Systems and methods for dynamic calibration of array cameras

Information

  • Patent Grant
  • 10250871
  • Patent Number
    10,250,871
  • Date Filed
    Tuesday, September 29, 2015
    9 years ago
  • Date Issued
    Tuesday, April 2, 2019
    5 years ago
Abstract
Systems and methods for dynamically calibrating an array camera to accommodate variations in geometry that can occur throughout its operational life are disclosed. The dynamic calibration processes can include acquiring a set of images of a scene and identifying corresponding features within the images. Geometric calibration data can be used to rectify the images and determine residual vectors for the geometric calibration data at locations where corresponding features are observed. The residual vectors can then be used to determine updated geometric calibration data for the camera array. In several embodiments, the residual vectors are used to generate a residual vector calibration data field that updates the geometric calibration data. In many embodiments, the residual vectors are used to select a set of geometric calibration from amongst a number of different sets of geometric calibration data that is the best fit for the current geometry of the camera array.
Description
FIELD OF THE INVENTION

The present application relates generally to camera arrays and more specifically to the dynamic calibration of an array of cameras.


BACKGROUND

Binocular viewing of a scene creates two slightly different images of the scene due to the different fields of view of each eye. These differences, referred to as binocular disparity (or parallax), provide information that can be used to calculate depth in the visual scene, providing a major means of depth perception. The impression of depth associated with stereoscopic depth perception can also be obtained under other conditions, such as when an observer views a scene with only one eye while moving. The observed parallax can be utilized to obtain depth information for objects in the scene. Similar principles in machine vision can be used to gather depth information.


Two cameras separated by a distance can take pictures of the same scene and the captured images can be compared by shifting the pixels of two or more images to find parts of the images that match. The amount an object shifts between two different camera views is called the disparity, which is inversely proportional to the distance to the object. A disparity search that detects the shift of an object in the multiple images that results in the best match can be used to calculate the distance to the object based upon the baseline distance between the cameras and the focal length of the cameras involved (as well as knowledge of additional properties of the camera). In most camera configurations, finding correspondence between two or more images requires a search in two dimensions. However, rectification can be used to simplify disparity searches. Rectification is a transformation process that can be used to project two or more images onto a common image plane. When rectification is used to project a set of images onto the same plane, disparity searches become one dimensional searches along epipolar lines.


More recently, researchers have used multiple cameras spanning a wider synthetic aperture to capture light field images (e.g. the Stanford Multi-Camera Array). A light field, which is often defined as a 4D function characterizing the light from all directions at all points in a scene, can be interpreted as a two-dimensional (2D) collection of 2D images of a scene. Due to practical constraints, it is typically difficult to simultaneously capture the collection of 2D images of a scene that form a light field. However, the closer in time at which the image data is captured by each of the cameras, the less likely that variations in light intensity (e.g. the otherwise imperceptible flicker of fluorescent lights) or object motion will result in time dependent variations between the captured images. Processes involving capturing and resampling a light field can be utilized to simulate cameras with large apertures. For example, an array of M×N cameras pointing at a scene can simulate the focusing effects of a lens whose field of view is as large as that of the array. In many embodiments, cameras need not be arranged in a rectangular pattern and can have configurations including circular configurations and/or any arbitrary configuration appropriate to the requirements of a specific application. Use of camera arrays in this way can be referred to as synthetic aperture photography.


SUMMARY OF THE INVENTION

Systems and methods in accordance with various embodiments of the invention perform dynamic calibration of camera arrays. One embodiment includes: acquiring a set of images of a scene using a plurality of cameras, where the set of images includes a reference image and an alternate view image; detecting features in the set of images using a processor directed by an image processing application; identifying within the alternate view image features corresponding to features detected within the reference image using a processor directed by an image processing application; rectifying the set of images based upon a set of geometric calibration data using a processor directed by an image processing application; determining residual vectors for geometric calibration data at locations where features are observed within the alternate view image based upon observed shifts in locations of features identified as corresponding in the reference image and the alternate view image using a processor directed by an image processing application; determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors using a processor directed by an image processing application; and rectifying an image captured by the camera that captured the alternate view image based upon the updated geometric calibration data using a processor directed by an image processing application.


In a further embodiment, determining residual vectors for geometric calibration data at locations where features are observed within the alternate view image includes: estimating depths of features within the alternate view image identified as corresponding to features detected within the reference image based upon components of the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image along epipolar lines; determining scene dependent geometric corrections to apply to the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image based upon the estimated depths of the corresponding features; and applying the scene dependent geometric corrections to the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image to obtain residual vectors for geometric calibration data at locations where features are observed within the alternate view image.


In another embodiment, determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors includes using at least an interpolation process to generate a residual vector calibration field from the residual vectors.


In a still further embodiment, determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors further includes using an extrapolation process in the generation of the residual vector calibration field from the residual vectors.


Still another embodiment also includes applying the residual vector calibration field to the set of geometric calibration data with respect to the camera that captured the alternate view image.


A yet further embodiment also includes: mapping the residual vector calibration field to a set of basis vectors; and generating a denoised residual vector calibration field using a linear combination of less than the complete set of basis vectors.


In yet another embodiment, the set of basis vectors is learned from a training data set of residual vector calibration fields.


In a further embodiment again, the set of basis vectors is learned from a training data set of residual vector calibration fields using Principal Component Analysis.


In another embodiment again, determining updated geometric calibration data for a camera that captured the alternate view image further includes selecting an updated set of geometric calibration data from amongst a plurality of sets of geometric calibration data based upon at least the residual vectors for geometric calibration data at locations where features are observed within the alternate view image.


A further additional embodiment also includes: acquiring an additional set of images of a scene using the plurality of cameras; and determining residual vectors for the geometric calibration data using the additional set of images. In addition, determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors also includes utilizing the residual vectors for the geometric calibration data determined using the additional set of images.


Another additional embodiment also includes detecting at least one region within a field of view of a camera that does not satisfy a feature density threshold. In addition, the additional set of images of a scene is acquired in response to detecting that at least one region within a field of view of a camera does not satisfy the feature density threshold.


In a still yet further embodiment, utilizing the residual vectors determined using the additional set of images further includes utilizing the residual vectors determined using the additional set of images to determine updated geometric calibration data with respect to the at least one region within the field of view of the camera in which the density threshold was not satisfied.


Still yet another embodiment also includes providing prompts via a user interface using a processor directed by an image processing application, where the prompts direct orientation of the camera array to shift locations of features identified as corresponding in the reference image and the alternate view image into the at least one region within the field of view of a camera that does not satisfy a feature density threshold during acquisition of the additional set of images.


A still further embodiment again includes: acquiring a set of images of a scene using a plurality of cameras, where the set of images includes a reference image and an alternate view image; detecting features in the set of images using a processor directed by an image processing application; identifying within the alternate view image features corresponding to features detected within the reference image using a processor directed by an image processing application; rectifying the set of images based upon a set of geometric calibration data using a processor directed by an image processing application; and determining the validity of the geometric calibration data based upon observed shifts in locations of features identified as corresponding in the reference image and the alternate view image using a processor directed by an image processing application.


In still another embodiment again, determining the validity of the geometric calibration data based upon observed shifts in locations of features identified as corresponding in the reference image and the alternate view image includes determining the extent to which observed shifts are to locations distant from an epipolar line.


A yet further embodiment again also includes dynamically generating updated geometric calibration data by: determining residual vectors for geometric calibration data at locations where features are observed within the alternate view image based upon the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image using a processor directed by an image processing application; and determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors using a processor directed by an image processing application.


In yet another embodiment again, determining residual vectors for geometric calibration data at locations where features are observed within the alternate view image includes: estimating depths of features within the alternate view image identified as corresponding to features detected within the reference image based upon components of the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image along epipolar lines using a processor directed by an image processing application; determining scene dependent geometric corrections to apply to the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image based upon the estimated depths of the corresponding features; and applying the scene dependent geometric corrections to the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image to obtain residual vectors for geometric calibration data at locations where features are observed within the alternate view image.


In a still further additional embodiment, determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors includes using at least an interpolation process to generate a residual vector calibration field from the residual vectors.


In still another additional embodiment, determining updated geometric calibration data for a camera that captured the alternate view image further includes selecting an updated set of geometric calibration data from amongst a plurality of sets of geometric calibration data based upon at least the residual vectors for geometric calibration data at locations where features are observed within the alternate view image.


A yet further additional embodiment also includes: acquiring an additional set of images of a scene using the plurality of cameras; and determining residual vectors using the additional set of images. In addition, determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors also includes utilizing the residual vectors determined using the additional set of images.


Another further embodiment includes: at least one array of cameras comprising a plurality of cameras; a processor; and memory containing an image processing application. In addition, the image processing application directs the processor to: acquire a set of images of a scene using the plurality of cameras, where the set of images includes a reference image and an alternate view image; detect features in the set of images; identify within the alternate view image features corresponding to features detected within the reference image; rectify the set of images based upon a set of geometric calibration data; determine residual vectors for geometric calibration data at locations where features are observed within the alternate view image based upon observed shifts in locations of features identified as corresponding in the reference image and the alternate view image; determine updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors; and rectify an image captured by the camera that captured the alternate view image based upon the updated geometric calibration data.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 conceptually illustrates a camera array in accordance with an embodiment of the invention.



FIG. 2 is a flow chart illustrating a process for validating geometric calibration data and/or dynamically generating updated geometric calibration data in accordance with an embodiment of the invention.



FIGS. 3A and 3B conceptually illustrate geometric shifts observed when geometric calibration data is valid and when a camera is out of calibration.



FIG. 4 is a flow chart illustrating a process for performing dynamic geometric calibration in accordance with an embodiment of the invention.



FIG. 5 is a flow chart illustrating a process for combining dynamically generated geometric calibration data with respect to different regions of a camera's field of view to produce a complete set of updated geometric calibration data with respect to the entire field of view of a camera in accordance with an embodiment of the invention.



FIG. 6 is a flow chart illustrating a process for dynamically updating geometric calibration data by selecting a set of geometric calibration data that is a best fit for observed shifts of corresponding features within a set of images in accordance with an embodiment of the invention.





DETAILED DESCRIPTION

Turning now to the drawings, systems and methods for dynamically calibrating camera arrays in accordance with embodiments of the invention are illustrated. Multi-camera systems are increasingly gaining popularity for various applications and their correct functionality depends on an ability to precisely register images captured by the cameras with respect to each other. The complexity of registering the various images to each other is reduced significantly by rectifying the images. This usually relies on an offline calibration process to capture information concerning the scene independent shifts of corresponding pixels that are introduced by the cameras in the array as a result of their construction (e.g. manufacturing variations in lens characteristics and/or in camera assembly), relative positions, and orientations (often referred to as the geometry of the array). In reality, the mechanical structures to which cameras in an array are mounted respond differently to various factors such as (but not limited to) temperature variations, and/or field conditions such as mechanical shock. Unless changes in the relative positions of the cameras in a camera array are accounted for, the changes can affect the registration of images captured by the cameras leading to degradation of depth estimates and/or images generated from image data captured by the cameras in the camera array (e.g. images produced by super-resolution, and/or images produced by applying a depth based filter or effect). Systems and methods in accordance with various embodiments of the invention can assess the geometric calibration of an array of cameras and perform an adaptive adjustment of geometric calibration by robust feature matching in any imaged scene. Assuming gradual degradation of geometric calibration from previously calibrated values, the redundancy of cameras within camera arrays in accordance with many embodiments of the invention can be exploited to determine new calibrated parameters and/or adjustments to existing calibration parameters that account for the new geometric relationships between the cameras.


In many embodiments, feature matching is utilized to identify a camera array for which existing calibration data is no longer valid. Features of real world scenes can be identified in each of a set of images captured by the cameras in an array. When the geometric calibration of the cameras correctly rectifies the images, corresponding features will be located on epipolar lines (assuming rectified images) at locations determined based upon the distance of the feature from the camera array. When the geometric relationships between the cameras in the array change and the calibration data is no longer valid, corresponding features will not be located within the images in the locations that would be predicted based upon epipolar line shifts consistent with a particular depth. Accordingly, differences between the actual and expected absolute, or relative to each other, locations of corresponding features within a set of images rectified using geometric calibration data can be utilized to identify when geometric calibration data is no longer valid. Furthermore, the differences can be used to dynamically generate new geometric calibration data and/or updates to geometric calibration data that can be utilized by the array of cameras to perform subsequent image processing operations such as (but not limited to) depth estimation and/or super-resolution processing.


Systems and methods in accordance with many embodiments of the invention can utilize corresponding features within a set of images to perform dynamic calibration when the changes in the geometry of the camera array impact the intrinsic parameters of the cameras in the camera array (i.e. the parameters that relate pixel coordinates of an image point with the corresponding coordinates in a camera's reference frame). The intrinsic parameters of a camera are typically thought to include the focal length, pixel skew, lens distortion parameters, and principal point of the camera. In several embodiments, dynamic calibration can also accommodate transformations in the extrinsic parameters of the camera array involving translations of the cameras along baselines defined relative to a reference camera. The extrinsic parameters of a camera are the parameters that define the location and orientation of the camera reference frame with respect to a known world reference frame. In the case of a camera array, extrinsic parameters are often defined relative to a reference camera. Translations that are not constrained to these baselines and/or changes in orientation of cameras may require performance of additional calibration processes to obtain updated geometric calibration data.


The process of dynamically generating updated geometric calibration data utilizes features that are identified throughout the field of view of a camera used as a reference camera during the dynamic calibration process. A challenge that can be faced in dynamic calibration processes is that many real world scenes include regions that are devoid of features (e.g. a white wall). In several embodiments, repeating the dynamic calibration process utilizing multiple different cameras in the camera array as the reference camera can further refine geometric calibration data. In this way, features from different portions of the fields of view of the cameras can be utilized to evaluate correspondence. In various embodiments, a complete set of geometric calibration data can be constructed using multiple sets of images captured at different points in time. By using multiple sets, geometric calibration data for a region in the field of view of a reference camera can be selected based upon the set of images in which the largest number of features and/or a density of features exceeding a threshold is present within the specific region. The geometric calibration data generated from the multiple sets of images can then be combined to create a set of geometric calibration data that covers the entire field of view of each camera. In a number of embodiments, the dynamic calibration process is guided. A user interface generated by the camera array can direct a user to change the orientation of the camera array so that movement of the camera array causes features detected in a first region of a first image to appear in a second region of a second image. In this way, the camera array can rapidly build a complete set of dynamic calibration data over time with respect to the entire field of view of the reference camera.


In certain embodiments, different sets of geometric calibration data are utilized to determine correspondences and the set of geometric calibration data that yields the best fit for the observed corresponding features is utilized to perform image processing. In this way, an array of cameras can be provided with various sets of geometric calibration data corresponding to, for example, different operating conditions and the geometric calibration data that yields the best fit for observed scene features can be utilized for image processing.


Systems and methods for validating geometric calibration data and dynamically calibrating arrays of cameras in accordance with various embodiments of the invention are discussed further below.


Array Cameras


Array cameras including camera modules that can be utilized to capture image data from different viewpoints (i.e. light field images) can be one dimensional, two dimensional (2D), monolithic, non-monolithic, arrayed in a grid, arrayed in a non-grid arrangement, and/or combine cameras having different imaging characteristics including (but not limited to) different resolutions, fields of view, and/or color filters. Various array camera architectures are disclosed in U.S. Pat. No. 9,077,893 entitled “Capturing and Processing of Images using Non-Grid Camera Arrays” to Venkataraman et al., U.S. Patent Publication No. 2015/0122411 entitled “Methods of Manufacturing Array Camera Modules Incorporating Independently Aligned Lens Stacks” to Rodda et al., U.S. Patent Publication No. 2015/0161798 entitled “Array Cameras Including an Array Camera Module Augmented with a Separate Camera”, to Venkataraman et al., and U.S. Provisional Application Ser. No. 62/149,636 entitled “Multi-Baseline Camera Array System Architecture for Depth Augmentation in VR/AR Applications” to Venkatarman et al. Each two-dimensional (2D) image in a captured light field is from the viewpoint of one of the cameras in the array camera. Due to the different viewpoint of each of the cameras, parallax results in variations in the position of objects within the images of the scene. The disclosures of U.S. Pat. No. 9,077,893, U.S. Patent Publication Nos. 2015/0122411 and 2015/0161798, and U.S. Provisional Patent Application Ser. No. 62/149,636 that relate to the implementation and use of various camera array architectures are hereby incorporated by reference in their entirety.


In many embodiments, an array of cameras is utilized to capture a set of images of a scene and depth is estimated by performing disparity searches using the captured set of images. Depth estimates can be unreliable where regions along an epipolar line are self-similar. With each increase in the number of different epipolar lines searched (i.e. different baselines between pairs of cameras), the likelihood that texture is self-similar at each of the corresponding locations along the epipolar lines corresponding to an incorrect depth decreases. In a number of embodiments, projected texture is also utilized to decrease the self-similarity of different regions of a scene.


Array cameras can use disparity between pixels in images within a light field to generate a depth map from a reference viewpoint. A depth map indicates the distance of the surfaces of scene objects from the reference viewpoint and can be utilized to determine scene dependent geometric corrections to apply to the pixels from each of the images within a captured light field to eliminate disparity when performing fusion and/or super-resolution processing. Processes such as those disclosed in U.S. Pat. No. 8,619,082 entitled “Systems and Methods for Parallax Detection and Correction in Images Captured Using Array Cameras that Contain Occlusions using Subsets of Images to Perform Depth Estimation” to Ciurea et al. can be utilized to generate depth maps based upon observed disparity. The disclosure of U.S. Pat. No. 8,619,082 is hereby incorporated by reference in its entirety.


As noted above, geometric calibration data can be utilized to rectify a set of images so that corresponding pixels in the set of rectified images are located on epipolar lines. Geometric calibration data assumes a specific geometric configuration of the cameras in an array. If thermal and/or environmental factors cause the cameras in the array to change characteristics or shift positions relative to each other, then the assumptions underlying the geometric calibration data are no longer valid. Accordingly, the camera array must be recalibrated or potentially suffer serious degradation in the depth estimates generated using processes similar to those described in U.S. Pat. No. 8,619,082.


In many instances, fusion and super-resolution processes such as those described in U.S. Pat. No. 8,878,950 entitled “Systems and Methods for Synthesizing High Resolution Images Using Super-Resolution Processes” to Lelescu et al., can be utilized to synthesize a higher resolution 2D image or a stereo pair of higher resolution 2D images from the lower resolution images in the light field captured by a camera array. The terms high or higher resolution and low or lower resolution are used here in a relative sense and not to indicate the specific resolutions of the images captured by the array camera. As can readily be appreciated from a review of U.S. Pat. No. 8,878,950, fusing image data captured by an array camera and performing super-resolution processing is particularly dependent upon accurate geometric calibration data as the super-resolution processes are attempting to align pixels captured from different viewpoints with sub-pixel accuracy. Accordingly, super-resolution processes can be significantly enhanced by detecting that geometric calibration data is no longer valid and performing dynamic calibration of a camera array. The disclosure of U.S. Pat. No. 8,878,950 regarding super-resolution processing and the use of geometric calibration data to perform super-resolution processing is hereby incorporated by reference in its entirety.


