The present application relates generally to camera arrays and more specifically to the dynamic calibration of an array of cameras.
Binocular viewing of a scene creates two slightly different images of the scene due to the different fields of view of each eye. These differences, referred to as binocular disparity (or parallax), provide information that can be used to calculate depth in the visual scene, providing a major means of depth perception. The impression of depth associated with stereoscopic depth perception can also be obtained under other conditions, such as when an observer views a scene with only one eye while moving. The observed parallax can be utilized to obtain depth information for objects in the scene. Similar principles in machine vision can be used to gather depth information.
Two cameras separated by a distance can take pictures of the same scene and the captured images can be compared by shifting the pixels of two or more images to find parts of the images that match. The amount an object shifts between two different camera views is called the disparity, which is inversely proportional to the distance to the object. A disparity search that detects the shift of an object in the multiple images that results in the best match can be used to calculate the distance to the object based upon the baseline distance between the cameras and the focal length of the cameras involved (as well as knowledge of additional properties of the camera). In most camera configurations, finding correspondence between two or more images requires a search in two dimensions. However, rectification can be used to simplify disparity searches. Rectification is a transformation process that can be used to project two or more images onto a common image plane. When rectification is used to project a set of images onto the same plane, disparity searches become one dimensional searches along epipolar lines.
More recently, researchers have used multiple cameras spanning a wider synthetic aperture to capture light field images (e.g. the Stanford Multi-Camera Array). A light field, which is often defined as a 4D function characterizing the light from all directions at all points in a scene, can be interpreted as a two-dimensional (2D) collection of 2D images of a scene. Due to practical constraints, it is typically difficult to simultaneously capture the collection of 2D images of a scene that form a light field. However, the closer in time at which the image data is captured by each of the cameras, the less likely that variations in light intensity (e.g. the otherwise imperceptible flicker of fluorescent lights) or object motion will result in time dependent variations between the captured images. Processes involving capturing and resampling a light field can be utilized to simulate cameras with large apertures. For example, an array of M×N cameras pointing at a scene can simulate the focusing effects of a lens whose field of view is as large as that of the array. In many embodiments, cameras need not be arranged in a rectangular pattern and can have configurations including circular configurations and/or any arbitrary configuration appropriate to the requirements of a specific application. Use of camera arrays in this way can be referred to as synthetic aperture photography.
Systems and methods in accordance with various embodiments of the invention perform dynamic calibration of camera arrays. One embodiment includes: acquiring a set of images of a scene using a plurality of cameras, where the set of images includes a reference image and an alternate view image; detecting features in the set of images using a processor directed by an image processing application; identifying within the alternate view image features corresponding to features detected within the reference image using a processor directed by an image processing application; rectifying the set of images based upon a set of geometric calibration data using a processor directed by an image processing application; determining residual vectors for geometric calibration data at locations where features are observed within the alternate view image based upon observed shifts in locations of features identified as corresponding in the reference image and the alternate view image using a processor directed by an image processing application; determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors using a processor directed by an image processing application; and rectifying an image captured by the camera that captured the alternate view image based upon the updated geometric calibration data using a processor directed by an image processing application.
In a further embodiment, determining residual vectors for geometric calibration data at locations where features are observed within the alternate view image includes: estimating depths of features within the alternate view image identified as corresponding to features detected within the reference image based upon components of the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image along epipolar lines; determining scene dependent geometric corrections to apply to the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image based upon the estimated depths of the corresponding features; and applying the scene dependent geometric corrections to the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image to obtain residual vectors for geometric calibration data at locations where features are observed within the alternate view image.
In another embodiment, determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors includes using at least an interpolation process to generate a residual vector calibration field from the residual vectors.
In a still further embodiment, determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors further includes using an extrapolation process in the generation of the residual vector calibration field from the residual vectors.
Still another embodiment also includes applying the residual vector calibration field to the set of geometric calibration data with respect to the camera that captured the alternate view image.
A yet further embodiment also includes: mapping the residual vector calibration field to a set of basis vectors; and generating a denoised residual vector calibration field using a linear combination of less than the complete set of basis vectors.
In yet another embodiment, the set of basis vectors is learned from a training data set of residual vector calibration fields.
In a further embodiment again, the set of basis vectors is learned from a training data set of residual vector calibration fields using Principal Component Analysis.
In another embodiment again, determining updated geometric calibration data for a camera that captured the alternate view image further includes selecting an updated set of geometric calibration data from amongst a plurality of sets of geometric calibration data based upon at least the residual vectors for geometric calibration data at locations where features are observed within the alternate view image.
A further additional embodiment also includes: acquiring an additional set of images of a scene using the plurality of cameras; and determining residual vectors for the geometric calibration data using the additional set of images. In addition, determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors also includes utilizing the residual vectors for the geometric calibration data determined using the additional set of images.
Another additional embodiment also includes detecting at least one region within a field of view of a camera that does not satisfy a feature density threshold. In addition, the additional set of images of a scene is acquired in response to detecting that at least one region within a field of view of a camera does not satisfy the feature density threshold.
In a still yet further embodiment, utilizing the residual vectors determined using the additional set of images further includes utilizing the residual vectors determined using the additional set of images to determine updated geometric calibration data with respect to the at least one region within the field of view of the camera in which the density threshold was not satisfied.
Still yet another embodiment also includes providing prompts via a user interface using a processor directed by an image processing application, where the prompts direct orientation of the camera array to shift locations of features identified as corresponding in the reference image and the alternate view image into the at least one region within the field of view of a camera that does not satisfy a feature density threshold during acquisition of the additional set of images.
A still further embodiment again includes: acquiring a set of images of a scene using a plurality of cameras, where the set of images includes a reference image and an alternate view image; detecting features in the set of images using a processor directed by an image processing application; identifying within the alternate view image features corresponding to features detected within the reference image using a processor directed by an image processing application; rectifying the set of images based upon a set of geometric calibration data using a processor directed by an image processing application; and determining the validity of the geometric calibration data based upon observed shifts in locations of features identified as corresponding in the reference image and the alternate view image using a processor directed by an image processing application.
In still another embodiment again, determining the validity of the geometric calibration data based upon observed shifts in locations of features identified as corresponding in the reference image and the alternate view image includes determining the extent to which observed shifts are to locations distant from an epipolar line.
A yet further embodiment again also includes dynamically generating updated geometric calibration data by: determining residual vectors for geometric calibration data at locations where features are observed within the alternate view image based upon the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image using a processor directed by an image processing application; and determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors using a processor directed by an image processing application.
In yet another embodiment again, determining residual vectors for geometric calibration data at locations where features are observed within the alternate view image includes: estimating depths of features within the alternate view image identified as corresponding to features detected within the reference image based upon components of the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image along epipolar lines using a processor directed by an image processing application; determining scene dependent geometric corrections to apply to the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image based upon the estimated depths of the corresponding features; and applying the scene dependent geometric corrections to the observed shifts in locations of features identified as corresponding in the reference image and the alternate view image to obtain residual vectors for geometric calibration data at locations where features are observed within the alternate view image.
In a still further additional embodiment, determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors includes using at least an interpolation process to generate a residual vector calibration field from the residual vectors.
In still another additional embodiment, determining updated geometric calibration data for a camera that captured the alternate view image further includes selecting an updated set of geometric calibration data from amongst a plurality of sets of geometric calibration data based upon at least the residual vectors for geometric calibration data at locations where features are observed within the alternate view image.
A yet further additional embodiment also includes: acquiring an additional set of images of a scene using the plurality of cameras; and determining residual vectors using the additional set of images. In addition, determining updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors also includes utilizing the residual vectors determined using the additional set of images.
Another further embodiment includes: at least one array of cameras comprising a plurality of cameras; a processor; and memory containing an image processing application. In addition, the image processing application directs the processor to: acquire a set of images of a scene using the plurality of cameras, where the set of images includes a reference image and an alternate view image; detect features in the set of images; identify within the alternate view image features corresponding to features detected within the reference image; rectify the set of images based upon a set of geometric calibration data; determine residual vectors for geometric calibration data at locations where features are observed within the alternate view image based upon observed shifts in locations of features identified as corresponding in the reference image and the alternate view image; determine updated geometric calibration data for a camera that captured the alternate view image based upon the residual vectors; and rectify an image captured by the camera that captured the alternate view image based upon the updated geometric calibration data.
Turning now to the drawings, systems and methods for dynamically calibrating camera arrays in accordance with embodiments of the invention are illustrated. Multi-camera systems are increasingly gaining popularity for various applications and their correct functionality depends on an ability to precisely register images captured by the cameras with respect to each other. The complexity of registering the various images to each other is reduced significantly by rectifying the images. This usually relies on an offline calibration process to capture information concerning the scene independent shifts of corresponding pixels that are introduced by the cameras in the array as a result of their construction (e.g. manufacturing variations in lens characteristics and/or in camera assembly), relative positions, and orientations (often referred to as the geometry of the array). In reality, the mechanical structures to which cameras in an array are mounted respond differently to various factors such as (but not limited to) temperature variations, and/or field conditions such as mechanical shock. Unless changes in the relative positions of the cameras in a camera array are accounted for, the changes can affect the registration of images captured by the cameras leading to degradation of depth estimates and/or images generated from image data captured by the cameras in the camera array (e.g. images produced by super-resolution, and/or images produced by applying a depth based filter or effect). Systems and methods in accordance with various embodiments of the invention can assess the geometric calibration of an array of cameras and perform an adaptive adjustment of geometric calibration by robust feature matching in any imaged scene. Assuming gradual degradation of geometric calibration from previously calibrated values, the redundancy of cameras within camera arrays in accordance with many embodiments of the invention can be exploited to determine new calibrated parameters and/or adjustments to existing calibration parameters that account for the new geometric relationships between the cameras.
In many embodiments, feature matching is utilized to identify a camera array for which existing calibration data is no longer valid. Features of real world scenes can be identified in each of a set of images captured by the cameras in an array. When the geometric calibration of the cameras correctly rectifies the images, corresponding features will be located on epipolar lines (assuming rectified images) at locations determined based upon the distance of the feature from the camera array. When the geometric relationships between the cameras in the array change and the calibration data is no longer valid, corresponding features will not be located within the images in the locations that would be predicted based upon epipolar line shifts consistent with a particular depth. Accordingly, differences between the actual and expected absolute, or relative to each other, locations of corresponding features within a set of images rectified using geometric calibration data can be utilized to identify when geometric calibration data is no longer valid. Furthermore, the differences can be used to dynamically generate new geometric calibration data and/or updates to geometric calibration data that can be utilized by the array of cameras to perform subsequent image processing operations such as (but not limited to) depth estimation and/or super-resolution processing.
Systems and methods in accordance with many embodiments of the invention can utilize corresponding features within a set of images to perform dynamic calibration when the changes in the geometry of the camera array impact the intrinsic parameters of the cameras in the camera array (i.e. the parameters that relate pixel coordinates of an image point with the corresponding coordinates in a camera's reference frame). The intrinsic parameters of a camera are typically thought to include the focal length, pixel skew, lens distortion parameters, and principal point of the camera. In several embodiments, dynamic calibration can also accommodate transformations in the extrinsic parameters of the camera array involving translations of the cameras along baselines defined relative to a reference camera. The extrinsic parameters of a camera are the parameters that define the location and orientation of the camera reference frame with respect to a known world reference frame. In the case of a camera array, extrinsic parameters are often defined relative to a reference camera. Translations that are not constrained to these baselines and/or changes in orientation of cameras may require performance of additional calibration processes to obtain updated geometric calibration data.
The process of dynamically generating updated geometric calibration data utilizes features that are identified throughout the field of view of a camera used as a reference camera during the dynamic calibration process. A challenge that can be faced in dynamic calibration processes is that many real world scenes include regions that are devoid of features (e.g. a white wall). In several embodiments, repeating the dynamic calibration process utilizing multiple different cameras in the camera array as the reference camera can further refine geometric calibration data. In this way, features from different portions of the fields of view of the cameras can be utilized to evaluate correspondence. In various embodiments, a complete set of geometric calibration data can be constructed using multiple sets of images captured at different points in time. By using multiple sets, geometric calibration data for a region in the field of view of a reference camera can be selected based upon the set of images in which the largest number of features and/or a density of features exceeding a threshold is present within the specific region. The geometric calibration data generated from the multiple sets of images can then be combined to create a set of geometric calibration data that covers the entire field of view of each camera. In a number of embodiments, the dynamic calibration process is guided. A user interface generated by the camera array can direct a user to change the orientation of the camera array so that movement of the camera array causes features detected in a first region of a first image to appear in a second region of a second image. In this way, the camera array can rapidly build a complete set of dynamic calibration data over time with respect to the entire field of view of the reference camera.
In certain embodiments, different sets of geometric calibration data are utilized to determine correspondences and the set of geometric calibration data that yields the best fit for the observed corresponding features is utilized to perform image processing. In this way, an array of cameras can be provided with various sets of geometric calibration data corresponding to, for example, different operating conditions and the geometric calibration data that yields the best fit for observed scene features can be utilized for image processing.
Systems and methods for validating geometric calibration data and dynamically calibrating arrays of cameras in accordance with various embodiments of the invention are discussed further below.
Array Cameras
Array cameras including camera modules that can be utilized to capture image data from different viewpoints (i.e. light field images) can be one dimensional, two dimensional (2D), monolithic, non-monolithic, arrayed in a grid, arrayed in a non-grid arrangement, and/or combine cameras having different imaging characteristics including (but not limited to) different resolutions, fields of view, and/or color filters. Various array camera architectures are disclosed in U.S. Pat. No. 9,077,893 entitled “Capturing and Processing of Images using Non-Grid Camera Arrays” to Venkataraman et al., U.S. Patent Publication No. 2015/0122411 entitled “Methods of Manufacturing Array Camera Modules Incorporating Independently Aligned Lens Stacks” to Rodda et al., U.S. Patent Publication No. 2015/0161798 entitled “Array Cameras Including an Array Camera Module Augmented with a Separate Camera”, to Venkataraman et al., and U.S. Provisional Application Ser. No. 62/149,636 entitled “Multi-Baseline Camera Array System Architecture for Depth Augmentation in VR/AR Applications” to Venkatarman et al. Each two-dimensional (2D) image in a captured light field is from the viewpoint of one of the cameras in the array camera. Due to the different viewpoint of each of the cameras, parallax results in variations in the position of objects within the images of the scene. The disclosures of U.S. Pat. No. 9,077,893, U.S. Patent Publication Nos. 2015/0122411 and 2015/0161798, and U.S. Provisional Patent Application Ser. No. 62/149,636 that relate to the implementation and use of various camera array architectures are hereby incorporated by reference in their entirety.
In many embodiments, an array of cameras is utilized to capture a set of images of a scene and depth is estimated by performing disparity searches using the captured set of images. Depth estimates can be unreliable where regions along an epipolar line are self-similar. With each increase in the number of different epipolar lines searched (i.e. different baselines between pairs of cameras), the likelihood that texture is self-similar at each of the corresponding locations along the epipolar lines corresponding to an incorrect depth decreases. In a number of embodiments, projected texture is also utilized to decrease the self-similarity of different regions of a scene.
Array cameras can use disparity between pixels in images within a light field to generate a depth map from a reference viewpoint. A depth map indicates the distance of the surfaces of scene objects from the reference viewpoint and can be utilized to determine scene dependent geometric corrections to apply to the pixels from each of the images within a captured light field to eliminate disparity when performing fusion and/or super-resolution processing. Processes such as those disclosed in U.S. Pat. No. 8,619,082 entitled “Systems and Methods for Parallax Detection and Correction in Images Captured Using Array Cameras that Contain Occlusions using Subsets of Images to Perform Depth Estimation” to Ciurea et al. can be utilized to generate depth maps based upon observed disparity. The disclosure of U.S. Pat. No. 8,619,082 is hereby incorporated by reference in its entirety.
As noted above, geometric calibration data can be utilized to rectify a set of images so that corresponding pixels in the set of rectified images are located on epipolar lines. Geometric calibration data assumes a specific geometric configuration of the cameras in an array. If thermal and/or environmental factors cause the cameras in the array to change characteristics or shift positions relative to each other, then the assumptions underlying the geometric calibration data are no longer valid. Accordingly, the camera array must be recalibrated or potentially suffer serious degradation in the depth estimates generated using processes similar to those described in U.S. Pat. No. 8,619,082.
In many instances, fusion and super-resolution processes such as those described in U.S. Pat. No. 8,878,950 entitled “Systems and Methods for Synthesizing High Resolution Images Using Super-Resolution Processes” to Lelescu et al., can be utilized to synthesize a higher resolution 2D image or a stereo pair of higher resolution 2D images from the lower resolution images in the light field captured by a camera array. The terms high or higher resolution and low or lower resolution are used here in a relative sense and not to indicate the specific resolutions of the images captured by the array camera. As can readily be appreciated from a review of U.S. Pat. No. 8,878,950, fusing image data captured by an array camera and performing super-resolution processing is particularly dependent upon accurate geometric calibration data as the super-resolution processes are attempting to align pixels captured from different viewpoints with sub-pixel accuracy. Accordingly, super-resolution processes can be significantly enhanced by detecting that geometric calibration data is no longer valid and performing dynamic calibration of a camera array. The disclosure of U.S. Pat. No. 8,878,950 regarding super-resolution processing and the use of geometric calibration data to perform super-resolution processing is hereby incorporated by reference in its entirety.
An array camera that can be utilized in a variety of applications including (but not limited to) augmented reality headsets and machine vision systems in accordance with various embodiments of the invention is illustrated in
With specific regard to the cameras 104 in the array camera module 102, each camera 104 in the array camera module 102 is capable of capturing an image of the scene. The sensor elements utilized in the focal planes of the cameras 104 can be individual light sensing elements such as, but not limited to, traditional CIS (CMOS Image Sensor) pixels, CCD (charge-coupled device) pixels, high dynamic range sensor elements, multispectral sensor elements and/or any other structure configured to generate an electrical signal indicative of light incident on the structure. In many embodiments, the sensor elements of each focal plane have similar physical properties and receive light via the same optical channel and color filter (where present). In several embodiments, the sensor elements have different characteristics and, in many instances, the characteristics of the sensor elements are related to the color filter applied to each sensor element.
