov 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6496099 | Wang et al. | Dec 2002 | B2 |
6496755 | Wallach et al. | Dec 2002 | B2 |
6501740 | Sun et al. | Dec 2002 | B1 |
6507773 | Parker et al. | Jan 2003 | B2 |
6522906 | Salisbury et al. | Feb 2003 | B1 |
6523629 | Buttz et al. | Feb 2003 | B1 |
6526332 | Sakamoto et al. | Feb 2003 | B2 |
6529620 | Thompson | Mar 2003 | B2 |
6529765 | Franck et al. | Mar 2003 | B1 |
6529802 | Kawakita et al. | Mar 2003 | B1 |
6532404 | Colens | Mar 2003 | B2 |
6535182 | Stanton | Mar 2003 | B2 |
6535793 | Allard | Mar 2003 | B2 |
6540039 | Yu et al. | Apr 2003 | B1 |
6543899 | Covannon et al. | Apr 2003 | B2 |
6549215 | Jouppi | Apr 2003 | B2 |
6563533 | Colby | May 2003 | B1 |
6567038 | Granot et al. | May 2003 | B1 |
6580246 | Jacobs | Jun 2003 | B2 |
6581798 | Liff et al. | Jun 2003 | B2 |
6584376 | Van Kommer | Jun 2003 | B1 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6590604 | Tucker et al. | Jul 2003 | B1 |
6594269 | Polcyn | Jul 2003 | B1 |
6594552 | Nowlin et al. | Jul 2003 | B1 |
6597392 | Jenkins et al. | Jul 2003 | B1 |
6602469 | Maus et al. | Aug 2003 | B1 |
6604019 | Ahlin et al. | Aug 2003 | B2 |
6604021 | Imai et al. | Aug 2003 | B2 |
6611120 | Song et al. | Aug 2003 | B2 |
6643496 | Shimoyama et al. | Nov 2003 | B1 |
6646677 | Noro et al. | Nov 2003 | B2 |
6650748 | Edwards et al. | Nov 2003 | B1 |
6666374 | Green et al. | Dec 2003 | B1 |
6667592 | Jacobs et al. | Dec 2003 | B2 |
6674259 | Norman et al. | Jan 2004 | B1 |
6684129 | Salisbury et al. | Jan 2004 | B2 |
6691000 | Nagai et al. | Feb 2004 | B2 |
6693585 | Macleod | Feb 2004 | B1 |
6710797 | Mcnelley et al. | Mar 2004 | B1 |
6724823 | Rovati et al. | Apr 2004 | B2 |
6728599 | Wang et al. | Apr 2004 | B2 |
6763282 | Glenn et al. | Jul 2004 | B2 |
6764373 | Osawa et al. | Jul 2004 | B1 |
6769771 | Trumbull | Aug 2004 | B2 |
6781606 | Jouppi | Aug 2004 | B2 |
6784916 | Smith | Aug 2004 | B2 |
6785589 | Eggenberger et al. | Aug 2004 | B2 |
6791550 | Goldhor et al. | Sep 2004 | B2 |
6798753 | Doganata et al. | Sep 2004 | B1 |
6799065 | Niemeyer | Sep 2004 | B1 |
6799088 | Wang et al. | Sep 2004 | B2 |
6804580 | Stoddard et al. | Oct 2004 | B1 |
6804656 | Rosenfeld et al. | Oct 2004 | B1 |
6810411 | Coughlin et al. | Oct 2004 | B1 |
6816192 | Nishikawa | Nov 2004 | B1 |
6816754 | Mukai et al. | Nov 2004 | B2 |
6836703 | Wang et al. | Dec 2004 | B2 |
6839612 | Sanchez et al. | Jan 2005 | B2 |
6840904 | Goldberg | Jan 2005 | B2 |
6845297 | Allard | Jan 2005 | B2 |
6852107 | Wang et al. | Feb 2005 | B2 |
6853878 | Hirayama et al. | Feb 2005 | B2 |
6853880 | Sakagami et al. | Feb 2005 | B2 |
6871117 | Wang et al. | Mar 2005 | B2 |
6879879 | Jouppi et al. | Apr 2005 | B2 |
6888333 | Laby | May 2005 | B2 |
6892112 | Wang et al. | May 2005 | B2 |
6893267 | Yueh | May 2005 | B1 |
6895305 | Lathan et al. | May 2005 | B2 |
6898484 | Lemelson et al. | May 2005 | B2 |
6914622 | Smith et al. | Jul 2005 | B1 |
6925357 | Wang et al. | Aug 2005 | B2 |
6951535 | Ghodoussi et al. | Oct 2005 | B2 |
6952470 | Tioe et al. | Oct 2005 | B1 |
6957712 | Song et al. | Oct 2005 | B2 |
6958706 | Chaco et al. | Oct 2005 | B2 |
6965394 | Gutta et al. | Nov 2005 | B2 |
6990112 | Brent et al. | Jan 2006 | B1 |
6995664 | Darling | Feb 2006 | B1 |
7007235 | Hussein et al. | Feb 2006 | B1 |
7011538 | Chang | Mar 2006 | B2 |
7015934 | Toyama et al. | Mar 2006 | B2 |
RE39080 | Johnston | Apr 2006 | E |
7030757 | Matsuhira et al. | Apr 2006 | B2 |
7053578 | Diehl et al. | May 2006 | B2 |
7055210 | Keppler et al. | Jun 2006 | B2 |
7058689 | Parker et al. | Jun 2006 | B2 |
7092001 | Schulz | Aug 2006 | B2 |
7096090 | Zweig | Aug 2006 | B1 |
7115102 | Abbruscato | Oct 2006 | B2 |
7117067 | Mclurkin et al. | Oct 2006 | B2 |
7123285 | Smith et al. | Oct 2006 | B2 |
7123974 | Hamilton | Oct 2006 | B1 |
7123991 | Graf et al. | Oct 2006 | B2 |
7127325 | Nagata et al. | Oct 2006 | B2 |
7129970 | James et al. | Oct 2006 | B2 |
7133062 | Castles et al. | Nov 2006 | B2 |
7142945 | Wang et al. | Nov 2006 | B2 |
7142947 | Wang et al. | Nov 2006 | B2 |
7151982 | Liff et al. | Dec 2006 | B2 |
7154526 | Foote et al. | Dec 2006 | B2 |
7155306 | Haitin et al. | Dec 2006 | B2 |
7156809 | Quy | Jan 2007 | B2 |
7158859 | Wang et al. | Jan 2007 | B2 |
7158860 | Wang et al. | Jan 2007 | B2 |
7158861 | Wang et al. | Jan 2007 | B2 |
7161322 | Wang et al. | Jan 2007 | B2 |
7162338 | Goncalves et al. | Jan 2007 | B2 |
7164969 | Wang et al. | Jan 2007 | B2 |
7164970 | Wang et al. | Jan 2007 | B2 |
7167448 | Wookey et al. | Jan 2007 | B2 |
7171286 | Wang et al. | Jan 2007 | B2 |
7174238 | Zweig | Feb 2007 | B1 |
7181455 | Wookey et al. | Feb 2007 | B2 |
7184559 | Jouppi | Feb 2007 | B2 |
7188000 | Chiappetta et al. | Mar 2007 | B2 |
7199790 | Rosenberg et al. | Apr 2007 | B2 |
7202851 | Cunningham et al. | Apr 2007 | B2 |
7206627 | Abovitz et al. | Apr 2007 | B2 |
7215786 | Nakadai et al. | May 2007 | B2 |
7219364 | Bolle et al. | May 2007 | B2 |
7222000 | Wang et al. | May 2007 | B2 |
7227334 | Yang et al. | Jun 2007 | B2 |
7256708 | Rosenfeld et al. | Aug 2007 | B2 |
7262573 | Wang et al. | Aug 2007 | B2 |
7283153 | Provost et al. | Oct 2007 | B2 |
7289883 | Wang et al. | Oct 2007 | B2 |
7292257 | Kang et al. | Nov 2007 | B2 |
7292912 | Wang et al. | Nov 2007 | B2 |
7305114 | Wolff et al. | Dec 2007 | B2 |
7317685 | Flott et al. | Jan 2008 | B1 |
7321807 | Laski | Jan 2008 | B2 |
7332890 | Cohen et al. | Feb 2008 | B2 |
7333642 | Green | Feb 2008 | B2 |
7346429 | Goldenberg et al. | Mar 2008 | B2 |
7352153 | Yan | Apr 2008 | B2 |
7363121 | Chen et al. | Apr 2008 | B1 |
7382399 | Mccall et al. | Jun 2008 | B1 |
7386730 | Uchikubo | Jun 2008 | B2 |
7391432 | Terada | Jun 2008 | B2 |
7400578 | Guthrie et al. | Jul 2008 | B2 |
7404140 | O'Rourke | Jul 2008 | B2 |
7421470 | Ludwig et al. | Sep 2008 | B2 |
7430209 | Porter | Sep 2008 | B2 |
7432949 | Remy et al. | Oct 2008 | B2 |
7433921 | Ludwig et al. | Oct 2008 | B2 |
7437463 | Valletutti | Oct 2008 | B1 |
7441953 | Banks | Oct 2008 | B2 |
7467211 | Herman et al. | Dec 2008 | B1 |
7483867 | Ansari et al. | Jan 2009 | B2 |
7492731 | Hagendorf | Feb 2009 | B2 |
7510428 | Obata et al. | Mar 2009 | B2 |
7523069 | Friedl et al. | Apr 2009 | B1 |
7525281 | Koyanagi et al. | Apr 2009 | B2 |
7535486 | Motomura et al. | May 2009 | B2 |
7557758 | Rofougaran | Jul 2009 | B2 |
7587260 | Bruemmer et al. | Sep 2009 | B2 |
7587512 | Ta et al. | Sep 2009 | B2 |
7590060 | Miceli | Sep 2009 | B2 |
7593030 | Wang et al. | Sep 2009 | B2 |
7599290 | Dos Remedios et al. | Oct 2009 | B2 |
7624166 | Foote et al. | Nov 2009 | B2 |
7630314 | Dos Remedios et al. | Dec 2009 | B2 |
7631833 | Ghaleb et al. | Dec 2009 | B1 |
7643051 | Sandberg et al. | Jan 2010 | B2 |
7647320 | Mok et al. | Jan 2010 | B2 |
7657560 | Dirienzo | Feb 2010 | B1 |
7680038 | Gourlay | Mar 2010 | B1 |
7693757 | Zimmerman | Apr 2010 | B2 |
7698432 | Short et al. | Apr 2010 | B2 |
7703113 | Dawson | Apr 2010 | B2 |
7719229 | Kaneko et al. | May 2010 | B2 |
7737993 | Kaasila et al. | Jun 2010 | B2 |
7739383 | Short et al. | Jun 2010 | B1 |
7756614 | Jouppi | Jul 2010 | B2 |
7761185 | Wang et al. | Jul 2010 | B2 |
7769492 | Wang et al. | Aug 2010 | B2 |
7769705 | Luechtefeld | Aug 2010 | B1 |
7774158 | Domingues Goncalves et al. | Aug 2010 | B2 |
7813836 | Wang et al. | Oct 2010 | B2 |
7831575 | Trossell et al. | Nov 2010 | B2 |
7835775 | Sawayama et al. | Nov 2010 | B2 |
7860680 | Arms et al. | Dec 2010 | B2 |
7861366 | Hahm et al. | Jan 2011 | B2 |
7885822 | Akers et al. | Feb 2011 | B2 |
7890382 | Robb et al. | Feb 2011 | B2 |
7912583 | Gutmann et al. | Mar 2011 | B2 |
RE42288 | Degioanni | Apr 2011 | E |
7924323 | Walker et al. | Apr 2011 | B2 |
7949616 | Levy et al. | May 2011 | B2 |