An array camera that can be utilized in a variety of applications including (but not limited to) augmented reality headsets and machine vision systems in accordance with various embodiments of the invention is illustrated in FIG. 1. The array camera 100 includes an array camera module 102 with an array of individual cameras 104. The term array camera module 102 collectively refers to the mechanical structures that support the array of individual cameras and the cameras mounted to the mechanical structures. The array of individual cameras is a plurality of cameras in a particular arrangement, such as (but not limited to) the arrangement utilized in the illustrated embodiment incorporating a pair of vertically aligned cameras on the left-hand-side of the array, a staggered pair in the center of the array and four cameras in a grind on the right-hand-side of the array. In other embodiments, any of a variety of grid or non-grid arrangements of cameras can be utilized. In many embodiments, the array camera module also includes a projector 105 that can be utilized to project texture onto a scene to aid with depth estimation in regions of the scene that lack texture or are self-similar. The array camera module 102 is connected to the processor 106. The processor is also configured to communicate with one or more different types of memory 108 that can be utilized to store an image processing pipeline application 110, image data 112 captured by the array camera module 102, depth maps 114 generated by the image processing pipeline application from the captured image data, and/or higher resolution images 116 generated using super-resolution processes. The image processing pipeline application 110 is typically non-transitory machine readable instructions utilized to direct the processor to perform processes including (but not limited to) the various processes described below. In several embodiments, the processes include coordinating the capture of image data by groups of cameras within the array camera module 102, and the estimation of depth information 114 from the captured image data 112. In a number of embodiments, the image processing pipeline application 110 directs the processor 108 to synthesize higher resolution images 116 from the captured image data 112 using fusion and/o super-resolution processes. As discussed further below, the quality of the depth estimates and/or images generated by these processes is dependent upon the reliability of geometric calibration data 120 utilized to rectify the images. In many embodiments, the image processing pipeline application 110 directs the processor 108 to perform a dynamic calibration process utilizing image data captured by the cameras 104 in the array camera module 102.


With specific regard to the cameras 104 in the array camera module 102, each camera 104 in the array camera module 102 is capable of capturing an image of the scene. The sensor elements utilized in the focal planes of the cameras 104 can be individual light sensing elements such as, but not limited to, traditional CIS (CMOS Image Sensor) pixels, CCD (charge-coupled device) pixels, high dynamic range sensor elements, multispectral sensor elements and/or any other structure configured to generate an electrical signal indicative of light incident on the structure. In many embodiments, the sensor elements of each focal plane have similar physical properties and receive light via the same optical channel and color filter (where present). In several embodiments, the sensor elements have different characteristics and, in many instances, the characteristics of the sensor elements are related to the color filter applied to each sensor element.


In a variety of embodiments, color filters in individual cameras can be used to pattern the camera module with π filter groups as further discussed in U.S. Patent Publication No. 2013/0293760 entitled “Camera Modules Patterned with pi Filter Groups” to Nisenzon et al, the disclosure from which related to filter patterns that can be utilized in the implementation of an array camera is incorporated by reference herein in its entirety. Any of a variety of color filter configurations can be utilized where cameras in each color channel are distributed on either side of the center of the camera. The cameras can be used to capture data with respect to different colors, or a specific portion of the spectrum. In a number of embodiments, cameras image in the near-IR, IR, and/or far-IR spectral bands.


In many embodiments, the lens stack within the optical channel of each camera has a field of view that focuses light so that pixels of each camera sample the same object space or region within the scene. In several embodiments, the lens stacks are configured so that the pixels that sample the same object space do so with sub-pixel offsets to provide sampling diversity that can be utilized to recover increased resolution through the use of super-resolution processes. The term sampling diversity refers to the fact that the images from different viewpoints sample the same object in the scene but with slight sub-pixel offsets. By processing the images with sub-pixel precision, additional information encoded due to the sub-pixel offsets can be recovered when compared to simply sampling the object space with a single image. In embodiments that recover higher resolution information, the lens stacks are designed to have a Modulation Transfer Function (MTF) that enables contrast to be resolved at a spatial frequency corresponding to the higher resolution and not at the spatial resolution of the pixels that form a focal plane.


With specific regard to the processor 108 illustrated in FIG. 1, processors utilized within camera arrays in accordance with many embodiments of the invention can be implemented using a microprocessor, a coprocessor, an application specific integrated circuit and/or an appropriately configured field programmable gate array that is directed using appropriate software to take the image data captured by the cameras within the array camera module 102 and perform dynamic calibration and/or image processing. In many embodiments of the invention, the process of estimating depth and/or synthesizing a higher resolution image of a scene from a set of images involves selection of a reference viewpoint, typically that of a reference camera. In many embodiments, the processor 108 is able to synthesize an image from a virtual viewpoint.


Although specific array camera architectures are described above with respect to FIG. 1, alternative architectures can also be utilized in accordance with embodiments of the invention. The use of image data captured by cameras in an array to perform dynamic calibration of the array is discussed further below.


Dynamic Calibration


Knowledge of the geometry of a camera array can be utilized to rectify images captured by the array. The transformations utilized during rectification processes are typically determined during an offline calibration process that yields what can be referred to as geometric calibration data. Appropriate offline calibration processes include offline calibration processes similar to those described in U.S. Pat. No. 9,124,864 entitled “Systems and Methods for Calibration of an Array Camera” to Mullis. The geometric calibration data is utilized in depth estimation processes, fusion processes, and/or super-resolution processes. Generally, the accuracy of depth estimates made by performing disparity searches with respect to images captured by a camera array degrades when the relative positions and orientations of the cameras within an array do not correspond to the geometry of the cameras when the offline calibration process was performed. The geometry of a camera array may change due to thermal expansion/contraction and/or environmental factors. Users of consumer electronic devices routinely drop the devices in ways that can deform the mechanical structures to which a camera array is mounted. Accordingly, camera arrays in accordance with a number of embodiments of the invention can perform processes that validate that available geometric calibration data is appropriate for the current geometry of a camera array. By detecting that the camera array is “out of calibration”, another offline calibration process can be performed to obtain appropriate geometric calibration data. In several embodiments, the camera array is able to perform a dynamic calibration process that yields new geometric calibration data or updates to existing geometric calibration data to enable subsequent image processing operations to yield outputs that satisfy the requirements of a specific application.


A process for validating geometric calibration data and dynamically generating geometric calibration data in accordance with an embodiment of the invention is illustrated in FIG. 2. The process 200 involves acquiring (202) a set of images using an array of cameras. Feature detection processes are performed (204) with respect to each of the images to identify distinctive features within the scene that can be used to identify correspondence points within the set of images. Any of a variety of feature detectors can be utilized including (but not limited to) the Scale-Invariant Feature Transform (SIFT) detector, Speeded Up Robust Features (SURF) feature detector and/or any other feature detector that generates feature descriptors appropriate for identifying corresponding features between images in a set of images. While much of the discussion that follows relies upon the use of feature detection to identify correspondence between images, area based and/or correlation based correspondence analysis can also be performed to identify corresponding pixel locations within pairs of images and/or sets in accordance with a number of embodiments of the invention. Accordingly, feature detection can be used interchangeably with area based matching in any of the systems and/or methods described herein.


Geometric calibration data can then be utilized to rectify the captured set of images. When the geometric calibration data is valid for the geometry of the camera array, then features visible in a reference image will appear shifted a distance along an epipolar line determined by the distance of the feature from the reference camera. When the geometric calibration data is no longer valid for the geometry of the camera array, then corresponding features are likely to appear shifted to locations that do not lie upon epipolar lines. The difference is illustrated in FIGS. 3A and 3B. The image 300 includes a feature 302 visible in a reference camera that appears (304) shifted a distance along an epipolar line 306. As noted above, the extent of the shift is indicative of the distance of the feature from the reference camera. The fact that the feature 302 is shown in a location on or close to an epipolar line in the image 300 is suggestive that the geometry of the camera that captured the image and the reference camera corresponds to the relative orientation and alignment of the camera at the time the geometric calibration data was obtained. The reliability of the geometric calibration data can be confirmed by observing epipolar line shifts in other pairs of images that confirm the depth of the feature from the reference camera. In the event that the distance of the feature from the reference camera is not confirmed by the observed shifts in other images captured by the camera array, then the geometric calibration data is determined to be unreliable. An image captured by a camera in an array that no longer possesses the geometry it occupied during calibration is illustrated in FIG. 3B. The image 310 shows a feature 302 shifted (306) relative to its location in the image captured from the reference viewpoint. The observed shift is not in a direction along the epipolar line 306. The shift can be decomposed into a vector component along the epipolar line (donEPL) and a vector component perpendicular to the epipolar line or to the epipolar line (dtoEPL). As can readily be appreciated, the loss of calibration is likely to result in donEPL being of a different magnitude than would be observed (304) were the geometric calibration data valid.


Referring again to FIG. 2, identification of corresponding features in rectified images can be used to determine (208) the validity of geometric calibration data. Where the magnitudes of dtoEPL for one or more features is non-zero, then a determination can be made that the geometric calibration data is no longer valid. Any of a variety of criterion can be utilized to make the determination including (but not limited) to the normalized sum of the magnitudes of the dtoEPL components of the shifts in corresponding feature points exceeding a threshold. As can readily be appreciated, the specific criterion or set of criteria utilized to determine that geometric calibration data is no longer valid can be determined based upon the requirements of a specific application.


When the corresponding feature points within the set of rectified images suggests that the geometric calibration data is no longer valid, then an alert can be provided to the user suggesting that the camera array be submitted for recalibration. In a number of embodiments, the camera array can perform (210) a dynamic calibration process using the identified feature points. The dynamic calibration process can yield a new set of geometric calibration data, a set of updates to the geometric calibration data generated through the offline geometric calibration process, and/or the selection of an alternative set of geometric calibration data from a database of sets of geometric calibration data. In several embodiments, databases of sets of geometric calibration data can be utilized that contain sets of geometric calibration data that are appropriate for different operating temperatures and/or different anticipated perturbations of cameras within the camera array. As can readily be appreciated, a database can be provided locally and/or remotely located and queried via a network connection. Specific processes for performing dynamic calibration in accordance with various embodiments of the invention are discussed in detail below. When a valid set of geometric calibration data is identified, the camera array can proceed (212) with acquiring additional sets of images and/or performing image processing using the geometric calibration data.


Although specific processes for determining the validity of a set of geometric calibration data for the geometry of a specific camera array and/or for performing dynamic calibration are discussed above with reference to FIG. 2, any of a variety of processes that utilize the locations of corresponding features in a set of rectified images to dynamically determine a set of geometric calibration data to use in image processing can be utilized as appropriate to the requirements of specific applications in accordance with various embodiments of the invention. Specific processes for dynamically generating new and/or updated geometric calibration data in accordance with a number of embodiments of the invention are discussed further below.


Dynamic Generation of Geometric Calibration Data


Offline processes for generating geometric calibration data rely on the ability to acquire images of a scene with known characteristics. Processes for dynamic generation of geometric calibration data typically do not possess any a priori knowledge of the characteristics of the scene. Feature detectors can enable an image processing application to determine corresponding features within a scene captured by the cameras in an array. These features are likely sparsely distributed. Therefore, the features do not directly enable the generation of geometric calibration information at each pixel location. However, interpolation and/or extrapolations of geometric calibration information at specific pixel locations can be utilized to generate a new set of geometric calibration data, and/or a set of updates for an existing set of geometric calibration data. In a number of embodiments, the geometric calibration data determined at the pixel locations of the features is matched to identify a set of geometric calibration that provides the best fit for the observed correspondences from a database containing sets of geometric calibration data.


A process for performing dynamic calibration to obtain a set of geometric calibration data based upon a set of observed features within a scene in accordance with an embodiment of the invention is illustrated in FIG. 4. The process 400 includes (optionally) preprocessing (402) the images to increase the correspondence between images captured in different color channels. In several embodiments, preprocessing involves the use of a correlation transform to align small image patches. In several embodiments, a correlation transform can be utilized similar to the transform described in Drulea, M.; Nedevschi, S., “Motion Estimation Using the Correlation Transform,” in Image Processing, IEEE Transactions on, vol. 22, no. 8, pp. 3260-3270, August 2013, the relevant disclosure of which is hereby incorporated by reference in its entirety. Where all of the cameras in a camera array capture image data in the same image spectral band, preprocessing may not be necessary.


A feature detector can be used to detect (404) features and/or points of interest in the set of images. As noted above, any of a variety of feature detectors including SIFT and/or SURF detectors can be utilized to detect features as appropriate to the requirements of a specific application. Correspondence matching is then performed (406) between the feature points visible in a reference image and feature points visible in other images within the set of images captured by the camera array. In many embodiments, a sparse optical flow process such as (but not limited to) the Lucas-Kanade method can be utilized to determine feature correspondence. Sparse optical flow processes assume that the optical flow between a pair of images is essentially constant in a local neighborhood of the pixel under consideration, and solve the basic optical flow equations for all the pixels in that neighborhood by a criterion such as (but not limited to) the least squares criterion. The correspondence problem is a well known problem in the field of computer vision and any of a variety of alternative correspondence matching processes including (but not limited to) a Random Sample Consensus (RANSAC) process can be utilized to identify corresponding features within image pairs and/or sets of images as appropriate to the requirements of specific applications.


The best available geometric calibration data can then be utilized to apply (408) geometric shifts to the locations of the corresponding features. In theory, these shifts should rectify the images. As noted above, the geometric shifts will be unsuccessful in rectifying the images when the geometry of the camera array differs from that assumed by the geometric calibration data. The effectiveness of the geometric calibration data in rectifying the images can be determined by calculating (410) the vector difference (donEPL, dtoEPL) for each of the corresponding features between the reference image and an alternate view image (i.e. an image captured from a different viewpoint/camera to the viewpoint/camera from which the reference image was captured). As noted above, the dtoEPL components of the vectors should be zero or near-zero when the geometry of the camera array corresponds to the geometry assumed by the geometric calibration data.


The shifts that are observed between corresponding pixels in a reference image and an alternate view image include scene independent shifts and scene dependent shifts. The scene independent shifts are a function of the geometry of the camera array and variations in the components used to construct the cameras. The scene dependent shifts are introduced based upon the distance of objects within the scene. In order to dynamically generate calibration data, processes in accordance with many embodiments of the system attempt to correct for scene dependent shifts in order to determine the residual error in geometric calibration data.


In several embodiments, the camera array prompts the user via a user interface to capture the set of images used to dynamically calibrate the camera array by capturing a set of images of a scene in which all objects within the scene are sufficiently distant from the camera so that the entire scene can be assumed to be at infinity. When the scene can be assumed to be at infinity, then the scene dependent shifts that are present within the image should be zero at all pixel locations. To the extent that there are shifts, these are corrected through rectification.


Where objects are located within a scene at unknown depths, the shifts present in the image include scene dependent geometric shifts and scene independent geometric shifts. In order to update the geometric calibration data to correct for the scene independent shifts, the scene dependent geometric shifts are estimated and removed. A separate depth estimate is determined (412) for each feature using the weighted average of the observed shifts along the epipolar lines (donEPL) in each of the alternate view images, where the average is weighted by assumed baselines between the cameras that captured the reference image and the alternate view images. In other embodiments, scene dependent shifts can be determined using any of a variety of processes for estimating the depths of observed features. As can readily be appreciated, the number of cameras utilized to capture images within the set of images and the number of features within the captured images can significantly increase the precision with which scene dependent geometric corrections can be removed during dynamic calibration processes.


In embodiments in which scene dependent geometric shifts are estimated, the scene dependent geometric shifts are subtracted from the vector difference (donEPL, dtoEPL) for each of the corresponding features between the reference image and an alternate view image to compute (414) residual vectors (ronEPL, rtoEPL) for each corresponding feature visible within the alternate view image. The residual vectors can then be utilized to compute (416) corrections to the vector field of the geometric calibration data (i.e. corrections to apply to the geometric calibration vectors specified for each pixel location of the camera that captured the alternate view image). In several embodiments, the corrections to the vector field of the geometric calibration data are determined by converting the residual vector points to pixel coordinates within the alternate view image and then residual vectors for pixel locations for which residual vectors are not specified can be determined using interpolation, extrapolation, and/or filtering of the known residual vectors. The resulting residual calibration vector field can be applied to adjust the geometric calibration data at each pixel location of the alternate view camera to correct for the scene independent geometric shifts observed within images captured by the alternate view camera relative to images captured by the reference camera. In this way, the process 400 is capable of dynamically generating updated geometric calibration data appropriate to the current geometry of the camera array.


In many embodiments, the residual calibration vector field generated using processes similar to those described above with reference to FIG. 4 are noisy. In a number of embodiments, a set of basis vectors is learned from a training dataset of residual calibration vector fields. The residual calibration vector fields can be considered to span a state space representing possible observed residual calibration vector fields associated with various alterations in the geometry of the camera array (both intrinsic and extrinsic as discussed above). The basis vectors can be utilized during dynamic calibration to denoise a residual calibration vector field by mapping the residual calibration vector field to the basis vectors and generating a denoised residual calibration vector field as a linear combination of a reduced number of the basis vectors selected to reduce the presence of random noise within the residual calibration vector field. In several embodiments, the basis vectors are learned using Principal Component Analysis (PCA). PCA can be used to construct a basis having the property that it minimizes the reconstruction error when the expansion is truncated to a smaller number of basis vectors. Thus truncation can be an effective technique for reducing noise. The specific mechanism used to select the reduced basis for denoising the residual calibration vector field is largely dependent upon the requirements of a given application. Furthermore, any of a variety of processes can be utilized to select basis vectors and/or to denoise residual calibration vector fields in accordance with embodiments of the invention.


Although specific processes for generating updated geometric calibration data are described above with reference to FIG. 4, any of a variety of processes can be utilized to generate updated calibration data based upon observed shifts of features and/or correlated image patches accounting for scene dependent geometric shifts as appropriate to the requirements of specific applications in accordance with embodiments of the invention. In addition, processes similar to the process described above with respect to FIG. 4 can be utilized to dynamically generate geometric calibration data in the absence of a previously generated set of geometric calibration data. Instead of generating a residual vector field, the process illustrated in FIG. 4 can be utilized to generate a complete geometric calibration vector field based upon the interpolation and/or extrapolation of the observed scene independent shifts of corresponding features in the set of captured images.


Combining Dynamic Calibration Data


Real world scenes typically contain reliable features that are strong enough to be tracked across images captured by multiple cameras in an array in random locations. In addition, features are often clustered within certain regions within the field of view of a reference camera and other regions can be relatively devoid of features. The density and distribution of features can impact the errors introduced by the interpolation and extrapolation processes utilized to generate residual calibration vector fields. Extrapolation, in particular, can introduce a great deal of noise in depth estimates and/or super-resolution processes. In a number of embodiments, different regions of a residual calibration vector field for a camera are constructed using residual vectors determined based upon the use of different cameras within the array as reference cameras and/or using multiple sets of images captured of different scenes. In certain embodiments, the processes of obtaining multiple sets of images of different scenes is guided by the array camera. The array camera can identify a region of a scene within the field of view of the reference camera and instruct a user to reorient the camera array so that the feature rich portion of the scene appears within different regions of the field of view of the reference camera until a set of images in which a threshold density of features has been obtained with respect to each region within the field of view of the reference camera.