In a variety of embodiments, color filters in individual cameras can be used to pattern the camera module with π filter groups as further discussed in U.S. Patent Publication No. 2013/0293760 entitled “Camera Modules Patterned with pi Filter Groups” to Nisenzon et al, the disclosure from which related to filter patterns that can be utilized in the implementation of an array camera is incorporated by reference herein in its entirety. Any of a variety of color filter configurations can be utilized where cameras in each color channel are distributed on either side of the center of the camera. The cameras can be used to capture data with respect to different colors, or a specific portion of the spectrum. In a number of embodiments, cameras image in the near-IR, IR, and/or far-IR spectral bands.
In many embodiments, the lens stack within the optical channel of each camera has a field of view that focuses light so that pixels of each camera sample the same object space or region within the scene. In several embodiments, the lens stacks are configured so that the pixels that sample the same object space do so with sub-pixel offsets to provide sampling diversity that can be utilized to recover increased resolution through the use of super-resolution processes. The term sampling diversity refers to the fact that the images from different viewpoints sample the same object in the scene but with slight sub-pixel offsets. By processing the images with sub-pixel precision, additional information encoded due to the sub-pixel offsets can be recovered when compared to simply sampling the object space with a single image. In embodiments that recover higher resolution information, the lens stacks are designed to have a Modulation Transfer Function (MTF) that enables contrast to be resolved at a spatial frequency corresponding to the higher resolution and not at the spatial resolution of the pixels that form a focal plane.
With specific regard to the processor 108 illustrated in
Although specific array camera architectures are described above with respect to
Dynamic Calibration
Knowledge of the geometry of a camera array can be utilized to rectify images captured by the array. The transformations utilized during rectification processes are typically determined during an offline calibration process that yields what can be referred to as geometric calibration data. Appropriate offline calibration processes include offline calibration processes similar to those described in U.S. Pat. No. 9,124,864 entitled “Systems and Methods for Calibration of an Array Camera” to Mullis. The geometric calibration data is utilized in depth estimation processes, fusion processes, and/or super-resolution processes. Generally, the accuracy of depth estimates made by performing disparity searches with respect to images captured by a camera array degrades when the relative positions and orientations of the cameras within an array do not correspond to the geometry of the cameras when the offline calibration process was performed. The geometry of a camera array may change due to thermal expansion/contraction and/or environmental factors. Users of consumer electronic devices routinely drop the devices in ways that can deform the mechanical structures to which a camera array is mounted. Accordingly, camera arrays in accordance with a number of embodiments of the invention can perform processes that validate that available geometric calibration data is appropriate for the current geometry of a camera array. By detecting that the camera array is “out of calibration”, another offline calibration process can be performed to obtain appropriate geometric calibration data. In several embodiments, the camera array is able to perform a dynamic calibration process that yields new geometric calibration data or updates to existing geometric calibration data to enable subsequent image processing operations to yield outputs that satisfy the requirements of a specific application.
A process for validating geometric calibration data and dynamically generating geometric calibration data in accordance with an embodiment of the invention is illustrated in
Geometric calibration data can then be utilized to rectify the captured set of images. When the geometric calibration data is valid for the geometry of the camera array, then features visible in a reference image will appear shifted a distance along an epipolar line determined by the distance of the feature from the reference camera. When the geometric calibration data is no longer valid for the geometry of the camera array, then corresponding features are likely to appear shifted to locations that do not lie upon epipolar lines. The difference is illustrated in
Referring again to
When the corresponding feature points within the set of rectified images suggests that the geometric calibration data is no longer valid, then an alert can be provided to the user suggesting that the camera array be submitted for recalibration. In a number of embodiments, the camera array can perform (210) a dynamic calibration process using the identified feature points. The dynamic calibration process can yield a new set of geometric calibration data, a set of updates to the geometric calibration data generated through the offline geometric calibration process, and/or the selection of an alternative set of geometric calibration data from a database of sets of geometric calibration data. In several embodiments, databases of sets of geometric calibration data can be utilized that contain sets of geometric calibration data that are appropriate for different operating temperatures and/or different anticipated perturbations of cameras within the camera array. As can readily be appreciated, a database can be provided locally and/or remotely located and queried via a network connection. Specific processes for performing dynamic calibration in accordance with various embodiments of the invention are discussed in detail below. When a valid set of geometric calibration data is identified, the camera array can proceed (212) with acquiring additional sets of images and/or performing image processing using the geometric calibration data.
Although specific processes for determining the validity of a set of geometric calibration data for the geometry of a specific camera array and/or for performing dynamic calibration are discussed above with reference to
Dynamic Generation of Geometric Calibration Data
Offline processes for generating geometric calibration data rely on the ability to acquire images of a scene with known characteristics. Processes for dynamic generation of geometric calibration data typically do not possess any a priori knowledge of the characteristics of the scene. Feature detectors can enable an image processing application to determine corresponding features within a scene captured by the cameras in an array. These features are likely sparsely distributed. Therefore, the features do not directly enable the generation of geometric calibration information at each pixel location. However, interpolation and/or extrapolations of geometric calibration information at specific pixel locations can be utilized to generate a new set of geometric calibration data, and/or a set of updates for an existing set of geometric calibration data. In a number of embodiments, the geometric calibration data determined at the pixel locations of the features is matched to identify a set of geometric calibration that provides the best fit for the observed correspondences from a database containing sets of geometric calibration data.
A process for performing dynamic calibration to obtain a set of geometric calibration data based upon a set of observed features within a scene in accordance with an embodiment of the invention is illustrated in
A feature detector can be used to detect (404) features and/or points of interest in the set of images. As noted above, any of a variety of feature detectors including SIFT and/or SURF detectors can be utilized to detect features as appropriate to the requirements of a specific application. Correspondence matching is then performed (406) between the feature points visible in a reference image and feature points visible in other images within the set of images captured by the camera array. In many embodiments, a sparse optical flow process such as (but not limited to) the Lucas-Kanade method can be utilized to determine feature correspondence. Sparse optical flow processes assume that the optical flow between a pair of images is essentially constant in a local neighborhood of the pixel under consideration, and solve the basic optical flow equations for all the pixels in that neighborhood by a criterion such as (but not limited to) the least squares criterion. The correspondence problem is a well known problem in the field of computer vision and any of a variety of alternative correspondence matching processes including (but not limited to) a Random Sample Consensus (RANSAC) process can be utilized to identify corresponding features within image pairs and/or sets of images as appropriate to the requirements of specific applications.
The best available geometric calibration data can then be utilized to apply (408) geometric shifts to the locations of the corresponding features. In theory, these shifts should rectify the images. As noted above, the geometric shifts will be unsuccessful in rectifying the images when the geometry of the camera array differs from that assumed by the geometric calibration data. The effectiveness of the geometric calibration data in rectifying the images can be determined by calculating (410) the vector difference (donEPL, dtoEPL) for each of the corresponding features between the reference image and an alternate view image (i.e. an image captured from a different viewpoint/camera to the viewpoint/camera from which the reference image was captured). As noted above, the dtoEPL components of the vectors should be zero or near-zero when the geometry of the camera array corresponds to the geometry assumed by the geometric calibration data.
The shifts that are observed between corresponding pixels in a reference image and an alternate view image include scene independent shifts and scene dependent shifts. The scene independent shifts are a function of the geometry of the camera array and variations in the components used to construct the cameras. The scene dependent shifts are introduced based upon the distance of objects within the scene. In order to dynamically generate calibration data, processes in accordance with many embodiments of the system attempt to correct for scene dependent shifts in order to determine the residual error in geometric calibration data.
In several embodiments, the camera array prompts the user via a user interface to capture the set of images used to dynamically calibrate the camera array by capturing a set of images of a scene in which all objects within the scene are sufficiently distant from the camera so that the entire scene can be assumed to be at infinity. When the scene can be assumed to be at infinity, then the scene dependent shifts that are present within the image should be zero at all pixel locations. To the extent that there are shifts, these are corrected through rectification.
Where objects are located within a scene at unknown depths, the shifts present in the image include scene dependent geometric shifts and scene independent geometric shifts. In order to update the geometric calibration data to correct for the scene independent shifts, the scene dependent geometric shifts are estimated and removed. A separate depth estimate is determined (412) for each feature using the weighted average of the observed shifts along the epipolar lines (donEPL) in each of the alternate view images, where the average is weighted by assumed baselines between the cameras that captured the reference image and the alternate view images. In other embodiments, scene dependent shifts can be determined using any of a variety of processes for estimating the depths of observed features. As can readily be appreciated, the number of cameras utilized to capture images within the set of images and the number of features within the captured images can significantly increase the precision with which scene dependent geometric corrections can be removed during dynamic calibration processes.
In embodiments in which scene dependent geometric shifts are estimated, the scene dependent geometric shifts are subtracted from the vector difference (donEPL, dtoEPL) for each of the corresponding features between the reference image and an alternate view image to compute (414) residual vectors (ronEPL, rtoEPL) for each corresponding feature visible within the alternate view image. The residual vectors can then be utilized to compute (416) corrections to the vector field of the geometric calibration data (i.e. corrections to apply to the geometric calibration vectors specified for each pixel location of the camera that captured the alternate view image). In several embodiments, the corrections to the vector field of the geometric calibration data are determined by converting the residual vector points to pixel coordinates within the alternate view image and then residual vectors for pixel locations for which residual vectors are not specified can be determined using interpolation, extrapolation, and/or filtering of the known residual vectors. The resulting residual calibration vector field can be applied to adjust the geometric calibration data at each pixel location of the alternate view camera to correct for the scene independent geometric shifts observed within images captured by the alternate view camera relative to images captured by the reference camera. In this way, the process 400 is capable of dynamically generating updated geometric calibration data appropriate to the current geometry of the camera array.
In many embodiments, the residual calibration vector field generated using processes similar to those described above with reference to
Although specific processes for generating updated geometric calibration data are described above with reference to
Combining Dynamic Calibration Data
Real world scenes typically contain reliable features that are strong enough to be tracked across images captured by multiple cameras in an array in random locations. In addition, features are often clustered within certain regions within the field of view of a reference camera and other regions can be relatively devoid of features. The density and distribution of features can impact the errors introduced by the interpolation and extrapolation processes utilized to generate residual calibration vector fields. Extrapolation, in particular, can introduce a great deal of noise in depth estimates and/or super-resolution processes. In a number of embodiments, different regions of a residual calibration vector field for a camera are constructed using residual vectors determined based upon the use of different cameras within the array as reference cameras and/or using multiple sets of images captured of different scenes. In certain embodiments, the processes of obtaining multiple sets of images of different scenes is guided by the array camera. The array camera can identify a region of a scene within the field of view of the reference camera and instruct a user to reorient the camera array so that the feature rich portion of the scene appears within different regions of the field of view of the reference camera until a set of images in which a threshold density of features has been obtained with respect to each region within the field of view of the reference camera.