7956894 | Akers et al. | Jun 2011 | B2 |
7957837 | Ziegler et al. | Jun 2011 | B2 |
7962607 | Chang | Jun 2011 | B1 |
7982763 | King | Jul 2011 | B2 |
7982769 | Jenkins et al. | Jul 2011 | B2 |
7987069 | Rodgers et al. | Jul 2011 | B2 |
8077963 | Wang et al. | Dec 2011 | B2 |
8116910 | Walters et al. | Feb 2012 | B2 |
8126960 | Obradovich et al. | Feb 2012 | B2 |
8170241 | Roe et al. | May 2012 | B2 |
8179418 | Wright et al. | May 2012 | B2 |
8180486 | Saito et al. | May 2012 | B2 |
8209051 | Wang et al. | Jun 2012 | B2 |
8212533 | Ota | Jul 2012 | B2 |
8265793 | Cross et al. | Sep 2012 | B2 |
8287522 | Moses et al. | Oct 2012 | B2 |
8292807 | Perkins et al. | Oct 2012 | B2 |
8320534 | Kim et al. | Nov 2012 | B2 |
8340654 | Bratton et al. | Dec 2012 | B2 |
8340819 | Mangaser et al. | Dec 2012 | B2 |
8348675 | Dohrmann | Jan 2013 | B2 |
8374171 | Cho et al. | Feb 2013 | B2 |
8400491 | Panpaliya et al. | Mar 2013 | B1 |
8401275 | Wang et al. | Mar 2013 | B2 |
8423035 | Dinan | Apr 2013 | B1 |
8423284 | O'Shea | Apr 2013 | B2 |
8451731 | Lee et al. | May 2013 | B1 |
8463435 | Herzog et al. | Jun 2013 | B2 |
8503340 | Xu | Aug 2013 | B1 |
8515577 | Wang et al. | Aug 2013 | B2 |
8527094 | Kumar et al. | Sep 2013 | B2 |
8532860 | Daly | Sep 2013 | B2 |
8610786 | Ortiz | Dec 2013 | B2 |
8612051 | Norman et al. | Dec 2013 | B2 |
8639797 | Pan et al. | Jan 2014 | B1 |
8670017 | Stuart et al. | Mar 2014 | B2 |
8726454 | Gilbert et al. | May 2014 | B2 |
8836751 | Ballantyne et al. | Sep 2014 | B2 |
8849679 | Wang et al. | Sep 2014 | B2 |
8849680 | Wright et al. | Sep 2014 | B2 |
8861750 | Roe et al. | Oct 2014 | B2 |
8897920 | Wang et al. | Nov 2014 | B2 |
8902278 | Pinter et al. | Dec 2014 | B2 |
9628499 | Yu | Apr 2017 | B1 |
20010002448 | Wilson et al. | May 2001 | A1 |
20010010053 | Ben-Shachar et al. | Jul 2001 | A1 |
20010020200 | Das et al. | Sep 2001 | A1 |
20010034475 | Flach et al. | Oct 2001 | A1 |
20010034544 | Mo | Oct 2001 | A1 |
20010037163 | Allard | Nov 2001 | A1 |
20010044835 | Schober | Nov 2001 | A1 |
20010048464 | Barnett | Dec 2001 | A1 |
20010051881 | Filler | Dec 2001 | A1 |
20010054071 | Loeb | Dec 2001 | A1 |
20010055373 | Yamashita | Dec 2001 | A1 |
20020015296 | Howell et al. | Feb 2002 | A1 |
20020027597 | Sachau | Mar 2002 | A1 |
20020027652 | Paromtchik et al. | Mar 2002 | A1 |
20020033880 | Sul et al. | Mar 2002 | A1 |
20020038168 | Kasuga et al. | Mar 2002 | A1 |
20020044201 | Alexander et al. | Apr 2002 | A1 |
20020049517 | Ruffner | Apr 2002 | A1 |
20020055917 | Muraca | May 2002 | A1 |
20020057279 | Jouppi | May 2002 | A1 |
20020058929 | Green | May 2002 | A1 |
20020059587 | Cofano et al. | May 2002 | A1 |
20020063726 | Jouppi | May 2002 | A1 |
20020073429 | Beane et al. | Jun 2002 | A1 |
20020082498 | Wendt et al. | Jun 2002 | A1 |
20020085030 | Ghani | Jul 2002 | A1 |
20020095238 | Ahlin et al. | Jul 2002 | A1 |
20020095239 | Wallach et al. | Jul 2002 | A1 |
20020098879 | Rheey | Jul 2002 | A1 |
20020104094 | Alexander et al. | Aug 2002 | A1 |
20020106998 | Presley et al. | Aug 2002 | A1 |
20020109770 | Terada | Aug 2002 | A1 |
20020109775 | White et al. | Aug 2002 | A1 |
20020111988 | Sato | Aug 2002 | A1 |
20020120362 | Lathan et al. | Aug 2002 | A1 |
20020128985 | Greenwald | Sep 2002 | A1 |
20020130950 | James et al. | Sep 2002 | A1 |
20020133062 | Arling et al. | Sep 2002 | A1 |
20020141595 | Jouppi | Oct 2002 | A1 |
20020143923 | Alexander | Oct 2002 | A1 |
20020177925 | Onishi et al. | Nov 2002 | A1 |
20020183894 | Wang et al. | Dec 2002 | A1 |
20020184674 | Xi et al. | Dec 2002 | A1 |
20020186243 | Ellis et al. | Dec 2002 | A1 |
20030021107 | Howell et al. | Jan 2003 | A1 |
20030030397 | Simmons | Feb 2003 | A1 |
20030048481 | Kobayashi et al. | Mar 2003 | A1 |
20030050733 | Wang et al. | Mar 2003 | A1 |
20030050734 | Lapham | Mar 2003 | A1 |
20030060808 | Wilk | Mar 2003 | A1 |
20030063600 | Noma et al. | Apr 2003 | A1 |
20030069752 | Ledain et al. | Apr 2003 | A1 |
20030074674 | Magliaro | Apr 2003 | A1 |
20030080901 | Piotrowski | May 2003 | A1 |
20030100892 | Morley et al. | May 2003 | A1 |
20030104806 | Ruef et al. | Jun 2003 | A1 |
20030112823 | Collins et al. | Jun 2003 | A1 |
20030114962 | Niemeyer | Jun 2003 | A1 |
20030120714 | Wolff et al. | Jun 2003 | A1 |
20030126361 | Slater et al. | Jul 2003 | A1 |
20030135097 | Wiederhold et al. | Jul 2003 | A1 |
20030135203 | Wang et al. | Jul 2003 | A1 |
20030144579 | Buss | Jul 2003 | A1 |
20030144649 | Ghodoussi et al. | Jul 2003 | A1 |
20030151658 | Smith | Aug 2003 | A1 |
20030152145 | Kawakita | Aug 2003 | A1 |
20030171710 | Bassuk et al. | Sep 2003 | A1 |
20030174285 | Trumbull | Sep 2003 | A1 |
20030180697 | Kim et al. | Sep 2003 | A1 |
20030195662 | Wang et al. | Oct 2003 | A1 |
20030199000 | Valkirs et al. | Oct 2003 | A1 |
20030206242 | Choi | Nov 2003 | A1 |
20030212472 | Mckee | Nov 2003 | A1 |
20030216833 | Mukai et al. | Nov 2003 | A1 |
20030216834 | Allard | Nov 2003 | A1 |
20030220541 | Salisbury et al. | Nov 2003 | A1 |
20030220715 | Kneifel et al. | Nov 2003 | A1 |
20030231244 | Bonilla et al. | Dec 2003 | A1 |
20030232649 | Gizis et al. | Dec 2003 | A1 |
20030236590 | Park et al. | Dec 2003 | A1 |
20040001197 | Ko et al. | Jan 2004 | A1 |
20040001676 | Colgan et al. | Jan 2004 | A1 |
20040008138 | Hockley, Jr. et al. | Jan 2004 | A1 |
20040010344 | Hiratsuka et al. | Jan 2004 | A1 |
20040012362 | Tsurumi | Jan 2004 | A1 |
20040013295 | Sabe et al. | Jan 2004 | A1 |
20040017475 | Akers et al. | Jan 2004 | A1 |
20040019406 | Wang et al. | Jan 2004 | A1 |
20040024490 | Mclurkin et al. | Feb 2004 | A1 |
20040041904 | Lapalme et al. | Mar 2004 | A1 |
20040065073 | Nash | Apr 2004 | A1 |
20040068657 | Alexander et al. | Apr 2004 | A1 |
20040078219 | Kaylor et al. | Apr 2004 | A1 |
20040080610 | James et al. | Apr 2004 | A1 |
20040088077 | Jouppi et al. | May 2004 | A1 |
20040088078 | Jouppi et al. | May 2004 | A1 |
20040093409 | Thompson et al. | May 2004 | A1 |
20040095516 | Rohlicek | May 2004 | A1 |
20040098167 | Yi et al. | May 2004 | A1 |
20040102167 | Shim et al. | May 2004 | A1 |
20040107254 | Ludwig et al. | Jun 2004 | A1 |
20040107255 | Ludwig et al. | Jun 2004 | A1 |
20040117065 | Wang et al. | Jun 2004 | A1 |
20040117067 | Jouppi | Jun 2004 | A1 |
20040123158 | Roskind | Jun 2004 | A1 |
20040135879 | Stacy et al. | Jul 2004 | A1 |
20040138547 | Wang et al. | Jul 2004 | A1 |
20040143421 | Wang et al. | Jul 2004 | A1 |
20040148638 | Weisman et al. | Jul 2004 | A1 |
20040150725 | Taguchi | Aug 2004 | A1 |
20040153211 | Kamoto et al. | Aug 2004 | A1 |
20040157612 | Kim | Aug 2004 | A1 |
20040162637 | Wang et al. | Aug 2004 | A1 |
20040167666 | Wang et al. | Aug 2004 | A1 |
20040167668 | Wang et al. | Aug 2004 | A1 |
20040168148 | Goncalves et al. | Aug 2004 | A1 |
20040170300 | Jouppi | Sep 2004 | A1 |
20040172301 | Mihai et al. | Sep 2004 | A1 |
20040172306 | Wohl et al. | Sep 2004 | A1 |
20040174129 | Wang et al. | Sep 2004 | A1 |
20040175684 | Kaasa et al. | Sep 2004 | A1 |
20040179714 | Jouppi | Sep 2004 | A1 |
20040186623 | Dooley et al. | Sep 2004 | A1 |
20040189700 | Mandavilli et al. | Sep 2004 | A1 |
20040201602 | Mody et al. | Oct 2004 | A1 |
20040205664 | Prendergast | Oct 2004 | A1 |
20040215490 | Duchon et al. | Oct 2004 | A1 |
20040218099 | Washington | Nov 2004 | A1 |
20040222638 | Bednyak | Nov 2004 | A1 |
20040224676 | Iseki | Nov 2004 | A1 |
20040230340 | Fukuchi et al. | Nov 2004 | A1 |
20040240981 | Dothan et al. | Dec 2004 | A1 |
20040241981 | Doris et al. | Dec 2004 | A1 |
20040260790 | Balloni et al. | Dec 2004 | A1 |
20050003330 | Asgarinejad et al. | Jan 2005 | A1 |
20050004708 | Goldenberg et al. | Jan 2005 | A1 |
20050007445 | Foote et al. | Jan 2005 | A1 |
20050013149 | Trossell | Jan 2005 | A1 |