A process for combining residual vectors determined using different sets of images to obtain a residual calibration vector field in accordance with an embodiment of the invention is illustrated in FIG. 5. The process 500 includes acquiring (502) a set of images and detecting (504) features within the set of images using techniques similar to those described above. The features can then be utilized to perform dynamic calibration. The density of features within the field of view of the reference camera can be utilized to identify regions within the field of view that contain an insufficient density of features (e.g. fail a feature density threshold) and/or regions that exceed the minimum feature density. Where the entire field of view of the reference camera is feature rich, the process completes. Otherwise, the process 600 involves capturing (502) additional sets of images. In several embodiments, the array camera includes a user interface and provides direction to the user concerning the manner in which to reorient the camera array so that features present within the scene move within portions of the field of view in which updated calibration data is still required. The acquisition (502) of sets of images and determination (506) of residual vectors continues until the combined residual vectors achieve a threshold density of residual vectors for each camera. At which point, the residual vectors can be combined (512) and utilized to generate a residual calibration vector field.


Although specific processes are describe above with reference to FIG. 5, any of a variety of processes can be utilized to combine various sources of residual vector information to generate a residual calibration vector field for use in subsequent image processing operations as appropriate to the requirements of specific applications in accordance with various embodiments of the invention. In other embodiments, residual calibration vector fields can be generated with respect to each of the sets of images and the residual calibration vector fields combined. While many of the processes described above utilize interpolation and extrapolation in the generation of geometric calibration data and/or residual calibration vector fields that can be utilized to update geometric calibration data, residual vectors and/or residual calibration vector fields generated using techniques similar to those described above can be utilized to select an appropriate set of geometric calibration data from amongst a number of different sets of geometric calibration data. Processes for choosing between alternative sets of geometric calibration data using dynamic calibration in accordance with various embodiments of the invention are discussed further below.


Choosing Between Sets of Geometric Calibration Data


The sparse nature of the features used to identify correspondences between images captured by a camera array necessitate the use of interpolation and extrapolation to convert residual vectors into residual calibration vector fields that can be used to update geometric calibration data at each pixel location of an alternate view camera. By their nature, the interpolation and extrapolation processes introduce errors into the resulting geometric calibration data. An alternative to using the residual vectors to generate a residual calibration vector field is to use the residual vectors to choose a best fit from amongst a number of alternative geometric calibration datasets. In several embodiments, correspondence of features is determined using each of a number of different geometric calibration data sets and the geometric calibration set that yields the smallest average residual vectors is utilized for subsequent image processing.


A process for selecting a set of geometric calibration data from amongst a number of sets of geometric calibration data in accordance with an embodiment of the invention is illustrated in FIG. 6. The process 600 includes acquiring a set of images (602) using a camera array and selecting (604) a first set of geometric calibration data. The process proceeds in a similar manner to the dynamic calibration processes describe above. Dynamic calibration is performed (606) to obtain residual vectors for each of a set of corresponding feature points and the residual vectors are utilized to measure the extent to which the observed shifts following rectification based upon the geometric calibration data correspond to the anticipated scene dependent geometric shifts. Any of a variety of metrics can be utilized to evaluate the extent to which the geometric calibration data fits the observed shifts including (but not limited) the average magnitude of the residual vectors. The process of selecting (604) geometric calibration data sets, performing (606) dynamic calibration using the selected geometric calibration data, and measuring the extent to which the geometric calibration data fits the shifts observed between corresponding feature points repeats until each set of geometric calibration data has been considered (610). As can readily be appreciated, any of a variety of different sets of geometric calibration data can be considered including different sets corresponding to geometric calibration data appropriate for different operating temperatures within a predetermined temperature range. The specific sets of geometric calibration data considered are typically determined based upon the requirements of a specific camera array application. When all of the geometric calibration data sets have been considered, the geometric calibration data that is the best fit for the shifts observed between corresponding feature points can be utilized for subsequent image processing.


Although specific processes are described above with reference to FIG. 6, any of a variety of processes can be utilized to select a set of geometric calibration data from amongst a number of sets of geometric calibration data that is the best fit for shifts observed between corresponding feature points. In addition, the process illustrated in FIG. 6 involves a loop. As can readily be appreciated, processes can be implemented that evaluate multiple set of geometric calibration data in parallel. In a number of embodiments, a set of images is provided by a camera array to a remotely located server system that evaluates the set of images against a database of geometric calibration data and returns an updated set of geometric calibration data via a network connection to the camera array.


While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as an example of one embodiment thereof. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.