A process for combining residual vectors determined using different sets of images to obtain a residual calibration vector field in accordance with an embodiment of the invention is illustrated in
Although specific processes are describe above with reference to
Choosing Between Sets of Geometric Calibration Data
The sparse nature of the features used to identify correspondences between images captured by a camera array necessitate the use of interpolation and extrapolation to convert residual vectors into residual calibration vector fields that can be used to update geometric calibration data at each pixel location of an alternate view camera. By their nature, the interpolation and extrapolation processes introduce errors into the resulting geometric calibration data. An alternative to using the residual vectors to generate a residual calibration vector field is to use the residual vectors to choose a best fit from amongst a number of alternative geometric calibration datasets. In several embodiments, correspondence of features is determined using each of a number of different geometric calibration data sets and the geometric calibration set that yields the smallest average residual vectors is utilized for subsequent image processing.
A process for selecting a set of geometric calibration data from amongst a number of sets of geometric calibration data in accordance with an embodiment of the invention is illustrated in
Although specific processes are described above with reference to
While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as an example of one embodiment thereof. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.
This application is a 35 U.S.C. 371 national stage application corresponding to Application Serial No. PCT/US2015/053013, entitled “Systems and Methods for Dynamic Calibration of Array Cameras”, filed Sep. 29, 2015, which claims priority to U.S. Provisional Patent Application Ser. No. 62/057,196, entitled “Adaptive Geometric Calibration for Array Cameras,” filed on Sep. 29, 2014, and U.S. Provisional Patent Application Ser. No. 62/106,168, entitled “Adaptive Geometric Calibration for Array Cameras”, filed Jan. 21, 2015. The disclosures of Application Serial No. PCT/US2015/053013, U.S. Provisional Patent Application Ser. No. 62/057,196 and U.S. Provisional Patent Application Ser. No. 62/106,168 of which is incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/053013 | 9/29/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/054089 | 4/7/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4124798 | Thompson | Nov 1978 | A |
4198646 | Alexander et al. | Apr 1980 | A |
4323925 | Abell et al. | Apr 1982 | A |
4460449 | Montalbano | Jul 1984 | A |
4467365 | Murayama et al. | Aug 1984 | A |
4652909 | Glenn | Mar 1987 | A |
4899060 | Lischke | Feb 1990 | A |
5005083 | Grage | Apr 1991 | A |
5070414 | Tsutsumi | Dec 1991 | A |
5144448 | Hornbaker et al. | Sep 1992 | A |
5157499 | Oguma et al. | Oct 1992 | A |
5325449 | Burt | Jun 1994 | A |
5327125 | Iwase et al. | Jul 1994 | A |
5488674 | Burt | Jan 1996 | A |
5629524 | Stettner et al. | May 1997 | A |
5638461 | Fridge | Jun 1997 | A |
5793900 | Nourbakhsh et al. | Aug 1998 | A |
5801919 | Griencewic | Sep 1998 | A |
5808350 | Jack et al. | Sep 1998 | A |
5832312 | Rieger et al. | Nov 1998 | A |
5833507 | Woodgate et al. | Nov 1998 | A |
5880691 | Fossum et al. | Mar 1999 | A |
5911008 | Niikura et al. | Jun 1999 | A |
5933190 | Dierickx et al. | Aug 1999 | A |
5963664 | Kumar et al. | Oct 1999 | A |
5973844 | Burger | Oct 1999 | A |
6002743 | Telymonde | Dec 1999 | A |
6005607 | Uomori et al. | Dec 1999 | A |
6034690 | Gallery et al. | Mar 2000 | A |
6069351 | Mack | May 2000 | A |
6069365 | Chow et al. | May 2000 | A |
6097394 | Levoy et al. | Aug 2000 | A |
6124974 | Burger | Sep 2000 | A |
6130786 | Osawa et al. | Oct 2000 | A |
6137100 | Fossum et al. | Oct 2000 | A |
6137535 | Meyers | Oct 2000 | A |
6141048 | Meyers | Oct 2000 | A |
6160909 | Melen | Dec 2000 | A |
6163414 | Kikuchi et al. | Dec 2000 | A |
6172352 | Liu et al. | Jan 2001 | B1 |
6175379 | Uomori et al. | Jan 2001 | B1 |
6205241 | Melen | Mar 2001 | B1 |
6239909 | Hayashi et al. | May 2001 | B1 |
6292713 | Jouppi et al. | Sep 2001 | B1 |
6340994 | Margulis et al. | Jan 2002 | B1 |
6358862 | Ireland et al. | Mar 2002 | B1 |
6443579 | Myers et al. | Sep 2002 | B1 |
6476805 | Shum et al. | Nov 2002 | B1 |
6477260 | Shimomura | Nov 2002 | B1 |
6502097 | Chan et al. | Dec 2002 | B1 |
6525302 | Dowski, Jr. et al. | Feb 2003 | B2 |
6552742 | Seta | Apr 2003 | B1 |
6563537 | Kawamura et al. | May 2003 | B1 |
6571466 | Glenn et al. | Jun 2003 | B1 |
6603513 | Berezin | Aug 2003 | B1 |
6611289 | Yu | Aug 2003 | B1 |
6627896 | Hashimoto et al. | Sep 2003 | B1 |
6628330 | Lin | Sep 2003 | B1 |
6635941 | Suda | Oct 2003 | B2 |
6639596 | Shum et al. | Oct 2003 | B1 |
6647142 | Beardsley | Nov 2003 | B1 |
6657218 | Noda | Dec 2003 | B2 |
6671399 | Berestov | Dec 2003 | B1 |
6674892 | Melen | Jan 2004 | B1 |
6750904 | Lambert | Jun 2004 | B1 |
6765617 | Tangen et al. | Jul 2004 | B1 |
6771833 | Edgar | Aug 2004 | B1 |
6774941 | Boisvert et al. | Aug 2004 | B1 |
6788338 | Dinev | Sep 2004 | B1 |
6795253 | Shinohara | Sep 2004 | B2 |
6801653 | Wu et al. | Oct 2004 | B1 |
6819328 | Moriwaki et al. | Nov 2004 | B1 |
6819358 | Kagle et al. | Nov 2004 | B1 |
6879735 | Portniaguine et al. | Apr 2005 | B1 |
6897454 | Sasaki et al. | May 2005 | B2 |
6903770 | Kobayashi et al. | Jun 2005 | B1 |
6909121 | Nishikawa | Jun 2005 | B2 |
6917702 | Beardsley | Jul 2005 | B2 |
6927922 | George et al. | Aug 2005 | B2 |
6958862 | Joseph | Oct 2005 | B1 |
6985175 | Iwai et al. | Jan 2006 | B2 |
7015954 | Foote et al. | Mar 2006 | B1 |
7085409 | Sawhney | Aug 2006 | B2 |
7161614 | Yamashita et al. | Jan 2007 | B1 |
7199348 | Olsen et al. | Apr 2007 | B2 |
7206449 | Raskar et al. | Apr 2007 | B2 |
7215364 | Wachtel et al. | May 2007 | B2 |
7235785 | Hornback et al. | Jun 2007 | B2 |
7245761 | Grossberg et al. | Jul 2007 | B2 |
7262799 | Suda | Aug 2007 | B2 |
7292735 | Blake et al. | Nov 2007 | B2 |
7295697 | Satoh | Nov 2007 | B1 |
7333651 | Kim et al. | Feb 2008 | B1 |
7369165 | Bosco et al. | May 2008 | B2 |
7391572 | Jacobowitz et al. | Jun 2008 | B2 |
7408725 | Sato | Aug 2008 | B2 |
7425984 | Chen | Sep 2008 | B2 |
7430312 | Gu | Sep 2008 | B2 |
7496293 | Shamir et al. | Feb 2009 | B2 |
7564019 | Olsen | Jul 2009 | B2 |
7599547 | Sun et al. | Oct 2009 | B2 |
7606484 | Richards et al. | Oct 2009 | B1 |
7620265 | Wolff | Nov 2009 | B1 |
7633511 | Shum et al. | Dec 2009 | B2 |
7639435 | Chiang et al. | Dec 2009 | B2 |
7646549 | Zalevsky et al. | Jan 2010 | B2 |
7657090 | Omatsu et al. | Feb 2010 | B2 |
7667824 | Moran | Feb 2010 | B1 |
7675080 | Boettiger | Mar 2010 | B2 |
7675681 | Tomikawa et al. | Mar 2010 | B2 |
7706634 | Schmitt et al. | Apr 2010 | B2 |
7723662 | Levoy et al. | May 2010 | B2 |
7738013 | Galambos et al. | Jun 2010 | B2 |
7741620 | Doering et al. | Jun 2010 | B2 |
7782364 | Smith | Aug 2010 | B2 |
7826153 | Hong | Nov 2010 | B2 |
7840067 | Shen et al. | Nov 2010 | B2 |
7912673 | Hébert et al. | Mar 2011 | B2 |
7924321 | Mitsunaga et al. | Apr 2011 | B2 |
7956871 | Fainstain et al. | Jun 2011 | B2 |
7965314 | Miller et al. | Jun 2011 | B1 |
7973834 | Yang | Jul 2011 | B2 |
7986018 | Rennie | Jul 2011 | B2 |
7990447 | Honda et al. | Aug 2011 | B2 |
8000498 | Shih et al. | Aug 2011 | B2 |
8013904 | Tan et al. | Sep 2011 | B2 |
8027531 | Wilburn et al. | Sep 2011 | B2 |
8044994 | Vetro et al. | Oct 2011 | B2 |
8055466 | Bryll | Nov 2011 | B2 |
8077245 | Adamo et al. | Dec 2011 | B2 |
8089515 | Chebil et al. | Jan 2012 | B2 |
8098297 | Crisan et al. | Jan 2012 | B2 |
8098304 | Pinto et al. | Jan 2012 | B2 |
8106949 | Tan et al. | Jan 2012 | B2 |
8111910 | Tanaka | Feb 2012 | B2 |
8126279 | Marcellin et al. | Feb 2012 | B2 |
8130120 | Kawabata et al. | Mar 2012 | B2 |
8131097 | Lelescu et al. | Mar 2012 | B2 |
8149323 | Li | Apr 2012 | B2 |
8164629 | Zhang | Apr 2012 | B1 |
8169486 | Corcoran et al. | May 2012 | B2 |
8180145 | Wu et al. | May 2012 | B2 |
8189065 | Georgiev et al. | May 2012 | B2 |
8189089 | Georgiev | May 2012 | B1 |
8194296 | Compton | Jun 2012 | B2 |
8212914 | Chiu | Jul 2012 | B2 |
8213711 | Tam | Jul 2012 | B2 |
8231814 | Duparre | Jul 2012 | B2 |
8242426 | Ward et al. | Aug 2012 | B2 |
8244027 | Takahashi | Aug 2012 | B2 |
8244058 | Intwala et al. | Aug 2012 | B1 |
8254668 | Mashitani et al. | Aug 2012 | B2 |
8279325 | Pitts et al. | Oct 2012 | B2 |
8280194 | Wong et al. | Oct 2012 | B2 |
8284240 | Saint-Pierre et al. | Oct 2012 | B2 |
8289409 | Chang | Oct 2012 | B2 |
8289440 | Pitts et al. | Oct 2012 | B2 |
8290358 | Georgiev | Oct 2012 | B1 |
8294099 | Blackwell, Jr. | Oct 2012 | B2 |
8294754 | Jung et al. | Oct 2012 | B2 |
8300085 | Yang et al. | Oct 2012 | B2 |
8305456 | McMahon | Nov 2012 | B1 |
8315476 | Georgiev et al. | Nov 2012 | B1 |
8345144 | Georgiev et al. | Jan 2013 | B1 |
8360574 | Ishak et al. | Jan 2013 | B2 |
8400555 | Georgiev | Mar 2013 | B1 |
8406562 | Bassi et al. | Mar 2013 | B2 |
8411146 | Twede | Apr 2013 | B2 |
8446492 | Nakano et al. | May 2013 | B2 |
8456517 | Mor et al. | Jun 2013 | B2 |
8493496 | Freedman et al. | Jul 2013 | B2 |
8514291 | Chang | Aug 2013 | B2 |
8514491 | Duparre | Aug 2013 | B2 |
8541730 | Inuiya | Sep 2013 | B2 |
8542933 | Venkataraman | Sep 2013 | B2 |
8553093 | Wong et al. | Oct 2013 | B2 |
8559756 | Georgiev et al. | Oct 2013 | B2 |
8565547 | Strandemar | Oct 2013 | B2 |
8576302 | Yoshikawa | Nov 2013 | B2 |
8577183 | Robinson | Nov 2013 | B2 |
8581995 | Lin et al. | Nov 2013 | B2 |
8619082 | Ciurea | Dec 2013 | B1 |
8648918 | Kauker et al. | Feb 2014 | B2 |
8655052 | Spooner et al. | Feb 2014 | B2 |
8682107 | Yoon et al. | Mar 2014 | B2 |
8687087 | Pertsel et al. | Apr 2014 | B2 |
8692893 | McMahon | Apr 2014 | B2 |
8754941 | Sarwari et al. | Jun 2014 | B1 |
8773536 | Zhang | Jul 2014 | B1 |
8780113 | Ciurea et al. | Jul 2014 | B1 |
8804255 | Duparre | Aug 2014 | B2 |
8830375 | Ludwig | Sep 2014 | B2 |
8831367 | Venkataraman | Sep 2014 | B2 |
8836793 | Kriesel et al. | Sep 2014 | B1 |
8842201 | Tajiri | Sep 2014 | B2 |
8854462 | Herbin et al. | Oct 2014 | B2 |
8861089 | Duparre | Oct 2014 | B2 |
8866912 | Mullis | Oct 2014 | B2 |
8866920 | Venkataraman et al. | Oct 2014 | B2 |
8866951 | Keelan | Oct 2014 | B2 |
8878950 | Lelescu et al. | Nov 2014 | B2 |
8885059 | Venkataraman et al. | Nov 2014 | B1 |
8885922 | Ito et al. | Nov 2014 | B2 |
8896594 | Xiong et al. | Nov 2014 | B2 |
8896719 | Venkataraman et al. | Nov 2014 | B1 |
8902321 | Venkataraman et al. | Dec 2014 | B2 |
8928793 | McMahon | Jan 2015 | B2 |
8977038 | Tian et al. | Mar 2015 | B2 |
9001226 | Ng et al. | Apr 2015 | B1 |
9019426 | Han et al. | Apr 2015 | B2 |
9025894 | Venkataraman | May 2015 | B2 |
9025895 | Venkataraman | May 2015 | B2 |
9030528 | Pesach et al. | May 2015 | B2 |
9031335 | Venkataraman | May 2015 | B2 |
9031342 | Venkataraman | May 2015 | B2 |
9031343 | Venkataraman | May 2015 | B2 |
9036928 | Venkataraman | May 2015 | B2 |
9036931 | Venkataraman et al. | May 2015 | B2 |
9041823 | Venkataraman et al. | May 2015 | B2 |
9041824 | Lelescu et al. | May 2015 | B2 |
9041829 | Venkataraman et al. | May 2015 | B2 |
9042667 | Venkataraman et al. | May 2015 | B2 |
9047684 | Lelescu et al. | Jun 2015 | B2 |
9049367 | Venkataraman et al. | Jun 2015 | B2 |
9055233 | Venkataraman et al. | Jun 2015 | B2 |
9060120 | Venkataraman et al. | Jun 2015 | B2 |
9060124 | Venkataraman et al. | Jun 2015 | B2 |
9077893 | Venkataraman et al. | Jul 2015 | B2 |
9094661 | Venkataraman et al. | Jul 2015 | B2 |
9100586 | McMahon et al. | Aug 2015 | B2 |
9100635 | Duparre et al. | Aug 2015 | B2 |
9123117 | Ciurea et al. | Sep 2015 | B2 |
9123118 | Ciurea et al. | Sep 2015 | B2 |
9124815 | Venkataraman et al. | Sep 2015 | B2 |
9124831 | Mullis | Sep 2015 | B2 |
9124864 | Mullis | Sep 2015 | B2 |
9128228 | Duparre | Sep 2015 | B2 |
9129183 | Venkataraman et al. | Sep 2015 | B2 |
9129377 | Ciurea et al. | Sep 2015 | B2 |
9143711 | McMahon | Sep 2015 | B2 |
9147254 | Ciurea et al. | Sep 2015 | B2 |
9185276 | Rodda et al. | Nov 2015 | B2 |
9188765 | Venkataraman et al. | Nov 2015 | B2 |
9191580 | Venkataraman et al. | Nov 2015 | B2 |
9197821 | McMahon | Nov 2015 | B2 |
9210392 | Nisenzon et al. | Dec 2015 | B2 |
9214013 | Venkataraman et al. | Dec 2015 | B2 |
9235898 | Venkataraman et al. | Jan 2016 | B2 |
9235900 | Ciurea et al. | Jan 2016 | B2 |
9240049 | Ciurea et al. | Jan 2016 | B2 |
9253380 | Venkataraman et al. | Feb 2016 | B2 |
9256974 | Hines | Feb 2016 | B1 |
9264592 | Rodda et al. | Feb 2016 | B2 |
9264610 | Duparre | Feb 2016 | B2 |
9361662 | Lelescu et al. | Jun 2016 | B2 |
9374512 | Venkataraman et al. | Jun 2016 | B2 |
9412206 | McMahon et al. | Aug 2016 | B2 |
9413953 | Maeda | Aug 2016 | B2 |
9426343 | Rodda et al. | Aug 2016 | B2 |
9426361 | Venkataraman et al. | Aug 2016 | B2 |
9438888 | Venkataraman et al. | Sep 2016 | B2 |
9445003 | Lelescu et al. | Sep 2016 | B1 |
9456134 | Venkataraman et al. | Sep 2016 | B2 |
9456196 | Kim et al. | Sep 2016 | B2 |
9462164 | Venkataraman et al. | Oct 2016 | B2 |
9485496 | Venkataraman et al. | Nov 2016 | B2 |
9497370 | Venkataraman et al. | Nov 2016 | B2 |
9497429 | Mullis et al. | Nov 2016 | B2 |
9516222 | Duparre et al. | Dec 2016 | B2 |
9519972 | Venkataraman et al. | Dec 2016 | B2 |
9521319 | Rodda et al. | Dec 2016 | B2 |
9521416 | McMahon et al. | Dec 2016 | B1 |
9536166 | Venkataraman et al. | Jan 2017 | B2 |
9576369 | Venkataraman et al. | Feb 2017 | B2 |
9578237 | Duparre et al. | Feb 2017 | B2 |
9578259 | Molina | Feb 2017 | B2 |
9602805 | Venkataraman et al. | Mar 2017 | B2 |
9633442 | Venkataraman et al. | Apr 2017 | B2 |
9635274 | Lin et al. | Apr 2017 | B2 |
9638883 | Duparre | May 2017 | B1 |
9661310 | Deng et al. | May 2017 | B2 |
9706132 | Nisenzon et al. | Jul 2017 | B2 |
9712759 | Venkataraman et al. | Jul 2017 | B2 |
9733486 | Lelescu et al. | Aug 2017 | B2 |
9741118 | Mullis | Aug 2017 | B2 |
9743051 | Venkataraman et al. | Aug 2017 | B2 |
9749547 | Venkataraman et al. | Aug 2017 | B2 |
9749568 | McMahon | Aug 2017 | B2 |
9754422 | McMahon et al. | Sep 2017 | B2 |
9766380 | Duparre et al. | Sep 2017 | B2 |
9769365 | Jannard | Sep 2017 | B1 |
9774789 | Ciurea et al. | Sep 2017 | B2 |
9774831 | Venkataraman et al. | Sep 2017 | B2 |
9787911 | McMahon et al. | Oct 2017 | B2 |
9794476 | Nayar et al. | Oct 2017 | B2 |
9800856 | Venkataraman et al. | Oct 2017 | B2 |
9800859 | Venkataraman et al. | Oct 2017 | B2 |
9807382 | Duparre et al. | Oct 2017 | B2 |
9811753 | Venkataraman et al. | Nov 2017 | B2 |
9813616 | Lelescu et al. | Nov 2017 | B2 |
9813617 | Venkataraman et al. | Nov 2017 | B2 |
9858673 | Ciurea et al. | Jan 2018 | B2 |
9864921 | Venkataraman et al. | Jan 2018 | B2 |
9888194 | Duparre | Feb 2018 | B2 |
9898856 | Yang et al. | Feb 2018 | B2 |
9917998 | Venkataraman et al. | Mar 2018 | B2 |
9924092 | Rodda et al. | Mar 2018 | B2 |
9955070 | Lelescu et al. | Apr 2018 | B2 |
9986224 | Mullis | May 2018 | B2 |
20010005225 | Clark et al. | Jun 2001 | A1 |
20010019621 | Hanna et al. | Sep 2001 | A1 |
20010028038 | Hamaguchi et al. | Oct 2001 | A1 |
20010038387 | Tomooka et al. | Nov 2001 | A1 |
20020012056 | Trevino | Jan 2002 | A1 |
20020015536 | Warren | Feb 2002 | A1 |
20020027608 | Johnson | Mar 2002 | A1 |
20020028014 | Ono et al. | Mar 2002 | A1 |
20020039438 | Mori et al. | Apr 2002 | A1 |
20020057845 | Fossum | May 2002 | A1 |
20020061131 | Sawhney et al. | May 2002 | A1 |
20020063807 | Margulis | May 2002 | A1 |
20020075450 | Aratani | Jun 2002 | A1 |
20020087403 | Meyers et al. | Jul 2002 | A1 |
20020089596 | Yasuo | Jul 2002 | A1 |
20020094027 | Sato et al. | Jul 2002 | A1 |