20050021182 | Wang et al. | Jan 2005 | A1 |
20050021183 | Wang et al. | Jan 2005 | A1 |
20050021187 | Wang et al. | Jan 2005 | A1 |
20050021309 | Alexander et al. | Jan 2005 | A1 |
20050024485 | Castles et al. | Feb 2005 | A1 |
20050027567 | Taha | Feb 2005 | A1 |
20050027794 | Decker | Feb 2005 | A1 |
20050028221 | Liu et al. | Feb 2005 | A1 |
20050035862 | Wildman et al. | Feb 2005 | A1 |
20050038416 | Wang et al. | Feb 2005 | A1 |
20050038564 | Burick | Feb 2005 | A1 |
20050049898 | Hirakawa | Mar 2005 | A1 |
20050052527 | Remy et al. | Mar 2005 | A1 |
20050060211 | Xiao et al. | Mar 2005 | A1 |
20050065435 | Rauch et al. | Mar 2005 | A1 |
20050065438 | Miller | Mar 2005 | A1 |
20050065659 | Tanaka et al. | Mar 2005 | A1 |
20050065813 | Mishelevich et al. | Mar 2005 | A1 |
20050071046 | Miyazaki et al. | Mar 2005 | A1 |
20050073575 | Thacher et al. | Apr 2005 | A1 |
20050078816 | Sekiguchi et al. | Apr 2005 | A1 |
20050083011 | Yang et al. | Apr 2005 | A1 |
20050099493 | Chew | May 2005 | A1 |
20050104964 | Bovyrin et al. | May 2005 | A1 |
20050110867 | Schulz | May 2005 | A1 |
20050122390 | Wang et al. | Jun 2005 | A1 |
20050125083 | Kiko | Jun 2005 | A1 |
20050125098 | Wang et al. | Jun 2005 | A1 |
20050149364 | Ombrellaro | Jul 2005 | A1 |
20050152447 | Jouppi et al. | Jul 2005 | A1 |
20050152565 | Jouppi et al. | Jul 2005 | A1 |
20050154265 | Miro et al. | Jul 2005 | A1 |
20050168568 | Jouppi | Aug 2005 | A1 |
20050182322 | Grispo | Aug 2005 | A1 |
20050192721 | Jouppi | Sep 2005 | A1 |
20050204438 | Wang et al. | Sep 2005 | A1 |
20050212478 | Takenaka | Sep 2005 | A1 |
20050219356 | Smith et al. | Oct 2005 | A1 |
20050225634 | Brunetti et al. | Oct 2005 | A1 |
20050231156 | Yan | Oct 2005 | A1 |
20050231586 | Rodman et al. | Oct 2005 | A1 |
20050232647 | Takenaka | Oct 2005 | A1 |
20050234592 | Mcgee et al. | Oct 2005 | A1 |
20050264649 | Chang et al. | Dec 2005 | A1 |
20050267826 | Levy et al. | Dec 2005 | A1 |
20050283414 | Fernandes et al. | Dec 2005 | A1 |
20050286759 | Zitnick et al. | Dec 2005 | A1 |
20060007943 | Fellman | Jan 2006 | A1 |
20060010028 | Sorensen | Jan 2006 | A1 |
20060013263 | Fellman | Jan 2006 | A1 |
20060013469 | Wang et al. | Jan 2006 | A1 |
20060013488 | Inoue | Jan 2006 | A1 |
20060014388 | Lur et al. | Jan 2006 | A1 |
20060020694 | Nag et al. | Jan 2006 | A1 |
20060029065 | Fellman | Feb 2006 | A1 |
20060029092 | Luo | Feb 2006 | A1 |
20060047365 | Ghodoussi et al. | Mar 2006 | A1 |
20060048286 | Donato | Mar 2006 | A1 |
20060052676 | Wang et al. | Mar 2006 | A1 |
20060052684 | Takahashi et al. | Mar 2006 | A1 |
20060056655 | Wen et al. | Mar 2006 | A1 |
20060056837 | Vapaakoski | Mar 2006 | A1 |
20060064212 | Thorne | Mar 2006 | A1 |
20060066609 | Iodice et al. | Mar 2006 | A1 |
20060071797 | Rosenfeld et al. | Apr 2006 | A1 |
20060074525 | Close et al. | Apr 2006 | A1 |
20060074719 | Horner | Apr 2006 | A1 |
20060082642 | Wang et al. | Apr 2006 | A1 |
20060087746 | Lipow | Apr 2006 | A1 |
20060095158 | Lee et al. | May 2006 | A1 |
20060095170 | Yang et al. | May 2006 | A1 |
20060098573 | Beer et al. | May 2006 | A1 |
20060103659 | Karandikar et al. | May 2006 | A1 |
20060104279 | Fellman et al. | May 2006 | A1 |
20060106493 | Niemeyer et al. | May 2006 | A1 |
20060122482 | Mariotti et al. | Jun 2006 | A1 |
20060125356 | Meek et al. | Jun 2006 | A1 |
20060142983 | Sorensen et al. | Jun 2006 | A1 |
20060149418 | Anvari | Jul 2006 | A1 |
20060161136 | Anderson | Jul 2006 | A1 |
20060161303 | Wang et al. | Jul 2006 | A1 |
20060164546 | Adachi | Jul 2006 | A1 |
20060171515 | Hintermeister et al. | Aug 2006 | A1 |
20060173708 | Vining et al. | Aug 2006 | A1 |
20060173712 | Joubert | Aug 2006 | A1 |
20060178559 | Kumar et al. | Aug 2006 | A1 |
20060178776 | Feingold et al. | Aug 2006 | A1 |
20060178777 | Park et al. | Aug 2006 | A1 |
20060189393 | Edery | Aug 2006 | A1 |
20060195569 | Barker | Aug 2006 | A1 |
20060224781 | Tsao et al. | Oct 2006 | A1 |
20060247045 | Jeong et al. | Nov 2006 | A1 |
20060259193 | Wang et al. | Nov 2006 | A1 |
20060268704 | Ansari et al. | Nov 2006 | A1 |
20060271238 | Choi et al. | Nov 2006 | A1 |
20060271400 | Clements et al. | Nov 2006 | A1 |
20060293788 | Pogodin | Dec 2006 | A1 |
20070021871 | Wang et al. | Jan 2007 | A1 |
20070025711 | Marcus | Feb 2007 | A1 |
20070046237 | Lakshmanan et al. | Mar 2007 | A1 |
20070050937 | Song et al. | Mar 2007 | A1 |
20070064092 | Sandbeg et al. | Mar 2007 | A1 |
20070078566 | Wang et al. | Apr 2007 | A1 |
20070093279 | Janik | Apr 2007 | A1 |
20070112700 | Den et al. | May 2007 | A1 |
20070116152 | Thesling | May 2007 | A1 |
20070117516 | Saidi et al. | May 2007 | A1 |
20070120965 | Sandberg et al. | May 2007 | A1 |
20070122783 | Habashi | May 2007 | A1 |
20070133407 | Choi et al. | Jun 2007 | A1 |
20070135967 | Jung et al. | Jun 2007 | A1 |
20070142964 | Abramson | Jun 2007 | A1 |
20070170886 | Plishner | Jul 2007 | A1 |
20070176060 | White et al. | Aug 2007 | A1 |
20070192910 | Vu et al. | Aug 2007 | A1 |
20070197896 | Moll et al. | Aug 2007 | A1 |
20070198128 | Ziegler et al. | Aug 2007 | A1 |
20070198130 | Wang et al. | Aug 2007 | A1 |
20070199108 | Angle et al. | Aug 2007 | A1 |
20070216347 | Kaneko et al. | Sep 2007 | A1 |
20070226949 | Hahm et al. | Oct 2007 | A1 |
20070250212 | Halloran et al. | Oct 2007 | A1 |
20070255706 | Iketani et al. | Nov 2007 | A1 |
20070262884 | Goncalves et al. | Nov 2007 | A1 |
20070273751 | Sachau | Nov 2007 | A1 |
20070290040 | Wurman et al. | Dec 2007 | A1 |
20070291109 | Wang et al. | Dec 2007 | A1 |
20070291128 | Wang et al. | Dec 2007 | A1 |
20080009969 | Bruemmer et al. | Jan 2008 | A1 |
20080011904 | Cepollina et al. | Jan 2008 | A1 |
20080027591 | Lenser et al. | Jan 2008 | A1 |
20080033641 | Medalia | Feb 2008 | A1 |
20080045804 | Williams | Feb 2008 | A1 |
20080051985 | D'Andrea et al. | Feb 2008 | A1 |
20080065268 | Wang et al. | Mar 2008 | A1 |
20080082211 | Wang et al. | Apr 2008 | A1 |
20080086241 | Phillips et al. | Apr 2008 | A1 |
20080091340 | Milstein et al. | Apr 2008 | A1 |
20080126132 | Warner et al. | May 2008 | A1 |
20080133052 | Jones et al. | Jun 2008 | A1 |
20080161969 | Lee et al. | Jul 2008 | A1 |
20080174570 | Jobs et al. | Jul 2008 | A1 |
20080201016 | Finlay | Aug 2008 | A1 |
20080201017 | Wang et al. | Aug 2008 | A1 |
20080215987 | Alexander et al. | Sep 2008 | A1 |
20080229531 | Takida | Sep 2008 | A1 |
20080232763 | Brady | Sep 2008 | A1 |
20080255703 | Wang et al. | Oct 2008 | A1 |
20080263451 | Portele et al. | Oct 2008 | A1 |
20080263628 | Norman et al. | Oct 2008 | A1 |
20080267069 | Thielman et al. | Oct 2008 | A1 |
20080269949 | Norman et al. | Oct 2008 | A1 |
20080281467 | Pinter | Nov 2008 | A1 |
20080306375 | Sayler et al. | Dec 2008 | A1 |
20090030552 | Nakadai et al. | Jan 2009 | A1 |
20090044334 | Parsell et al. | Feb 2009 | A1 |
20090049640 | Lee et al. | Feb 2009 | A1 |
20090055023 | Walters et al. | Feb 2009 | A1 |
20090070135 | Parida et al. | Mar 2009 | A1 |
20090086013 | Thapa | Apr 2009 | A1 |
20090102919 | Zamierowski et al. | Apr 2009 | A1 |
20090105882 | Wang et al. | Apr 2009 | A1 |
20090106679 | Anzures et al. | Apr 2009 | A1 |
20090122699 | Alperovitch et al. | May 2009 | A1 |
20090125147 | Wang et al. | May 2009 | A1 |
20090144425 | Marr et al. | Jun 2009 | A1 |
20090164255 | Menschik et al. | Jun 2009 | A1 |
20090164657 | Li et al. | Jun 2009 | A1 |
20090171170 | Li et al. | Jul 2009 | A1 |
20090177323 | Ziegler et al. | Jul 2009 | A1 |
20090177641 | Raghavan | Jul 2009 | A1 |
20090237317 | Rofougaran | Sep 2009 | A1 |
20090240371 | Wang et al. | Sep 2009 | A1 |
20090248200 | Root | Oct 2009 | A1 |
20090259339 | Wright et al. | Oct 2009 | A1 |
20100010672 | Wang et al. | Jan 2010 | A1 |