Claims
  • 1. A method of dynamically generating geometric calibration data for an array of cameras, comprising: acquiring a set of images of a scene using a plurality of cameras, where the set of images comprises a reference image and an alternate view image;detecting features in the set of images using a processor directed by an image processing application;identifying within the alternate view image features corresponding to features detected within the reference image using a processor directed by an image processing application;rectifying the set of images based upon a set of geometric calibration data using a processor directed by an image processing application;determining residual vectors for geometric calibration data at locations where features are observed within the alternate view image based upon observed shifts in locations of features identified as corresponding in the reference image and the alternate view image using a processor directed by an image processing application;determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors using a processor directed by an image processing application, wherein determining updated geometric calibration data comprises:using at least an interpolation process to generate a residual vector calibration field from the residual vectors;mapping the residual vector calibration field to a set of basis vectors; andgenerating a denoised residual vector calibration field using a linear combination of less than the complete set of basis vectors; andrectifying an image captured by the camera that captured the alternate view image based upon the updated geometric calibration data using a processor directed by an image processing application.
  • 2. The method of claim 1, wherein determining residual vectors for geometric calibration data at locations where features are observed within the alternate view image comprises: estimating depths of features within the alternate view image identified as corresponding to features detected within the reference image based upon components of the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image along epipolar lines;determining scene dependent geometric corrections to apply to the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image based upon the estimated depths of the corresponding features; andapplying the scene dependent geometric corrections to the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image to obtain residual vectors for geometric calibration data at locations where features are observed within the alternate view image.
  • 3. The method of claim 1, wherein determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors further comprises using an extrapolation process in the generation of the residual vector calibration field from the residual vectors.
  • 4. The method of claim 1, further comprising applying the residual vector calibration field to the set of geometric calibration data with respect to the camera that captured the alternate view image.
  • 5. The method of claim 1, wherein the set of basis vectors is learned from a training data set of residual vector calibration fields.
  • 6. The method of claim 5, wherein the set of basis vectors is learned from a training data set of residual vector calibration fields using Principal Component Analysis.
  • 7. The method of claim 1, wherein determining updated geometric calibration data for a camera that captured the alternate view image further comprises selecting an updated set of geometric calibration data from amongst a plurality of sets of geometric calibration data based upon at least the residual vectors for geometric calibration data at locations where features are observed within the alternate view image.
  • 8. The method of claim 1, further comprising: acquiring an additional set of images of a scene using the plurality of cameras; anddetermining residual vectors for the geometric calibration data using the additional set of images;wherein determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors also comprises utilizing the residual vectors for the geometric calibration data determined using the additional set of images.
  • 9. The method of claim 8, further comprising: detecting at least one region within a field of view of a camera that does not satisfy a feature density threshold;wherein the additional set of images of a scene is acquired in response to detecting that at least one region within a field of view of a camera does not satisfy the feature density threshold.
  • 10. The method of claim 9, wherein utilizing the residual vectors determined using the additional set of images further comprises utilizing the residual vectors determined using the additional set of images to determine updated geometric calibration data with respect to the at least one region within the field of view of the camera in which the density threshold was not satisfied.
  • 11. The method of claim 10, further comprising providing prompts via a user interface using a processor directed by an image processing application, where the prompts direct orientation of the camera array to shift locations of features identified as corresponding in the reference image and the alternate view image into the at least one region within the field of view of a camera that does not satisfy a feature density threshold during acquisition of the additional set of images.
  • 12. A camera array, comprising: at least one array of cameras comprising a plurality of cameras;a processor; andmemory containing an image processing application;wherein the image processing application directs the processor to: acquire a set of images of a scene using the plurality of cameras, where the set of images comprises a reference image and an alternate view image;detect features in the set of images;identify within the alternate view image features corresponding to features detected within the reference image;rectify the set of images based upon a set of geometric calibration data;determine residual vectors for geometric calibration data at locations where features are observed within the alternate view image based upon observed shifts in locations of features identified as corresponding in the reference image and the alternate view image;determine updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors, wherein determining updated geometric calibration data comprises:using at least an interpolation process to generate a residual vector calibration field from the residual vectors;mapping the residual vector calibration field to a set of basis vectors; andgenerating a denoised residual vector calibration field using a linear combination of less than the complete set of basis vectors; andrectify an image captured by the camera that captured the alternate view image based upon the updated geometric calibration data.
  • 13. The camera array of claim 12, wherein determining residual vectors for geometric calibration data at locations where features are observed within the alternate view image comprises: estimating depths of features within the alternate view image identified as corresponding to features detected within the reference image based upon components of the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image along epipolar lines;determining scene dependent geometric corrections to apply to the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image based upon the estimated depths of the corresponding features; andapplying the scene dependent geometric corrections to the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image to obtain residual vectors for geometric calibration data at locations where features are observed within the alternate view image.
  • 14. The camera array of claim 12, wherein determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors further comprises using an extrapolation process in the generation of the residual vector calibration field from the residual vectors.
  • 15. The camera array of claim 12, wherein the image processing application further directs the processor to apply the residual vector calibration field to the set of geometric calibration data with respect to the camera that captured the alternate view image.
  • 16. The camera array of claim 12, wherein the set of basis vectors is learned from a training data set of residual vector calibration fields.
  • 17. The camera array of claim 16, wherein the set of basis vectors is learned from a training data set of residual vector calibration fields using Principal Component Analysis.
  • 18. The camera array of claim 12, wherein determining updated geometric calibration data for a camera that captured the alternate view image further comprises selecting an updated set of geometric calibration data from amongst a plurality of sets of geometric calibration data based upon at least the residual vectors for geometric calibration data at locations where features are observed within the alternate view image.
  • 19. The camera array of claim 12, wherein the image processing application further directs the processor to: acquire an additional set of images of a scene using the plurality of cameras; anddetermine residual vectors for the geometric calibration data using the additional set of images;wherein determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors also comprises utilizing the residual vectors for the geometric calibration data determined using the additional set of images.
  • 20. The camera array of claim 19, wherein the image processing application further directs the processor to: detect at least one region within a field of view of a camera that does not satisfy a feature density threshold;wherein the additional set of images of a scene is acquired in response to detecting that at least one region within a field of view of a camera does not satisfy the feature density threshold.
  • 21. The camera array of claim 20, wherein utilizing the residual vectors determined using the additional set of images further comprises utilizing the residual vectors determined using the additional set of images to determine updated geometric calibration data with respect to the at least one region within the field of view of the camera in which the density threshold was not satisfied.
  • 22. A method of dynamically generating geometric calibration data for an array of cameras, comprising: acquiring a set of images of a scene using a plurality of cameras, where the set of images comprises a reference image and an alternate view image;detecting features in the set of images using a processor directed by an image processing application;identifying within the alternate view image features corresponding to features detected within the reference image using a processor directed by an image processing application;rectifying the set of images based upon a set of geometric calibration data using a processor directed by an image processing application;determining residual vectors for geometric calibration data at locations where features are observed within the alternate view image based upon observed shifts in locations of features identified as corresponding in the reference image and the alternate view image using a processor directed by an image processing application;determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors using a processor directed by an image processing application;rectifying an image captured by the camera that captured the alternate view image based upon the updated geometric calibration data using a processor directed by an image processing application;acquiring an additional set of images of a scene using the plurality of cameras;determining residual vectors for the geometric calibration data using the additional set of images, wherein determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors also comprises utilizing the residual vectors for the geometric calibration data determined using the additional set of images;detecting at least one region within a field of view of a camera that does not satisfy a feature density threshold;wherein the additional set of images of a scene is acquired in response to detecting that at least one region within a field of view of a camera does not satisfy the feature density threshold.wherein utilizing the residual vectors determined using the additional set of images further comprises utilizing the residual vectors determined using the additional set of images to determine updated geometric calibration data with respect to the at least one region within the field of view of the camera in which the density threshold was not satisfied; andproviding prompts via a user interface using a processor directed by an image processing application, where the prompts direct orientation of the camera array to shift locations of features identified as corresponding in the reference image and the alternate view image into the at least one region within the field of view of a camera that does not satisfy a feature density threshold during acquisition of the additional set of images.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a 35 U.S.C. 371 national stage application corresponding to Application Serial No. PCT/US2015/053013, entitled “Systems and Methods for Dynamic Calibration of Array Cameras”, filed Sep. 29, 2015, which claims priority to U.S. Provisional Patent Application Ser. No. 62/057,196, entitled “Adaptive Geometric Calibration for Array Cameras,” filed on Sep. 29, 2014, and U.S. Provisional Patent Application Ser. No. 62/106,168, entitled “Adaptive Geometric Calibration for Array Cameras”, filed Jan. 21, 2015. The disclosures of Application Serial No. PCT/US2015/053013, U.S. Provisional Patent Application Ser. No. 62/057,196 and U.S. Provisional Patent Application Ser. No. 62/106,168 of which is incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2015/053013 9/29/2015 WO 00
Publishing Document Publishing Date Country Kind
WO2016/054089 4/7/2016 WO A
US Referenced Citations (1024)
Number Name Date Kind
4124798 Thompson Nov 1978 A
4198646 Alexander et al. Apr 1980 A
4323925 Abell et al. Apr 1982 A
4460449 Montalbano Jul 1984 A
4467365 Murayama et al. Aug 1984 A
4652909 Glenn Mar 1987 A
4899060 Lischke Feb 1990 A
5005083 Grage Apr 1991 A
5070414 Tsutsumi Dec 1991 A
5144448 Hornbaker et al. Sep 1992 A
5157499 Oguma et al. Oct 1992 A
5325449 Burt Jun 1994 A
5327125 Iwase et al. Jul 1994 A
5488674 Burt Jan 1996 A
5629524 Stettner et al. May 1997 A
5638461 Fridge Jun 1997 A
5793900 Nourbakhsh et al. Aug 1998 A
5801919 Griencewic Sep 1998 A
5808350 Jack et al. Sep 1998 A
5832312 Rieger et al. Nov 1998 A
5833507 Woodgate et al. Nov 1998 A
5880691 Fossum et al. Mar 1999 A
5911008 Niikura et al. Jun 1999 A
5933190 Dierickx et al. Aug 1999 A
5963664 Kumar et al. Oct 1999 A
5973844 Burger Oct 1999 A
6002743 Telymonde Dec 1999 A
6005607 Uomori et al. Dec 1999 A
6034690 Gallery et al. Mar 2000 A
6069351 Mack May 2000 A
6069365 Chow et al. May 2000 A
6097394 Levoy et al. Aug 2000 A
6124974 Burger Sep 2000 A
6130786 Osawa et al. Oct 2000 A
6137100 Fossum et al. Oct 2000 A
6137535 Meyers Oct 2000 A
6141048 Meyers Oct 2000 A
6160909 Melen Dec 2000 A
6163414 Kikuchi et al. Dec 2000 A
6172352 Liu et al. Jan 2001 B1
6175379 Uomori et al. Jan 2001 B1
6205241 Melen Mar 2001 B1
6239909 Hayashi et al. May 2001 B1
6292713 Jouppi et al. Sep 2001 B1
6340994 Margulis et al. Jan 2002 B1
6358862 Ireland et al. Mar 2002 B1
6443579 Myers et al. Sep 2002 B1
6476805 Shum et al. Nov 2002 B1
6477260 Shimomura Nov 2002 B1
6502097 Chan et al. Dec 2002 B1
6525302 Dowski, Jr. et al. Feb 2003 B2
6552742 Seta Apr 2003 B1
6563537 Kawamura et al. May 2003 B1
6571466 Glenn et al. Jun 2003 B1
6603513 Berezin Aug 2003 B1
6611289 Yu Aug 2003 B1
6627896 Hashimoto et al. Sep 2003 B1
6628330 Lin Sep 2003 B1
6635941 Suda Oct 2003 B2
6639596 Shum et al. Oct 2003 B1
6647142 Beardsley Nov 2003 B1
6657218 Noda Dec 2003 B2
6671399 Berestov Dec 2003 B1
6674892 Melen Jan 2004 B1
6750904 Lambert Jun 2004 B1
6765617 Tangen et al. Jul 2004 B1
6771833 Edgar Aug 2004 B1
6774941 Boisvert et al. Aug 2004 B1
6788338 Dinev Sep 2004 B1
6795253 Shinohara Sep 2004 B2
6801653 Wu et al. Oct 2004 B1
6819328 Moriwaki et al. Nov 2004 B1
6819358 Kagle et al. Nov 2004 B1
6879735 Portniaguine et al. Apr 2005 B1
6897454 Sasaki et al. May 2005 B2
6903770 Kobayashi et al. Jun 2005 B1
6909121 Nishikawa Jun 2005 B2
6917702 Beardsley Jul 2005 B2
6927922 George et al. Aug 2005 B2
6958862 Joseph Oct 2005 B1
6985175 Iwai et al. Jan 2006 B2
7015954 Foote et al. Mar 2006 B1
7085409 Sawhney Aug 2006 B2
7161614 Yamashita et al. Jan 2007 B1
7199348 Olsen et al. Apr 2007 B2
7206449 Raskar et al. Apr 2007 B2
7215364 Wachtel et al. May 2007 B2
7235785 Hornback et al. Jun 2007 B2
7245761 Grossberg et al. Jul 2007 B2
7262799 Suda Aug 2007 B2
7292735 Blake et al. Nov 2007 B2
7295697 Satoh Nov 2007 B1
7333651 Kim et al. Feb 2008 B1
7369165 Bosco et al. May 2008 B2
7391572 Jacobowitz et al. Jun 2008 B2
7408725 Sato Aug 2008 B2
7425984 Chen Sep 2008 B2
7430312 Gu Sep 2008 B2
7496293 Shamir et al. Feb 2009 B2
7564019 Olsen Jul 2009 B2
7599547 Sun et al. Oct 2009 B2
7606484 Richards et al. Oct 2009 B1
7620265 Wolff Nov 2009 B1
7633511 Shum et al. Dec 2009 B2
7639435 Chiang et al. Dec 2009 B2
7646549 Zalevsky et al. Jan 2010 B2
7657090 Omatsu et al. Feb 2010 B2
7667824 Moran Feb 2010 B1
7675080 Boettiger Mar 2010 B2
7675681 Tomikawa et al. Mar 2010 B2
7706634 Schmitt et al. Apr 2010 B2
7723662 Levoy et al. May 2010 B2
7738013 Galambos et al. Jun 2010 B2
7741620 Doering et al. Jun 2010 B2
7782364 Smith Aug 2010 B2
7826153 Hong Nov 2010 B2
7840067 Shen et al. Nov 2010 B2
7912673 Hébert et al. Mar 2011 B2
7924321 Mitsunaga et al. Apr 2011 B2
7956871 Fainstain et al. Jun 2011 B2
7965314 Miller et al. Jun 2011 B1
7973834 Yang Jul 2011 B2
7986018 Rennie Jul 2011 B2
7990447 Honda et al. Aug 2011 B2
8000498 Shih et al. Aug 2011 B2
8013904 Tan et al. Sep 2011 B2
8027531 Wilburn et al. Sep 2011 B2
8044994 Vetro et al. Oct 2011 B2
8055466 Bryll Nov 2011 B2
8077245 Adamo et al. Dec 2011 B2
8089515 Chebil et al. Jan 2012 B2
8098297 Crisan et al. Jan 2012 B2
8098304 Pinto et al. Jan 2012 B2
8106949 Tan et al. Jan 2012 B2
8111910 Tanaka Feb 2012 B2
8126279 Marcellin et al. Feb 2012 B2
8130120 Kawabata et al. Mar 2012 B2
8131097 Lelescu et al. Mar 2012 B2
8149323 Li Apr 2012 B2
8164629 Zhang Apr 2012 B1
8169486 Corcoran et al. May 2012 B2
8180145 Wu et al. May 2012 B2
8189065 Georgiev et al. May 2012 B2
8189089 Georgiev May 2012 B1
8194296 Compton Jun 2012 B2
8212914 Chiu Jul 2012 B2
8213711 Tam Jul 2012 B2
8231814 Duparre Jul 2012 B2
8242426 Ward et al. Aug 2012 B2
8244027 Takahashi Aug 2012 B2
8244058 Intwala et al. Aug 2012 B1
8254668 Mashitani et al. Aug 2012 B2
8279325 Pitts et al. Oct 2012 B2
8280194 Wong et al. Oct 2012 B2
8284240 Saint-Pierre et al. Oct 2012 B2
8289409 Chang Oct 2012 B2
8289440 Pitts et al. Oct 2012 B2
8290358 Georgiev Oct 2012 B1
8294099 Blackwell, Jr. Oct 2012 B2
8294754 Jung et al. Oct 2012 B2
8300085 Yang et al. Oct 2012 B2
8305456 McMahon Nov 2012 B1
8315476 Georgiev et al. Nov 2012 B1
8345144 Georgiev et al. Jan 2013 B1
8360574 Ishak et al. Jan 2013 B2
8400555 Georgiev Mar 2013 B1
8406562 Bassi et al. Mar 2013 B2
8411146 Twede Apr 2013 B2
8446492 Nakano et al. May 2013 B2
8456517 Mor et al. Jun 2013 B2
8493496 Freedman et al. Jul 2013 B2
8514291 Chang Aug 2013 B2
8514491 Duparre Aug 2013 B2
8541730 Inuiya Sep 2013 B2
8542933 Venkataraman Sep 2013 B2
8553093 Wong et al. Oct 2013 B2