20020101528 | Lee | Aug 2002 | A1 |
20020113867 | Takigawa et al. | Aug 2002 | A1 |
20020113888 | Sonoda et al. | Aug 2002 | A1 |
20020120634 | Min et al. | Aug 2002 | A1 |
20020122113 | Foote et al. | Sep 2002 | A1 |
20020163054 | Suda et al. | Nov 2002 | A1 |
20020167537 | Trajkovic | Nov 2002 | A1 |
20020177054 | Saitoh et al. | Nov 2002 | A1 |
20020190991 | Efran et al. | Dec 2002 | A1 |
20020195548 | Dowski, Jr. et al. | Dec 2002 | A1 |
20030025227 | Daniell | Feb 2003 | A1 |
20030086079 | Barth et al. | May 2003 | A1 |
20030124763 | Fan et al. | Jul 2003 | A1 |
20030140347 | Varsa | Jul 2003 | A1 |
20030156189 | Utsumi et al. | Aug 2003 | A1 |
20030179418 | Wengender et al. | Sep 2003 | A1 |
20030188659 | Merry et al. | Oct 2003 | A1 |
20030190072 | Adkins et al. | Oct 2003 | A1 |
20030198377 | Ng et al. | Oct 2003 | A1 |
20030211405 | Venkataraman | Nov 2003 | A1 |
20040003409 | Berstis et al. | Jan 2004 | A1 |
20040008271 | Hagimori et al. | Jan 2004 | A1 |
20040012689 | Tinnerino | Jan 2004 | A1 |
20040027358 | Nakao | Feb 2004 | A1 |
20040047274 | Amanai | Mar 2004 | A1 |
20040050104 | Ghosh et al. | Mar 2004 | A1 |
20040056966 | Schechner et al. | Mar 2004 | A1 |
20040061787 | Liu et al. | Apr 2004 | A1 |
20040066454 | Otani et al. | Apr 2004 | A1 |
20040071367 | Irani et al. | Apr 2004 | A1 |
20040075654 | Hsiao et al. | Apr 2004 | A1 |
20040096119 | Williams | May 2004 | A1 |
20040100570 | Shizukuishi | May 2004 | A1 |
20040105021 | Hu et al. | Jun 2004 | A1 |
20040114807 | Lelescu et al. | Jun 2004 | A1 |
20040141659 | Zhang et al. | Jul 2004 | A1 |
20040151401 | Sawhney et al. | Aug 2004 | A1 |
20040165090 | Ning | Aug 2004 | A1 |
20040169617 | Yelton et al. | Sep 2004 | A1 |
20040170340 | Tipping et al. | Sep 2004 | A1 |
20040174439 | Upton | Sep 2004 | A1 |
20040179008 | Gordon et al. | Sep 2004 | A1 |
20040179834 | Szajewski | Sep 2004 | A1 |
20040196379 | Chen et al. | Oct 2004 | A1 |
20040207600 | Zhang et al. | Oct 2004 | A1 |
20040207836 | Chhibber et al. | Oct 2004 | A1 |
20040213449 | Safaee-Rad et al. | Oct 2004 | A1 |
20040218809 | Blake et al. | Nov 2004 | A1 |
20040234873 | Venkataraman | Nov 2004 | A1 |
20040239782 | Equitz et al. | Dec 2004 | A1 |
20040239885 | Jaynes et al. | Dec 2004 | A1 |
20040240052 | Minefuji et al. | Dec 2004 | A1 |
20040251509 | Choi | Dec 2004 | A1 |
20040264806 | Herley | Dec 2004 | A1 |
20050006477 | Patel | Jan 2005 | A1 |
20050007461 | Chou et al. | Jan 2005 | A1 |
20050009313 | Suzuki et al. | Jan 2005 | A1 |
20050010621 | Pinto et al. | Jan 2005 | A1 |
20050012035 | Miller | Jan 2005 | A1 |
20050036778 | DeMonte | Feb 2005 | A1 |
20050047678 | Jones et al. | Mar 2005 | A1 |
20050048690 | Yamamoto | Mar 2005 | A1 |
20050068436 | Fraenkel et al. | Mar 2005 | A1 |
20050083531 | Millerd et al. | Apr 2005 | A1 |
20050084179 | Hanna et al. | Apr 2005 | A1 |
20050128509 | Tokkonen et al. | Jun 2005 | A1 |
20050128595 | Shimizu | Jun 2005 | A1 |
20050132098 | Sonoda et al. | Jun 2005 | A1 |
20050134698 | Schroeder | Jun 2005 | A1 |
20050134699 | Nagashima | Jun 2005 | A1 |
20050134712 | Gruhlke et al. | Jun 2005 | A1 |
20050147277 | Higaki et al. | Jul 2005 | A1 |
20050151759 | Gonzalez-Banos et al. | Jul 2005 | A1 |
20050168924 | Wu et al. | Aug 2005 | A1 |
20050175257 | Kuroki | Aug 2005 | A1 |
20050185711 | Pfister et al. | Aug 2005 | A1 |
20050205785 | Hornback et al. | Sep 2005 | A1 |
20050219264 | Shum et al. | Oct 2005 | A1 |
20050219363 | Kohler | Oct 2005 | A1 |
20050224843 | Boemler | Oct 2005 | A1 |
20050225654 | Feldman et al. | Oct 2005 | A1 |
20050265633 | Piacentino et al. | Dec 2005 | A1 |
20050275946 | Choo et al. | Dec 2005 | A1 |
20050286612 | Takanashi | Dec 2005 | A1 |
20050286756 | Hong et al. | Dec 2005 | A1 |
20060002635 | Nestares et al. | Jan 2006 | A1 |
20060007331 | Izumi et al. | Jan 2006 | A1 |
20060018509 | Miyoshi | Jan 2006 | A1 |
20060023197 | Joel | Feb 2006 | A1 |
20060023314 | Boettiger et al. | Feb 2006 | A1 |
20060028476 | Sobel et al. | Feb 2006 | A1 |
20060029270 | Berestov et al. | Feb 2006 | A1 |
20060029271 | Miyoshi et al. | Feb 2006 | A1 |
20060033005 | Jerdev et al. | Feb 2006 | A1 |
20060034003 | Zalevsky | Feb 2006 | A1 |
20060034531 | Poon et al. | Feb 2006 | A1 |
20060035415 | Wood | Feb 2006 | A1 |
20060038891 | Okutomi et al. | Feb 2006 | A1 |
20060039611 | Rother | Feb 2006 | A1 |
20060046204 | Ono et al. | Mar 2006 | A1 |
20060049930 | Zruya et al. | Mar 2006 | A1 |
20060050980 | Kohashi et al. | Mar 2006 | A1 |
20060054780 | Garrood et al. | Mar 2006 | A1 |
20060054782 | Olsen | Mar 2006 | A1 |
20060055811 | Frtiz et al. | Mar 2006 | A1 |
20060069478 | Iwama | Mar 2006 | A1 |
20060072029 | Miyatake et al. | Apr 2006 | A1 |
20060087747 | Ohzawa et al. | Apr 2006 | A1 |
20060098888 | Morishita | May 2006 | A1 |
20060103754 | Wenstrand et al. | May 2006 | A1 |
20060125936 | Gruhike et al. | Jun 2006 | A1 |
20060138322 | Costello et al. | Jun 2006 | A1 |
20060152803 | Provitola | Jul 2006 | A1 |
20060157640 | Perlman et al. | Jul 2006 | A1 |
20060159369 | Young | Jul 2006 | A1 |
20060176566 | Boettiger et al. | Aug 2006 | A1 |
20060187338 | May et al. | Aug 2006 | A1 |
20060197937 | Bamji et al. | Sep 2006 | A1 |
20060203100 | Ajito et al. | Sep 2006 | A1 |
20060203113 | Wada et al. | Sep 2006 | A1 |
20060210146 | Gu | Sep 2006 | A1 |
20060210186 | Berkner | Sep 2006 | A1 |
20060214085 | Olsen | Sep 2006 | A1 |
20060221250 | Rossbach et al. | Oct 2006 | A1 |
20060239549 | Kelly et al. | Oct 2006 | A1 |
20060243889 | Farnworth et al. | Nov 2006 | A1 |
20060251410 | Trutna | Nov 2006 | A1 |
20060274174 | Tewinkle | Dec 2006 | A1 |
20060278948 | Yamaguchi et al. | Dec 2006 | A1 |
20060279648 | Senba et al. | Dec 2006 | A1 |
20060289772 | Johnson et al. | Dec 2006 | A1 |
20070002159 | Olsen | Jan 2007 | A1 |
20070008575 | Yu et al. | Jan 2007 | A1 |
20070009150 | Suwa | Jan 2007 | A1 |
20070024614 | Tam | Feb 2007 | A1 |
20070030356 | Yea et al. | Feb 2007 | A1 |
20070035707 | Margulis | Feb 2007 | A1 |
20070036427 | Nakamura et al. | Feb 2007 | A1 |
20070040828 | Zalevsky et al. | Feb 2007 | A1 |
20070040922 | McKee et al. | Feb 2007 | A1 |
20070041391 | Lin et al. | Feb 2007 | A1 |
20070052825 | Cho | Mar 2007 | A1 |
20070083114 | Yang et al. | Apr 2007 | A1 |
20070085917 | Kobayashi | Apr 2007 | A1 |
20070092245 | Bazakos et al. | Apr 2007 | A1 |
20070102622 | Olsen et al. | May 2007 | A1 |
20070126898 | Feldman | Jun 2007 | A1 |
20070127831 | Venkataraman | Jun 2007 | A1 |
20070139333 | Sato et al. | Jun 2007 | A1 |
20070140685 | Wu | Jun 2007 | A1 |
20070146503 | Shiraki | Jun 2007 | A1 |
20070146511 | Kinoshita et al. | Jun 2007 | A1 |
20070153335 | Hosaka | Jul 2007 | A1 |
20070158427 | Zhu et al. | Jul 2007 | A1 |
20070159541 | Sparks et al. | Jul 2007 | A1 |
20070160310 | Tanida et al. | Jul 2007 | A1 |
20070165931 | Higaki | Jul 2007 | A1 |
20070171290 | Kroger | Jul 2007 | A1 |
20070177004 | Kolehmainen et al. | Aug 2007 | A1 |
20070182843 | Shimamura et al. | Aug 2007 | A1 |
20070201859 | Sarrat et al. | Aug 2007 | A1 |
20070206241 | Smith et al. | Sep 2007 | A1 |
20070211164 | Olsen et al. | Sep 2007 | A1 |
20070216765 | Wong et al. | Sep 2007 | A1 |
20070225600 | Weibrecht et al. | Sep 2007 | A1 |
20070228256 | Mentzer | Oct 2007 | A1 |
20070236595 | Pan et al. | Oct 2007 | A1 |
20070242141 | Ciurea | Oct 2007 | A1 |
20070247517 | Zhang et al. | Oct 2007 | A1 |
20070257184 | Olsen et al. | Nov 2007 | A1 |
20070258006 | Olsen et al. | Nov 2007 | A1 |
20070258706 | Raskar et al. | Nov 2007 | A1 |
20070263113 | Baek et al. | Nov 2007 | A1 |
20070263114 | Gurevich et al. | Nov 2007 | A1 |
20070268374 | Robinson | Nov 2007 | A1 |
20070296721 | Chang et al. | Dec 2007 | A1 |
20070296832 | Ota et al. | Dec 2007 | A1 |
20070296835 | Olsen | Dec 2007 | A1 |
20070296847 | Chang et al. | Dec 2007 | A1 |
20070297696 | Hamza | Dec 2007 | A1 |
20080006859 | Mionetto et al. | Jan 2008 | A1 |
20080019611 | Larkin | Jan 2008 | A1 |
20080024683 | Damera-Venkata et al. | Jan 2008 | A1 |
20080025649 | Liu et al. | Jan 2008 | A1 |
20080030592 | Border et al. | Feb 2008 | A1 |
20080030597 | Olsen et al. | Feb 2008 | A1 |
20080043095 | Vetro et al. | Feb 2008 | A1 |
20080043096 | Vetro et al. | Feb 2008 | A1 |
20080054518 | Ra et al. | Mar 2008 | A1 |
20080056302 | Erdal et al. | Mar 2008 | A1 |
20080062164 | Bassi et al. | Mar 2008 | A1 |
20080079805 | Takagi et al. | Apr 2008 | A1 |
20080080028 | Bakin et al. | Apr 2008 | A1 |
20080084486 | Enge et al. | Apr 2008 | A1 |
20080088793 | Sverdrup et al. | Apr 2008 | A1 |
20080095523 | Schilling-Benz et al. | Apr 2008 | A1 |
20080099804 | Venezia et al. | May 2008 | A1 |
20080106620 | Sawachi et al. | May 2008 | A1 |
20080112059 | Choi et al. | May 2008 | A1 |
20080112635 | Kondo et al. | May 2008 | A1 |
20080117289 | Schowengerdt et al. | May 2008 | A1 |
20080118241 | Tekolste et al. | May 2008 | A1 |
20080131019 | Ng | Jun 2008 | A1 |
20080131107 | Ueno | Jun 2008 | A1 |
20080151097 | Chen et al. | Jun 2008 | A1 |
20080152215 | Horie et al. | Jun 2008 | A1 |
20080152296 | Oh et al. | Jun 2008 | A1 |
20080156991 | Hu et al. | Jul 2008 | A1 |
20080158259 | Kempf et al. | Jul 2008 | A1 |
20080158375 | Kakkori et al. | Jul 2008 | A1 |
20080158698 | Chang et al. | Jul 2008 | A1 |
20080165257 | Boettiger et al. | Jul 2008 | A1 |
20080174670 | Olsen et al. | Jul 2008 | A1 |
20080187305 | Raskar et al. | Aug 2008 | A1 |
20080193026 | Horie et al. | Aug 2008 | A1 |
20080211737 | Kim et al. | Sep 2008 | A1 |
20080218610 | Chapman et al. | Sep 2008 | A1 |
20080218611 | Parulski et al. | Sep 2008 | A1 |
20080218612 | Border et al. | Sep 2008 | A1 |
20080218613 | Janson et al. | Sep 2008 | A1 |
20080219654 | Border et al. | Sep 2008 | A1 |
20080239116 | Smith | Oct 2008 | A1 |
20080240598 | Hasegawa | Oct 2008 | A1 |
20080247638 | Tanida et al. | Oct 2008 | A1 |
20080247653 | Moussavi et al. | Oct 2008 | A1 |
20080272416 | Yun | Nov 2008 | A1 |
20080273751 | Yuan et al. | Nov 2008 | A1 |
20080278591 | Barna et al. | Nov 2008 | A1 |
20080278610 | Boettiger et al. | Nov 2008 | A1 |
20080284880 | Numata | Nov 2008 | A1 |
20080291295 | Kato et al. | Nov 2008 | A1 |
20080298674 | Baker et al. | Dec 2008 | A1 |
20080310501 | Ward et al. | Dec 2008 | A1 |
20090027543 | Kanehiro et al. | Jan 2009 | A1 |
20090050946 | Duparre et al. | Feb 2009 | A1 |
20090052743 | Techmer | Feb 2009 | A1 |
20090060281 | Tanida et al. | Mar 2009 | A1 |
20090079862 | Subbotin | Mar 2009 | A1 |
20090086074 | Li et al. | Apr 2009 | A1 |
20090091645 | Trimeche et al. | Apr 2009 | A1 |
20090091806 | Inuiya | Apr 2009 | A1 |
20090096050 | Park | Apr 2009 | A1 |
20090102956 | Georgiev | Apr 2009 | A1 |
20090103792 | Rahn et al. | Apr 2009 | A1 |
20090109306 | Shan | Apr 2009 | A1 |
20090127430 | Hirasawa et al. | May 2009 | A1 |
20090128644 | Camp, Jr. et al. | May 2009 | A1 |
20090128833 | Yahav | May 2009 | A1 |
20090129667 | Ho et al. | May 2009 | A1 |
20090140131 | Utagawa et al. | Jun 2009 | A1 |
20090141933 | Wagg | Jun 2009 | A1 |
20090147919 | Goto et al. | Jun 2009 | A1 |
20090152664 | Klem et al. | Jun 2009 | A1 |
20090167922 | Perlman et al. | Jul 2009 | A1 |
20090167934 | Gupta | Jul 2009 | A1 |
20090179142 | Duparre et al. | Jul 2009 | A1 |
20090180021 | Kikuchi et al. | Jul 2009 | A1 |
20090200622 | Tai et al. | Aug 2009 | A1 |
20090201371 | Matsuda et al. | Aug 2009 | A1 |
20090207235 | Francini et al. | Aug 2009 | A1 |
20090219435 | Yuan et al. | Sep 2009 | A1 |
20090225203 | Tanida et al. | Sep 2009 | A1 |
20090237520 | Kaneko et al. | Sep 2009 | A1 |
20090245573 | Saptharishi et al. | Oct 2009 | A1 |
20090256947 | Ciurea et al. | Oct 2009 | A1 |
20090263017 | Tanbakuchi | Oct 2009 | A1 |
20090268192 | Koenck et al. | Oct 2009 | A1 |
20090268970 | Babacan et al. | Oct 2009 | A1 |
20090268983 | Stone | Oct 2009 | A1 |
20090274387 | Jin | Nov 2009 | A1 |
20090279800 | Uetani et al. | Nov 2009 | A1 |
20090284651 | Srinivasan | Nov 2009 | A1 |
20090290811 | Imai | Nov 2009 | A1 |
20090297056 | Lelescu et al. | Dec 2009 | A1 |
20090302205 | Olsen et al. | Dec 2009 | A9 |
20090317061 | Jung et al. | Dec 2009 | A1 |
20090322876 | Lee et al. | Dec 2009 | A1 |
20090323195 | Hembree et al. | Dec 2009 | A1 |
20090323206 | Oliver et al. | Dec 2009 | A1 |
20090324118 | Maslov et al. | Dec 2009 | A1 |
20100002126 | Wenstrand et al. | Jan 2010 | A1 |
20100002313 | Duparre et al. | Jan 2010 | A1 |
20100002314 | Duparre | Jan 2010 | A1 |
20100007714 | Kim et al. | Jan 2010 | A1 |
20100013927 | Nixon | Jan 2010 | A1 |
20100044815 | Chang et al. | Feb 2010 | A1 |
20100045809 | Packard | Feb 2010 | A1 |
20100053342 | Hwang | Mar 2010 | A1 |
20100053600 | Tanida | Mar 2010 | A1 |
20100060746 | Olsen et al. | Mar 2010 | A9 |
20100073463 | Momonoi et al. | Mar 2010 | A1 |
20100074532 | Gordon et al. | Mar 2010 | A1 |
20100085425 | Tan | Apr 2010 | A1 |
20100086227 | Sun et al. | Apr 2010 | A1 |
20100091389 | Henriksen et al. | Apr 2010 | A1 |
20100097491 | Farina et al. | Apr 2010 | A1 |
20100103175 | Okutomi et al. | Apr 2010 | A1 |
20100103259 | Tanida et al. | Apr 2010 | A1 |
20100103308 | Butterfield et al. | Apr 2010 | A1 |
20100111444 | Coffman | May 2010 | A1 |
20100118127 | Nam | May 2010 | A1 |
20100128145 | Pitts et al. | May 2010 | A1 |
20100129048 | Pitts et al. | May 2010 | A1 |
20100133230 | Henriksen et al. | Jun 2010 | A1 |
20100133418 | Sargent et al. | Jun 2010 | A1 |
20100141802 | Knight | Jun 2010 | A1 |
20100142828 | Chang et al. | Jun 2010 | A1 |
20100142839 | Lakbecker | Jun 2010 | A1 |
20100157073 | Kondo et al. | Jun 2010 | A1 |
20100165152 | Lim | Jul 2010 | A1 |
20100166410 | Chang et al. | Jul 2010 | A1 |
20100171866 | Brady et al. | Jul 2010 | A1 |
20100177411 | Hegde et al. | Jul 2010 | A1 |
20100182406 | Benitez et al. | Jul 2010 | A1 |
20100194860 | Mentz et al. | Aug 2010 | A1 |
20100194901 | van Hoorebeke et al. | Aug 2010 | A1 |
20100195716 | Gunnewiek et al. | Aug 2010 | A1 |
20100201834 | Maruyama et al. | Aug 2010 | A1 |
20100202054 | Niederer | Aug 2010 | A1 |
20100202683 | Robinson | Aug 2010 | A1 |
20100208100 | Olsen et al. | Aug 2010 | A9 |
20100220212 | Perlman et al. | Sep 2010 | A1 |
20100223237 | Mishra et al. | Sep 2010 | A1 |
20100225740 | Jung et al. | Sep 2010 | A1 |
20100231285 | Boomer et al. | Sep 2010 | A1 |
20100238327 | Griffith et al. | Sep 2010 | A1 |
20100244165 | Lake et al. | Sep 2010 | A1 |
20100245684 | Xiao et al. | Sep 2010 | A1 |
20100254627 | Panahpour Tehrani et al. | Oct 2010 | A1 |
20100259610 | Petersen et al. | Oct 2010 | A1 |
20100265346 | Iizuka | Oct 2010 | A1 |
20100265381 | Yamamoto et al. | Oct 2010 | A1 |
20100265385 | Knight et al. | Oct 2010 | A1 |
20100281070 | Chan et al. | Nov 2010 | A1 |
20100289941 | Ito et al. | Nov 2010 | A1 |
20100290483 | Park et al. | Nov 2010 | A1 |
20100302423 | Adams, Jr. et al. | Dec 2010 | A1 |
20100309292 | Ho et al. | Dec 2010 | A1 |
20100309368 | Choi et al. | Dec 2010 | A1 |
20100321595 | Chiu et al. | Dec 2010 | A1 |
20100321640 | Yeh et al. | Dec 2010 | A1 |
20100329556 | Mitarai et al. | Dec 2010 | A1 |
20110001037 | Tewinkle | Jan 2011 | A1 |
20110018973 | Takayama | Jan 2011 | A1 |
20110019048 | Raynor et al. | Jan 2011 | A1 |
20110019243 | Constant, Jr. et al. | Jan 2011 | A1 |
20110031381 | Tay et al. | Feb 2011 | A1 |
20110032370 | Ludwig | Feb 2011 | A1 |
20110033129 | Robinson | Feb 2011 | A1 |
20110038536 | Gong | Feb 2011 | A1 |
20110043661 | Podoleanu | Feb 2011 | A1 |
20110043665 | Ogasahara | Feb 2011 | A1 |
20110043668 | McKinnon et al. | Feb 2011 | A1 |
20110044502 | Liu et al. | Feb 2011 | A1 |
20110051255 | Lee et al. | Mar 2011 | A1 |
20110055729 | Mason et al. | Mar 2011 | A1 |
20110064327 | Dagher et al. | Mar 2011 | A1 |
20110069189 | Venkataraman et al. | Mar 2011 | A1 |