20100010673 | Wang et al. | Jan 2010 | A1 |
20100017046 | Cheung et al. | Jan 2010 | A1 |
20100019715 | Roe et al. | Jan 2010 | A1 |
20100026239 | Li et al. | Feb 2010 | A1 |
20100030578 | Siddique et al. | Feb 2010 | A1 |
20100031156 | Doyle | Feb 2010 | A1 |
20100051596 | Diedrick et al. | Mar 2010 | A1 |
20100063848 | Kremer et al. | Mar 2010 | A1 |
20100066804 | Shoemake et al. | Mar 2010 | A1 |
20100070079 | Mangaser et al. | Mar 2010 | A1 |
20100073490 | Wang et al. | Mar 2010 | A1 |
20100076600 | Cross et al. | Mar 2010 | A1 |
20100085874 | Noy et al. | Apr 2010 | A1 |
20100088232 | Gale | Apr 2010 | A1 |
20100115418 | Wang et al. | May 2010 | A1 |
20100116566 | Ohm et al. | May 2010 | A1 |
20100131103 | Herzog et al. | May 2010 | A1 |
20100145479 | Griffiths | Jun 2010 | A1 |
20100157825 | Anderlind et al. | Jun 2010 | A1 |
20100171826 | Hamilton et al. | Jul 2010 | A1 |
20100191375 | Wright et al. | Jul 2010 | A1 |
20100228249 | Mohr et al. | Sep 2010 | A1 |
20100268383 | Wang et al. | Oct 2010 | A1 |
20100278086 | Pochiraju et al. | Nov 2010 | A1 |
20100286905 | Goncalves et al. | Nov 2010 | A1 |
20100301679 | Murray et al. | Dec 2010 | A1 |
20100323783 | Nonaka et al. | Dec 2010 | A1 |
20110022705 | Yellamraju et al. | Jan 2011 | A1 |
20110050841 | Wang et al. | Mar 2011 | A1 |
20110071675 | Wells et al. | Mar 2011 | A1 |
20110071702 | Wang et al. | Mar 2011 | A1 |
20110072114 | Hoffert et al. | Mar 2011 | A1 |
20110149751 | Li | Jun 2011 | A1 |
20110153198 | Kokkas et al. | Jun 2011 | A1 |
20110172822 | Ziegler et al. | Jul 2011 | A1 |
20110187875 | Sanchez et al. | Aug 2011 | A1 |
20110190930 | Hanrahan et al. | Aug 2011 | A1 |
20110193949 | Nambakam et al. | Aug 2011 | A1 |
20110195701 | Cook et al. | Aug 2011 | A1 |
20110213210 | Temby et al. | Sep 2011 | A1 |
20110218674 | Stuart et al. | Sep 2011 | A1 |
20110245973 | Wang et al. | Oct 2011 | A1 |
20110249073 | Cranfill | Oct 2011 | A1 |
20110280551 | Sammon | Nov 2011 | A1 |
20110292193 | Wang et al. | Dec 2011 | A1 |
20110301759 | Wang et al. | Dec 2011 | A1 |
20110306400 | Nguyen | Dec 2011 | A1 |
20120023506 | Maeckel et al. | Jan 2012 | A1 |
20120036484 | Zhang et al. | Feb 2012 | A1 |
20120059946 | Wang | Mar 2012 | A1 |
20120072023 | Ota | Mar 2012 | A1 |
20120072024 | Wang et al. | Mar 2012 | A1 |
20120092157 | Tran | Apr 2012 | A1 |
20120095352 | Tran | Apr 2012 | A1 |
20120113856 | Krishnaswamy | May 2012 | A1 |
20120191246 | Roe et al. | Jul 2012 | A1 |
20120191464 | Stuart et al. | Jul 2012 | A1 |
20120203731 | Nelson et al. | Aug 2012 | A1 |
20120291809 | Kuhe et al. | Nov 2012 | A1 |
20130162755 | Swanson | Jun 2013 | A1 |
20130250938 | Anandakumar et al. | Sep 2013 | A1 |
20130322242 | Swenson | Dec 2013 | A1 |
20140047022 | Chan et al. | Feb 2014 | A1 |
20140085543 | Hartley et al. | Mar 2014 | A1 |
20140111517 | Vela | Apr 2014 | A1 |
20140135990 | Stuart et al. | May 2014 | A1 |
20140139616 | Pinter et al. | May 2014 | A1 |
20140155755 | Pinter et al. | Jun 2014 | A1 |
20170078171 | Tapia | Mar 2017 | A1 |
20170109630 | Brew | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
1216200 | May 2000 | AU |
2289697 | Nov 1998 | CA |
1404695 | Mar 2003 | CN |
1554193 | Dec 2004 | CN |
1554985 | Dec 2004 | CN |
1561923 | Jan 2005 | CN |
1743144 | Mar 2006 | CN |
101049017 | Oct 2007 | CN |
101106939 | Jan 2008 | CN |
101151614 | Mar 2008 | CN |
100407729 | Jul 2008 | CN |
101390098 | Mar 2009 | CN |
101507260 | Aug 2009 | CN |
101730894 | Jun 2010 | CN |
101866396 | Oct 2010 | CN |
101978365 | Feb 2011 | CN |
102203759 | Sep 2011 | CN |
101106939 | Nov 2011 | CN |
466492 | Jan 1992 | EP |
488673 | Jun 1992 | EP |
981905 | Jan 2002 | EP |
1262142 | Dec 2002 | EP |
1304872 | Apr 2003 | EP |
1536660 | Jun 2005 | EP |
1573406 | Sep 2005 | EP |
1594660 | Nov 2005 | EP |
1763243 | Mar 2007 | EP |
1791464 | Jun 2007 | EP |
1800476 | Jun 2007 | EP |
1819108 | Aug 2007 | EP |
1856644 | Nov 2007 | EP |
1536660 | Apr 2008 | EP |
1928310 | Jun 2008 | EP |
1232610 | Jan 2009 | EP |
2027716 | Feb 2009 | EP |
2145274 | Jan 2010 | EP |
2214111 | Aug 2010 | EP |
2263158 | Dec 2010 | EP |
2300930 | Mar 2011 | EP |
2342651 | Jul 2011 | EP |
2431261 | Apr 2007 | GB |
7-194609 | Aug 1995 | JP |
7-213753 | Aug 1995 | JP |
7-248823 | Sep 1995 | JP |
7-257422 | Oct 1995 | JP |
8-084328 | Mar 1996 | JP |
8-320727 | Dec 1996 | JP |
9-267276 | Oct 1997 | JP |
10-79097 | Mar 1998 | JP |
10-288689 | Oct 1998 | JP |
11-220706 | Aug 1999 | JP |
2000-032319 | Jan 2000 | JP |
2000-049800 | Feb 2000 | JP |
2000-079587 | Mar 2000 | JP |
2000-196876 | Jul 2000 | JP |
2001-125641 | May 2001 | JP |
2001-147718 | May 2001 | JP |
2001-179663 | Jul 2001 | JP |
2001-188124 | Jul 2001 | JP |
2001-198865 | Jul 2001 | JP |
2001-198868 | Jul 2001 | JP |
2001-199356 | Jul 2001 | JP |
2002-000574 | Jan 2002 | JP |
2002-046088 | Feb 2002 | JP |
2002-101333 | Apr 2002 | JP |
2002-112970 | Apr 2002 | JP |
2002-235423 | Aug 2002 | JP |
2002-305743 | Oct 2002 | JP |
2002-321180 | Nov 2002 | JP |
2002-355779 | Dec 2002 | JP |
2004-181229 | Jul 2004 | JP |
2004-524824 | Aug 2004 | JP |
2004-261941 | Sep 2004 | JP |
2004-289379 | Oct 2004 | JP |
2005-028066 | Feb 2005 | JP |
2005-059170 | Mar 2005 | JP |
2005-111083 | Apr 2005 | JP |
2006-508806 | Mar 2006 | JP |
2006-109094 | Apr 2006 | JP |
2006-224294 | Aug 2006 | JP |
2006-246438 | Sep 2006 | JP |
2007-007040 | Jan 2007 | JP |
2007007040 | Jan 2007 | JP |
2007-081646 | Mar 2007 | JP |
2007-232208 | Sep 2007 | JP |
2007-316966 | Dec 2007 | JP |
2009-125133 | Jun 2009 | JP |
2010-064154 | Mar 2010 | JP |
2010-532109 | Sep 2010 | JP |
2010-246954 | Nov 2010 | JP |
2006-0037979 | May 2006 | KR |
2009-0012542 | Feb 2009 | KR |
2010-0019479 | Feb 2010 | KR |
2010-0139037 | Dec 2010 | KR |
9306690 | Apr 1993 | WO |
9742761 | Nov 1997 | WO |
199851078 | Nov 1998 | WO |
9967067 | Dec 1999 | WO |
2000025516 | May 2000 | WO |
2000033726 | Jun 2000 | WO |
0131861 | May 2001 | WO |
2003077745 | Sep 2003 | WO |
2004008738 | Jan 2004 | WO |
2004012018 | Feb 2004 | WO |
2004075456 | Sep 2004 | WO |
2006012797 | Feb 2006 | WO |
2006044847 | Apr 2006 | WO |
2006078611 | Jul 2006 | WO |
2007041295 | Apr 2007 | WO |
2007041038 | Jun 2007 | WO |
2008100272 | Aug 2008 | WO |
2008100272 | Oct 2008 | WO |
2009117274 | Sep 2009 | WO |
2009128997 | Oct 2009 | WO |
2009145958 | Dec 2009 | WO |
2010006205 | Jan 2010 | WO |
2010006211 | Jan 2010 | WO |
2010033666 | Mar 2010 | WO |
2010047881 | Apr 2010 | WO |
2010062798 | Jun 2010 | WO |
2010065257 | Jun 2010 | WO |
2010120407 | Oct 2010 | WO |
2011028589 | Mar 2011 | WO |
2011028589 | Apr 2011 | WO |
2011097130 | Aug 2011 | WO |
2011097132 | Aug 2011 | WO |
2011109336 | Sep 2011 | WO |
2011097132 | Dec 2011 | WO |
2011149902 | Dec 2011 | WO |
Entry |
---|
Jouppi et al., “BiReality: Mutually-Immersive Telepresence”, Proceedings of the 12th Annual ACM International Conference on Multimedia, Oct. 10-16, 2004, pp. 860-867. |
Jouppi et al., “First Steps Towards Mutually-Immersive Mobile Telepresence”, Proceedings of the 2002 ACM Conference on Computer Supported Cooperative Work, Nov. 16-20, 2002, pp. 354-363. |
Kanehiro et al., “Virtual Humanoid Robot Platform to Develop Controllers of Real Humanoid Robots without Porting”, IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, 2001, pp. 1093-1099. |
Kaplan et al., “An Internet Accessible Telepresence”, Multimedia Systems Journal, vol. 5, 1996, 7 pages. |
Keller et al., “Raven Interface Project”, The National Aviary's Teleconferencing Carnegie Mellon University Robot, Interaction and Visual Interface Design, School of Design, Carnegie Mellon University, 2001, 8 pages. |
Khatib et al., “Robots in Human Environments”, Proceedings International Conference on Control, Automation, Robotics, and Vision ICRACV2000, 1999, 15 pages. |