8559756 Georgiev et al. Oct 2013 B2
8565547 Strandemar Oct 2013 B2
8576302 Yoshikawa Nov 2013 B2
8577183 Robinson Nov 2013 B2
8581995 Lin et al. Nov 2013 B2
8619082 Ciurea Dec 2013 B1
8648918 Kauker et al. Feb 2014 B2
8655052 Spooner et al. Feb 2014 B2
8682107 Yoon et al. Mar 2014 B2
8687087 Pertsel et al. Apr 2014 B2
8692893 McMahon Apr 2014 B2
8754941 Sarwari et al. Jun 2014 B1
8773536 Zhang Jul 2014 B1
8780113 Ciurea et al. Jul 2014 B1
8804255 Duparre Aug 2014 B2
8830375 Ludwig Sep 2014 B2
8831367 Venkataraman Sep 2014 B2
8836793 Kriesel et al. Sep 2014 B1
8842201 Tajiri Sep 2014 B2
8854462 Herbin et al. Oct 2014 B2
8861089 Duparre Oct 2014 B2
8866912 Mullis Oct 2014 B2
8866920 Venkataraman et al. Oct 2014 B2
8866951 Keelan Oct 2014 B2
8878950 Lelescu et al. Nov 2014 B2
8885059 Venkataraman et al. Nov 2014 B1
8885922 Ito et al. Nov 2014 B2
8896594 Xiong et al. Nov 2014 B2
8896719 Venkataraman et al. Nov 2014 B1
8902321 Venkataraman et al. Dec 2014 B2
8928793 McMahon Jan 2015 B2
8977038 Tian et al. Mar 2015 B2
9001226 Ng et al. Apr 2015 B1
9019426 Han et al. Apr 2015 B2
9025894 Venkataraman May 2015 B2
9025895 Venkataraman May 2015 B2
9030528 Pesach et al. May 2015 B2
9031335 Venkataraman May 2015 B2
9031342 Venkataraman May 2015 B2
9031343 Venkataraman May 2015 B2
9036928 Venkataraman May 2015 B2
9036931 Venkataraman et al. May 2015 B2
9041823 Venkataraman et al. May 2015 B2
9041824 Lelescu et al. May 2015 B2
9041829 Venkataraman et al. May 2015 B2
9042667 Venkataraman et al. May 2015 B2
9047684 Lelescu et al. Jun 2015 B2
9049367 Venkataraman et al. Jun 2015 B2
9055233 Venkataraman et al. Jun 2015 B2
9060120 Venkataraman et al. Jun 2015 B2
9060124 Venkataraman et al. Jun 2015 B2
9077893 Venkataraman et al. Jul 2015 B2
9094661 Venkataraman et al. Jul 2015 B2
9100586 McMahon et al. Aug 2015 B2
9100635 Duparre et al. Aug 2015 B2
9123117 Ciurea et al. Sep 2015 B2
9123118 Ciurea et al. Sep 2015 B2
9124815 Venkataraman et al. Sep 2015 B2
9124831 Mullis Sep 2015 B2
9124864 Mullis Sep 2015 B2
9128228 Duparre Sep 2015 B2
9129183 Venkataraman et al. Sep 2015 B2
9129377 Ciurea et al. Sep 2015 B2
9143711 McMahon Sep 2015 B2
9147254 Ciurea et al. Sep 2015 B2
9185276 Rodda et al. Nov 2015 B2
9188765 Venkataraman et al. Nov 2015 B2
9191580 Venkataraman et al. Nov 2015 B2
9197821 McMahon Nov 2015 B2
9210392 Nisenzon et al. Dec 2015 B2
9214013 Venkataraman et al. Dec 2015 B2
9235898 Venkataraman et al. Jan 2016 B2
9235900 Ciurea et al. Jan 2016 B2
9240049 Ciurea et al. Jan 2016 B2
9253380 Venkataraman et al. Feb 2016 B2
9256974 Hines Feb 2016 B1
9264592 Rodda et al. Feb 2016 B2
9264610 Duparre Feb 2016 B2
9361662 Lelescu et al. Jun 2016 B2
9374512 Venkataraman et al. Jun 2016 B2
9412206 McMahon et al. Aug 2016 B2
9413953 Maeda Aug 2016 B2
9426343 Rodda et al. Aug 2016 B2
9426361 Venkataraman et al. Aug 2016 B2
9438888 Venkataraman et al. Sep 2016 B2
9445003 Lelescu et al. Sep 2016 B1
9456134 Venkataraman et al. Sep 2016 B2
9456196 Kim et al. Sep 2016 B2
9462164 Venkataraman et al. Oct 2016 B2
9485496 Venkataraman et al. Nov 2016 B2
9497370 Venkataraman et al. Nov 2016 B2
9497429 Mullis et al. Nov 2016 B2
9516222 Duparre et al. Dec 2016 B2
9519972 Venkataraman et al. Dec 2016 B2
9521319 Rodda et al. Dec 2016 B2
9521416 McMahon et al. Dec 2016 B1
9536166 Venkataraman et al. Jan 2017 B2
9576369 Venkataraman et al. Feb 2017 B2
9578237 Duparre et al. Feb 2017 B2
9578259 Molina Feb 2017 B2
9602805 Venkataraman et al. Mar 2017 B2
9633442 Venkataraman et al. Apr 2017 B2
9635274 Lin et al. Apr 2017 B2
9638883 Duparre May 2017 B1
9661310 Deng et al. May 2017 B2
9706132 Nisenzon et al. Jul 2017 B2
9712759 Venkataraman et al. Jul 2017 B2
9733486 Lelescu et al. Aug 2017 B2
9741118 Mullis Aug 2017 B2
9743051 Venkataraman et al. Aug 2017 B2
9749547 Venkataraman et al. Aug 2017 B2
9749568 McMahon Aug 2017 B2
9754422 McMahon et al. Sep 2017 B2
9766380 Duparre et al. Sep 2017 B2
9769365 Jannard Sep 2017 B1
9774789 Ciurea et al. Sep 2017 B2
9774831 Venkataraman et al. Sep 2017 B2
9787911 McMahon et al. Oct 2017 B2
9794476 Nayar et al. Oct 2017 B2
9800856 Venkataraman et al. Oct 2017 B2
9800859 Venkataraman et al. Oct 2017 B2
9807382 Duparre et al. Oct 2017 B2
9811753 Venkataraman et al. Nov 2017 B2
9813616 Lelescu et al. Nov 2017 B2
9813617 Venkataraman et al. Nov 2017 B2
9858673 Ciurea et al. Jan 2018 B2
9864921 Venkataraman et al. Jan 2018 B2
9888194 Duparre Feb 2018 B2
9898856 Yang et al. Feb 2018 B2
9917998 Venkataraman et al. Mar 2018 B2
9924092 Rodda et al. Mar 2018 B2
9955070 Lelescu et al. Apr 2018 B2
9986224 Mullis May 2018 B2
20010005225 Clark et al. Jun 2001 A1
20010019621 Hanna et al. Sep 2001 A1
20010028038 Hamaguchi et al. Oct 2001 A1
20010038387 Tomooka et al. Nov 2001 A1
20020012056 Trevino Jan 2002 A1
20020015536 Warren Feb 2002 A1
20020027608 Johnson Mar 2002 A1
20020028014 Ono et al. Mar 2002 A1
20020039438 Mori et al. Apr 2002 A1
20020057845 Fossum May 2002 A1
20020061131 Sawhney et al. May 2002 A1
20020063807 Margulis May 2002 A1
20020075450 Aratani Jun 2002 A1
20020087403 Meyers et al. Jul 2002 A1
20020089596 Yasuo Jul 2002 A1
20020094027 Sato et al. Jul 2002 A1
20020101528 Lee Aug 2002 A1
20020113867 Takigawa et al. Aug 2002 A1
20020113888 Sonoda et al. Aug 2002 A1
20020120634 Min et al. Aug 2002 A1
20020122113 Foote et al. Sep 2002 A1
20020163054 Suda et al. Nov 2002 A1
20020167537 Trajkovic Nov 2002 A1
20020177054 Saitoh et al. Nov 2002 A1
20020190991 Efran et al. Dec 2002 A1
20020195548 Dowski, Jr. et al. Dec 2002 A1
20030025227 Daniell Feb 2003 A1
20030086079 Barth et al. May 2003 A1
20030124763 Fan et al. Jul 2003 A1
20030140347 Varsa Jul 2003 A1
20030156189 Utsumi et al. Aug 2003 A1
20030179418 Wengender et al. Sep 2003 A1
20030188659 Merry et al. Oct 2003 A1
20030190072 Adkins et al. Oct 2003 A1
20030198377 Ng et al. Oct 2003 A1
20030211405 Venkataraman Nov 2003 A1
20040003409 Berstis et al. Jan 2004 A1
20040008271 Hagimori et al. Jan 2004 A1
20040012689 Tinnerino Jan 2004 A1
20040027358 Nakao Feb 2004 A1
20040047274 Amanai Mar 2004 A1
20040050104 Ghosh et al. Mar 2004 A1
20040056966 Schechner et al. Mar 2004 A1
20040061787 Liu et al. Apr 2004 A1
20040066454 Otani et al. Apr 2004 A1
20040071367 Irani et al. Apr 2004 A1
20040075654 Hsiao et al. Apr 2004 A1
20040096119 Williams May 2004 A1
20040100570 Shizukuishi May 2004 A1
20040105021 Hu et al. Jun 2004 A1
20040114807 Lelescu et al. Jun 2004 A1
20040141659 Zhang et al. Jul 2004 A1
20040151401 Sawhney et al. Aug 2004 A1
20040165090 Ning Aug 2004 A1
20040169617 Yelton et al. Sep 2004 A1
20040170340 Tipping et al. Sep 2004 A1
20040174439 Upton Sep 2004 A1
20040179008 Gordon et al. Sep 2004 A1
20040179834 Szajewski Sep 2004 A1
20040196379 Chen et al. Oct 2004 A1
20040207600 Zhang et al. Oct 2004 A1
20040207836 Chhibber et al. Oct 2004 A1
20040213449 Safaee-Rad et al. Oct 2004 A1
20040218809 Blake et al. Nov 2004 A1
20040234873 Venkataraman Nov 2004 A1
20040239782 Equitz et al. Dec 2004 A1
20040239885 Jaynes et al. Dec 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20040251509 Choi Dec 2004 A1
20040264806 Herley Dec 2004 A1
20050006477 Patel Jan 2005 A1
20050007461 Chou et al. Jan 2005 A1
20050009313 Suzuki et al. Jan 2005 A1
20050010621 Pinto et al. Jan 2005 A1
20050012035 Miller Jan 2005 A1
20050036778 DeMonte Feb 2005 A1
20050047678 Jones et al. Mar 2005 A1
20050048690 Yamamoto Mar 2005 A1
20050068436 Fraenkel et al. Mar 2005 A1
20050083531 Millerd et al. Apr 2005 A1
20050084179 Hanna et al. Apr 2005 A1
20050128509 Tokkonen et al. Jun 2005 A1
20050128595 Shimizu Jun 2005 A1
20050132098 Sonoda et al. Jun 2005 A1
20050134698 Schroeder Jun 2005 A1
20050134699 Nagashima Jun 2005 A1
20050134712 Gruhlke et al. Jun 2005 A1
20050147277 Higaki et al. Jul 2005 A1
20050151759 Gonzalez-Banos et al. Jul 2005 A1
20050168924 Wu et al. Aug 2005 A1
20050175257 Kuroki Aug 2005 A1
20050185711 Pfister et al. Aug 2005 A1
20050205785 Hornback et al. Sep 2005 A1
20050219264 Shum et al. Oct 2005 A1
20050219363 Kohler Oct 2005 A1
20050224843 Boemler Oct 2005 A1
20050225654 Feldman et al. Oct 2005 A1
20050265633 Piacentino et al. Dec 2005 A1
20050275946 Choo et al. Dec 2005 A1
20050286612 Takanashi Dec 2005 A1
20050286756 Hong et al. Dec 2005 A1
20060002635 Nestares et al. Jan 2006 A1
20060007331 Izumi et al. Jan 2006 A1
20060018509 Miyoshi Jan 2006 A1
20060023197 Joel Feb 2006 A1
20060023314 Boettiger et al. Feb 2006 A1
20060028476 Sobel et al. Feb 2006 A1
20060029270 Berestov et al. Feb 2006 A1
20060029271 Miyoshi et al. Feb 2006 A1
20060033005 Jerdev et al. Feb 2006 A1
20060034003 Zalevsky Feb 2006 A1
20060034531 Poon et al. Feb 2006 A1
20060035415 Wood Feb 2006 A1
20060038891 Okutomi et al. Feb 2006 A1
20060039611 Rother Feb 2006 A1
20060046204 Ono et al. Mar 2006 A1
20060049930 Zruya et al. Mar 2006 A1
20060050980 Kohashi et al. Mar 2006 A1
20060054780 Garrood et al. Mar 2006 A1
20060054782 Olsen Mar 2006 A1
20060055811 Frtiz et al. Mar 2006 A1
20060069478 Iwama Mar 2006 A1
20060072029 Miyatake et al. Apr 2006 A1
20060087747 Ohzawa et al. Apr 2006 A1
20060098888 Morishita May 2006 A1
20060103754 Wenstrand et al. May 2006 A1
20060125936 Gruhike et al. Jun 2006 A1
20060138322 Costello et al. Jun 2006 A1
20060152803 Provitola Jul 2006 A1
20060157640 Perlman et al. Jul 2006 A1
20060159369 Young Jul 2006 A1
20060176566 Boettiger et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060197937 Bamji et al. Sep 2006 A1
20060203100 Ajito et al. Sep 2006 A1
20060203113 Wada et al. Sep 2006 A1
20060210146 Gu Sep 2006 A1
20060210186 Berkner Sep 2006 A1
20060214085 Olsen Sep 2006 A1
20060221250 Rossbach et al. Oct 2006 A1
20060239549 Kelly et al. Oct 2006 A1
20060243889 Farnworth et al. Nov 2006 A1
20060251410 Trutna Nov 2006 A1
20060274174 Tewinkle Dec 2006 A1
20060278948 Yamaguchi et al. Dec 2006 A1
20060279648 Senba et al. Dec 2006 A1
20060289772 Johnson et al. Dec 2006 A1
20070002159 Olsen Jan 2007 A1
20070008575 Yu et al. Jan 2007 A1
20070009150 Suwa Jan 2007 A1
20070024614 Tam Feb 2007 A1
20070030356 Yea et al. Feb 2007 A1
20070035707 Margulis Feb 2007 A1
20070036427 Nakamura et al. Feb 2007 A1
20070040828 Zalevsky et al. Feb 2007 A1
20070040922 McKee et al. Feb 2007 A1
20070041391 Lin et al. Feb 2007 A1
20070052825 Cho Mar 2007 A1
20070083114 Yang et al. Apr 2007 A1
20070085917 Kobayashi Apr 2007 A1
20070092245 Bazakos et al. Apr 2007 A1
20070102622 Olsen et al. May 2007 A1
20070126898 Feldman Jun 2007 A1
20070127831 Venkataraman Jun 2007 A1
20070139333 Sato et al. Jun 2007 A1
20070140685 Wu Jun 2007 A1
20070146503 Shiraki Jun 2007 A1
20070146511 Kinoshita et al. Jun 2007 A1
20070153335 Hosaka Jul 2007 A1
20070158427 Zhu et al. Jul 2007 A1
20070159541 Sparks et al. Jul 2007 A1
20070160310 Tanida et al. Jul 2007 A1
20070165931 Higaki Jul 2007 A1
20070171290 Kroger Jul 2007 A1
20070177004 Kolehmainen et al. Aug 2007 A1
20070182843 Shimamura et al. Aug 2007 A1
20070201859 Sarrat et al. Aug 2007 A1
20070206241 Smith et al. Sep 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20070216765 Wong et al. Sep 2007 A1
20070225600 Weibrecht et al. Sep 2007 A1
20070228256 Mentzer Oct 2007 A1
20070236595 Pan et al. Oct 2007 A1
20070242141 Ciurea Oct 2007 A1
20070247517 Zhang et al. Oct 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070258006 Olsen et al. Nov 2007 A1
20070258706 Raskar et al. Nov 2007 A1
20070263113 Baek et al. Nov 2007 A1
20070263114 Gurevich et al. Nov 2007 A1
20070268374 Robinson Nov 2007 A1
20070296721 Chang et al. Dec 2007 A1
20070296832 Ota et al. Dec 2007 A1
20070296835 Olsen Dec 2007 A1
20070296847 Chang et al. Dec 2007 A1
20070297696 Hamza Dec 2007 A1
20080006859 Mionetto et al. Jan 2008 A1
20080019611 Larkin Jan 2008 A1
20080024683 Damera-Venkata et al. Jan 2008 A1
20080025649 Liu et al. Jan 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030597 Olsen et al. Feb 2008 A1
20080043095 Vetro et al. Feb 2008 A1
20080043096 Vetro et al. Feb 2008 A1
20080054518 Ra et al. Mar 2008 A1
20080056302 Erdal et al. Mar 2008 A1
20080062164 Bassi et al. Mar 2008 A1
20080079805 Takagi et al. Apr 2008 A1
20080080028 Bakin et al. Apr 2008 A1
20080084486 Enge et al. Apr 2008 A1
20080088793 Sverdrup et al. Apr 2008 A1
20080095523 Schilling-Benz et al. Apr 2008 A1
20080099804 Venezia et al. May 2008 A1
20080106620 Sawachi et al. May 2008 A1
20080112059 Choi et al. May 2008 A1
20080112635 Kondo et al. May 2008 A1
20080117289 Schowengerdt et al. May 2008 A1
20080118241 Tekolste et al. May 2008 A1
20080131019 Ng Jun 2008 A1
20080131107 Ueno Jun 2008 A1
20080151097 Chen et al. Jun 2008 A1
20080152215 Horie et al. Jun 2008 A1
20080152296 Oh et al. Jun 2008 A1
20080156991 Hu et al. Jul 2008 A1
20080158259 Kempf et al. Jul 2008 A1
20080158375 Kakkori et al. Jul 2008 A1
20080158698 Chang et al. Jul 2008 A1
20080165257 Boettiger et al. Jul 2008 A1
20080174670 Olsen et al. Jul 2008 A1
20080187305 Raskar et al. Aug 2008 A1
20080193026 Horie et al. Aug 2008 A1
20080211737 Kim et al. Sep 2008 A1
20080218610 Chapman et al. Sep 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Janson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20080239116 Smith Oct 2008 A1
20080240598 Hasegawa Oct 2008 A1
20080247638 Tanida et al. Oct 2008 A1
20080247653 Moussavi et al. Oct 2008 A1
20080272416 Yun Nov 2008 A1
20080273751 Yuan et al. Nov 2008 A1
20080278591 Barna et al. Nov 2008 A1
20080278610 Boettiger et al. Nov 2008 A1
20080284880 Numata Nov 2008 A1
20080291295 Kato et al. Nov 2008 A1
20080298674 Baker et al. Dec 2008 A1
20080310501 Ward et al. Dec 2008 A1
20090027543 Kanehiro et al. Jan 2009 A1
20090050946 Duparre et al. Feb 2009 A1
20090052743 Techmer Feb 2009 A1
20090060281 Tanida et al. Mar 2009 A1
20090079862 Subbotin Mar 2009 A1
20090086074 Li et al. Apr 2009 A1
20090091645 Trimeche et al. Apr 2009 A1
20090091806 Inuiya Apr 2009 A1
20090096050 Park Apr 2009 A1
20090102956 Georgiev Apr 2009 A1
20090103792 Rahn et al. Apr 2009 A1
20090109306 Shan Apr 2009 A1
20090127430 Hirasawa et al. May 2009 A1
20090128644 Camp, Jr. et al. May 2009 A1
20090128833 Yahav May 2009 A1
20090129667 Ho et al. May 2009 A1
20090140131 Utagawa et al. Jun 2009 A1
20090141933 Wagg Jun 2009 A1
20090147919 Goto et al. Jun 2009 A1
20090152664 Klem et al. Jun 2009 A1
20090167922 Perlman et al. Jul 2009 A1
20090167934 Gupta Jul 2009 A1
20090179142 Duparre et al. Jul 2009 A1
20090180021 Kikuchi et al. Jul 2009 A1
20090200622 Tai et al. Aug 2009 A1
20090201371 Matsuda et al. Aug 2009 A1
20090207235 Francini et al. Aug 2009 A1
20090219435 Yuan et al. Sep 2009 A1
20090225203 Tanida et al. Sep 2009 A1
20090237520 Kaneko et al. Sep 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090256947 Ciurea et al. Oct 2009 A1
20090263017 Tanbakuchi Oct 2009 A1
20090268192 Koenck et al. Oct 2009 A1
20090268970 Babacan et al. Oct 2009 A1
20090268983 Stone Oct 2009 A1
20090274387 Jin Nov 2009 A1
20090279800 Uetani et al. Nov 2009 A1
20090284651 Srinivasan Nov 2009 A1
20090290811 Imai Nov 2009 A1
20090297056 Lelescu et al. Dec 2009 A1
20090302205 Olsen et al. Dec 2009 A9
20090317061 Jung et al. Dec 2009 A1
20090322876 Lee et al. Dec 2009 A1
20090323195 Hembree et al. Dec 2009 A1
20090323206 Oliver et al. Dec 2009 A1
20090324118 Maslov et al. Dec 2009 A1
20100002126 Wenstrand et al. Jan 2010 A1
20100002313 Duparre et al. Jan 2010 A1
20100002314 Duparre Jan 2010 A1
20100007714 Kim et al. Jan 2010 A1
20100013927 Nixon Jan 2010 A1
20100044815 Chang et al. Feb 2010 A1
20100045809 Packard Feb 2010 A1
20100053342 Hwang Mar 2010 A1
20100053600 Tanida Mar 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100073463 Momonoi et al. Mar 2010 A1
20100074532 Gordon et al. Mar 2010 A1
20100085425 Tan Apr 2010 A1
20100086227 Sun et al. Apr 2010 A1
20100091389 Henriksen et al. Apr 2010 A1
20100097491 Farina et al. Apr 2010 A1
20100103175 Okutomi et al. Apr 2010 A1
20100103259 Tanida et al. Apr 2010 A1
20100103308 Butterfield et al. Apr 2010 A1
20100111444 Coffman May 2010 A1
20100118127 Nam May 2010 A1
20100128145 Pitts et al. May 2010 A1
20100129048 Pitts et al. May 2010 A1
20100133230 Henriksen et al. Jun 2010 A1
20100133418 Sargent et al. Jun 2010 A1
20100141802 Knight Jun 2010 A1
20100142828 Chang et al. Jun 2010 A1
20100142839 Lakbecker Jun 2010 A1
20100157073 Kondo et al. Jun 2010 A1
20100165152 Lim Jul 2010 A1
20100166410 Chang et al. Jul 2010 A1
20100171866 Brady et al. Jul 2010 A1
20100177411 Hegde et al. Jul 2010 A1
20100182406 Benitez et al. Jul 2010 A1
20100194860 Mentz et al. Aug 2010 A1
20100194901 van Hoorebeke et al. Aug 2010 A1
20100195716 Gunnewiek et al. Aug 2010 A1
20100201834 Maruyama et al. Aug 2010 A1
20100202054 Niederer Aug 2010 A1
20100202683 Robinson Aug 2010 A1
20100208100 Olsen et al. Aug 2010 A9
20100220212 Perlman et al. Sep 2010 A1
20100223237 Mishra et al. Sep 2010 A1
20100225740 Jung et al. Sep 2010 A1
20100231285 Boomer et al. Sep 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100244165 Lake et al. Sep 2010 A1
20100245684 Xiao et al. Sep 2010 A1
20100254627 Panahpour Tehrani et al. Oct 2010 A1
20100259610 Petersen et al. Oct 2010 A1
20100265346 Iizuka Oct 2010 A1
20100265381 Yamamoto et al. Oct 2010 A1
20100265385 Knight et al. Oct 2010 A1
20100281070 Chan et al. Nov 2010 A1
20100289941 Ito et al. Nov 2010 A1
20100290483 Park et al. Nov 2010 A1
20100302423 Adams, Jr. et al. Dec 2010 A1
20100309292 Ho et al. Dec 2010 A1
20100309368 Choi et al. Dec 2010 A1
20100321595 Chiu et al. Dec 2010 A1
20100321640 Yeh et al. Dec 2010 A1
20100329556 Mitarai et al. Dec 2010 A1
20110001037 Tewinkle Jan 2011 A1
20110018973 Takayama Jan 2011 A1
20110019048 Raynor et al. Jan 2011 A1
20110019243 Constant, Jr. et al. Jan 2011 A1
20110031381 Tay et al. Feb 2011 A1
20110032370 Ludwig Feb 2011 A1
20110033129 Robinson Feb 2011 A1
20110038536 Gong Feb 2011 A1
20110043661 Podoleanu Feb 2011 A1
20110043665 Ogasahara Feb 2011 A1
20110043668 McKinnon et al. Feb 2011 A1
20110044502 Liu et al. Feb 2011 A1
20110051255 Lee et al. Mar 2011 A1
20110055729 Mason et al. Mar 2011 A1
20110064327 Dagher et al. Mar 2011 A1
20110069189 Venkataraman et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110085028 Samadani et al. Apr 2011 A1
20110090217 Mashitani et al. Apr 2011 A1
20110108708 Olsen et al. May 2011 A1
20110115886 Nguyen May 2011 A1
20110121421 Charbon May 2011 A1
20110122308 Duparre May 2011 A1
20110128393 Tavi et al. Jun 2011 A1
20110128412 Milnes et al. Jun 2011 A1
20110129165 Lim et al. Jun 2011 A1
20110141309 Nagashima et al. Jun 2011 A1
20110142138 Tian et al. Jun 2011 A1
20110149408 Hahgholt et al. Jun 2011 A1
20110149409 Haugholt et al. Jun 2011 A1
20110153248 Gu et al. Jun 2011 A1
20110157321 Nakajima et al. Jun 2011 A1
20110157451 Chang Jun 2011 A1
20110169994 DiFrancesco et al. Jul 2011 A1
20110176020 Chang Jul 2011 A1
20110181797 Galstian et al. Jul 2011 A1
20110193944 Lian et al. Aug 2011 A1
20110200319 Kravitz et al. Aug 2011 A1
20110206291 Kashani et al. Aug 2011 A1
20110207074 Hall-Holt et al. Aug 2011 A1
20110211077 Nayar Sep 2011 A1
20110211824 Georgiev et al. Sep 2011 A1
20110221599 Högasten Sep 2011 A1
20110221658 Haddick et al. Sep 2011 A1
20110221939 Jerdev Sep 2011 A1
20110221950 Oostra Sep 2011 A1
20110222757 Yeatman, Jr. et al. Sep 2011 A1
20110228142 Brueckner Sep 2011 A1
20110228144 Tian et al. Sep 2011 A1
20110234841 Akeley et al. Sep 2011 A1
20110241234 Duparre Oct 2011 A1
20110242342 Goma et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110242356 Aleksic et al. Oct 2011 A1
20110243428 Das Gupta et al. Oct 2011 A1
20110255592 Sung Oct 2011 A1
20110255745 Hodder et al. Oct 2011 A1