20110080487 | Venkataraman et al. | Apr 2011 | A1 |
20110085028 | Samadani et al. | Apr 2011 | A1 |
20110090217 | Mashitani et al. | Apr 2011 | A1 |
20110108708 | Olsen et al. | May 2011 | A1 |
20110115886 | Nguyen | May 2011 | A1 |
20110121421 | Charbon | May 2011 | A1 |
20110122308 | Duparre | May 2011 | A1 |
20110128393 | Tavi et al. | Jun 2011 | A1 |
20110128412 | Milnes et al. | Jun 2011 | A1 |
20110129165 | Lim et al. | Jun 2011 | A1 |
20110141309 | Nagashima et al. | Jun 2011 | A1 |
20110142138 | Tian et al. | Jun 2011 | A1 |
20110149408 | Hahgholt et al. | Jun 2011 | A1 |
20110149409 | Haugholt et al. | Jun 2011 | A1 |
20110153248 | Gu et al. | Jun 2011 | A1 |
20110157321 | Nakajima et al. | Jun 2011 | A1 |
20110157451 | Chang | Jun 2011 | A1 |
20110169994 | DiFrancesco et al. | Jul 2011 | A1 |
20110176020 | Chang | Jul 2011 | A1 |
20110181797 | Galstian et al. | Jul 2011 | A1 |
20110193944 | Lian et al. | Aug 2011 | A1 |
20110200319 | Kravitz et al. | Aug 2011 | A1 |
20110206291 | Kashani et al. | Aug 2011 | A1 |
20110207074 | Hall-Holt et al. | Aug 2011 | A1 |
20110211077 | Nayar | Sep 2011 | A1 |
20110211824 | Georgiev et al. | Sep 2011 | A1 |
20110221599 | Högasten | Sep 2011 | A1 |
20110221658 | Haddick et al. | Sep 2011 | A1 |
20110221939 | Jerdev | Sep 2011 | A1 |
20110221950 | Oostra | Sep 2011 | A1 |
20110222757 | Yeatman, Jr. et al. | Sep 2011 | A1 |
20110228142 | Brueckner | Sep 2011 | A1 |
20110228144 | Tian et al. | Sep 2011 | A1 |
20110234841 | Akeley et al. | Sep 2011 | A1 |
20110241234 | Duparre | Oct 2011 | A1 |
20110242342 | Goma et al. | Oct 2011 | A1 |
20110242355 | Goma et al. | Oct 2011 | A1 |
20110242356 | Aleksic et al. | Oct 2011 | A1 |
20110243428 | Das Gupta et al. | Oct 2011 | A1 |
20110255592 | Sung | Oct 2011 | A1 |
20110255745 | Hodder et al. | Oct 2011 | A1 |
20110261993 | Weiming et al. | Oct 2011 | A1 |
20110267264 | McCarthy et al. | Nov 2011 | A1 |
20110267348 | Lin | Nov 2011 | A1 |
20110273531 | Ito et al. | Nov 2011 | A1 |
20110274175 | Sumitomo | Nov 2011 | A1 |
20110274366 | Tardif | Nov 2011 | A1 |
20110279705 | Kuang et al. | Nov 2011 | A1 |
20110279721 | McMahon | Nov 2011 | A1 |
20110285701 | Chen et al. | Nov 2011 | A1 |
20110285866 | Bhrugumalla et al. | Nov 2011 | A1 |
20110285910 | Bamji et al. | Nov 2011 | A1 |
20110292216 | Fergus et al. | Dec 2011 | A1 |
20110298898 | Jung et al. | Dec 2011 | A1 |
20110298917 | Yanagita | Dec 2011 | A1 |
20110300929 | Tardif et al. | Dec 2011 | A1 |
20110310980 | Mathew | Dec 2011 | A1 |
20110316968 | Taguchi et al. | Dec 2011 | A1 |
20110317766 | Lim, II et al. | Dec 2011 | A1 |
20120012748 | Pain et al. | Jan 2012 | A1 |
20120014456 | Martinez Bauza et al. | Jan 2012 | A1 |
20120019530 | Baker | Jan 2012 | A1 |
20120019700 | Gaber | Jan 2012 | A1 |
20120023456 | Sun et al. | Jan 2012 | A1 |
20120026297 | Sato | Feb 2012 | A1 |
20120026342 | Yu et al. | Feb 2012 | A1 |
20120026366 | Golan et al. | Feb 2012 | A1 |
20120026451 | Nystrom | Feb 2012 | A1 |
20120039525 | Tian et al. | Feb 2012 | A1 |
20120044249 | Mashitani et al. | Feb 2012 | A1 |
20120044372 | Côté et al. | Feb 2012 | A1 |
20120051624 | Ando | Mar 2012 | A1 |
20120056982 | Katz et al. | Mar 2012 | A1 |
20120057040 | Park et al. | Mar 2012 | A1 |
20120062697 | Treado et al. | Mar 2012 | A1 |
20120062702 | Jiang et al. | Mar 2012 | A1 |
20120062756 | Tian | Mar 2012 | A1 |
20120069235 | Imai | Mar 2012 | A1 |
20120081519 | Goma | Apr 2012 | A1 |
20120086803 | Malzbender et al. | Apr 2012 | A1 |
20120105590 | Fukumoto et al. | May 2012 | A1 |
20120105691 | Waqas et al. | May 2012 | A1 |
20120113232 | Joblove | May 2012 | A1 |
20120113318 | Galstian et al. | May 2012 | A1 |
20120113413 | Miahczylowicz-Wolski et al. | May 2012 | A1 |
20120114224 | Xu et al. | May 2012 | A1 |
20120127275 | Von Zitzewitz et al. | May 2012 | A1 |
20120147139 | Li et al. | Jun 2012 | A1 |
20120147205 | Lelescu et al. | Jun 2012 | A1 |
20120153153 | Chang et al. | Jun 2012 | A1 |
20120154551 | Inoue | Jun 2012 | A1 |
20120155830 | Sasaki et al. | Jun 2012 | A1 |
20120163672 | McKinnon | Jun 2012 | A1 |
20120169433 | Mullins | Jul 2012 | A1 |
20120170134 | Bolis et al. | Jul 2012 | A1 |
20120176479 | Mayhew et al. | Jul 2012 | A1 |
20120176481 | Lukk et al. | Jul 2012 | A1 |
20120188235 | Wu et al. | Jul 2012 | A1 |
20120188341 | Klein Gunnewiek et al. | Jul 2012 | A1 |
20120188389 | Lin et al. | Jul 2012 | A1 |
20120188420 | Black et al. | Jul 2012 | A1 |
20120188634 | Kubala et al. | Jul 2012 | A1 |
20120198677 | Duparre | Aug 2012 | A1 |
20120200669 | Lai | Aug 2012 | A1 |
20120200726 | Bugnariu | Aug 2012 | A1 |
20120200734 | Tang | Aug 2012 | A1 |
20120206582 | DiCarlo et al. | Aug 2012 | A1 |
20120219236 | Ali et al. | Aug 2012 | A1 |
20120224083 | Jovanovski et al. | Sep 2012 | A1 |
20120229602 | Chen et al. | Sep 2012 | A1 |
20120229628 | Ishiyama et al. | Sep 2012 | A1 |
20120237114 | Park et al. | Sep 2012 | A1 |
20120249550 | Akeley et al. | Oct 2012 | A1 |
20120249750 | Izzat et al. | Oct 2012 | A1 |
20120249836 | Ali et al. | Oct 2012 | A1 |
20120249853 | Krolczyk et al. | Oct 2012 | A1 |
20120262601 | Choi et al. | Oct 2012 | A1 |
20120262607 | Shimura et al. | Oct 2012 | A1 |
20120268574 | Gidon et al. | Oct 2012 | A1 |
20120274626 | Hsieh | Nov 2012 | A1 |
20120287291 | McMahon et al. | Nov 2012 | A1 |
20120290257 | Hodge et al. | Nov 2012 | A1 |
20120293489 | Chen et al. | Nov 2012 | A1 |
20120293624 | Chen et al. | Nov 2012 | A1 |
20120293695 | Tanaka | Nov 2012 | A1 |
20120307093 | Miyoshi | Dec 2012 | A1 |
20120307099 | Yahata et al. | Dec 2012 | A1 |
20120314033 | Lee et al. | Dec 2012 | A1 |
20120314937 | Kim et al. | Dec 2012 | A1 |
20120327222 | Ng et al. | Dec 2012 | A1 |
20130002828 | Ding et al. | Jan 2013 | A1 |
20130003184 | Duparre | Jan 2013 | A1 |
20130010073 | Do | Jan 2013 | A1 |
20130016245 | Yuba | Jan 2013 | A1 |
20130016885 | Tsujimoto et al. | Jan 2013 | A1 |
20130022111 | Chen et al. | Jan 2013 | A1 |
20130027580 | Olsen et al. | Jan 2013 | A1 |
20130033579 | Wajs | Feb 2013 | A1 |
20130033585 | Li et al. | Feb 2013 | A1 |
20130038696 | Ding et al. | Feb 2013 | A1 |
20130047396 | Au et al. | Feb 2013 | A1 |
20130050504 | Safaee-Rad et al. | Feb 2013 | A1 |
20130050526 | Keelan | Feb 2013 | A1 |
20130057710 | McMahon | Mar 2013 | A1 |
20130070060 | Chatterjee | Mar 2013 | A1 |
20130076967 | Brunner et al. | Mar 2013 | A1 |
20130077859 | Stauder et al. | Mar 2013 | A1 |
20130077880 | Venkataraman et al. | Mar 2013 | A1 |
20130077882 | Venkataraman et al. | Mar 2013 | A1 |
20130083172 | Baba | Apr 2013 | A1 |
20130088489 | Schmeitz et al. | Apr 2013 | A1 |
20130088637 | Duparre | Apr 2013 | A1 |
20130093842 | Yahata | Apr 2013 | A1 |
20130107061 | Kumar et al. | May 2013 | A1 |
20130113888 | Koguchi | May 2013 | A1 |
20130113899 | Morohoshi et al. | May 2013 | A1 |
20130113939 | Strandemar | May 2013 | A1 |
20130120536 | Song et al. | May 2013 | A1 |
20130120605 | Georgiev et al. | May 2013 | A1 |
20130121559 | Hu | May 2013 | A1 |
20130128068 | Georgiev et al. | May 2013 | A1 |
20130128069 | Georgiev et al. | May 2013 | A1 |
20130128087 | Georgiev et al. | May 2013 | A1 |
20130128121 | Agarwala et al. | May 2013 | A1 |
20130135315 | Bares | May 2013 | A1 |
20130147979 | McMahon et al. | Jun 2013 | A1 |
20130169754 | Aronsson et al. | Jul 2013 | A1 |
20130176394 | Tian et al. | Jul 2013 | A1 |
20130208138 | Li | Aug 2013 | A1 |
20130215108 | McMahon et al. | Aug 2013 | A1 |
20130215231 | Hiramoto et al. | Aug 2013 | A1 |
20130222556 | Shimada | Aug 2013 | A1 |
20130223759 | Nishiyama et al. | Aug 2013 | A1 |
20130229540 | Farina et al. | Sep 2013 | A1 |
20130230237 | Schlosser et al. | Sep 2013 | A1 |
20130250123 | Zhang et al. | Sep 2013 | A1 |
20130250150 | Malone | Sep 2013 | A1 |
20130258067 | Zhang et al. | Oct 2013 | A1 |
20130259317 | Gaddy | Oct 2013 | A1 |
20130265459 | Duparre et al. | Oct 2013 | A1 |
20130274596 | Azizian et al. | Oct 2013 | A1 |
20130274923 | By et al. | Oct 2013 | A1 |
20130293760 | Nisenzon et al. | Nov 2013 | A1 |
20130335598 | Gustavsson | Dec 2013 | A1 |
20140002674 | Duparre et al. | Jan 2014 | A1 |
20140002675 | Duparre et al. | Jan 2014 | A1 |
20140009586 | McNamer et al. | Jan 2014 | A1 |
20140013273 | Ng et al. | Jan 2014 | A1 |
20140037137 | Broaddus et al. | Feb 2014 | A1 |
20140037140 | Benhimane et al. | Feb 2014 | A1 |
20140043507 | Wang et al. | Feb 2014 | A1 |
20140076336 | Clayton et al. | Mar 2014 | A1 |
20140078333 | Miao | Mar 2014 | A1 |
20140079336 | Venkataraman et al. | Mar 2014 | A1 |
20140085502 | Lin et al. | Mar 2014 | A1 |
20140092281 | Nisenzon et al. | Apr 2014 | A1 |
20140098266 | Nayar et al. | Apr 2014 | A1 |
20140098267 | Tian et al. | Apr 2014 | A1 |
20140104490 | Hsieh et al. | Apr 2014 | A1 |
20140118493 | Sali et al. | May 2014 | A1 |
20140118584 | Lee et al. | May 2014 | A1 |
20140125771 | Grossmann et al. | May 2014 | A1 |
20140132810 | McMahon | May 2014 | A1 |
20140146132 | Bagnato et al. | May 2014 | A1 |
20140146201 | Knight et al. | May 2014 | A1 |
20140176592 | Wilburn et al. | Jun 2014 | A1 |
20140183334 | Wang et al. | Jul 2014 | A1 |
20140186045 | Poddar et al. | Jul 2014 | A1 |
20140192154 | Jeong et al. | Jul 2014 | A1 |
20140192253 | Laroia | Jul 2014 | A1 |
20140198188 | Izawa | Jul 2014 | A1 |
20140204183 | Lee et al. | Jul 2014 | A1 |
20140218546 | McMahon | Aug 2014 | A1 |
20140232822 | Venkataraman et al. | Aug 2014 | A1 |
20140240528 | Venkataraman et al. | Aug 2014 | A1 |
20140240529 | Venkataraman et al. | Aug 2014 | A1 |
20140253738 | Mullis | Sep 2014 | A1 |
20140267243 | Venkataraman et al. | Sep 2014 | A1 |
20140267286 | Duparre | Sep 2014 | A1 |
20140267633 | Venkataraman | Sep 2014 | A1 |
20140267762 | Mullis et al. | Sep 2014 | A1 |
20140267829 | McMahon et al. | Sep 2014 | A1 |
20140267890 | Lelescu et al. | Sep 2014 | A1 |
20140285675 | Mullis | Sep 2014 | A1 |
20140300706 | Song | Oct 2014 | A1 |
20140313315 | Shoham et al. | Oct 2014 | A1 |
20140321712 | Ciurea et al. | Oct 2014 | A1 |
20140333731 | Venkataraman et al. | Nov 2014 | A1 |
20140333764 | Venkataraman et al. | Nov 2014 | A1 |
20140333787 | Venkataraman et al. | Nov 2014 | A1 |
20140340539 | Venkataraman et al. | Nov 2014 | A1 |
20140347509 | Venkataraman et al. | Nov 2014 | A1 |
20140347748 | Duparre | Nov 2014 | A1 |
20140354773 | Venkataraman et al. | Dec 2014 | A1 |
20140354843 | Venkataraman et al. | Dec 2014 | A1 |
20140354844 | Venkataraman et al. | Dec 2014 | A1 |
20140354853 | Venkataraman et al. | Dec 2014 | A1 |
20140354854 | Venkataraman et al. | Dec 2014 | A1 |
20140354855 | Venkataraman et al. | Dec 2014 | A1 |
20140355870 | Venkataraman et al. | Dec 2014 | A1 |
20140368662 | Venkataraman et al. | Dec 2014 | A1 |
20140368683 | Venkataraman et al. | Dec 2014 | A1 |
20140368684 | Venkataraman et al. | Dec 2014 | A1 |
20140368685 | Venkataraman et al. | Dec 2014 | A1 |
20140368686 | Duparre | Dec 2014 | A1 |
20140369612 | Venkataraman et al. | Dec 2014 | A1 |
20140369615 | Venkataraman et al. | Dec 2014 | A1 |
20140376825 | Venkataraman et al. | Dec 2014 | A1 |
20140376826 | Venkataraman et al. | Dec 2014 | A1 |
20150002734 | Lee | Jan 2015 | A1 |
20150003752 | Venkataraman et al. | Jan 2015 | A1 |
20150003753 | Venkataraman et al. | Jan 2015 | A1 |
20150009353 | Venkataraman et al. | Jan 2015 | A1 |
20150009354 | Venkataraman et al. | Jan 2015 | A1 |
20150009362 | Venkataraman et al. | Jan 2015 | A1 |
20150015669 | Venkataraman et al. | Jan 2015 | A1 |
20150035992 | Mullis | Feb 2015 | A1 |
20150036014 | Lelescu et al. | Feb 2015 | A1 |
20150036015 | Lelescu et al. | Feb 2015 | A1 |
20150042766 | Ciurea et al. | Feb 2015 | A1 |
20150042767 | Ciurea et al. | Feb 2015 | A1 |
20150042833 | Lelescu et al. | Feb 2015 | A1 |
20150049915 | Ciurea et al. | Feb 2015 | A1 |
20150049916 | Ciurea et al. | Feb 2015 | A1 |
20150049917 | Ciurea et al. | Feb 2015 | A1 |
20150055884 | Venkataraman et al. | Feb 2015 | A1 |
20150085073 | Bruls et al. | Mar 2015 | A1 |
20150085174 | Shabtay et al. | Mar 2015 | A1 |
20150091900 | Yang et al. | Apr 2015 | A1 |
20150098079 | Montgomery et al. | Apr 2015 | A1 |
20150104076 | Hayasaka | Apr 2015 | A1 |
20150104101 | Bryant et al. | Apr 2015 | A1 |
20150122411 | Rodda et al. | May 2015 | A1 |
20150124059 | Georgiev et al. | May 2015 | A1 |
20150124113 | Rodda et al. | May 2015 | A1 |
20150124151 | Rodda et al. | May 2015 | A1 |
20150138346 | Venkataraman et al. | May 2015 | A1 |
20150146029 | Venkataraman et al. | May 2015 | A1 |
20150146030 | Venkataraman et al. | May 2015 | A1 |
20150161798 | Lelescu et al. | Jun 2015 | A1 |
20150199793 | Venkataraman et al. | Jul 2015 | A1 |
20150199841 | Venkataraman et al. | Jul 2015 | A1 |
20150243480 | Yamada et al. | Aug 2015 | A1 |
20150244927 | Laroia et al. | Aug 2015 | A1 |
20150248744 | Hayasaka et al. | Sep 2015 | A1 |
20150254868 | Srikanth et al. | Sep 2015 | A1 |
20150296137 | Duparre et al. | Oct 2015 | A1 |
20150312455 | Venkataraman et al. | Oct 2015 | A1 |
20150326852 | Duparre et al. | Nov 2015 | A1 |
20150332468 | Hayasaka et al. | Nov 2015 | A1 |
20150373261 | Rodda et al. | Dec 2015 | A1 |
20160037097 | Duparre | Feb 2016 | A1 |
20160044252 | Molina | Feb 2016 | A1 |
20160044257 | Venkataraman et al. | Feb 2016 | A1 |
20160057332 | Ciurea et al. | Feb 2016 | A1 |
20160065934 | Kaza et al. | Mar 2016 | A1 |
20160163051 | Mullis | Jun 2016 | A1 |
20160165106 | Duparre | Jun 2016 | A1 |
20160165134 | Lelescu et al. | Jun 2016 | A1 |
20160165147 | Nisenzon et al. | Jun 2016 | A1 |
20160165212 | Mullis | Jun 2016 | A1 |
20160195733 | Lelescu et al. | Jul 2016 | A1 |
20160198096 | Lelescu et al. | Jul 2016 | A1 |
20160227195 | Venkataraman et al. | Aug 2016 | A1 |
20160249001 | McMahon | Aug 2016 | A1 |
20160255333 | Nisenzon et al. | Sep 2016 | A1 |
20160266284 | Duparre et al. | Sep 2016 | A1 |
20160267665 | Venkataraman et al. | Sep 2016 | A1 |
20160267672 | Ciurea et al. | Sep 2016 | A1 |
20160269626 | McMahon | Sep 2016 | A1 |
20160269627 | McMahon | Sep 2016 | A1 |
20160269650 | Venkataraman et al. | Sep 2016 | A1 |
20160269651 | Venkataraman et al. | Sep 2016 | A1 |
20160269664 | Duparre | Sep 2016 | A1 |
20160316140 | Nayar et al. | Oct 2016 | A1 |
20170006233 | Venkataraman et al. | Jan 2017 | A1 |
20170048468 | Pain et al. | Feb 2017 | A1 |
20170053382 | Lelescu et al. | Feb 2017 | A1 |
20170054901 | Venkataraman et al. | Feb 2017 | A1 |
20170070672 | Rodda et al. | Mar 2017 | A1 |
20170070673 | Lelescu et al. | Mar 2017 | A1 |
20170078568 | Venkataraman et al. | Mar 2017 | A1 |
20170085845 | Venkataraman et al. | Mar 2017 | A1 |
20170094243 | Venkataraman et al. | Mar 2017 | A1 |
20170099465 | Mullis et al. | Apr 2017 | A1 |
20170163862 | Molina | Jun 2017 | A1 |
20170178363 | Venkataraman et al. | Jun 2017 | A1 |
20170187933 | Duparre | Jun 2017 | A1 |
20170257562 | Venkataraman et al. | Sep 2017 | A1 |
20170365104 | McMahon et al. | Dec 2017 | A1 |
20180007284 | Venkataraman et al. | Jan 2018 | A1 |
20180013945 | Ciurea et al. | Jan 2018 | A1 |
20180024330 | Laroia | Jan 2018 | A1 |
20180035057 | McMahon et al. | Feb 2018 | A1 |
20180040135 | Mullis | Feb 2018 | A1 |
20180048830 | Venkataraman et al. | Feb 2018 | A1 |
20180081090 | Duparre et al. | Mar 2018 | A1 |
20180097993 | Nayar et al. | Apr 2018 | A1 |
20180109782 | Duparre et al. | Apr 2018 | A1 |
20180124311 | Lelescu et al. | May 2018 | A1 |
20180139382 | Venkataraman et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
1669332 | Sep 2005 | CN |
1839394 | Sep 2006 | CN |
101010619 | Aug 2007 | CN |
101064780 | Oct 2007 | CN |
101102388 | Jan 2008 | CN |
101147392 | Mar 2008 | CN |
101427372 | May 2009 | CN |
101606086 | Dec 2009 | CN |
101883291 | Nov 2010 | CN |