Knight et al., “Active Visual Alignment of a Mobile Stereo Camera Platform”, IEEE International Conference on Robotics and Automation, vol. 4, Apr. 24-28, 2000, pp. 3203-3208. |
Koenen, Rob, “MPEG-4: a Powerful Standard for Use in Web and Television Environments”, (KPN Research), available online at <http://www.w3.org/Architecture/1998/06/Workshop/paper26>, Jul. 1, 1998, 4 pages. |
Kurlowicz et al., “The Mini Mental State Examination (MMSE)”, Try This: Best Practices in Nursing Care to Older Adults, A series from the Hartford Institute of Geriatric Nursing, Issue No. 3, Jan. 1999, 2 pages. |
Kuzuoka et al., “Can the GestureCam Be a Surrogate?”, Proceedings of the Fourth European Conference on Computer-Supported Cooperative Work, 1995, pp. 181-196. |
Lane, Earl, “Automated Aides”, Available online at <http://www.cs.cum.edu/nursebot/web/press/nd4380.htm>, Oct. 17, 2000, 4 pages. |
Lee et al., “A Novel Method of Surgical Instruction: International Telementoring”, World Journal of Urology, vol. 16, No. 6, Dec. 1998, pp. 367-370. |
Leifer et al., “VIPRR: A Virtually in Person Rehabilitation Robot”, Proceedings of 1997 International Conference on Rehabilitation Robotics, Apr. 14-15, 1997, 4 pages. |
Lemaire, Edward, “Using Communication Technology to Enhance Rehabilitation Services: A Solution Oriented User Manual”, Institute for Rehabilitation Research and Development, Terry Fox Mobile Clinic, The Rehabilitation Centre, Ottawa, Ontario, Canada, Version 2.0, available online at <http://www.irrd.ca/telehealth/distfile/distman_v2_1.pdf>, 1998-2001, 104 pages. |
Library of Congress, “008-Fixed-Length Data Elements (NR)”, MARC 21 Format for Classification Data, available online at <http://www.loc.gov/marc/classification/cd008.html>, Jan. 2000, pp. 1-14. |
Lim et al., “Control to Realize Human-Like Walking of a Biped Humanoid Robot”, IEEE International Conference on Systems, Man, and Cybernetics, 2000, vol. 5, 2000, pp. 3271-3276. |
Linebarger et al., “Concurrency Control Mechanisms for Closely Coupled Collaboration in Multithreaded Virtual Environments”, Department of Computer Science and Engineering, Lehigh University, vol. 13, 2004, 40 pages. |
Long, William F., “Robot Navigation Technology”, available online at <http://www.atp.nist.gov/eao/sp950-1/helpmate.htm>, Mar. 1999, 3 pages. |
Luna, Nancy, “Robot a New Face on Geriatric Care”, ocregister.com, Aug. 6, 2003, 3 pages. |
Mack, Michael J., “Minimally Invasive and Robotic Surgery”, The Journal of the American Medical Association, vol. 285, No. 5, 2001, pp. 568-572. |
Mair, G. M., “Telepresence—The Technology and its Economic and Social Implications”, Technology and Society, 1997. ‘Technology and Society at a Time of Sweeping Change’. Proceedings, 1997 International Symposium, Jun. 20-21, 1997, pp. 118-124. |
Martin, Anya, “Brighter Days Ahead”, Assisted Living Today, vol. 9, Nov./Dec. 2002, pp. 19-22. |
McCardle et al., “The Challenge of Utilizing New Technology in Design Education”, Loughborough University, IDATER 2000, 2000, pp. 122-127. |
Meng et al., “E-Service Robot in Home Healthcare”, Proceedings of the 2000 IEEE/RSJ, International Conference on Intelligent Robots and Systems, 2000, pp. 832-837. |
Metz, Cade, “HP Labs”, available online at <http://www.pcmag.com/article2/0,2817,1130820,00.asp>, Jul. 1, 2003, 4 pages. |
Michaud, Anne, “Introducing “Nursebot””, available online at <http://www.cs.cmu.edu/nursebot/web/press/globe 301/index.html>, 2001, 4 pages. |
Microsoft Corporation, Inc., “Microsoft NetMeeting 3 Features excerpt from Official Microsoft NetMeeting 3.0 Book”, available online at <http://technet.microsoft.com/en-us/library/cc723477.aspx>, 2012, 6 pages. |
Minsky, Marvin, “Telepresence”, OMNI Magazine, Jun. 1980, 6 pages. |
Montemerlo, Reddy Whittaker, “Telepresence: Experiments in Next Generation Internet”, available online at <http://www.ri.cmu.edu/creative/archives.htm>, Oct. 20, 1998, 3 pages. |
Murphy, Robin R., “Introduction to A1 Robotics”, A Bradford Book, The MIT Press, Cambridge, Massachusetts, London, England, 2000, 487 pages. |
Nakajima et al., “A Multimedia Teleteaching System using an Electronic Whiteboard for Two Way Communication of Motion Videos and Chalkboards”, 2nd IEEE International Workshop on Robot and Human Communication, 1993, pp. 436-441. |
Nakazato et al., “Group-Based Interface for Content-Based Image Retrieval”, Proceedings of the Working Conference on Advanced Visual Interfaces, 2002, pp. 187-194. |
Nakazato et al., “ImageGrouper: A Group-Oriented User Interface for Content-Based Image Retrieval and Digital Image Arrangement”, Journal of Visual Languages & Computing, vol. 14, No. 4, Aug. 2003, pp. 45-46. |
NERSC, “Berkeley Lab's RAGE Telepresence Robot Captures R&D100 Award”, Available online at <https://www.nersc.gov/news-publications/news/nersc-center-news/2002/berkeley-lab-s-rage-telepresence-robot-captures-r-and-d100-award/>, Jul. 2, 2002, 2 pages. |
Nomadic Technologies Inc., “Nomad XR4000 Hardware Manual”, Release 1.0, Mar. 1999, 34 pages. |
Noritsugu et al., “Application of Rubber Artificial Muscle Manipulator as a Rehabilitation Robot”, Mechatronics, IEEE/ASME Transactions, vol. 2, No. 4, Dec. 1997, pp. 259-267. |
North, Michael, “Telemedicine: Sample Script and Specifications for a Demonstration of Simple Medical Diagnosis and Treatment Using Live Two-Way Video on a Computer Network”, Greenstar Corporation, 1998, 5 pages. |
Ogata et al., “Development of Emotional Communication Robot: WAMOEBA-2R—Experimental Evaluation”, Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, 2000, pp. 175-180. |
Ogata et al., “Emotional Communication Robot: WAMOEBA-2R—Emotion Model and Evaluation Experiments”, Proceedings of the International Conference on Humanoid Robots, 2000, pp. 1-16. |
Oh et al., “Autonomous Battery Recharging for Indoor Mobile Robots”, Proceedings of Australian Conference on Robotics and Automation, 2000, pp. 1-6. |
Ojha, Anand K., “An application of Virtual Reality in Rehabilitation”, Proceedings of the 1994 IEEE Southeastcon 94. Creative Technology Transfer—A Global Affair, Apr. 1994, pp. 4-6. |
Osborn, Jim, “Quality of Life Technology Center”, QoLT Research Overview: A National Science Foundation Engineering Research Center, Carnegie Mellon University of Pittsburgh, 2 pages. |
Panusopone et al., “Performance comparison of MPEG-4 and H.263+ for streaming video applications”, Circuits Systems Signal Processing, vol. 20, No. 3, 2001, pp. 293-309. |
Paulos et al., “A World Wide Web Telerobotic Remote Environment Browser”, Available online at <http://www.w3.org/Conferences/WWW4/Papers/326/>, 1995, 15 pages. |
Paulos et al., “Designing Personal Tele-Embodiment”, Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, May 16-20, 1998, pp. 3173-3178. |
Paulos, Eric J., “Personal Tele-Embodiment”, Dissertation, Doctor of Philosophy in Computer Science in the Graduate Division of the University of California at Berkeley, 2001, 282 pages. |
Paulos, Eric John, “Personal Tele-Embodiment”, OskiCat Catalog Record, UCB Library Catalog, 2001, 3 pages. |
Paulos et al., “Personal Tele-Embodiment”, Chapter 9 in Goldberg, et al., ed. “Beyond webcams”, MIT Press, Jan. 4, 2002, pp. 155-167. |
Paulos, Eric John, “Personal Tele-Embodiment”, Introductory and cover pages from 2001 Dissertation including Contents table, together with e-mails relating thereto from UC Berkeley Libraries, as shelved at UC Berkeley Engineering Library (Northern Regional library Facility), May 8, 2002, 25 pages (including 4 pages of e-mails). |
Paulos et al., “PRoP: Personal Roving Presence”, ACM:CHI Proceedings of CHI '98, 1998, 8 pages. |
Cleary et al., “State of the Art in Surgical Robotics: Clinical Applications and Technology Challenges”, Feb. 24, 2002, pp. 1-26. |