20110261993 Weiming et al. Oct 2011 A1
20110267264 McCarthy et al. Nov 2011 A1
20110267348 Lin Nov 2011 A1
20110273531 Ito et al. Nov 2011 A1
20110274175 Sumitomo Nov 2011 A1
20110274366 Tardif Nov 2011 A1
20110279705 Kuang et al. Nov 2011 A1
20110279721 McMahon Nov 2011 A1
20110285701 Chen et al. Nov 2011 A1
20110285866 Bhrugumalla et al. Nov 2011 A1
20110285910 Bamji et al. Nov 2011 A1
20110292216 Fergus et al. Dec 2011 A1
20110298898 Jung et al. Dec 2011 A1
20110298917 Yanagita Dec 2011 A1
20110300929 Tardif et al. Dec 2011 A1
20110310980 Mathew Dec 2011 A1
20110316968 Taguchi et al. Dec 2011 A1
20110317766 Lim, II et al. Dec 2011 A1
20120012748 Pain et al. Jan 2012 A1
20120014456 Martinez Bauza et al. Jan 2012 A1
20120019530 Baker Jan 2012 A1
20120019700 Gaber Jan 2012 A1
20120023456 Sun et al. Jan 2012 A1
20120026297 Sato Feb 2012 A1
20120026342 Yu et al. Feb 2012 A1
20120026366 Golan et al. Feb 2012 A1
20120026451 Nystrom Feb 2012 A1
20120039525 Tian et al. Feb 2012 A1
20120044249 Mashitani et al. Feb 2012 A1
20120044372 Côté et al. Feb 2012 A1
20120051624 Ando Mar 2012 A1
20120056982 Katz et al. Mar 2012 A1
20120057040 Park et al. Mar 2012 A1
20120062697 Treado et al. Mar 2012 A1
20120062702 Jiang et al. Mar 2012 A1
20120062756 Tian Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120081519 Goma Apr 2012 A1
20120086803 Malzbender et al. Apr 2012 A1
20120105590 Fukumoto et al. May 2012 A1
20120105691 Waqas et al. May 2012 A1
20120113232 Joblove May 2012 A1
20120113318 Galstian et al. May 2012 A1
20120113413 Miahczylowicz-Wolski et al. May 2012 A1
20120114224 Xu et al. May 2012 A1
20120127275 Von Zitzewitz et al. May 2012 A1
20120147139 Li et al. Jun 2012 A1
20120147205 Lelescu et al. Jun 2012 A1
20120153153 Chang et al. Jun 2012 A1
20120154551 Inoue Jun 2012 A1
20120155830 Sasaki et al. Jun 2012 A1
20120163672 McKinnon Jun 2012 A1
20120169433 Mullins Jul 2012 A1
20120170134 Bolis et al. Jul 2012 A1
20120176479 Mayhew et al. Jul 2012 A1
20120176481 Lukk et al. Jul 2012 A1
20120188235 Wu et al. Jul 2012 A1
20120188341 Klein Gunnewiek et al. Jul 2012 A1
20120188389 Lin et al. Jul 2012 A1
20120188420 Black et al. Jul 2012 A1
20120188634 Kubala et al. Jul 2012 A1
20120198677 Duparre Aug 2012 A1
20120200669 Lai Aug 2012 A1
20120200726 Bugnariu Aug 2012 A1
20120200734 Tang Aug 2012 A1
20120206582 DiCarlo et al. Aug 2012 A1
20120219236 Ali et al. Aug 2012 A1
20120224083 Jovanovski et al. Sep 2012 A1
20120229602 Chen et al. Sep 2012 A1
20120229628 Ishiyama et al. Sep 2012 A1
20120237114 Park et al. Sep 2012 A1
20120249550 Akeley et al. Oct 2012 A1
20120249750 Izzat et al. Oct 2012 A1
20120249836 Ali et al. Oct 2012 A1
20120249853 Krolczyk et al. Oct 2012 A1
20120262601 Choi et al. Oct 2012 A1
20120262607 Shimura et al. Oct 2012 A1
20120268574 Gidon et al. Oct 2012 A1
20120274626 Hsieh Nov 2012 A1
20120287291 McMahon et al. Nov 2012 A1
20120290257 Hodge et al. Nov 2012 A1
20120293489 Chen et al. Nov 2012 A1
20120293624 Chen et al. Nov 2012 A1
20120293695 Tanaka Nov 2012 A1
20120307093 Miyoshi Dec 2012 A1
20120307099 Yahata et al. Dec 2012 A1
20120314033 Lee et al. Dec 2012 A1
20120314937 Kim et al. Dec 2012 A1
20120327222 Ng et al. Dec 2012 A1
20130002828 Ding et al. Jan 2013 A1
20130003184 Duparre Jan 2013 A1
20130010073 Do Jan 2013 A1
20130016245 Yuba Jan 2013 A1
20130016885 Tsujimoto et al. Jan 2013 A1
20130022111 Chen et al. Jan 2013 A1
20130027580 Olsen et al. Jan 2013 A1
20130033579 Wajs Feb 2013 A1
20130033585 Li et al. Feb 2013 A1
20130038696 Ding et al. Feb 2013 A1
20130047396 Au et al. Feb 2013 A1
20130050504 Safaee-Rad et al. Feb 2013 A1
20130050526 Keelan Feb 2013 A1
20130057710 McMahon Mar 2013 A1
20130070060 Chatterjee Mar 2013 A1
20130076967 Brunner et al. Mar 2013 A1
20130077859 Stauder et al. Mar 2013 A1
20130077880 Venkataraman et al. Mar 2013 A1
20130077882 Venkataraman et al. Mar 2013 A1
20130083172 Baba Apr 2013 A1
20130088489 Schmeitz et al. Apr 2013 A1
20130088637 Duparre Apr 2013 A1
20130093842 Yahata Apr 2013 A1
20130107061 Kumar et al. May 2013 A1
20130113888 Koguchi May 2013 A1
20130113899 Morohoshi et al. May 2013 A1
20130113939 Strandemar May 2013 A1
20130120536 Song et al. May 2013 A1
20130120605 Georgiev et al. May 2013 A1
20130121559 Hu May 2013 A1
20130128068 Georgiev et al. May 2013 A1
20130128069 Georgiev et al. May 2013 A1
20130128087 Georgiev et al. May 2013 A1
20130128121 Agarwala et al. May 2013 A1
20130135315 Bares May 2013 A1
20130147979 McMahon et al. Jun 2013 A1
20130169754 Aronsson et al. Jul 2013 A1
20130176394 Tian et al. Jul 2013 A1
20130208138 Li Aug 2013 A1
20130215108 McMahon et al. Aug 2013 A1
20130215231 Hiramoto et al. Aug 2013 A1
20130222556 Shimada Aug 2013 A1
20130223759 Nishiyama et al. Aug 2013 A1
20130229540 Farina et al. Sep 2013 A1
20130230237 Schlosser et al. Sep 2013 A1
20130250123 Zhang et al. Sep 2013 A1
20130250150 Malone Sep 2013 A1
20130258067 Zhang et al. Oct 2013 A1
20130259317 Gaddy Oct 2013 A1
20130265459 Duparre et al. Oct 2013 A1
20130274596 Azizian et al. Oct 2013 A1
20130274923 By et al. Oct 2013 A1
20130293760 Nisenzon et al. Nov 2013 A1
20130335598 Gustavsson Dec 2013 A1
20140002674 Duparre et al. Jan 2014 A1
20140002675 Duparre et al. Jan 2014 A1
20140009586 McNamer et al. Jan 2014 A1
20140013273 Ng et al. Jan 2014 A1
20140037137 Broaddus et al. Feb 2014 A1
20140037140 Benhimane et al. Feb 2014 A1
20140043507 Wang et al. Feb 2014 A1
20140076336 Clayton et al. Mar 2014 A1
20140078333 Miao Mar 2014 A1
20140079336 Venkataraman et al. Mar 2014 A1
20140085502 Lin et al. Mar 2014 A1
20140092281 Nisenzon et al. Apr 2014 A1
20140098266 Nayar et al. Apr 2014 A1
20140098267 Tian et al. Apr 2014 A1
20140104490 Hsieh et al. Apr 2014 A1
20140118493 Sali et al. May 2014 A1
20140118584 Lee et al. May 2014 A1
20140125771 Grossmann et al. May 2014 A1
20140132810 McMahon May 2014 A1
20140146132 Bagnato et al. May 2014 A1
20140146201 Knight et al. May 2014 A1
20140176592 Wilburn et al. Jun 2014 A1
20140183334 Wang et al. Jul 2014 A1
20140186045 Poddar et al. Jul 2014 A1
20140192154 Jeong et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140198188 Izawa Jul 2014 A1
20140204183 Lee et al. Jul 2014 A1
20140218546 McMahon Aug 2014 A1
20140232822 Venkataraman et al. Aug 2014 A1
20140240528 Venkataraman et al. Aug 2014 A1
20140240529 Venkataraman et al. Aug 2014 A1
20140253738 Mullis Sep 2014 A1
20140267243 Venkataraman et al. Sep 2014 A1
20140267286 Duparre Sep 2014 A1
20140267633 Venkataraman Sep 2014 A1
20140267762 Mullis et al. Sep 2014 A1
20140267829 McMahon et al. Sep 2014 A1
20140267890 Lelescu et al. Sep 2014 A1
20140285675 Mullis Sep 2014 A1
20140300706 Song Oct 2014 A1
20140313315 Shoham et al. Oct 2014 A1
20140321712 Ciurea et al. Oct 2014 A1
20140333731 Venkataraman et al. Nov 2014 A1
20140333764 Venkataraman et al. Nov 2014 A1
20140333787 Venkataraman et al. Nov 2014 A1
20140340539 Venkataraman et al. Nov 2014 A1
20140347509 Venkataraman et al. Nov 2014 A1
20140347748 Duparre Nov 2014 A1
20140354773 Venkataraman et al. Dec 2014 A1
20140354843 Venkataraman et al. Dec 2014 A1
20140354844 Venkataraman et al. Dec 2014 A1
20140354853 Venkataraman et al. Dec 2014 A1
20140354854 Venkataraman et al. Dec 2014 A1
20140354855 Venkataraman et al. Dec 2014 A1
20140355870 Venkataraman et al. Dec 2014 A1
20140368662 Venkataraman et al. Dec 2014 A1
20140368683 Venkataraman et al. Dec 2014 A1
20140368684 Venkataraman et al. Dec 2014 A1
20140368685 Venkataraman et al. Dec 2014 A1
20140368686 Duparre Dec 2014 A1
20140369612 Venkataraman et al. Dec 2014 A1
20140369615 Venkataraman et al. Dec 2014 A1
20140376825 Venkataraman et al. Dec 2014 A1
20140376826 Venkataraman et al. Dec 2014 A1
20150002734 Lee Jan 2015 A1
20150003752 Venkataraman et al. Jan 2015 A1
20150003753 Venkataraman et al. Jan 2015 A1
20150009353 Venkataraman et al. Jan 2015 A1
20150009354 Venkataraman et al. Jan 2015 A1
20150009362 Venkataraman et al. Jan 2015 A1
20150015669 Venkataraman et al. Jan 2015 A1
20150035992 Mullis Feb 2015 A1
20150036014 Lelescu et al. Feb 2015 A1
20150036015 Lelescu et al. Feb 2015 A1
20150042766 Ciurea et al. Feb 2015 A1
20150042767 Ciurea et al. Feb 2015 A1
20150042833 Lelescu et al. Feb 2015 A1
20150049915 Ciurea et al. Feb 2015 A1
20150049916 Ciurea et al. Feb 2015 A1
20150049917 Ciurea et al. Feb 2015 A1
20150055884 Venkataraman et al. Feb 2015 A1
20150085073 Bruls et al. Mar 2015 A1
20150085174 Shabtay et al. Mar 2015 A1
20150091900 Yang et al. Apr 2015 A1
20150098079 Montgomery et al. Apr 2015 A1
20150104076 Hayasaka Apr 2015 A1
20150104101 Bryant et al. Apr 2015 A1
20150122411 Rodda et al. May 2015 A1
20150124059 Georgiev et al. May 2015 A1
20150124113 Rodda et al. May 2015 A1
20150124151 Rodda et al. May 2015 A1
20150138346 Venkataraman et al. May 2015 A1
20150146029 Venkataraman et al. May 2015 A1
20150146030 Venkataraman et al. May 2015 A1
20150161798 Lelescu et al. Jun 2015 A1
20150199793 Venkataraman et al. Jul 2015 A1
20150199841 Venkataraman et al. Jul 2015 A1
20150243480 Yamada et al. Aug 2015 A1
20150244927 Laroia et al. Aug 2015 A1
20150248744 Hayasaka et al. Sep 2015 A1
20150254868 Srikanth et al. Sep 2015 A1
20150296137 Duparre et al. Oct 2015 A1
20150312455 Venkataraman et al. Oct 2015 A1
20150326852 Duparre et al. Nov 2015 A1
20150332468 Hayasaka et al. Nov 2015 A1
20150373261 Rodda et al. Dec 2015 A1
20160037097 Duparre Feb 2016 A1
20160044252 Molina Feb 2016 A1
20160044257 Venkataraman et al. Feb 2016 A1
20160057332 Ciurea et al. Feb 2016 A1
20160065934 Kaza et al. Mar 2016 A1
20160163051 Mullis Jun 2016 A1
20160165106 Duparre Jun 2016 A1
20160165134 Lelescu et al. Jun 2016 A1
20160165147 Nisenzon et al. Jun 2016 A1
20160165212 Mullis Jun 2016 A1
20160195733 Lelescu et al. Jul 2016 A1
20160198096 Lelescu et al. Jul 2016 A1
20160227195 Venkataraman et al. Aug 2016 A1
20160249001 McMahon Aug 2016 A1
20160255333 Nisenzon et al. Sep 2016 A1
20160266284 Duparre et al. Sep 2016 A1
20160267665 Venkataraman et al. Sep 2016 A1
20160267672 Ciurea et al. Sep 2016 A1
20160269626 McMahon Sep 2016 A1
20160269627 McMahon Sep 2016 A1
20160269650 Venkataraman et al. Sep 2016 A1
20160269651 Venkataraman et al. Sep 2016 A1
20160269664 Duparre Sep 2016 A1
20160316140 Nayar et al. Oct 2016 A1
20170006233 Venkataraman et al. Jan 2017 A1
20170048468 Pain et al. Feb 2017 A1
20170053382 Lelescu et al. Feb 2017 A1
20170054901 Venkataraman et al. Feb 2017 A1
20170070672 Rodda et al. Mar 2017 A1
20170070673 Lelescu et al. Mar 2017 A1
20170078568 Venkataraman et al. Mar 2017 A1
20170085845 Venkataraman et al. Mar 2017 A1
20170094243 Venkataraman et al. Mar 2017 A1
20170099465 Mullis et al. Apr 2017 A1
20170163862 Molina Jun 2017 A1
20170178363 Venkataraman et al. Jun 2017 A1
20170187933 Duparre Jun 2017 A1
20170257562 Venkataraman et al. Sep 2017 A1
20170365104 McMahon et al. Dec 2017 A1
20180007284 Venkataraman et al. Jan 2018 A1
20180013945 Ciurea et al. Jan 2018 A1
20180024330 Laroia Jan 2018 A1
20180035057 McMahon et al. Feb 2018 A1
20180040135 Mullis Feb 2018 A1
20180048830 Venkataraman et al. Feb 2018 A1
20180081090 Duparre et al. Mar 2018 A1
20180097993 Nayar et al. Apr 2018 A1
20180109782 Duparre et al. Apr 2018 A1
20180124311 Lelescu et al. May 2018 A1
20180139382 Venkataraman et al. May 2018 A1
Foreign Referenced Citations (169)
Number Date Country
1669332 Sep 2005 CN
1839394 Sep 2006 CN
101010619 Aug 2007 CN
101064780 Oct 2007 CN
101102388 Jan 2008 CN
101147392 Mar 2008 CN
101427372 May 2009 CN
101606086 Dec 2009 CN
101883291 Nov 2010 CN
102037717 Apr 2011 CN
102375199 Mar 2012 CN
104081414 Oct 2014 CN
104508681 Apr 2015 CN
104662589 May 2015 CN
104685513 Jun 2015 CN
104685860 Jun 2015 CN
107230236 Oct 2017 CN
107346061 Nov 2017 CN
0677821 Oct 1995 EP
840502 May 1998 EP
1201407 May 2002 EP
1355274 Oct 2003 EP
1734766 Dec 2006 EP
1243945 Jan 2009 EP
2026563 Feb 2009 EP
2104334 Sep 2009 EP
2244484 Oct 2010 EP
0957642 Apr 2011 EP
2336816 Jun 2011 EP
2339532 Jun 2011 EP
2381418 Oct 2011 EP
2652678 Oct 2013 EP
2761534 Aug 2014 EP
2867718 May 2015 EP
2873028 May 2015 EP
2888698 Jul 2015 EP
2888720 Jul 2015 EP
2901671 Aug 2015 EP
3066690 Sep 2016 EP
2652678 Sep 2017 EP
2817955 Apr 2018 EP
3328048 May 2018 EP
2482022 Jan 2012 GB
2708CHENP2014 Aug 2015 IN
59-025483 Feb 1984 JP
64-037177 Feb 1989 JP
02-285772 Nov 1990 JP
07-15457 Jan 1995 JP
09181913 Jul 1997 JP
11142609 May 1999 JP
11223708 Aug 1999 JP
2000209503 Jul 2000 JP
2001008235 Jan 2001 JP
2001194114 Jul 2001 JP
2001264033 Sep 2001 JP
2001277260 Oct 2001 JP
2001337263 Dec 2001 JP
2002195910 Jul 2002 JP
2002205310 Jul 2002 JP
2002252338 Sep 2002 JP
2003094445 Apr 2003 JP
2003139910 May 2003 JP
2003163938 Jun 2003 JP
2003298920 Oct 2003 JP
2004221585 Aug 2004 JP
2005116022 Apr 2005 JP
2005181460 Jul 2005 JP
2005295381 Oct 2005 JP
2005303694 Oct 2005 JP
2005354124 Dec 2005 JP
2006033228 Feb 2006 JP
2006033493 Feb 2006 JP
2006047944 Feb 2006 JP
2006258930 Sep 2006 JP
2007520107 Jul 2007 JP
2007259136 Oct 2007 JP
2008039852 Feb 2008 JP
2008055908 Mar 2008 JP
2008507874 Mar 2008 JP
2008258885 Oct 2008 JP
2009132010 Jun 2009 JP
2009300268 Dec 2009 JP
2011017764 Jan 2011 JP
2011030184 Feb 2011 JP
2011109484 Jun 2011 JP
2011523538 Aug 2011 JP
2013526801 Jun 2013 JP
2014521117 Aug 2014 JP
2014535191 Dec 2014 JP
2015522178 Aug 2015 JP
2015534734 Dec 2015 JP
6140709 May 2017 JP
2017163550 Sep 2017 JP
2017163587 Sep 2017 JP
2017531976 Oct 2017 JP
1020110097647 Aug 2011 KR
20170063827 Jun 2017 KR
101824672 Feb 2018 KR
191151 Jul 2013 SG
200828994 Jul 2008 TW
200939739 Sep 2009 TW
2005057922 Jun 2005 WO
2006039906 Apr 2006 WO
2006039906 Sep 2006 WO
2007013250 Feb 2007 WO
2007083579 Jul 2007 WO
2007134137 Nov 2007 WO
2008045198 Apr 2008 WO
2008050904 May 2008 WO
2008108271 Sep 2008 WO
2008108926 Sep 2008 WO
2008150817 Dec 2008 WO
2009073950 Jun 2009 WO
2009151903 Dec 2009 WO
2009157273 Dec 2009 WO
2011008443 Jan 2011 WO
2011055655 May 2011 WO
2011063347 May 2011 WO
2011105814 Sep 2011 WO
2011116203 Sep 2011 WO
2011063347 Oct 2011 WO
2011143501 Nov 2011 WO
2012057619 May 2012 WO
2012057620 May 2012 WO
2012057621 May 2012 WO
2012057622 May 2012 WO
2012057623 May 2012 WO
2012057620 Jun 2012 WO
2012074361 Jun 2012 WO
2012078126 Jun 2012 WO
2012082904 Jun 2012 WO
2012155119 Nov 2012 WO
2013003276 Jan 2013 WO
2013043751 Mar 2013 WO
2013043761 Mar 2013 WO
2013049699 Apr 2013 WO
2013055960 Apr 2013 WO
2013119706 Aug 2013 WO
2013126578 Aug 2013 WO
2013166215 Nov 2013 WO
2014004134 Jan 2014 WO
2014005123 Jan 2014 WO
2014031795 Feb 2014 WO
2014052974 Apr 2014 WO
2014032020 May 2014 WO
2014078443 May 2014 WO
2014130849 Aug 2014 WO
2014133974 Sep 2014 WO
2014138695 Sep 2014 WO
2014138697 Sep 2014 WO
2014144157 Sep 2014 WO
2014145856 Sep 2014 WO
2014149403 Sep 2014 WO
2014149902 Sep 2014 WO
2014150856 Sep 2014 WO
2014153098 Sep 2014 WO
2014159721 Oct 2014 WO
2014159779 Oct 2014 WO
2014160142 Oct 2014 WO
2014164550 Oct 2014 WO
2014164909 Oct 2014 WO
2014165244 Oct 2014 WO
2014133974 Apr 2015 WO
2015048694 Apr 2015 WO
2015070105 May 2015 WO
2015074078 May 2015 WO
2015081279 Jun 2015 WO
2015134996 Sep 2015 WO
2016054089 Apr 2016 WO
Non-Patent Literature Citations (304)
Entry
US 8,957,977 B2, 02/2015, Venkataraman et al. (withdrawn)
US 8,964,053 B2, 02/2015, Venkataraman et al. (withdrawn)
US 8,965,058 B2, 02/2015, Venkataraman et al. (withdrawn)
US 9,014,491 B2, 04/2015, Venkataraman et al. (withdrawn)
US 9,338,332 B2, 06/2016, Venkataraman et al. (withdrawn)
Chen et al., “KNN Matting”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2013, vol. 35, No. 9, pp. 2175-2188.
Cooper et al., “The perceptual basis of common photographic practice”, Journal of Vision, vol. 12, No. 5, Article 8, May 25, 2012, pp. 1-14.
Crabb et al., “Real-time foreground segmentation via range and color imaging”, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, Jun. 23-28, 2008, pp. 1-5.
Debevec et al., “Recovering High Dynamic Range Radiance Maps from Photographs”, Computer Graphics (ACM SIGGRAPH Proceedings), Aug. 16, 1997, 10 pgs.
Do, Minh N., “Immersive Visual Communication with Depth”, Presented at Microsoft Research, Jun. 15, 2011, Retrieved from: http://minhdo.ece.illinois.edu/talks/ImmersiveComm.pdf, 42 pgs.
Do et al., “Immersive Visual Communication”, IEEE Signal Processing Magazine, vol. 28, Issue 1, Jan. 2011, DOI: 10.1109/MSP.2010.939075, Retrieved from: http://minhdo.ece.illinois.edu/publications/ImmerComm_SPM.pdf, pp. 58-66.
Drouin et al., “Fast Multiple-Baseline Stereo with Occlusion”, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05), Ottawa, Ontario, Canada, Jun. 13-16, 2005, pp. 540-547.
Drouin et al., “Geo-Consistency for Wide Multi-Camera Stereo”, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, Jun. 20-25, 2005, pp. 351-358.
Drouin et al., “Improving Border Localization of Multi-Baseline Stereo Using Border-Cut”, International Journal of Computer Vision, Jul. 5, 2006, vol. 83, Issue 3, 8 pgs.
Duparre et al., “Artificial apposition compound eye fabricated by micro-optics technology”, Applied Optics, Aug. 1, 2004, vol. 43, No. 22, pp. 4303-4310.
Duparre et al., “Artificial compound eye zoom camera”, Bioinspiration & Biomimetics, Nov. 21, 2008, vol. 3, pp. 1-6.
Duparre et al., “Artificial compound eyes—different concepts and their application to ultra flat image acquisition sensors”, MOEMS and Miniaturized Systems IV, Proc. SPIE 5346, Jan. 24, 2004, pp. 89-100.
Duparre et al., “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence”, Optics Express, Dec. 26, 2005, vol. 13, No. 26, pp. 10539-10551.
Duparre et al., “Micro-optical artificial compound eyes”, Bioinspiration & Biomimetics, Apr. 6, 2006, vol. 1, pp. R1-R16.
Duparre et al., “Microoptical artificial compound eyes—from design to experimental verification of two different concepts”, Proc. of SPIE, Optical Design and Engineering II, vol. 5962, Oct. 17, 2005, pp. 59622A-1-59622A-12.
Duparre et al., “Microoptical Artificial Compound Eyes—Two Different Concepts for Compact Imaging Systems”, 11th Microoptics Conference, Oct. 30-Nov. 2, 2005, 2 pgs.
Duparre et al., “Microoptical telescope compound eye”, Optics Express, Feb. 7, 2005, vol. 13, No. 3, pp. 889-903.
Duparre et al., “Micro-optically fabricated artificial apposition compound eye”, Electronic Imaging—Science and Technology, Prod. SPIE 5301, Jan. 2004, pp. 25-33.
Duparre et al., “Novel Optics/Micro-Optics for Miniature Imaging Systems”, Proc. of SPIE, Apr. 21, 2006, vol. 6196, pp. 619607-1-619607-15.
Duparre et al., “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices”, Optical Systems Design, Proc. SPIE 5249, Sep. 2003, pp. 408-418.
Duparre et al., “Thin compound-eye camera”, Applied Optics, May 20, 2005, vol. 44, No. 15, pp. 2949-2956.
Duparre et al., “Ultra-Thin Camera Based on Artificial Apposition Compound Eyes”, 10th Microoptics Conference, Sep. 1-3, 2004, 2 pgs.
Eng, Wei Yong et al., “Gaze correction for 3D tele-immersive communication system”, IVMSP Workshop, IEEE 11th, Jun. 10, 2013.
Fanaswala, “Regularized Super-Resolution of Multi-View Images”, Retrieved on Nov. 10, 2012 (Nov. 10, 2012). Retrieved from the Internet at URL:<http://www.site.uottawa.ca/-edubois/theses/Fanaswala_thesis.pdf>, 2009, 163 pgs.
Fang et al., “Volume Morphing Methods for Landmark Based 3D Image Deformation”, SPIE vol. 2710, Proc. 1996 SPIE Intl Symposium on Medical Imaging, Newport Beach, CA, Feb. 10, 1996, pp. 404-415.
Farrell et al., “Resolution and Light Sensitivity Tradeoff with Pixel Size”, Proceedings of the SPIE Electronic Imaging 2006 Conference, Feb. 2, 2006, vol. 6069, 8 pgs.