102037717 | Apr 2011 | CN |
102375199 | Mar 2012 | CN |
104081414 | Oct 2014 | CN |
104508681 | Apr 2015 | CN |
104662589 | May 2015 | CN |
104685513 | Jun 2015 | CN |
104685860 | Jun 2015 | CN |
107230236 | Oct 2017 | CN |
107346061 | Nov 2017 | CN |
0677821 | Oct 1995 | EP |
840502 | May 1998 | EP |
1201407 | May 2002 | EP |
1355274 | Oct 2003 | EP |
1734766 | Dec 2006 | EP |
1243945 | Jan 2009 | EP |
2026563 | Feb 2009 | EP |
2104334 | Sep 2009 | EP |
2244484 | Oct 2010 | EP |
0957642 | Apr 2011 | EP |
2336816 | Jun 2011 | EP |
2339532 | Jun 2011 | EP |
2381418 | Oct 2011 | EP |
2652678 | Oct 2013 | EP |
2761534 | Aug 2014 | EP |
2867718 | May 2015 | EP |
2873028 | May 2015 | EP |
2888698 | Jul 2015 | EP |
2888720 | Jul 2015 | EP |
2901671 | Aug 2015 | EP |
3066690 | Sep 2016 | EP |
2652678 | Sep 2017 | EP |
2817955 | Apr 2018 | EP |
3328048 | May 2018 | EP |
2482022 | Jan 2012 | GB |
2708CHENP2014 | Aug 2015 | IN |
59-025483 | Feb 1984 | JP |
64-037177 | Feb 1989 | JP |
02-285772 | Nov 1990 | JP |
07-15457 | Jan 1995 | JP |
09181913 | Jul 1997 | JP |
11142609 | May 1999 | JP |
11223708 | Aug 1999 | JP |
2000209503 | Jul 2000 | JP |
2001008235 | Jan 2001 | JP |
2001194114 | Jul 2001 | JP |
2001264033 | Sep 2001 | JP |
2001277260 | Oct 2001 | JP |
2001337263 | Dec 2001 | JP |
2002195910 | Jul 2002 | JP |
2002205310 | Jul 2002 | JP |
2002252338 | Sep 2002 | JP |
2003094445 | Apr 2003 | JP |
2003139910 | May 2003 | JP |
2003163938 | Jun 2003 | JP |
2003298920 | Oct 2003 | JP |
2004221585 | Aug 2004 | JP |
2005116022 | Apr 2005 | JP |
2005181460 | Jul 2005 | JP |
2005295381 | Oct 2005 | JP |
2005303694 | Oct 2005 | JP |
2005354124 | Dec 2005 | JP |
2006033228 | Feb 2006 | JP |
2006033493 | Feb 2006 | JP |
2006047944 | Feb 2006 | JP |
2006258930 | Sep 2006 | JP |
2007520107 | Jul 2007 | JP |
2007259136 | Oct 2007 | JP |
2008039852 | Feb 2008 | JP |
2008055908 | Mar 2008 | JP |
2008507874 | Mar 2008 | JP |
2008258885 | Oct 2008 | JP |
2009132010 | Jun 2009 | JP |
2009300268 | Dec 2009 | JP |
2011017764 | Jan 2011 | JP |
2011030184 | Feb 2011 | JP |
2011109484 | Jun 2011 | JP |
2011523538 | Aug 2011 | JP |
2013526801 | Jun 2013 | JP |
2014521117 | Aug 2014 | JP |
2014535191 | Dec 2014 | JP |
2015522178 | Aug 2015 | JP |
2015534734 | Dec 2015 | JP |
6140709 | May 2017 | JP |
2017163550 | Sep 2017 | JP |
2017163587 | Sep 2017 | JP |
2017531976 | Oct 2017 | JP |
1020110097647 | Aug 2011 | KR |
20170063827 | Jun 2017 | KR |
101824672 | Feb 2018 | KR |
191151 | Jul 2013 | SG |
200828994 | Jul 2008 | TW |
200939739 | Sep 2009 | TW |
2005057922 | Jun 2005 | WO |
2006039906 | Apr 2006 | WO |
2006039906 | Sep 2006 | WO |
2007013250 | Feb 2007 | WO |
2007083579 | Jul 2007 | WO |
2007134137 | Nov 2007 | WO |
2008045198 | Apr 2008 | WO |
2008050904 | May 2008 | WO |
2008108271 | Sep 2008 | WO |
2008108926 | Sep 2008 | WO |
2008150817 | Dec 2008 | WO |
2009073950 | Jun 2009 | WO |
2009151903 | Dec 2009 | WO |
2009157273 | Dec 2009 | WO |
2011008443 | Jan 2011 | WO |
2011055655 | May 2011 | WO |
2011063347 | May 2011 | WO |
2011105814 | Sep 2011 | WO |
2011116203 | Sep 2011 | WO |
2011063347 | Oct 2011 | WO |
2011143501 | Nov 2011 | WO |
2012057619 | May 2012 | WO |
2012057620 | May 2012 | WO |
2012057621 | May 2012 | WO |
2012057622 | May 2012 | WO |
2012057623 | May 2012 | WO |
2012057620 | Jun 2012 | WO |
2012074361 | Jun 2012 | WO |
2012078126 | Jun 2012 | WO |
2012082904 | Jun 2012 | WO |
2012155119 | Nov 2012 | WO |
2013003276 | Jan 2013 | WO |
2013043751 | Mar 2013 | WO |
2013043761 | Mar 2013 | WO |
2013049699 | Apr 2013 | WO |
2013055960 | Apr 2013 | WO |
2013119706 | Aug 2013 | WO |
2013126578 | Aug 2013 | WO |
2013166215 | Nov 2013 | WO |
2014004134 | Jan 2014 | WO |
2014005123 | Jan 2014 | WO |
2014031795 | Feb 2014 | WO |
2014052974 | Apr 2014 | WO |
2014032020 | May 2014 | WO |
2014078443 | May 2014 | WO |
2014130849 | Aug 2014 | WO |
2014133974 | Sep 2014 | WO |
2014138695 | Sep 2014 | WO |
2014138697 | Sep 2014 | WO |
2014144157 | Sep 2014 | WO |
2014145856 | Sep 2014 | WO |
2014149403 | Sep 2014 | WO |
2014149902 | Sep 2014 | WO |
2014150856 | Sep 2014 | WO |
2014153098 | Sep 2014 | WO |
2014159721 | Oct 2014 | WO |
2014159779 | Oct 2014 | WO |
2014160142 | Oct 2014 | WO |
2014164550 | Oct 2014 | WO |
2014164909 | Oct 2014 | WO |
2014165244 | Oct 2014 | WO |
2014133974 | Apr 2015 | WO |
2015048694 | Apr 2015 | WO |
2015070105 | May 2015 | WO |
2015074078 | May 2015 | WO |
2015081279 | Jun 2015 | WO |
2015134996 | Sep 2015 | WO |
2016054089 | Apr 2016 | WO |
Entry |
---|
US 8,957,977 B2, 02/2015, Venkataraman et al. (withdrawn) |
US 8,964,053 B2, 02/2015, Venkataraman et al. (withdrawn) |
US 8,965,058 B2, 02/2015, Venkataraman et al. (withdrawn) |
US 9,014,491 B2, 04/2015, Venkataraman et al. (withdrawn) |
US 9,338,332 B2, 06/2016, Venkataraman et al. (withdrawn) |
Chen et al., “KNN Matting”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2013, vol. 35, No. 9, pp. 2175-2188. |
Cooper et al., “The perceptual basis of common photographic practice”, Journal of Vision, vol. 12, No. 5, Article 8, May 25, 2012, pp. 1-14. |
Crabb et al., “Real-time foreground segmentation via range and color imaging”, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, Jun. 23-28, 2008, pp. 1-5. |
Debevec et al., “Recovering High Dynamic Range Radiance Maps from Photographs”, Computer Graphics (ACM SIGGRAPH Proceedings), Aug. 16, 1997, 10 pgs. |
Do, Minh N., “Immersive Visual Communication with Depth”, Presented at Microsoft Research, Jun. 15, 2011, Retrieved from: http://minhdo.ece.illinois.edu/talks/ImmersiveComm.pdf, 42 pgs. |
Do et al., “Immersive Visual Communication”, IEEE Signal Processing Magazine, vol. 28, Issue 1, Jan. 2011, DOI: 10.1109/MSP.2010.939075, Retrieved from: http://minhdo.ece.illinois.edu/publications/ImmerComm_SPM.pdf, pp. 58-66. |
Drouin et al., “Fast Multiple-Baseline Stereo with Occlusion”, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05), Ottawa, Ontario, Canada, Jun. 13-16, 2005, pp. 540-547. |
Drouin et al., “Geo-Consistency for Wide Multi-Camera Stereo”, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, Jun. 20-25, 2005, pp. 351-358. |
Drouin et al., “Improving Border Localization of Multi-Baseline Stereo Using Border-Cut”, International Journal of Computer Vision, Jul. 5, 2006, vol. 83, Issue 3, 8 pgs. |
Duparre et al., “Artificial apposition compound eye fabricated by micro-optics technology”, Applied Optics, Aug. 1, 2004, vol. 43, No. 22, pp. 4303-4310. |
Duparre et al., “Artificial compound eye zoom camera”, Bioinspiration & Biomimetics, Nov. 21, 2008, vol. 3, pp. 1-6. |
Duparre et al., “Artificial compound eyes—different concepts and their application to ultra flat image acquisition sensors”, MOEMS and Miniaturized Systems IV, Proc. SPIE 5346, Jan. 24, 2004, pp. 89-100. |
Duparre et al., “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence”, Optics Express, Dec. 26, 2005, vol. 13, No. 26, pp. 10539-10551. |
Duparre et al., “Micro-optical artificial compound eyes”, Bioinspiration & Biomimetics, Apr. 6, 2006, vol. 1, pp. R1-R16. |
Duparre et al., “Microoptical artificial compound eyes—from design to experimental verification of two different concepts”, Proc. of SPIE, Optical Design and Engineering II, vol. 5962, Oct. 17, 2005, pp. 59622A-1-59622A-12. |
Duparre et al., “Microoptical Artificial Compound Eyes—Two Different Concepts for Compact Imaging Systems”, 11th Microoptics Conference, Oct. 30-Nov. 2, 2005, 2 pgs. |
Duparre et al., “Microoptical telescope compound eye”, Optics Express, Feb. 7, 2005, vol. 13, No. 3, pp. 889-903. |
Duparre et al., “Micro-optically fabricated artificial apposition compound eye”, Electronic Imaging—Science and Technology, Prod. SPIE 5301, Jan. 2004, pp. 25-33. |
Duparre et al., “Novel Optics/Micro-Optics for Miniature Imaging Systems”, Proc. of SPIE, Apr. 21, 2006, vol. 6196, pp. 619607-1-619607-15. |
Duparre et al., “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices”, Optical Systems Design, Proc. SPIE 5249, Sep. 2003, pp. 408-418. |
Duparre et al., “Thin compound-eye camera”, Applied Optics, May 20, 2005, vol. 44, No. 15, pp. 2949-2956. |
Duparre et al., “Ultra-Thin Camera Based on Artificial Apposition Compound Eyes”, 10th Microoptics Conference, Sep. 1-3, 2004, 2 pgs. |
Eng, Wei Yong et al., “Gaze correction for 3D tele-immersive communication system”, IVMSP Workshop, IEEE 11th, Jun. 10, 2013. |
Fanaswala, “Regularized Super-Resolution of Multi-View Images”, Retrieved on Nov. 10, 2012 (Nov. 10, 2012). Retrieved from the Internet at URL:<http://www.site.uottawa.ca/-edubois/theses/Fanaswala_thesis.pdf>, 2009, 163 pgs. |
Fang et al., “Volume Morphing Methods for Landmark Based 3D Image Deformation”, SPIE vol. 2710, Proc. 1996 SPIE Intl Symposium on Medical Imaging, Newport Beach, CA, Feb. 10, 1996, pp. 404-415. |
Farrell et al., “Resolution and Light Sensitivity Tradeoff with Pixel Size”, Proceedings of the SPIE Electronic Imaging 2006 Conference, Feb. 2, 2006, vol. 6069, 8 pgs. |
Farsiu et al., “Advances and Challenges in Super-Resolution”, International Journal of Imaging Systems and Technology, Aug. 12, 2004, vol. 14, pp. 47-57. |
Farsiu et al., “Fast and Robust Multiframe Super Resolution”, IEEE Transactions on Image Processing, Oct. 2004, published Sep. 3, 2004, vol. 13, No. 10, pp. 1327-1344. |
Farsiu et al., “Multiframe Demosaicing and Super-Resolution of Color Images”, IEEE Transactions on Image Processing, Jan. 2006, vol. 15, No. 1, date of publication Dec. 12, 2005, pp. 141-159. |
Fecker et al., “Depth Map Compression for Unstructured Lumigraph Rendering”, Proc. SPIE 6077, Proceedings Visual Communications and Image Processing 2006, Jan. 18, 2006, pp. 60770B-1-60770B-8. |
Feris et al., “Multi-Flash Stereopsis: Depth Edge Preserving Stereo with Small Baseline Illumination”, IEEE Trans on PAMI, 2006, 31 pgs. |
Fife et al., “A 3D Multi-Aperture Image Sensor Architecture”, Custom Integrated Circuits Conference, 2006, CICC '06, IEEE, pp. 281-284. |
Fife et al., “A 3MPixel Multi-Aperture Image Sensor with 0.7Mu Pixels in 0.11Mu CMOS”, ISSCC 2008, Session 2, Image Sensors & Technology, 2008, pp. 48-50. |
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 191-198. |
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 49-58. |
Gastal et al., “Shared Sampling for Real-Time Alpha Matting”, Computer Graphics Forum, Eurographics 2010, vol. 29, Issue 2, May 2010, pp. 575-584. |
Georgeiv et al., “Light Field Camera Design for Integral View Photography”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs. |
Georgiev et al., “Light-Field Capture by Multiplexing in the Frequency Domain”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs. |
Goldman et al., “Video Object Annotation, Navigation, and Composition”, In Proceedings of UIST 2008, pp. 3-12. |
Gortler et al., “The Lumigraph”, In Proceedings of SIGGRAPH 1996, published Aug. 1, 1996, pp. 43-54. |
Gupta et al., “Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, Or, USA, pp. 564-571. |
Hacohen et al., “Non-Rigid Dense Correspondence with Applications for Image Enhancement”, ACM Transactions on Graphics, vol. 30, No. 4, Aug. 7, 2011, pp. 70:1-70:10. |
Hamilton, “JPEG File Interchange Format, Version 1.02”, Sep. 1, 1992, 9 pgs. |
Hardie, “A Fast Image Super-Algorithm Using an Adaptive Wiener Filter”, IEEE Transactions on Image Processing, Nov. 19, 2007, vol. 16, No. 12, pp. 2953-2964. |
Hasinoff et al., “Search-and-Replace Editing for Personal Photo Collections”, 2010 International Conference: Computational Photography (ICCP) Mar. 2010, pp. 1-8. |
Hernandez-Lopez et al., “Detecting objects using color and depth segmentation with Kinect sensor”, Procedia Technology, vol. 3, Jan. 1, 2012, pp. 196-204, XP055307680, ISSN: 2212-0173, DOI: 10.1016/j.protcy.2012.03.021. |
Holoeye Photonics AG, “Spatial Light Modulators”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918113140/http://holoeye.com/spatial-light-modulators/ on Oct. 13, 2017, 4 pages. |
Holoeye Photonics AG, “Spatial Light Modulators”, Oct. 2, 2013, Brochure retrieved from https://web.archive.org/web/20131002061028/http://holoeye.com/wp-content/uploads/Spatial_Light_Modulators.pdf on Oct. 13, 2017, 4 pgs. |
Horisaki et al., “Irregular Lens Arrangement Design to Improve Imaging Performance of Compound-Eye Imaging Systems”, Applied Physics Express, Jan. 29, 2010, vol. 3, pp. 022501-1-022501-3. |
Horisaki et al., “Superposition Imaging for Three-Dimensionally Space-Invariant Point Spread Functions”, Applied Physics Express, Oct. 13, 2011, vol. 4, pp. 112501-1-112501-3. |
Horn et al., “LightShop: Interactive Light Field Manipulation and Rendering”, In Proceedings of I3D, Jan. 1, 2007, pp. 121-128. |
Isaksen et al., “Dynamically Reparameterized Light Fields”, in Proceedings of Siggraph 2000, pgs. 297-306. |
International Search Report and Written Opinion for International Application PCT/US2014/025904, completed Jun. 10, 2014, dated Jul. 10, 2014, 6 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2010/057661, completed Mar. 9, 2011, 14 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/037670, dated Jul. 18, 2012, Completed Jul. 5, 2012, 9 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/044014, completed Oct. 12, 2012, 15 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/056151, completed Nov. 14, 2012, 10 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/058093, Report completed Nov. 15, 2012, 12 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/059813, completed Dec. 17, 2012, 8 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/022123, completed Jun. 9, 2014, dated Jun. 25, 2014, 5 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/023762, Completed May 30, 2014, dated Jul. 3, 2014, 6 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/024903, completed Jun. 12, 2014, dated Jun. 27, 2014, 13 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/024947, Completed Jul. 8, 2014, dated Aug. 5, 2014, 8 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/028447, completed Jun. 30, 2014, dated Jul. 21, 2014, 8 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/030692, completed Jul. 28, 2014, dated Aug. 27, 2014, 7 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/064693, Completed Mar. 7, 2015, dated Apr. 2, 2015, 15 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/066229, Completed Mar. 6, 2015, dated Mar. 19, 2015, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/067740, Completed Jan. 29, 2015, dated Mar. 3, 2015, 10 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/029052, completed Jun. 30, 2014, dated Jul. 24, 2014, 10 Pgs. |
Office Action for U.S. Appl. No. 12/952,106, dated Aug. 16, 2012, 12 pgs. |
“Exchangeable image file format for digital still cameras: Exif Version 2.2”, Japan Electronics and Information Technology Industries Association, Prepared by Technical Standardization Committee on AV & IT Storage Systems and Equipment, JEITA CP-3451, Apr. 2002, Retrieved from: http://www.exif.org/Exif2-2.PDF, 154 pgs. |
“File Formats Version 6”, Alias Systems, 2004, 40 pgs. |
“Light fields and computational photography”, Stanford Computer Graphics Laboratory, Retrieved from: http://graphics.stanford.edu/projects/lightfield/, Earliest publication online: Feb. 10, 1997, 3 pgs. |
Aufderheide et al., “A MEMS-based Smart Sensor System for Estimation of Camera Pose for Computer Vision Applications”, Research and Innovation Conference 2011, Jul. 29, 2011, pp. 1-10. |
Baker et al., “Limits on Super-Resolution and How to Break Them”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2002, vol. 24, No. 9, pp. 1167-1183. |
Barron et al., “Intrinsic Scene Properties from a Single RGB-D Image”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, Or, USA, pp. 17-24. |