CMU Course 16×62, “Robot user's manual”, (describing the Nomad Scout), Carnegie Mellon University, Feb. 1, 2001, 11 pages. |
CNN, “Floating ‘Droids’ to Roam Space Corridors of the Future”, Available online at <http://edition.cnn.com/2000/TECH/space/01/12/psa/>, Jan. 12, 2000, 3 pages. |
cnn.com, “Paging Dr.Robot: Machine Helps Doctors with Patients”, Sep. 30, 2003, 3 pages. |
Crowley, Susan L., “Hello to Our Future”, AARP Bulletin, Jan. 2000, 12 pages. |
Dalton, Barnaby, “Techniques for Web Telerobotics”, PhD Thesis, University of Western Australia, 2001, 243 pages. |
Dario et al., “A Robot Workstation for Diagnosis and Physical Therapy”, IEEE Catalog No. 88TH0234-5, 1989, pp. 67-72. |
Davies, Brian, “Robotics in Minimally Invasive Surgery”, IEE Colloquium on Through the Keyhole: Microengineering in Minimally Invasive Surgery, 1995, pp. 1-2. |
Davis, Erik, “Telefriend, Meet iRobot, The Smartest Webcam on Wheels”, Wired Magazine, Issue 8.09, Available online at <http://www.wired.com/wired/archive/8.09/irobot.html?pg=1&topic=&topic_set=>, Sep. 2000, 3 pages. |
Dean et al., “1992 AAAI Robot Exhibition and Competition”, Articles, AI Magazine, vol. 14, No. 1, 1993, 15 pages. |
Digiorgio, James, “Is Your Emergency Department of the Leading Edge?”, Chicago Hospital News, vol. 2, No. 12, 2005, 3 pages. |
Dudenhoeffer et al., “Command and Control Architectures for Autonomous Micro-Robotic Forces”, FY00 Project Report, Idaho National Engineering and Environmental Laboratory Human Systems Engineering and Sciences Department, Idaho Falls, Apr. 2001, 43 pages. |
Elhajj et al., “Real-Time Haptic Feedback in Internet-Based Telerobotic Operation”, IEEE International Conference on Electro/Information Technology, available online at <http://www.egr.msu.edu/˜ralab-web/cgi_bin/internet-teleoperation.php>, Jun. 2000, 10 pages. |
Elhajj et al., “Supermedia in Internet-Based Telerobotic Operations”, Management of Multimedia on the InternetLecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg, vol. 2216, Oct. 29-Nov. 1, 2001, pp. 359-372. |
Elhajj et al., “Synchronization and Control of Supermedia Transmission via the Internet”, Proceedings of 2001 International Symposium on Intelligent Multimedia Video and Speech Processing, May 2-4, 2001, pp. 320-323. |
Ellison et al., “Telerounding and Patient Satisfaction Following Surgery”, vol. 199, No. 4, Oct. 2004, pp. 523-530. |
Evans et al., “The Trackless Robotic Courier”, PYXIS HelpMate®, 2007, 3 pages. |
Fels et al., “Developing a Video-Mediated Communication System for Hospitalized Children”, Telemedicine Journal, vol. 5, No. 2, 1999, 30 pages. |
Fetterman et al., “Videoconferencing Over the Internet”, 2001, 8 pages. |
Fiorini et al., “Health Care Robotics: A Progress Report”, IEEE International Conference on Robotics and Automation, Apr. 20-25, 1997, pp. 1271-1276. |
Fong, Terrence, “Collaborative Control: A Robot-Centric Model for Vehicle Teleoperation”, Doctoral Dissertation, Technical Report CMU-RI-TR-01-34, Robotics Institute, Carnegie Mellon University, Nov. 2001, 197 pages. |
Fulbright et al., “SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste of Storage Facilities”, Autonomous Robots, vol. 2, 1995, pp. 225-235. |
Gaidioz et al., “Synchronizing Network Probes to Avoid Measurement Intrusiveness with the Network Weather Service”, Proceedings of the Ninth International Symposium on High-Performance Distributed Computing, 2000, pp. 147-154. |
Garner et al., “The Application of Telepresence in Medicine”, BT Technology Journal, vol. 15, No. 4, Oct. 1, 1997, pp. 181-187. |
Ghiasi et al., “A Generic Web-based Teleoperations Architecture: Details and Experience”, Proceedings of SPIE, Telemanipulator and Telepresence Technologies VI, vol. 3840, No. 234, Sep. 19, 1999, 14 pages. |
Goldberg et al., “Collaborative Teleoperation via the Internet”, IEEE International Conference on Robotics and Automation (ICRA), vol. 2, 2000, pp. 2019-2024. |
Goldberg et al., “Desktop Teleoperation via the World Wide Web”, IEEE International Conference on Robotics and Automation, vol. 1, May 21-27, 1995, pp. 654-659. |
Goldenberg et al., “Telemedicine in Otolaryngology”, American Journal of Otolaryngology, vol. 23,No. 1, 2002, pp. 35-43. |
Goldman, Lea, “Machine Dreams”, available online at <http://www.forbes.com/global/2002/0527/043.html>, May 27, 2002, 5 pages. |
Gostai, “Gostai Jazz: Robotic Telepresence”, available online at <http://www.robotshop.com/media/files/pdf/gostai-azz-information-sheet.pdf>, 4 pages. |
Gump, Michael D., “Robot Technology Improves VA Pharmacies”, U.S. Medicine Informational Central, Jul. 2001, 3 pages. |
Al-Kassab et al., “A Review of Telemedicine”, Journal of Telemedicine and Telecare, vol. 5, Supplement 1, 1999, pp. 103-106. |
Han et al., “Construction of an Omnidirectional Mobile Robot Platform Based on Active Dual-Wheel Caster Mechanisms and Development of a Control Simulator”, Journal of Intelligent and Robotic Systems, vol. 29, Issue 3, Nov. 2000, pp. 257-275. |
Handley et al., “RFC 2327—SDP: Session Description Protocol”, available online at <http://www.faqs.org/rfcs/rfc2327.html>, Apr. 1998, 22 pages. |
Hanebeck et al., “ROMAN: A Mobile Robotic Assistant for Indoor Service Applications”, IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, Sep. 7-11, 1997, pp. 518-525. |
Harmo et al., “Moving Eye-Interactive Telepresence Over Internet With a Ball Shaped Mobile Robot”, available online at <http://automation.tkk.fi/files/tervetaas/MovingEye4.pdf>, 2000, 6 pages. |
Haule et al., “Control Scheme for Delayed Teleoperation Tasks”, IEEE Pacific Rim Conference on Communications, Computers, and Signal Processing, May 17-19, 1995, pp. 157-160. |
Hees, William P., “Communications Design for a Remote Presence Robot”, CSCI E-131b, Final Project, Jan. 14, 2002, 12 pages. |
Herias et al., “Flexible Virtual and Remote Laboratory for Teaching Robotics”, Current Developments in Technology-Assisted Education, Jun. 2006, pp. 1959-1963. |
Holmberg et al., “Development of a Holonomic Mobile Robot for Mobile Manipulation Tasks”, International Journal of Robotics Research, vol. 19, No. 11, Nov. 2000, pp. 1066-1074. |
Ishiguro et al., “Integrating a Perceptual Information Infrastructure with Robotic Avatars: A Framework for Tele-Existence”, IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, 1999, pp. 1032-1038. |
Ishihara et al., “Intelligent Microrobot DDS (Drug Delivery System) Measured and Controlled by Ultrasonics”, Intelligent Robots and Systems '91. Intelligence for Mechanical Systems, IEEE/RSJ International Workshop, vol. 2, Nov. 3-5, 1991, pp. 1145-1150. |
ITU, “Call Completion Supplementary Services for H.323”, ITU-T, Telecommunication Standardization Sector of ITU, H.450.9, Series H: Audiovisual and Multimedia Systems, Nov. 2000, 63 pages. |
ITU, “Call Intrusion Supplementary Service for H.323”, ITU-T, Telecommunication Standardization Sector of ITU, H.450.11, Series H: Audiovisual and Multimedia Systems, Mar. 2001, 59 pages. |
ITU, “Packet-Based Multimedia Communications Systems”, ITU-T, Telecommunication Standardization Sector of ITU, H.323, Series H: Audiovisual and Multimedia Systems, Feb. 1998, 128 pages. |
ITU, “Transmission of Non-Telephone Signals: A Far End Camera Control Protocol for Videoconferences Using H.224”, ITU-T, Telecommunication Standardization Sector of ITU, H.281, Nov. 1994, 12 pages. |
Ivanova, Natali, “Master's Thesis: Internet Based Interface for Control of a Mobile Robot”, Department of Numerical Analysis and Computer Science, 2003, 59 pages. |
Jacobs et al., “Applying Telemedicine to Outpatient Physical Therapy”, AMIA, Annual Symposium Proceedings, 2002, 1 page. |
Jenkins et al., “Telehealth Advancing Nursing Practice”, Nursing Outlook, vol. 49, No. 2, Mar. 2001, pp. 100-105. |