Farsiu et al., “Advances and Challenges in Super-Resolution”, International Journal of Imaging Systems and Technology, Aug. 12, 2004, vol. 14, pp. 47-57.
Farsiu et al., “Fast and Robust Multiframe Super Resolution”, IEEE Transactions on Image Processing, Oct. 2004, published Sep. 3, 2004, vol. 13, No. 10, pp. 1327-1344.
Farsiu et al., “Multiframe Demosaicing and Super-Resolution of Color Images”, IEEE Transactions on Image Processing, Jan. 2006, vol. 15, No. 1, date of publication Dec. 12, 2005, pp. 141-159.
Fecker et al., “Depth Map Compression for Unstructured Lumigraph Rendering”, Proc. SPIE 6077, Proceedings Visual Communications and Image Processing 2006, Jan. 18, 2006, pp. 60770B-1-60770B-8.
Feris et al., “Multi-Flash Stereopsis: Depth Edge Preserving Stereo with Small Baseline Illumination”, IEEE Trans on PAMI, 2006, 31 pgs.
Fife et al., “A 3D Multi-Aperture Image Sensor Architecture”, Custom Integrated Circuits Conference, 2006, CICC '06, IEEE, pp. 281-284.
Fife et al., “A 3MPixel Multi-Aperture Image Sensor with 0.7Mu Pixels in 0.11Mu CMOS”, ISSCC 2008, Session 2, Image Sensors & Technology, 2008, pp. 48-50.
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 191-198.
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 49-58.
Gastal et al., “Shared Sampling for Real-Time Alpha Matting”, Computer Graphics Forum, Eurographics 2010, vol. 29, Issue 2, May 2010, pp. 575-584.
Georgeiv et al., “Light Field Camera Design for Integral View Photography”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs.
Georgiev et al., “Light-Field Capture by Multiplexing in the Frequency Domain”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs.
Goldman et al., “Video Object Annotation, Navigation, and Composition”, In Proceedings of UIST 2008, pp. 3-12.
Gortler et al., “The Lumigraph”, In Proceedings of SIGGRAPH 1996, published Aug. 1, 1996, pp. 43-54.
Gupta et al., “Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, Or, USA, pp. 564-571.
Hacohen et al., “Non-Rigid Dense Correspondence with Applications for Image Enhancement”, ACM Transactions on Graphics, vol. 30, No. 4, Aug. 7, 2011, pp. 70:1-70:10.
Hamilton, “JPEG File Interchange Format, Version 1.02”, Sep. 1, 1992, 9 pgs.
Hardie, “A Fast Image Super-Algorithm Using an Adaptive Wiener Filter”, IEEE Transactions on Image Processing, Nov. 19, 2007, vol. 16, No. 12, pp. 2953-2964.
Hasinoff et al., “Search-and-Replace Editing for Personal Photo Collections”, 2010 International Conference: Computational Photography (ICCP) Mar. 2010, pp. 1-8.
Hernandez-Lopez et al., “Detecting objects using color and depth segmentation with Kinect sensor”, Procedia Technology, vol. 3, Jan. 1, 2012, pp. 196-204, XP055307680, ISSN: 2212-0173, DOI: 10.1016/j.protcy.2012.03.021.
Holoeye Photonics AG, “Spatial Light Modulators”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918113140/http://holoeye.com/spatial-light-modulators/ on Oct. 13, 2017, 4 pages.
Holoeye Photonics AG, “Spatial Light Modulators”, Oct. 2, 2013, Brochure retrieved from https://web.archive.org/web/20131002061028/http://holoeye.com/wp-content/uploads/Spatial_Light_Modulators.pdf on Oct. 13, 2017, 4 pgs.
Horisaki et al., “Irregular Lens Arrangement Design to Improve Imaging Performance of Compound-Eye Imaging Systems”, Applied Physics Express, Jan. 29, 2010, vol. 3, pp. 022501-1-022501-3.
Horisaki et al., “Superposition Imaging for Three-Dimensionally Space-Invariant Point Spread Functions”, Applied Physics Express, Oct. 13, 2011, vol. 4, pp. 112501-1-112501-3.
Horn et al., “LightShop: Interactive Light Field Manipulation and Rendering”, In Proceedings of I3D, Jan. 1, 2007, pp. 121-128.
Isaksen et al., “Dynamically Reparameterized Light Fields”, in Proceedings of Siggraph 2000, pgs. 297-306.
International Search Report and Written Opinion for International Application PCT/US2014/025904, completed Jun. 10, 2014, dated Jul. 10, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US2010/057661, completed Mar. 9, 2011, 14 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/037670, dated Jul. 18, 2012, Completed Jul. 5, 2012, 9 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/044014, completed Oct. 12, 2012, 15 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/056151, completed Nov. 14, 2012, 10 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/058093, Report completed Nov. 15, 2012, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/059813, completed Dec. 17, 2012, 8 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/022123, completed Jun. 9, 2014, dated Jun. 25, 2014, 5 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/023762, Completed May 30, 2014, dated Jul. 3, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/024903, completed Jun. 12, 2014, dated Jun. 27, 2014, 13 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/024947, Completed Jul. 8, 2014, dated Aug. 5, 2014, 8 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/028447, completed Jun. 30, 2014, dated Jul. 21, 2014, 8 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/030692, completed Jul. 28, 2014, dated Aug. 27, 2014, 7 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/064693, Completed Mar. 7, 2015, dated Apr. 2, 2015, 15 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/066229, Completed Mar. 6, 2015, dated Mar. 19, 2015, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/067740, Completed Jan. 29, 2015, dated Mar. 3, 2015, 10 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/029052, completed Jun. 30, 2014, dated Jul. 24, 2014, 10 Pgs.
Office Action for U.S. Appl. No. 12/952,106, dated Aug. 16, 2012, 12 pgs.
“Exchangeable image file format for digital still cameras: Exif Version 2.2”, Japan Electronics and Information Technology Industries Association, Prepared by Technical Standardization Committee on AV & IT Storage Systems and Equipment, JEITA CP-3451, Apr. 2002, Retrieved from: http://www.exif.org/Exif2-2.PDF, 154 pgs.
“File Formats Version 6”, Alias Systems, 2004, 40 pgs.
“Light fields and computational photography”, Stanford Computer Graphics Laboratory, Retrieved from: http://graphics.stanford.edu/projects/lightfield/, Earliest publication online: Feb. 10, 1997, 3 pgs.
Aufderheide et al., “A MEMS-based Smart Sensor System for Estimation of Camera Pose for Computer Vision Applications”, Research and Innovation Conference 2011, Jul. 29, 2011, pp. 1-10.
Baker et al., “Limits on Super-Resolution and How to Break Them”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2002, vol. 24, No. 9, pp. 1167-1183.
Barron et al., “Intrinsic Scene Properties from a Single RGB-D Image”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, Or, USA, pp. 17-24.
Bennett et al., “Multispectral Bilateral Video Fusion”, 2007 IEEE Transactions on Image Processing, vol. 16, No. 5, May 2007, published Apr. 16, 2007, pp. 1185-1194.
Bennett et al., “Multispectral Video Fusion”, Computer Graphics (ACM SIGGRAPH Proceedings), Jul. 25, 2006, published Jul. 30, 2006, 1 pg.
Bertalmio et al., “Image Inpainting”, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000, ACM Pres/Addison-Wesley Publishing Co., pp. 417-424.
Bertero et al., “Super-resolution in computational imaging”, Micron, Jan. 1, 2003, vol. 34, Issues 6-7, 17 pgs.
Bishop et al., “Full-Resolution Depth Map Estimation from an Aliased Plenoptic Light Field”, ACCV Nov. 8, 2010, Part II, LNCS 6493, pp. 186-200.
Bishop et al., “Light Field Superresolution”, Computational Photography (ICCP), 2009 IEEE International Conference, Conference Date Apr. 16-17, published Jan. 26, 2009, 9 pgs.
Bishop et al., “The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution”, IEEE Transactions on Pattern Analysis and Machine Intelligence, May 2012, vol. 34, No. 5, published Aug. 18, 2011, pp. 972-986.
Borman, “Topics in Multiframe Superresolution Restoration”, Thesis of Sean Borman, Apr. 2004, 282 pgs.
Borman et al, “Image Sequence Processing”, Dekker Encyclopedia of Optical Engineering, Oct. 14, 2002, 81 pgs.
Borman et al., “Block-Matching Sub-Pixel Motion Estimation from Noisy, Under-Sampled Frames—An Empirical Performance Evaluation”, Proc SPIE, Dec. 28, 1998, vol. 3653, 10 pgs.
Borman et al., “Image Resampling and Constraint Formulation for Multi-Frame Super-Resolution Restoration”, Proc. SPIE, published Jul. 1, 2003, vol. 5016, 12 pgs.
Borman et al., “Linear models for multi-frame super-resolution restoration under non-affine registration and spatially varying PSF”, Proc. SPIE, May 21, 2004, vol. 5299, 12 pgs.
Borman et al., “Nonlinear Prediction Methods for Estimation of Clique Weighting Parameters in NonGaussian Image Models”, Proc. SPIE, Sep. 22, 1998, vol. 3459, 9 pgs.
Borman et al., “Simultaneous Multi-Frame MAP Super-Resolution Video Enhancement Using Spatio-Temporal Priors”, Image Processing, 1999, ICIP 99 Proceedings, vol. 3, pp. 469-473.
Borman et al., “Super-Resolution from Image Sequences—A Review”, Circuits & Systems, 1998, pp. 374-378.
Bose et al., “Superresolution and Noise Filtering Using Moving Least Squares”, IEEE Transactions on Image Processing, Aug. 2006, vol. 15, Issue 8, published Jul. 17, 2006, pp. 2239-2248.
Boye et al., “Comparison of Subpixel Image Registration Algorithms”, Proc. of SPIE—IS&T Electronic Imaging, Feb. 3, 2009, vol. 7246, pp. 72460X-1-72460X-9; doi: 10.1117/12.810369.
Bruckner et al., “Artificial compound eye applying hyperacuity”, Optics Express, Dec. 11, 2006, vol. 14, No. 25, pp. 12076-12084.
Bruckner et al., “Driving microoptical imaging systems towards miniature camera applications”, Proc. SPIE, Micro-Optics, May 13, 2010, 11 pgs.
Bruckner et al., “Thin wafer-level camera lenses inspired by insect compound eyes”, Optics Express, Nov. 22, 2010, vol. 18, No. 24, pp. 24379-24394.
Bryan et al., “Perspective Distortion from Interpersonal Distance is an Implicit Visual Cue for Social Judgments of Faces”, PLOS One, vol. 7, Issue 9, Sep. 26, 2012, e45301, doi:10.1371/journal.pone.0045301, 9 pages.
Capel, “Image Mosaicing and Super-resolution”, Retrieved on Nov. 10, 2012, Retrieved from the Internet at URL:<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.2643&rep=rep1 &type=pdf>, 2001, 269 pgs.
Carroll et al., “Image Warps for Artistic Perspective Manipulation”, ACM Transactions on Graphics (TOG), vol. 29, No. 4, Jul. 26, 2010, Article No. 127, 9 pgs.
Chan et al., “Extending the Depth of Field in a Compound-Eye Imaging System with Super-Resolution Reconstruction”, Proceedings—International Conference on Pattern Recognition, Jan. 1, 2006, vol. 3, pp. 623-626.
Chan et al., “Investigation of Computational Compound-Eye Imaging System with Super-Resolution Reconstruction”, IEEE, ISASSP, Jun. 19, 2006, pp. 1177-1180.
Chan et al., “Super-resolution reconstruction in a computational compound-eye imaging system”, Multidim Syst Sign Process, published online Feb. 23, 2007, vol. 18, pp. 83-101.
Chen et al., “Image Matting with Local and Nonlocal Smooth Priors”, CVPR '13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23, 2013, pp. 1902-1907.
Chen et al., “Interactive deformation of light fields”, In Proceedings of SIGGRAPH I3D, Apr. 3, 2005, pp. 139-146.
Chen et al., “KNN matting”, 2012 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 16-21, 2012, Providence, RI, USA, pp. 869-876.
Extended European Search Report for EP Application No. 11781313.9, Completed Oct. 1, 2013, dated Oct. 8, 2013, 6 pages.
Extended European Search Report for EP Application No. 13810429.4, Completed Jan. 7, 2016, dated Jan. 15, 2016, 6 Pgs.
Extended European Search Report for European Application EP12782935.6, completed Aug. 28, 2014, dated Sep. 4, 2014, 7 Pgs.
Extended European Search Report for European Application EP12804266.0, Report Completed Jan. 27, 2015, dated Feb. 3, 2015, 6 Pgs.
Extended European Search Report for European Application EP12835041.0, Report Completed Jan. 28, 2015, dated Feb. 4, 2015, 7 Pgs.
Extended European Search Report for European Application EP13751714.0, completed Aug. 5, 2015, dated Aug. 18, 2015, 8 Pgs.
Extended European Search Report for European Application EP13810229.8, Report Completed Apr. 14, 2016, dated Apr. 21, 2016, 7 pgs.
Extended European Search Report for European Application No. 13830945.5, Search completed Jun. 28, 2016, dated Jul. 7, 2016, 14 Pgs.
Extended European Search Report for European Application No. 13841613.6, Search completed Jul. 18, 2016, dated Jul. 26, 2016, 8 Pgs.
Extended European Search Report for European Application No. 14763087.5, Search completed Dec. 7, 2016, dated Dec. 19, 2016, 9 Pgs.
Extended European Search Report for European Application No. 14860103.2, Search completed Feb. 23, 2017, dated Mar. 3, 2017, 7 Pgs.
Supplementary European Search Report for EP Application No. 13831768.0, Search completed May 18, 2016, dated May 30, 2016, 13 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/059813, Search Completed Apr. 15, 2014, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/059991, Issued Mar. 17, 2015, dated Mar. 26, 2015, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/US10/057661, issued May 22, 2012, dated May 31, 2012, 10 pages.
International Preliminary Report on Patentability for International Application PCT/US11/036349, Issued Nov. 13, 2012, dated Nov. 22, 2012, 9 pages.
Izadi et al., “KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera”, UIST'11, Oct. 16-19, 2011, Santa Barbara, CA, pp. 559-568.
Janoch et al., “A category-level 3-D object dataset: Putting the Kinect to work”, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Nov. 6-13, 2011, Barcelona, Spain, pp. 1168-1174.
Jarabo et al., “Efficient Propagation of Light Field Edits”, In Proceedings of SIACG 2011, pp. 75-80.
Jiang et al., “Panoramic 3D Reconstruction Using Rotational Stereo Camera with Simple Epipolar Constraints”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 1, Jun. 17-22, 2006, New York, NY, USA, pp. 371-378.
Joshi et al., “Synthetic Aperture Tracking: Tracking Through Occlusions”, ICCV IEEE 11th International Conference on Computer Vision; Publication Oct. 2007 Retrieved from the Internet: URL: http:l/ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4409032&isnumber= 4408819 on retrieved Jul. 28, 2014, pp. 1-8.
Kang et al., “Handling Occlusions inn Dense Multi-View Stereo”, Computer Vision and Pattern Recognition, 2001, vol. 1, pp. I-10-I-110.
Kim et al., “Scene reconstruction from high spatio-angular resolution light fields”, ACM Transactions on Graphics (TOG)—SIGGRAPH 2013 Conference Proceedings, vol. 32 Issue 4, Article 73, Jul. 21, 2013, 11 pages.
Kitamura et al., “Reconstruction of a high-resolution image on a compound-eye image-capturing system”, Applied Optics, Mar. 10, 2004, vol. 43, No. 8, pp. 1719-1727.
Konolige, Kurt, “Projected Texture Stereo”, 2010 IEEE International Conference on Robotics and Automation, May 3-7, 2010, p. 148-155.
Krishnamurthy et al., “Compression and Transmission of Depth Maps for Image-Based Rendering”, Image Processing, 2001, pp. 828-831.
Kubota et al., “Reconstructing Dense Light Field From Array of Multifocus Images for Novel View Synthesis”, IEEE Transactions on Image Processing, vol. 16, No. 1, Jan. 2007, pp. 269-279.
Kutulakos et al., “Occluding Contour Detection Using Affine Invariants and Purposive Viewpoint Control”, Computer Vision and Pattern Recognition, Proceedings CVPR 94, Seattle, Washington, Jun. 21-23, 1994, 8 pgs.
Lai et al., “A Large-Scale Hierarchical Multi-View RGB-D Object Dataset”, Proceedings—IEEE International Conference on Robotics and Automation, Conference Date May 9-13, 2011, 8 pgs., DOI:10.1109/ICRA.201135980382.
Lane et al., “A Survey of Mobile Phone Sensing”, IEEE Communications Magazine, vol. 48, Issue 9, Sep. 2010, pp. 140-150.
Lee et al., “Automatic Upright Adjustment of Photographs”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 877-884.
Lee et al., “Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module”, ETRI Journal, vol. 31, No. 6, Dec. 2009, pp. 695-702.
Lee et al., “Nonlocal matting”, CVPR 2011, Jun. 20-25, 2011, pp. 2193-2200.
LensVector, “How LensVector Autofocus Works”, printed Nov. 2, 2012 from http://www.lensvector.com/overview.html, 1 pg.
Levin et al., “A Closed Form Solution to Natural Image Matting”, Pattern Analysis and Machine Intelligence, Dec. 18, 2007, vol. 30, Issue 2, 8 pgs.
Levin et al., “Spectral Matting”, 2007 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 17-22, 2007, Minneapolis, MN, USA, pp. 1-8.
Levoy, “Light Fields and Computational Imaging”, IEEE Computer Society, Sep. 1, 2006, vol. 39, Issue No. 8, pp. 46-55.
Levoy et al., “Light Field Rendering”, Proc. ADM SIGGRAPH '96, pp. 1-12.
Li et al., “A Hybrid Camera for Motion Deblurring and Depth Map Super-Resolution”, Jun. 23-28, 2008, IEEE Conference on Computer Vision and Pattern Recognition, 8 pgs. Retrieved from www.eecis.udel.edu/˜jye/lab_research/08/deblur-feng.pdf on Feb. 5, 2014.
Li et al., “Fusing Images Wth Different Focuses Using Support Vector Machines”, IEEE Transactions on Neural Networks, vol. 15, No. 6, Nov. 8, 2004, pp. 1555-1561.
Lim, Jongwoo, “Optimized Projection Pattern Supplementing Stereo Systems”, 2009 IEEE International Conference on Robotics and Automation, May 12-17, 2009, pp. 2823-2829.
Liu et al., “Virtual View Reconstruction Using Temporal Information”, 2012 IEEE International Conference on Multimedia and Expo, 2012, pp. 115-120.
Lo et al., “Stereoscopic 3D Copy & Paste”, ACM Transactions on Graphics, vol. 29, No. 6, Article 147, Dec. 2010, pp. 147:1-147:10.
Martinez et al., “Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis”, Analytical Chemistry (American Chemical Society), vol. 80, No. 10, May 15, 2008, pp. 3699-3707.
Mcguire et al., “Defocus video matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2005, vol. 24, Issue 3, Jul. 2005, pp. 567-576.
Merkle et al., “Adaptation and optimization of coding algorithms for mobile 3DTV”, Mobile3DTV Project No. 216503, Nov. 2008, 55 pgs.
Mitra et al., “Light Field Denoising, Light Field Superresolution and Stereo Camera Based Refocussing using a GMM Light Field Patch Prior”, Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on Jun. 16-21, 2012, pp. 22-28.
Moreno-Noguer et al., “Active Refocusing of Images and Videos”, Journal ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Jul. 2007, Article No. 67 10 pages.
Muehlebach, “Camera Auto Exposure Control for VSLAM Applications”, Studies on Mechatronics, Swiss Federal Institute of Technology Zurich, Autumn Term 2010 course, 67 pgs.
Nayar, “Computational Cameras: Redefining the Image”, IEEE Computer Society, Aug. 14, 2006, pp. 30-38.
Ng, “Digital Light Field Photography”, Thesis, Jul. 2006, 203 pgs.
Ng et al., “Light Field Photography with a Hand-held Plenoptic Camera”, Stanford Tech Report CTSR 2005-02, Apr. 20, 2005, pp. 1-11.
Ng et al., “Super-Resolution Image Restoration from Blurred Low-Resolution Images”, Journal of Mathematical Imaging and Vision, 2005, vol. 23, pp. 367-378.
Nguyen et al., “Error Analysis for Image-Based Rendering with Depth Information”, IEEE Transactions on Image Processing, vol. 18, Issue 4, Apr. 2009, pp. 703-716.
Nguyen et al., “Image-Based Rendering with Depth Information Using the Propagation Algorithm”, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, vol. 5, Mar. 23-23, 2005, pp. II-589-II-592.
Nishihara, H.K., “PRISM: A Practical Real-Time Imaging Stereo Matcher”, Massachusetts Institute of Technology, A.I. Memo 780, May 1984, 32 pgs.
Nitta et al., “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method”, Applied Optics, May 1, 2006, vol. 45, No. 13, pp. 2893-2900.