Bennett et al., “Multispectral Bilateral Video Fusion”, 2007 IEEE Transactions on Image Processing, vol. 16, No. 5, May 2007, published Apr. 16, 2007, pp. 1185-1194. |
Bennett et al., “Multispectral Video Fusion”, Computer Graphics (ACM SIGGRAPH Proceedings), Jul. 25, 2006, published Jul. 30, 2006, 1 pg. |
Bertalmio et al., “Image Inpainting”, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000, ACM Pres/Addison-Wesley Publishing Co., pp. 417-424. |
Bertero et al., “Super-resolution in computational imaging”, Micron, Jan. 1, 2003, vol. 34, Issues 6-7, 17 pgs. |
Bishop et al., “Full-Resolution Depth Map Estimation from an Aliased Plenoptic Light Field”, ACCV Nov. 8, 2010, Part II, LNCS 6493, pp. 186-200. |
Bishop et al., “Light Field Superresolution”, Computational Photography (ICCP), 2009 IEEE International Conference, Conference Date Apr. 16-17, published Jan. 26, 2009, 9 pgs. |
Bishop et al., “The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution”, IEEE Transactions on Pattern Analysis and Machine Intelligence, May 2012, vol. 34, No. 5, published Aug. 18, 2011, pp. 972-986. |
Borman, “Topics in Multiframe Superresolution Restoration”, Thesis of Sean Borman, Apr. 2004, 282 pgs. |
Borman et al, “Image Sequence Processing”, Dekker Encyclopedia of Optical Engineering, Oct. 14, 2002, 81 pgs. |
Borman et al., “Block-Matching Sub-Pixel Motion Estimation from Noisy, Under-Sampled Frames—An Empirical Performance Evaluation”, Proc SPIE, Dec. 28, 1998, vol. 3653, 10 pgs. |
Borman et al., “Image Resampling and Constraint Formulation for Multi-Frame Super-Resolution Restoration”, Proc. SPIE, published Jul. 1, 2003, vol. 5016, 12 pgs. |
Borman et al., “Linear models for multi-frame super-resolution restoration under non-affine registration and spatially varying PSF”, Proc. SPIE, May 21, 2004, vol. 5299, 12 pgs. |
Borman et al., “Nonlinear Prediction Methods for Estimation of Clique Weighting Parameters in NonGaussian Image Models”, Proc. SPIE, Sep. 22, 1998, vol. 3459, 9 pgs. |
Borman et al., “Simultaneous Multi-Frame MAP Super-Resolution Video Enhancement Using Spatio-Temporal Priors”, Image Processing, 1999, ICIP 99 Proceedings, vol. 3, pp. 469-473. |
Borman et al., “Super-Resolution from Image Sequences—A Review”, Circuits & Systems, 1998, pp. 374-378. |
Bose et al., “Superresolution and Noise Filtering Using Moving Least Squares”, IEEE Transactions on Image Processing, Aug. 2006, vol. 15, Issue 8, published Jul. 17, 2006, pp. 2239-2248. |
Boye et al., “Comparison of Subpixel Image Registration Algorithms”, Proc. of SPIE—IS&T Electronic Imaging, Feb. 3, 2009, vol. 7246, pp. 72460X-1-72460X-9; doi: 10.1117/12.810369. |
Bruckner et al., “Artificial compound eye applying hyperacuity”, Optics Express, Dec. 11, 2006, vol. 14, No. 25, pp. 12076-12084. |
Bruckner et al., “Driving microoptical imaging systems towards miniature camera applications”, Proc. SPIE, Micro-Optics, May 13, 2010, 11 pgs. |
Bruckner et al., “Thin wafer-level camera lenses inspired by insect compound eyes”, Optics Express, Nov. 22, 2010, vol. 18, No. 24, pp. 24379-24394. |
Bryan et al., “Perspective Distortion from Interpersonal Distance is an Implicit Visual Cue for Social Judgments of Faces”, PLOS One, vol. 7, Issue 9, Sep. 26, 2012, e45301, doi:10.1371/journal.pone.0045301, 9 pages. |
Capel, “Image Mosaicing and Super-resolution”, Retrieved on Nov. 10, 2012, Retrieved from the Internet at URL:<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.2643&rep=rep1 &type=pdf>, 2001, 269 pgs. |
Carroll et al., “Image Warps for Artistic Perspective Manipulation”, ACM Transactions on Graphics (TOG), vol. 29, No. 4, Jul. 26, 2010, Article No. 127, 9 pgs. |
Chan et al., “Extending the Depth of Field in a Compound-Eye Imaging System with Super-Resolution Reconstruction”, Proceedings—International Conference on Pattern Recognition, Jan. 1, 2006, vol. 3, pp. 623-626. |
Chan et al., “Investigation of Computational Compound-Eye Imaging System with Super-Resolution Reconstruction”, IEEE, ISASSP, Jun. 19, 2006, pp. 1177-1180. |
Chan et al., “Super-resolution reconstruction in a computational compound-eye imaging system”, Multidim Syst Sign Process, published online Feb. 23, 2007, vol. 18, pp. 83-101. |
Chen et al., “Image Matting with Local and Nonlocal Smooth Priors”, CVPR '13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23, 2013, pp. 1902-1907. |
Chen et al., “Interactive deformation of light fields”, In Proceedings of SIGGRAPH I3D, Apr. 3, 2005, pp. 139-146. |
Chen et al., “KNN matting”, 2012 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 16-21, 2012, Providence, RI, USA, pp. 869-876. |
Extended European Search Report for EP Application No. 11781313.9, Completed Oct. 1, 2013, dated Oct. 8, 2013, 6 pages. |
Extended European Search Report for EP Application No. 13810429.4, Completed Jan. 7, 2016, dated Jan. 15, 2016, 6 Pgs. |
Extended European Search Report for European Application EP12782935.6, completed Aug. 28, 2014, dated Sep. 4, 2014, 7 Pgs. |
Extended European Search Report for European Application EP12804266.0, Report Completed Jan. 27, 2015, dated Feb. 3, 2015, 6 Pgs. |
Extended European Search Report for European Application EP12835041.0, Report Completed Jan. 28, 2015, dated Feb. 4, 2015, 7 Pgs. |
Extended European Search Report for European Application EP13751714.0, completed Aug. 5, 2015, dated Aug. 18, 2015, 8 Pgs. |
Extended European Search Report for European Application EP13810229.8, Report Completed Apr. 14, 2016, dated Apr. 21, 2016, 7 pgs. |
Extended European Search Report for European Application No. 13830945.5, Search completed Jun. 28, 2016, dated Jul. 7, 2016, 14 Pgs. |
Extended European Search Report for European Application No. 13841613.6, Search completed Jul. 18, 2016, dated Jul. 26, 2016, 8 Pgs. |
Extended European Search Report for European Application No. 14763087.5, Search completed Dec. 7, 2016, dated Dec. 19, 2016, 9 Pgs. |
Extended European Search Report for European Application No. 14860103.2, Search completed Feb. 23, 2017, dated Mar. 3, 2017, 7 Pgs. |
Supplementary European Search Report for EP Application No. 13831768.0, Search completed May 18, 2016, dated May 30, 2016, 13 Pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/059813, Search Completed Apr. 15, 2014, 7 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2013/059991, Issued Mar. 17, 2015, dated Mar. 26, 2015, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/US10/057661, issued May 22, 2012, dated May 31, 2012, 10 pages. |
International Preliminary Report on Patentability for International Application PCT/US11/036349, Issued Nov. 13, 2012, dated Nov. 22, 2012, 9 pages. |
Izadi et al., “KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera”, UIST'11, Oct. 16-19, 2011, Santa Barbara, CA, pp. 559-568. |
Janoch et al., “A category-level 3-D object dataset: Putting the Kinect to work”, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Nov. 6-13, 2011, Barcelona, Spain, pp. 1168-1174. |
Jarabo et al., “Efficient Propagation of Light Field Edits”, In Proceedings of SIACG 2011, pp. 75-80. |
Jiang et al., “Panoramic 3D Reconstruction Using Rotational Stereo Camera with Simple Epipolar Constraints”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 1, Jun. 17-22, 2006, New York, NY, USA, pp. 371-378. |
Joshi et al., “Synthetic Aperture Tracking: Tracking Through Occlusions”, ICCV IEEE 11th International Conference on Computer Vision; Publication Oct. 2007 Retrieved from the Internet: URL: http:l/ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4409032&isnumber= 4408819 on retrieved Jul. 28, 2014, pp. 1-8. |
Kang et al., “Handling Occlusions inn Dense Multi-View Stereo”, Computer Vision and Pattern Recognition, 2001, vol. 1, pp. I-10-I-110. |
Kim et al., “Scene reconstruction from high spatio-angular resolution light fields”, ACM Transactions on Graphics (TOG)—SIGGRAPH 2013 Conference Proceedings, vol. 32 Issue 4, Article 73, Jul. 21, 2013, 11 pages. |
Kitamura et al., “Reconstruction of a high-resolution image on a compound-eye image-capturing system”, Applied Optics, Mar. 10, 2004, vol. 43, No. 8, pp. 1719-1727. |
Konolige, Kurt, “Projected Texture Stereo”, 2010 IEEE International Conference on Robotics and Automation, May 3-7, 2010, p. 148-155. |
Krishnamurthy et al., “Compression and Transmission of Depth Maps for Image-Based Rendering”, Image Processing, 2001, pp. 828-831. |
Kubota et al., “Reconstructing Dense Light Field From Array of Multifocus Images for Novel View Synthesis”, IEEE Transactions on Image Processing, vol. 16, No. 1, Jan. 2007, pp. 269-279. |
Kutulakos et al., “Occluding Contour Detection Using Affine Invariants and Purposive Viewpoint Control”, Computer Vision and Pattern Recognition, Proceedings CVPR 94, Seattle, Washington, Jun. 21-23, 1994, 8 pgs. |
Lai et al., “A Large-Scale Hierarchical Multi-View RGB-D Object Dataset”, Proceedings—IEEE International Conference on Robotics and Automation, Conference Date May 9-13, 2011, 8 pgs., DOI:10.1109/ICRA.201135980382. |
Lane et al., “A Survey of Mobile Phone Sensing”, IEEE Communications Magazine, vol. 48, Issue 9, Sep. 2010, pp. 140-150. |
Lee et al., “Automatic Upright Adjustment of Photographs”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 877-884. |
Lee et al., “Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module”, ETRI Journal, vol. 31, No. 6, Dec. 2009, pp. 695-702. |
Lee et al., “Nonlocal matting”, CVPR 2011, Jun. 20-25, 2011, pp. 2193-2200. |
LensVector, “How LensVector Autofocus Works”, printed Nov. 2, 2012 from http://www.lensvector.com/overview.html, 1 pg. |
Levin et al., “A Closed Form Solution to Natural Image Matting”, Pattern Analysis and Machine Intelligence, Dec. 18, 2007, vol. 30, Issue 2, 8 pgs. |
Levin et al., “Spectral Matting”, 2007 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 17-22, 2007, Minneapolis, MN, USA, pp. 1-8. |
Levoy, “Light Fields and Computational Imaging”, IEEE Computer Society, Sep. 1, 2006, vol. 39, Issue No. 8, pp. 46-55. |
Levoy et al., “Light Field Rendering”, Proc. ADM SIGGRAPH '96, pp. 1-12. |
Li et al., “A Hybrid Camera for Motion Deblurring and Depth Map Super-Resolution”, Jun. 23-28, 2008, IEEE Conference on Computer Vision and Pattern Recognition, 8 pgs. Retrieved from www.eecis.udel.edu/˜jye/lab_research/08/deblur-feng.pdf on Feb. 5, 2014. |
Li et al., “Fusing Images Wth Different Focuses Using Support Vector Machines”, IEEE Transactions on Neural Networks, vol. 15, No. 6, Nov. 8, 2004, pp. 1555-1561. |
Lim, Jongwoo, “Optimized Projection Pattern Supplementing Stereo Systems”, 2009 IEEE International Conference on Robotics and Automation, May 12-17, 2009, pp. 2823-2829. |
Liu et al., “Virtual View Reconstruction Using Temporal Information”, 2012 IEEE International Conference on Multimedia and Expo, 2012, pp. 115-120. |
Lo et al., “Stereoscopic 3D Copy & Paste”, ACM Transactions on Graphics, vol. 29, No. 6, Article 147, Dec. 2010, pp. 147:1-147:10. |
Martinez et al., “Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis”, Analytical Chemistry (American Chemical Society), vol. 80, No. 10, May 15, 2008, pp. 3699-3707. |
Mcguire et al., “Defocus video matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2005, vol. 24, Issue 3, Jul. 2005, pp. 567-576. |
Merkle et al., “Adaptation and optimization of coding algorithms for mobile 3DTV”, Mobile3DTV Project No. 216503, Nov. 2008, 55 pgs. |
Mitra et al., “Light Field Denoising, Light Field Superresolution and Stereo Camera Based Refocussing using a GMM Light Field Patch Prior”, Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on Jun. 16-21, 2012, pp. 22-28. |
Moreno-Noguer et al., “Active Refocusing of Images and Videos”, Journal ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Jul. 2007, Article No. 67 10 pages. |
Muehlebach, “Camera Auto Exposure Control for VSLAM Applications”, Studies on Mechatronics, Swiss Federal Institute of Technology Zurich, Autumn Term 2010 course, 67 pgs. |
Nayar, “Computational Cameras: Redefining the Image”, IEEE Computer Society, Aug. 14, 2006, pp. 30-38. |
Ng, “Digital Light Field Photography”, Thesis, Jul. 2006, 203 pgs. |
Ng et al., “Light Field Photography with a Hand-held Plenoptic Camera”, Stanford Tech Report CTSR 2005-02, Apr. 20, 2005, pp. 1-11. |
Ng et al., “Super-Resolution Image Restoration from Blurred Low-Resolution Images”, Journal of Mathematical Imaging and Vision, 2005, vol. 23, pp. 367-378. |
Nguyen et al., “Error Analysis for Image-Based Rendering with Depth Information”, IEEE Transactions on Image Processing, vol. 18, Issue 4, Apr. 2009, pp. 703-716. |
Nguyen et al., “Image-Based Rendering with Depth Information Using the Propagation Algorithm”, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, vol. 5, Mar. 23-23, 2005, pp. II-589-II-592. |
Nishihara, H.K., “PRISM: A Practical Real-Time Imaging Stereo Matcher”, Massachusetts Institute of Technology, A.I. Memo 780, May 1984, 32 pgs. |
Nitta et al., “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method”, Applied Optics, May 1, 2006, vol. 45, No. 13, pp. 2893-2900. |
Nomura et al., “Scene Collages and Flexible Camera Arrays”, Proceedings of Eurographics Symposium on Rendering, Jun. 2007, 12 pgs. |
Park et al., “Multispectral Imaging Using Multiplexed Illumination”, 2007 IEEE 11th International Conference on Computer Vision, Oct. 14-21, 2007, Rio de Janeiro, Brazil, pp. 1-8. |
Park et al., “Super-Resolution Image Reconstruction”, IEEE Signal Processing Magazine, May 2003, pp. 21-36. |
Parkkinen et al., “Characteristic Spectra of Munsell Colors”, Journal of the Optical Society of America A, vol. 6, Issue 2, Feb. 1989, pp. 318-322. |
Perwass et al., “Single Lens 3D-Camera with Extended Depth-of-Field”, printed from www.raytrix.de, Jan. 22, 2012, 15 pgs. |
Pham et al., “Robust Super-Resolution without Regularization”, Journal of Physics: Conference Series 124, Jul. 2008, pp. 1-19. |
Philips 3D Solutions, “3D Interface Specifications, White Paper”, 2005-2008 Philips Electronics Nederland B.V., Philips 3D Solutions retrieved from www.philips.com/3dsolutions, Feb. 15, 2008, 29 pgs. |
Polight, “Designing Imaging Products Using Reflowable Autofocus Lenses”, printed Nov. 2, 2012 from http://www.polight.no/tunable-polymer-autofocus-lens-html--11.html, 1 pg. |
Pouydebasque et al., “Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers”, Sensors and Actuators A: Physical, vol. 172, Issue 1, Dec. 2011, pp. 280-286. |
Protter et al., “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction”, IEEE Transactions on Image Processing, Dec. 2, 2008, vol. 18, No. 1, pp. 36-51. |
Radtke et al., “Laser lithographic fabrication and characterization of a spherical artificial compound eye”, Optics Express, Mar. 19, 2007, vol. 15, No. 6, pp. 3067-3077. |
Rajan et al., “Simultaneous Estimation of Super Resolved Scene and Depth Map from Low Resolution Defocused Observations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 9, Sep. 8, 2003, pp. 1-16. |
Rander et al., “Virtualized Reality: Constructing Time-Varying Virtual Worlds From Real World Events”, Proc. of IEEE Visualization '97, Phoenix, Arizona, Oct. 19-24, 1997, pp. 277-283, 552. |
Extended European Search Report for European Application No. 15847754.7, Search completed Jan. 25, 2018, dated Feb. 9, 2018, 8 Pgs. |
Drulea et al., “Motion Estimation Using the Correlation Transform”, IEEE Transactions on Image Processing, Aug. 2013, vol. 22, No. 8, pp. 3260-3270, first published May 14, 2013. |
Van Der Wal et al., “The Acadia Vision Processor”, Proceedings Fifth IEEE International Workshop on Computer Architectures for Machine Perception, Sep. 13, 2000, Padova, Italy, pp. 31-40. |