Johanson, Mathias, “Supporting Video-Mediated Communication Over the Internet”, Department of Computer Engineering, Chalmers University of Technology, Gothenburg, Sweden, 2003, 222 pages. |
Screenshot Showing Google Date for Lemaire Telehealth Manual, screenshot retrieved on Dec. 18, 2014, 1 page. |
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. I of IV, Jun. 24, 2013, pp. A1-A6357. |
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. II of IV, Jun. 24, 2013, pp. A6849-A10634. |
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. III of IV, Jun. 24, 2013, pp. A10654-A15517. |
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. IV of IV, Jun. 24, 2013, pp. A15677-A18127. |
Appeal from the U.S. District Court for the Central District of California in No. 11-CV-9185, Judge Percy Anderson, May 9, 2014, pp. 1-48. |
Civil Minutes—General: Case No. CV 11-9185PA (AJWx), InTouch Tech., Inc. v. VGO Commons, Inc., Sep. 10, 2012, 7 pages. |
Defendant VGO Communications, Inc.'s Invalidity Contentions Pursuant to the Feb. 27, 2012 Civil Minute Order, May 2, 2012, 143 pages. |
Defendant—Counterclaimant VGO Communications, Inc.'s Supplemental Invalidity Contentions Pursuant to the Feb. 27, 2012 Civil Minute Order, May 14, 2012, 228 pages. |
“Google translation of: Innovations Report”, From research project to television star: Care-O-bot in ZDF series, available online at <http://www.innovations-report.de/specials/printa.php?id=5157>, Sep. 28, 2001, 2 pages. |
“Magne Charge”, Smart Power for Electric Vehicles, Aug. 26, 1997, 2 pages. |
“More Online Robots: Robots that Manipulate”, available online at <http://ford.ieor.berkeley.edu/ir/robots_a2.html>, Retrieved on Nov. 23, 2010, Aug. 2001, 2 pages. |
“MPEG File Format Summary”, available online at <http://www.fileformat.info/format/mpeg/egff.htm>, Feb. 1, 2001, 8 pages. |
“Nomad Scout Language Reference Manual”, Nomadic Technologies, Software Version 2.7, Part No. DOC00002, Jul. 12, 1999, 47 pages. |
“Nomad Scout User's Manual”, Nomadic Technologies, Software Version 2.7, Part No. DOC00004, Jul. 12, 1999, pp. 1-59. |
Opening Brief for Plaintiff-Appellant InTouch Technologies, Inc., Appeal from the U.S. District Court for the Central District of California in Case No. 11-cv-9185, Judge Percy Anderson, Apr. 12, 2013, 187 pages. |
PictureTel Adds New Features and Functionality to Its Award-Winning Live200 Desktop Videoconferencing System, PR Newswire Association, LLC, Gale, Cengage Learning, Jun. 13, 1997, 5 pages. |
Reply Brief for Defendant-Appellee VGO Communications, Inc., Appeal from the U.S. District Court for the Central District of California, in Case No. 2:11-cv-9185, Judge Percy Anderson, May 28, 2013, 75 pages. |
Reply Brief for Plaintiff-Appellant InTouch Technologies, Inc., Appeal from the U.S. District Court for the Central District of California in Case No. 11-cv-9185, Judge Percy Anderson, Jun. 14, 2013, 39 pages. |
“ROBART I, II, III”, Spawar, Systems Center Pacific, 1998, 8 pages. |
Using your Infrared Cell Phone Camera, available online at <http://www.catsdomain.com/xray/about.htm>, Courtesy of Internet Wayback Machine, Jan. 30, 2010, 4 pages. |
West et al., “Design of Ball Wheel Mechanisms for Omnidirectional Vehicles with Full Mobility and Invariant Kinematics”, Journal of Mechanical Design, vol. 119, Jun. 1997, pp. 153-161. |
Yamasaki et al., “Applying Personal Robots and Active Interface to Video Conference Systems”, 6th International Conference on Human Computer Interaction, vol. B, 1995, pp. 243-248. |
Yamauchi, Brian, “PackBot: A Versatile Platform for Military Robotics”, Proceedings of SPIE for Military Robotics, 2004, pp. 228-237. |
Weiss et al., “PEBBLES: A Personal Technology for Meeting Education, Social and Emotional Needs of Hospitalised Children”, Personal and Ubiquitous Computing, vol. 5, No. 3, Aug. 2001, pp. 157-168. |
ACM Digital Library Record, “Autonomous Robots vol. 11 Issue 1”, available online at <http://dl.acm.org/citation.cfm?id=591550&picked=prox&cfid=360891374&cftoken=35225929>, Jul. 2001, 2 pages. |
Active Media, Inc., “Saphira Software Manual”, Saphira Version 5.3, 1997, 105 pages. |
Activmedia Robotics, “Pioneer 2/PeopleBot TM”, Operations Manual , Version 9, Oct. 2001, 78 pages. |
Adams, Chris, “Simulation of Adaptive Behavior (SAB'02)”, Mobile Robotics Research Group, The Seventh International Conference, retrieved on Jan. 22, 2014, available online at <http://www.dai.ed.ac.uk/groups/mrg/MRG.html>, Aug. 4-11, 2002, 1 page. |
Ando et al., “A Multimedia Self-service Terminal with Conferencing Functions”, Robot and Human Communication, Tokyo, Proceedings of 4th IEEE International Workshop, Jul. 5-7, 1995, pp. 357-362. |
Android Amusement Corp., “What Marketing Secret Renting Robots from Android Amusement Corp!”, (Advertisement), 1982, 1 page. |
Apple Inc., “I Phone”, iPhone Series, XP002696350, Sep. 21, 2012, pp. 1-29. |
Applebome, Peter, “Planning Domesticated Robots for Tomorrow's Household”, New York Times, available online at <http://www.theoldrobots.com/images17/dc17.jpg>, Mar. 4, 1982, pp. 21 and 23. |
Bar-Cohen et al., “Virtual Reality Robotic Telesurgery Simulations Using MEMICA Haptic System”, Proceedings of SPIE's 8th Annual International Symposium on Smart Structures and Materials, Mar. 5-8, 2001, pp. 1-7. |
Barrett, Rick, “Video Conferencing Business Soars as Companies Cut Travel; Some Travel Cuts Are Permanent”, available online at <http://www.ivci.com/international_videoconferencing_news_videoconferencing_news_19.html>, May 13, 2002, 2 pages. |
Bartholomew, “Pharmacy Apothecary”, available online at <http://classes.bnf.fr/ema/grands/034.htm>, retrieved on Jul. 26, 2012, 2 pages. |
Baue et al., “Remote Telesurgical Mentoring: Feasibility and Efficacy”, IEEE, Proceedings of the 33rd Hawaii International Conference on System Sciences, 2000, pp. 1-9. |
Bauer, Jeffrey C., “Service Robots in Health Care: The Evolution of Mechanical Solutions to Human Resource Problems”, Bon Secours Health System Inc., Technology Early Warning System(TEWS), Future of Service Robots in Health Care, Jun. 2003, pp. 1-10. |
Bischoff, Rainer, “Design Concept and Realization of the Humanoid Service Robot HERMES”, Field and Service Robotics, Springer, 1998, pp. 485-492. |
Blackwell, Gerry, “Video: A Wireless LAN Killer App?”, available online at <http://www.wi-fiplanet.com/columns/article.php/1010261/Video-A-Wireless-LAN-Killer>, Apr. 16, 2002, 4 pages. |
Blaer et al., “TopBot: Automated Network Topology Detection With a Mobile Robot”, IEEE, Proceedings of the 2003 International Conference on Robotics 7 Automation, Taipei, Taiwan, Sep. 14-19, 2003, pp. 1582-1587. |
Bradner, S., “The Internet Standards Process—Revision 3”, Network Working Group, Request for Comments: 2026, BCP: 9, Obsoletes: 1602, Category: Best Current Practice, Oct. 1996, pp. 1-36. |
Brenner, Pablo, “A technical tutorial on the IEEE 802.11 protocol”, Breezecom Wireless Communications, 1997, pp. 1-24. |
Breslow et al., “Effect of a Multiple-Site Intensive Care Unit Telemedicine Program on Clinical and Economic Outcome an Alternative Paradigm for Intensivist Staffing”, Critical Care Med, vol. 32, No. 1, Jan. 2004, pp. 31-38. |
Brooks, Rodney, “A Robust Layered Control System for a Mobile Robot”, IEEE, Journal of Robotics and Automation, vol. 2, No. 1, Mar. 1986, pp. 14-23. |
Brooks, Rodney Allen, “Remote Presence”, Abstracts from Flesh & Machines, How Robots Will Change Us, Feb. 2002, pp. 131-147. |
Celi et al., “The eICU: It's Not Just Telemedicine”, Critical Care Medicine vol. 29, No. 8 (Supplement), Aug. 2001, pp. 183-189. |
Cheetham et al., “Interface Development for a Child's Video Conferencing Robot”, available online at <www.ryerson.ca/pebbles/publications/paper-iea200hfes-last.pdf>, 2000, 4 pages. |