Nomura et al., “Scene Collages and Flexible Camera Arrays”, Proceedings of Eurographics Symposium on Rendering, Jun. 2007, 12 pgs.
Park et al., “Multispectral Imaging Using Multiplexed Illumination”, 2007 IEEE 11th International Conference on Computer Vision, Oct. 14-21, 2007, Rio de Janeiro, Brazil, pp. 1-8.
Park et al., “Super-Resolution Image Reconstruction”, IEEE Signal Processing Magazine, May 2003, pp. 21-36.
Parkkinen et al., “Characteristic Spectra of Munsell Colors”, Journal of the Optical Society of America A, vol. 6, Issue 2, Feb. 1989, pp. 318-322.
Perwass et al., “Single Lens 3D-Camera with Extended Depth-of-Field”, printed from www.raytrix.de, Jan. 22, 2012, 15 pgs.
Pham et al., “Robust Super-Resolution without Regularization”, Journal of Physics: Conference Series 124, Jul. 2008, pp. 1-19.
Philips 3D Solutions, “3D Interface Specifications, White Paper”, 2005-2008 Philips Electronics Nederland B.V., Philips 3D Solutions retrieved from www.philips.com/3dsolutions, Feb. 15, 2008, 29 pgs.
Polight, “Designing Imaging Products Using Reflowable Autofocus Lenses”, printed Nov. 2, 2012 from http://www.polight.no/tunable-polymer-autofocus-lens-html--11.html, 1 pg.
Pouydebasque et al., “Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers”, Sensors and Actuators A: Physical, vol. 172, Issue 1, Dec. 2011, pp. 280-286.
Protter et al., “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction”, IEEE Transactions on Image Processing, Dec. 2, 2008, vol. 18, No. 1, pp. 36-51.
Radtke et al., “Laser lithographic fabrication and characterization of a spherical artificial compound eye”, Optics Express, Mar. 19, 2007, vol. 15, No. 6, pp. 3067-3077.
Rajan et al., “Simultaneous Estimation of Super Resolved Scene and Depth Map from Low Resolution Defocused Observations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 9, Sep. 8, 2003, pp. 1-16.
Rander et al., “Virtualized Reality: Constructing Time-Varying Virtual Worlds From Real World Events”, Proc. of IEEE Visualization '97, Phoenix, Arizona, Oct. 19-24, 1997, pp. 277-283, 552.
Extended European Search Report for European Application No. 15847754.7, Search completed Jan. 25, 2018, dated Feb. 9, 2018, 8 Pgs.
Drulea et al., “Motion Estimation Using the Correlation Transform”, IEEE Transactions on Image Processing, Aug. 2013, vol. 22, No. 8, pp. 3260-3270, first published May 14, 2013.
Van Der Wal et al., “The Acadia Vision Processor”, Proceedings Fifth IEEE International Workshop on Computer Architectures for Machine Perception, Sep. 13, 2000, Padova, Italy, pp. 31-40.
Rhemann et al, “Fast Cost-Volume Filtering for Visual Correspondence and Beyond”, IEEE Trans. Pattern Anal. Mach. Intell, 2013, vol. 35, No. 2, pp. 504-511.
Rhemann et al., “A perceptually motivated online benchmark for image matting”, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 20-25, 2009, Miami, FL, USA, pp. 1826-1833.
Robertson et al., “Dynamic Range Improvement Through Multiple Exposures”, In Proc. of the Int. Conf. on Image Processing, 1999, 5 pgs.
Robertson et al., “Estimation-theoretic approach to dynamic range enhancement using multiple exposures”, Journal of Electronic Imaging, Apr. 2003, vol. 12, No. 2, pp. 219-228.
Roy et al., “Non-Uniform Hierarchical Pyramid Stereo for Large Images”, Computer and Robot Vision, 2002, pp. 208-215.
Sauer et al., “Parallel Computation of Sequential Pixel Updates in Statistical Tomographic Reconstruction”, ICIP 1995 Proceedings of the 1995 International Conference on Image Processing, Date of Conference: Oct. 23-26, 1995, pp. 93-96.
Scharstein et al., “High-Accuracy Stereo Depth Maps Using Structured Light”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), Jun. 2003, vol. 1, pp. 195-202.
Seitz et al., “Plenoptic Image Editing”, International Journal of Computer Vision 48, Conference Date Jan. 7, 1998, 29 pgs, DOI: 10.1109/ICCV.1998.710696 ⋅ Source: DBLP Conference: Computer Vision, Sixth International Conference.
Shotton et al., “Real-time human pose recognition in parts from single depth images”, CVPR 2011, Jun. 20-25, 2011, Colorado Springs, CO, USA, pp. 1297-1304.
Shum et al., “A Review of Image-based Rendering Techniques”, Visual Communications and Image Processing 2000, May 2000, 12 pgs.
Shum et al., “Pop-Up Light Field: An Interactive Image-Based Modeling and Rendering System”, Apr. 2004, ACM Transactions on Graphics, vol. 23, No. 2, pp. 143-162. Retrieved from http://131.107.65.14/en-us/um/people/jiansun/papers/PopupLightField_TOG.pdf on Feb. 5, 2014.
Silberman et al., “Indoor segmentation and support inference from RGBD images”, ECCV'12 Proceedings of the 12th European conference on Computer Vision, vol. Part V, Oct. 7-13, 2012, Florence, Italy, pp. 746-760.
Stober, “Stanford researchers developing 3-D camera with 12,616 lenses”, Stanford Report, Mar. 19, 2008, Retrieved from: http://news.stanford.edu/news/2008/march19/camera-031908.html, 5 pgs.
Stollberg et al., “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects”, Optics Express, Aug. 31, 2009, vol. 17, No. 18, pp. 15747-15759.
Sun et al., “Image Super-Resolution Using Gradient Profile Prior”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, 8 pgs.; DOI: 10.1109/CVPR.2008.4587659.
Taguchi et al., “Rendering-Oriented Decoding for a Distributed Multiview Coding System Using a Coset Code”, Hindawi Publishing Corporation, EURASIP Journal on Image and Video Processing, vol. 2009, Article ID 251081, Online: Apr. 22, 2009, 12 pages.
Takeda et al., “Super-resolution Without Explicit Subpixel Motion Estimation”, IEEE Transaction on Image Processing, Oct. 1, 2009, vol. 18, No. 9, pp. 1958-1975.
Tallon et al., “Upsampling and Denoising of Depth Maps Via Joint-Segmentation”, 20th European Signal Processing Conference, Aug. 27-31, 2012, 5 pgs.
Tanida et al., “Color imaging with an integrated compound imaging system”, Optics Express, Sep. 8, 2003, vol. 11, No. 18, pp. 2109-2117.
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification”, Applied Optics, Apr. 10, 2001, vol. 40, No. 11, pp. 1806-1813.
Tao et al., “Depth from Combining Defocus and Correspondence Using Light-Field Cameras”, ICCV '13 Proceedings of the 2013 IEEE International Conference on Computer Vision, Dec. 1, 2013, pp. 673-680.
Taylor, “Virtual camera movement: The way of the future?”, American Cinematographer vol. 77, No. 9, Sep. 1996, 93-100.
Tseng et al., “Automatic 3-D depth recovery from a single urban-scene image”, 2012 Visual Communications and Image Processing, Nov. 27-30, 2012, San Diego, CA, USA, pp. 1-6.
Vaish et al., “Reconstructing Occluded Surfaces Using Synthetic Apertures: Stereo, Focus and Robust Measures”, Proceeding, CVPR '06 Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—vol. 2, pp. 2331-2338.
Vaish et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform”, IEEE Workshop on A3DISS, CVPR, 2005, 8 pgs.
Vaish et al., “Using Plane + Parallax for Calibrating Dense Camera Arrays”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004, 8 pgs.
Veilleux, “CCD Gain Lab: The Theory”, University of Maryland, College Park—Observational Astronomy (ASTR 310), Oct. 19, 2006, pp. 1-5 (online], [retrieved on May 13, 2014]. Retrieved from the Internet <URL: http://www.astro.umd.edu/˜veilleux/ASTR310/fall06/ccd_theory.pdf, 5 pgs.
Venkataraman et al., “PiCam: An Ultra-Thin High Performance Monolithic Camera Array”, ACM Transactions on Graphics (TOG), ACM, US, vol. 32, No. 6, 1 Nov. 1, 2013, pp. 1-13.
Vetro et al., “Coding Approaches for End-To-End 3D TV Systems”, Mitsubishi Electric Research Laboratories, Inc., TR2004-137, Dec. 2004, 6 pgs.
Viola et al., “Robust Real-time Object Detection”, Cambridge Research Laboratory, Technical Report Series, Compaq, CRL 2001/01, Feb. 2001, Printed from: http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-2001-1.pdf, 30 pgs.
Vuong et al., “A New Auto Exposure and Auto White-Balance Algorithm to Detect High Dynamic Range Conditions Using CMOS Technology”, Proceedings of the World Congress on Engineering and Computer Science 2008, WCECS 2008, Oct. 22-24, 2008.
Wang, “Calculation Image Position, Size and Orientation Using First Order Properties”, Dec. 29, 2010, OPTI521 Tutorial, 10 pgs.
Wang et al., “Automatic Natural Video Matting with Depth”, 15th Pacific Conference on Computer Graphics and Applications, PG '07, Oct. 29-Nov. 2, 2007, Maui, HI, USA, pp. 469-472.
Wang et al., “Image and Video Matting: A Survey”, Foundations and Trends, Computer Graphics and Vision, vol. 3, No. 2, 2007, pp. 91-175.
Wang et al., “Soft scissors: an interactive tool for realtime high quality matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Article 9, Jul. 2007, 6 pages, published Aug. 5, 2007.
Wetzstein et al., “Computational Plenoptic Imaging”, Computer Graphics Forum, 2011, vol. 30, No. 8, pp. 2397-2426.
Wheeler et al., “Super-Resolution Image Synthesis Using Projections Onto Convex Sets in the Frequency Domain”, Proc. SPIE, Mar. 11, 2005, vol. 5674, 12 pgs.
Wieringa et al., “Remote Non-invasive Stereoscopic Imaging of Blood Vessels: First In-vivo Results of a New Multispectral Contrast Enhancement Technology”, Annals of Biomedical Engineering, vol. 34, No. 12, Dec. 2006, pp. 1870-1878, Published online Oct. 12, 2006.
Wikipedia, “Polarizing Filter (Photography)”, retrieved from http://en.wikipedia.org/wiki/Polarizing_filter_(photography) on Dec. 12, 2012, last modified on Sep. 26, 2012, 5 pgs.
Wilburn, “High Performance Imaging Using Arrays of Inexpensive Cameras”, Thesis of Bennett Wilburn, Dec. 2004, 128 pgs.
Wilburn et al., “High Performance Imaging Using Large Camera Arrays”, ACM Transactions on Graphics, Jul. 2005, vol. 24, No. 3, pp. 1-12.
Wilburn et al., “High-Speed Videography Using a Dense Camera Array”, Proceeding, CVPR'04 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 294-301.
Wilburn et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002, SPIE Electronic Imaging, 2002, 8 pgs.
Wippermann et al., “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective”, Proceedings of SPIE, Optical Design and Engineering II, Oct. 15, 2005, 59622C-1-59622C-11.
Wu et al., “A virtual view synthesis algorithm based on image inpainting”, 2012 Third International Conference on Networking and Distributed Computing, Hangzhou, China, Oct. 21-24, 2012, pp. 153-156.
Xu, Ruifeng , “Real-Time Realistic Rendering and High Dynamic Range Image Display and Compression”, Dissertation, School of Computer Science in the College of Engineering and Computer Science at the University of Central Florida, Orlando, Florida, Fall Term 2005, 192 pgs.
Yang et al., “A Real-Time Distributed Light Field Camera”, Eurographics Workshop on Rendering (2002), published Jul. 26, 2002, pp. 1-10.
Yang et al., “Superresolution Using Preconditioned Conjugate Gradient Method”, Proceedings of SPIE—The International Society for Optical Engineering, Jul. 2002, 8 pgs.
Yokochi et al., “Extrinsic Camera Parameter Estimation Based-on Feature Tracking and GPS Data”, 2006, Nara Institute of Science and Technology, Graduate School of Information Science, LNCS 3851, pp. 369-378.
Zhang et al., “A Self-Reconfigurable Camera Array”, Eurographics.Symposium on Rendering, published Aug. 8, 2004, 12 pgs.
Zhang et al., “Depth estimation, spatially variant image registration, and super-resolution using a multi-lenslet camera”, Proceedings of SPIE, vol. 7705, Apr. 23, 2010, pp. 770505-770505-8, XP055113797 ISSN: 0277-786X, DOI: 10.1117/12.852171.
Zheng et al., “Balloon Motion Estimation Using Two Frames”, Proceedings of the Asilomar Conference on Signals, Systems and Computers, IEEE, Comp. Soc. Press, US, vol. 2 of 02, Nov. 4, 1991, pp. 1057-1061.
Zhu et al., “Fusion of Time-of-Flight Depth and Stereo for High Accuracy Depth Maps”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, Anchorage, AK, USA, pp. 1-8.
Zomet et al., “Robust Super-Resolution”, IEEE, 2001, pp. 1-6.
International Preliminary Report on Patentability for International Application PCT/US2013/056065, Issued Feb. 24, 2015, dated Mar. 5, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/062720, Issued Mar. 31, 2015, dated Apr. 9, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/024987, dated Aug. 12, 2014, 13 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/027146, completed Aug. 26, 2014, dated Sep. 4, 2014, 10 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/039155. completed Nov. 4, 2014, dated Nov. 13, 2014, 10 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/046002, issued Dec. 31, 2014, dated Jan. 8, 2015, 6 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/048772, issued Dec. 31, 2014, dated Jan. 8, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/056502, Issued Feb. 24, 2015, dated Mar. 5, 2015, 7 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/069932, issued May 19, 2015, dated May 28, 2015, 12 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/017766, issued Aug. 25, 2015, dated Sep. 3, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/018084, issued Aug. 25, 2015, dated Sep. 3, 2015, 11 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/018116, issued Sep. 15, 2015, dated Sep. 24, 2015, 12 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/021439, issued Sep. 15, 2015, dated Sep. 24, 2015, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/022118, issued Sep. 8, 2015, dated Sep. 17, 2015, 4 pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/022123, issued Sep. 8, 2015, dated Sep. 17, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/022774, issued Sep. 22, 2015, dated Oct. 1, 2015, 5 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/023762, issued Mar. 2, 2015, dated Mar. 9, 2015, 10 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/024407, issued Sep. 15, 2015, dated Sep. 24, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/024903, issued Sep. 15, 2015, dated Sep. 24, 2015, 12 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/024947, issued Sep. 15, 2015, dated Sep. 24, 2015, 7 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/025100, issued Sep. 15, 2015, dated Sep. 24, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/025904, issued Sep. 15, 2015, dated Sep. 24, 2015, 5 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/028447, issued Sep. 15, 2015, dated Sep. 24, 2015, 7 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/029052, issued Sep. 15, 2015, dated Sep. 24, 2015, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/030692, issued Sep. 15, 2015, dated Sep. 24, 2015, 6 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/064693, issued May 10, 2016, dated May 19, 2016, 14 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/066229, issued May 24, 2016, dated Jun. 6, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/067740, issued May 31, 2016, dated Jun. 9, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2015/019529, issued Sep. 13, 2016, dated Sep. 22, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2015/053013, issued Apr. 4, 2017, dated Apr. 13, 2017, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/046002, completed Nov. 13, 2013, dated Nov. 29, 2013, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/056065, Completed Nov. 25, 2013, dated Nov. 26, 2013, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/059991, Completed Feb. 6, 2014, dated Feb. 26, 2014, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2009/044687, completed Jan. 5, 2010, dated Jan. 13, 2010, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2011/064921, Completed Feb. 25, 2011, dated Mar. 6, 2012, 17 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/024987, Completed Mar. 27, 2013, dated Apr. 15, 2013, 14 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/027146, completed Apr. 2, 2013, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/039155, completed Jul. 1, 2013, dated Jul. 11, 2013, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/048772, Completed Oct. 21, 2013, dated Nov. 8, 2013, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/056502, Completed Feb. 18, 2014, dated Mar. 19, 2014, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/069932, Completed Mar. 14, 2014, dated Apr. 14, 2014, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2015/019529, completed May 5, 2015, dated Jun. 8, 2015, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2015/053013, completed Dec. 1, 2015, dated Dec. 30, 2015, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US2011/036349, dated Aug. 22, 2011, 11 pgs.
International Search Report and Written Opinion for International Application PCT/US2013/062720, completed Mar. 25, 2014, dated Apr. 21, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/017766, completed May 28, 2014, dated Jun. 18, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/018084, completed May 23, 2014, dated Jun. 10, 2014, 12 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/018116, completed May 13, 2014, dated Jun. 2, 2014, 12 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/021439, completed Jun. 5, 2014, dated Jun. 20, 2014, 10 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/022118, completed Jun. 9, 2014, dated Jun. 25, 2014, 5 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/022774 completed Jun. 9, 2014, dated Jul. 14, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/024407, completed Jun. 11, 2014, dated Jul. 8, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/025100, completed Jul. 7, 2014, dated Aug. 7, 2014, 5 Pgs.
Extended European Search Report for European Application No. 14865463.5, Search completed May 30, 2017, dated Jun. 8, 2017, 6 Pgs.
Extended European Search Report for European Application No. 18151530.5, Completed Mar. 28, 2018, dated Apr. 20, 2018, 11 pages.
U.S. Appl. No. 61/527,007.
International Preliminary Report on Patentability for International Application No. PCT/US2009/044687, Completed Jul. 30, 2010, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2011/064921, Report issued Jun. 18, 2013, dated Jun. 27, 2013, 14 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/056151, Report Issued Mar. 25, 2014, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/056166, Report Issued Mar. 25, 2014, Report dated Apr. 3, 2014 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/058093, Report Issued Sep. 18, 2013, dated Oct. 22, 2013, 40 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2012/056166, Report Completed Nov. 10, 2012, dated Nov. 20, 2012, 9 pgs.
Supplementary European Search Report for European Application No. 09763194.9, Search Completed Nov. 7, 2011, dated Nov. 29, 2011, 9 pages.
Collins et al., “An Active Camera System for Acquiring Multi-View Video”, IEEE 2002 International Conference on Image Processing, Date of Conference: Sep. 22-25, 2002, Rochester, NY, 4 pgs.
Holoeye Photonics AG, “LC 2012 Spatial Light Modulator (transmissive)”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918151716/http://holoeye.com/spatial-light-modulators/lc-2012-spatial-light-modulator/ on Oct. 20, 2017, 3 pages.
Joshi, Neel S., “Color Calibration for Arrays of Inexpensive Image Sensors”, Master's with Distinction in Research Report, Stanford University, Department of Computer Science, Mar. 2004, 30 pgs.
Robert et al., “Dense Depth Map Reconstruction :A Minimization and Regularization Approach which Preserves Discontinuities”, European Conference on Computer Vision (ECCV), pp. 439-451, 1996.
Related Publications (1)
Number Date Country
20170244960 A1 Aug 2017 US
Provisional Applications (2)
Number Date Country
62057196 Sep 2014 US
62106168 Jan 2015 US