Christensen et al., “BeeSoft User's Guide and Reference”, Robots for the Real World™, Real World Interface, Inc ., Sep. 26, 1997, 203 pages. |
Chu et al., “Detection of Target Mobile Signal Strength”, Technical Development, Motorola Inc, Jan. 1999, pp. 205-206. |
Paulos et al., “Social Tele-Embodiment: Understanding Presence”, Autonomous Robots, vol. 11, Issue 1, Kluwer Academic Publishers, Jul. 2001, pp. 87-95. |
Paulos et al., “Ubiquitous Tele-Embodiment: Applications and Implications”, International Journal of Human Computer Studies, vol. 46, No. 6, Jun. 1997, pp. 861-877. |
Paulos, Eric John Canny, “Video of PRoP 2 at Richmond Field Station”, www.prop.org Printout of Home Page of Website and two-page Transcript of the audio portion of said PRoP Video, May 2001, 2 pages. |
PictureTel Corporation, “PictureTel Live200 for Windows NT Product Guide”, 1997, 63 pages. |
Pin et al., “A New Family of Omnidirectional and Holonomic Wheeled Platforms for Mobile Robots”, IEEE Transactions on Robotics and Automation, vol. 10, No. 4, Aug. 1994, pp. 480-489. |
Piquepaille, Roland, “This Blog and its RSS Feed Are Moving”, Roland Piquepaille's Technology Trends, How new technologies are modifying our way of life, Oct. 31, 2004, 2 pages. |
Zipperer, Lorri, “Robotic Dispensing System”, ISMP Medication Safety Alert!, vol. 4, No. 17, Aug. 25, 1999, 2 pages. |
Zorn Benjamin G., “Ubiquitous Telepresence”, Department of Computer Science, University of Colorado, 1996, 13 pages. |
Zambroski, James, “CMU, Pitt Developing ‘Nursebot’”, available online at <http://www.cs.cmu.edu/˜nursebot/web/press/tribunereview.html>, Oct. 27, 2000, 3 pages. |
Zamrazil, Kristie, “Telemedicine in Texas: Public Policy Concerns”, Focus Report, House Research Organization, Texas House of Representatives, No. 76-22, May 5, 2000, pp. 1-16. |
Yong et al., “Robot Task Execution with Telepresence Using Virtual Reality Technology”, 1998 International Conference on Mechatronic Technology, Nov. 30-Dec. 2, 1998, pp. 1-8. |
Radvision, “Making Sense of Bandwidth the Netsense Way”, Network Congestion in Unmanaged Networks Bandwidth Estimation and Adaptation Techniques,White Paper, Radvision's Netsense Technology, 2010, 7 pages. |
Reynolds et al., “Review of Robotic Telemedicine Utilization in Intensive Care Units (ICUs)”, 11th Annual ATA Symposium, Tampa, Florida, 2011, 1 page. |
Roach, Adam, “Automatic Call Back Service in SIP”, Internet Engineering Task Force, Internet Draft, Category: Informational, Mar. 2000, 8 pages. |
Rovetta et al., “A New Telerobotic Application: Remote Laparoscopic Surgery Using Satellites and optical fiber Networks for Data Exchange”, International Journal of Robotics Research, vol. 15, No. 3, Jun. 1, 1996, pp. 267-279. |
Roy et al., “Towards Personal Service Robots for the Elderly”, Workshop on Interactive Robots and Entertainment (WIRE 2000), available online at <http://www.ri.cmu.edu/pb_files/pub2/roy_nicholas_2000_1/roy_nicholas_2000_1.pdf>, vol. 25, Apr. 30-May 1, 2000, 7 pages. |
Sachs et al., “Virtual Visit: Improving Communication for Those Who Need it Most”, Studies in Health Technology and Informatics, vol. 94, Medicine Meets Virtual Reality 11, 2003, pp. 302-308. |
Salemi et al., “MILO: Personal Robot Platform”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Aug. 2005, pp. 4089-4094. |
Sandt et al., “Perceptions for a Transport Robot in Public Environments”, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, Sep. 7-11, 1997, pp. 360-365. |
Sawyer, Robert J., “Inventing the Future: 2000 Years of Discovery”, available online at <http://www.sfwriter.com/pritf.htm>, Jan. 2, 2000, 2 pages. |
Schraft et al., “Care-O-bot™: The Concept of a System for Assisting Elderly or Disabled Persons in Home Environments”, IEEE Proceedings of the 24th Annual Conference of the Industrial Electronics Society, IECON '98, Aug. 31-Sep. 4, 1998, pp. 2476-2481. |
Weiss et al., “Telework and Video-Mediated Communication: Importance of Real-Time, Interactive Communication for Workers with Disabilities”, available online at <http://www.telbotics.com/research_3.htm>, retrieved on Nov. 23, 2010, 3 pages. |
Schultz et al., “Web Interfaces for Mobile Robots in Public Places”, IEEE Robotics & Automation Magazine, vol. 7, No. 1, Mar. 2000, pp. 48-56. |
Shimoga et al., “Touch and Force Reflection for Telepresence Surgery”, Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Nov. 1994, pp. 1049-1050. |
Siegwart et al., “Interacting Mobile Robots on the Web”, Proceedings of the 1999 IEEE International Conference on Robotics and Automation, May 1999, pp. 1-7. |
Simmons et al., “Xavier: An Autonomous Mobile Robot on the Web”, IEEE Robotics and Automation Magazine, 1999, pp. 43-48. |
Stephenson, Gary, “Dr. Robot Tested at Hopkins”, available online at <http://www.hopkinsmedicine.org/press/2003/august/030805.htm>, Aug. 5, 2003, 2 pages. |
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Complications of Urologic Laparoscopic Surgery: Recognition, Management and Prevention, Dec. 2002, 17 pages. |
Suplee, Curt, “Mastering the Robot”, The Washington Post, Washington Post Staff Writer, Sep. 17, 2000, 5 pages. |
Tahboub et al., “Dynamics Analysis and Control of a Holonomic Vehicle With Continuously Variable Transmission”, Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control, vol. 124, Mar. 2002, pp. 118-126. |
Telepresence Research, Inc., “The Telepresence Mobile Robot System”, available online at <http://www.telepresence.com/telepresence-research/TELEROBOT/>, Feb. 20, 1995, 3 pages. |
Tendick et al., “Human-Machine Interfaces for Minimally Invasive Surgery”, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 6, Oct. 30-Nov. 2, 1997, pp. 2771-2776. |
Theodosiou et al., “MuLVAT: A Video Annotation Tool Based on XML-Dictionaries and Shot Clustering”, 19th International Conference, Artificial Neural Networks—ICANN 2009, Part II, Sep. 14-17, 2009, pp. 913-922. |
Thrun et al., “Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva”, International Journal of Robotics Research, vol. 19, 2000, pp. 1-35. |
TIME, LISTS, “Office Coworker Robot”, Best Inventions of 2001, available online at <http://content.time.com/time/specials/packages/article/0,28804,1936165_1936255_1936640,00.html>, Nov. 19, 2001, 2 pages. |
Tipsuwan et al., “Gain Adaptation of Networked Mobile Robot to Compensate QoS Deterioration”, 28th Annual Conference of the Industrial Electronics Society, vol. 4, Nov. 5-8, 2002, pp. 3146-3151. |
Tsui et al., “Exploring Use Cases for Telepresence Robots”, 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Mar. 2011, pp. 11-18. |
Tyrrell et al., “Teleconsultation in Psychology: The Use of Videolinks for Interviewing and Assessing Elderly Patients”, Age and Ageing, vol. 30, No. 3, May 2001, pp. 191-195. |
Tzafestas et al., “VR-Based Teleoperation of a Mobile Robotic Assistant: Progress Report”, Technical Report DEMO 2000/13, Institute of Informatics and Telecommunications, National Center for Scientific Research “Demokritos”, Nov. 2000, pp. 1-23. |
UMASS Lowell Robotics Lab, “Robotics Lab @ UMASS Lowell”, Brochure, 2011, 2 pages. |
Urquhart, Kim, “InTouch's Robotic Companion ‘Beams Up’ Healthcare Experts”, Medical Device Daily, vol. 7, No. 39, Feb. 27, 2003, pp. 1, 4. |
Video Middleware Cookbook, “H.350 Directory Services for Multimedia”, 2 pages. |
Weaver et al., “Monitoring and Controlling Using the Internet and Java”, Proceedings of the 25th Annual Conference of the IEEE Industrial Electronics Society, vol. 3, 1999, pp. 1152-1158. |
Number | Date | Country | |
---|---|---|---|
20160156680 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12959550 | Dec 2010 | US |
Child | 15013656 | US |