Rhemann et al, “Fast Cost-Volume Filtering for Visual Correspondence and Beyond”, IEEE Trans. Pattern Anal. Mach. Intell, 2013, vol. 35, No. 2, pp. 504-511. |
Rhemann et al., “A perceptually motivated online benchmark for image matting”, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 20-25, 2009, Miami, FL, USA, pp. 1826-1833. |
Robertson et al., “Dynamic Range Improvement Through Multiple Exposures”, In Proc. of the Int. Conf. on Image Processing, 1999, 5 pgs. |
Robertson et al., “Estimation-theoretic approach to dynamic range enhancement using multiple exposures”, Journal of Electronic Imaging, Apr. 2003, vol. 12, No. 2, pp. 219-228. |
Roy et al., “Non-Uniform Hierarchical Pyramid Stereo for Large Images”, Computer and Robot Vision, 2002, pp. 208-215. |
Sauer et al., “Parallel Computation of Sequential Pixel Updates in Statistical Tomographic Reconstruction”, ICIP 1995 Proceedings of the 1995 International Conference on Image Processing, Date of Conference: Oct. 23-26, 1995, pp. 93-96. |
Scharstein et al., “High-Accuracy Stereo Depth Maps Using Structured Light”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), Jun. 2003, vol. 1, pp. 195-202. |
Seitz et al., “Plenoptic Image Editing”, International Journal of Computer Vision 48, Conference Date Jan. 7, 1998, 29 pgs, DOI: 10.1109/ICCV.1998.710696 ⋅ Source: DBLP Conference: Computer Vision, Sixth International Conference. |
Shotton et al., “Real-time human pose recognition in parts from single depth images”, CVPR 2011, Jun. 20-25, 2011, Colorado Springs, CO, USA, pp. 1297-1304. |
Shum et al., “A Review of Image-based Rendering Techniques”, Visual Communications and Image Processing 2000, May 2000, 12 pgs. |
Shum et al., “Pop-Up Light Field: An Interactive Image-Based Modeling and Rendering System”, Apr. 2004, ACM Transactions on Graphics, vol. 23, No. 2, pp. 143-162. Retrieved from http://131.107.65.14/en-us/um/people/jiansun/papers/PopupLightField_TOG.pdf on Feb. 5, 2014. |
Silberman et al., “Indoor segmentation and support inference from RGBD images”, ECCV'12 Proceedings of the 12th European conference on Computer Vision, vol. Part V, Oct. 7-13, 2012, Florence, Italy, pp. 746-760. |
Stober, “Stanford researchers developing 3-D camera with 12,616 lenses”, Stanford Report, Mar. 19, 2008, Retrieved from: http://news.stanford.edu/news/2008/march19/camera-031908.html, 5 pgs. |
Stollberg et al., “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects”, Optics Express, Aug. 31, 2009, vol. 17, No. 18, pp. 15747-15759. |
Sun et al., “Image Super-Resolution Using Gradient Profile Prior”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, 8 pgs.; DOI: 10.1109/CVPR.2008.4587659. |
Taguchi et al., “Rendering-Oriented Decoding for a Distributed Multiview Coding System Using a Coset Code”, Hindawi Publishing Corporation, EURASIP Journal on Image and Video Processing, vol. 2009, Article ID 251081, Online: Apr. 22, 2009, 12 pages. |
Takeda et al., “Super-resolution Without Explicit Subpixel Motion Estimation”, IEEE Transaction on Image Processing, Oct. 1, 2009, vol. 18, No. 9, pp. 1958-1975. |
Tallon et al., “Upsampling and Denoising of Depth Maps Via Joint-Segmentation”, 20th European Signal Processing Conference, Aug. 27-31, 2012, 5 pgs. |
Tanida et al., “Color imaging with an integrated compound imaging system”, Optics Express, Sep. 8, 2003, vol. 11, No. 18, pp. 2109-2117. |
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification”, Applied Optics, Apr. 10, 2001, vol. 40, No. 11, pp. 1806-1813. |
Tao et al., “Depth from Combining Defocus and Correspondence Using Light-Field Cameras”, ICCV '13 Proceedings of the 2013 IEEE International Conference on Computer Vision, Dec. 1, 2013, pp. 673-680. |
Taylor, “Virtual camera movement: The way of the future?”, American Cinematographer vol. 77, No. 9, Sep. 1996, 93-100. |
Tseng et al., “Automatic 3-D depth recovery from a single urban-scene image”, 2012 Visual Communications and Image Processing, Nov. 27-30, 2012, San Diego, CA, USA, pp. 1-6. |
Vaish et al., “Reconstructing Occluded Surfaces Using Synthetic Apertures: Stereo, Focus and Robust Measures”, Proceeding, CVPR '06 Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—vol. 2, pp. 2331-2338. |
Vaish et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform”, IEEE Workshop on A3DISS, CVPR, 2005, 8 pgs. |
Vaish et al., “Using Plane + Parallax for Calibrating Dense Camera Arrays”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004, 8 pgs. |
Veilleux, “CCD Gain Lab: The Theory”, University of Maryland, College Park—Observational Astronomy (ASTR 310), Oct. 19, 2006, pp. 1-5 (online], [retrieved on May 13, 2014]. Retrieved from the Internet <URL: http://www.astro.umd.edu/˜veilleux/ASTR310/fall06/ccd_theory.pdf, 5 pgs. |
Venkataraman et al., “PiCam: An Ultra-Thin High Performance Monolithic Camera Array”, ACM Transactions on Graphics (TOG), ACM, US, vol. 32, No. 6, 1 Nov. 1, 2013, pp. 1-13. |
Vetro et al., “Coding Approaches for End-To-End 3D TV Systems”, Mitsubishi Electric Research Laboratories, Inc., TR2004-137, Dec. 2004, 6 pgs. |
Viola et al., “Robust Real-time Object Detection”, Cambridge Research Laboratory, Technical Report Series, Compaq, CRL 2001/01, Feb. 2001, Printed from: http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-2001-1.pdf, 30 pgs. |
Vuong et al., “A New Auto Exposure and Auto White-Balance Algorithm to Detect High Dynamic Range Conditions Using CMOS Technology”, Proceedings of the World Congress on Engineering and Computer Science 2008, WCECS 2008, Oct. 22-24, 2008. |
Wang, “Calculation Image Position, Size and Orientation Using First Order Properties”, Dec. 29, 2010, OPTI521 Tutorial, 10 pgs. |
Wang et al., “Automatic Natural Video Matting with Depth”, 15th Pacific Conference on Computer Graphics and Applications, PG '07, Oct. 29-Nov. 2, 2007, Maui, HI, USA, pp. 469-472. |
Wang et al., “Image and Video Matting: A Survey”, Foundations and Trends, Computer Graphics and Vision, vol. 3, No. 2, 2007, pp. 91-175. |
Wang et al., “Soft scissors: an interactive tool for realtime high quality matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Article 9, Jul. 2007, 6 pages, published Aug. 5, 2007. |
Wetzstein et al., “Computational Plenoptic Imaging”, Computer Graphics Forum, 2011, vol. 30, No. 8, pp. 2397-2426. |
Wheeler et al., “Super-Resolution Image Synthesis Using Projections Onto Convex Sets in the Frequency Domain”, Proc. SPIE, Mar. 11, 2005, vol. 5674, 12 pgs. |
Wieringa et al., “Remote Non-invasive Stereoscopic Imaging of Blood Vessels: First In-vivo Results of a New Multispectral Contrast Enhancement Technology”, Annals of Biomedical Engineering, vol. 34, No. 12, Dec. 2006, pp. 1870-1878, Published online Oct. 12, 2006. |
Wikipedia, “Polarizing Filter (Photography)”, retrieved from http://en.wikipedia.org/wiki/Polarizing_filter_(photography) on Dec. 12, 2012, last modified on Sep. 26, 2012, 5 pgs. |
Wilburn, “High Performance Imaging Using Arrays of Inexpensive Cameras”, Thesis of Bennett Wilburn, Dec. 2004, 128 pgs. |
Wilburn et al., “High Performance Imaging Using Large Camera Arrays”, ACM Transactions on Graphics, Jul. 2005, vol. 24, No. 3, pp. 1-12. |
Wilburn et al., “High-Speed Videography Using a Dense Camera Array”, Proceeding, CVPR'04 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 294-301. |
Wilburn et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002, SPIE Electronic Imaging, 2002, 8 pgs. |
Wippermann et al., “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective”, Proceedings of SPIE, Optical Design and Engineering II, Oct. 15, 2005, 59622C-1-59622C-11. |
Wu et al., “A virtual view synthesis algorithm based on image inpainting”, 2012 Third International Conference on Networking and Distributed Computing, Hangzhou, China, Oct. 21-24, 2012, pp. 153-156. |
Xu, Ruifeng , “Real-Time Realistic Rendering and High Dynamic Range Image Display and Compression”, Dissertation, School of Computer Science in the College of Engineering and Computer Science at the University of Central Florida, Orlando, Florida, Fall Term 2005, 192 pgs. |
Yang et al., “A Real-Time Distributed Light Field Camera”, Eurographics Workshop on Rendering (2002), published Jul. 26, 2002, pp. 1-10. |
Yang et al., “Superresolution Using Preconditioned Conjugate Gradient Method”, Proceedings of SPIE—The International Society for Optical Engineering, Jul. 2002, 8 pgs. |
Yokochi et al., “Extrinsic Camera Parameter Estimation Based-on Feature Tracking and GPS Data”, 2006, Nara Institute of Science and Technology, Graduate School of Information Science, LNCS 3851, pp. 369-378. |
Zhang et al., “A Self-Reconfigurable Camera Array”, Eurographics.Symposium on Rendering, published Aug. 8, 2004, 12 pgs. |
Zhang et al., “Depth estimation, spatially variant image registration, and super-resolution using a multi-lenslet camera”, Proceedings of SPIE, vol. 7705, Apr. 23, 2010, pp. 770505-770505-8, XP055113797 ISSN: 0277-786X, DOI: 10.1117/12.852171. |
Zheng et al., “Balloon Motion Estimation Using Two Frames”, Proceedings of the Asilomar Conference on Signals, Systems and Computers, IEEE, Comp. Soc. Press, US, vol. 2 of 02, Nov. 4, 1991, pp. 1057-1061. |
Zhu et al., “Fusion of Time-of-Flight Depth and Stereo for High Accuracy Depth Maps”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, Anchorage, AK, USA, pp. 1-8. |
Zomet et al., “Robust Super-Resolution”, IEEE, 2001, pp. 1-6. |
International Preliminary Report on Patentability for International Application PCT/US2013/056065, Issued Feb. 24, 2015, dated Mar. 5, 2015, 4 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/062720, Issued Mar. 31, 2015, dated Apr. 9, 2015, 8 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/024987, dated Aug. 12, 2014, 13 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/027146, completed Aug. 26, 2014, dated Sep. 4, 2014, 10 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/039155. completed Nov. 4, 2014, dated Nov. 13, 2014, 10 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/046002, issued Dec. 31, 2014, dated Jan. 8, 2015, 6 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/048772, issued Dec. 31, 2014, dated Jan. 8, 2015, 8 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/056502, Issued Feb. 24, 2015, dated Mar. 5, 2015, 7 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/069932, issued May 19, 2015, dated May 28, 2015, 12 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/017766, issued Aug. 25, 2015, dated Sep. 3, 2015, 8 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/018084, issued Aug. 25, 2015, dated Sep. 3, 2015, 11 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/018116, issued Sep. 15, 2015, dated Sep. 24, 2015, 12 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/021439, issued Sep. 15, 2015, dated Sep. 24, 2015, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/022118, issued Sep. 8, 2015, dated Sep. 17, 2015, 4 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/022123, issued Sep. 8, 2015, dated Sep. 17, 2015, 4 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/022774, issued Sep. 22, 2015, dated Oct. 1, 2015, 5 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/023762, issued Mar. 2, 2015, dated Mar. 9, 2015, 10 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/024407, issued Sep. 15, 2015, dated Sep. 24, 2015, 8 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/024903, issued Sep. 15, 2015, dated Sep. 24, 2015, 12 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/024947, issued Sep. 15, 2015, dated Sep. 24, 2015, 7 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/025100, issued Sep. 15, 2015, dated Sep. 24, 2015, 4 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/025904, issued Sep. 15, 2015, dated Sep. 24, 2015, 5 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/028447, issued Sep. 15, 2015, dated Sep. 24, 2015, 7 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/029052, issued Sep. 15, 2015, dated Sep. 24, 2015, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/030692, issued Sep. 15, 2015, dated Sep. 24, 2015, 6 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/064693, issued May 10, 2016, dated May 19, 2016, 14 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/066229, issued May 24, 2016, dated Jun. 6, 2016, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/067740, issued May 31, 2016, dated Jun. 9, 2016, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2015/019529, issued Sep. 13, 2016, dated Sep. 22, 2016, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2015/053013, issued Apr. 4, 2017, dated Apr. 13, 2017, 8 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/046002, completed Nov. 13, 2013, dated Nov. 29, 2013, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/056065, Completed Nov. 25, 2013, dated Nov. 26, 2013, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/059991, Completed Feb. 6, 2014, dated Feb. 26, 2014, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2009/044687, completed Jan. 5, 2010, dated Jan. 13, 2010, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2011/064921, Completed Feb. 25, 2011, dated Mar. 6, 2012, 17 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/024987, Completed Mar. 27, 2013, dated Apr. 15, 2013, 14 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/027146, completed Apr. 2, 2013, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/039155, completed Jul. 1, 2013, dated Jul. 11, 2013, 11 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/048772, Completed Oct. 21, 2013, dated Nov. 8, 2013, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/056502, Completed Feb. 18, 2014, dated Mar. 19, 2014, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/069932, Completed Mar. 14, 2014, dated Apr. 14, 2014, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2015/019529, completed May 5, 2015, dated Jun. 8, 2015, 11 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2015/053013, completed Dec. 1, 2015, dated Dec. 30, 2015, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/036349, dated Aug. 22, 2011, 11 pgs. |
International Search Report and Written Opinion for International Application PCT/US2013/062720, completed Mar. 25, 2014, dated Apr. 21, 2014, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/017766, completed May 28, 2014, dated Jun. 18, 2014, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/018084, completed May 23, 2014, dated Jun. 10, 2014, 12 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/018116, completed May 13, 2014, dated Jun. 2, 2014, 12 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/021439, completed Jun. 5, 2014, dated Jun. 20, 2014, 10 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/022118, completed Jun. 9, 2014, dated Jun. 25, 2014, 5 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/022774 completed Jun. 9, 2014, dated Jul. 14, 2014, 6 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/024407, completed Jun. 11, 2014, dated Jul. 8, 2014, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/025100, completed Jul. 7, 2014, dated Aug. 7, 2014, 5 Pgs. |
Extended European Search Report for European Application No. 14865463.5, Search completed May 30, 2017, dated Jun. 8, 2017, 6 Pgs. |
Extended European Search Report for European Application No. 18151530.5, Completed Mar. 28, 2018, dated Apr. 20, 2018, 11 pages. |
U.S. Appl. No. 61/527,007. |
International Preliminary Report on Patentability for International Application No. PCT/US2009/044687, Completed Jul. 30, 2010, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2011/064921, Report issued Jun. 18, 2013, dated Jun. 27, 2013, 14 Pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/056151, Report Issued Mar. 25, 2014, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/056166, Report Issued Mar. 25, 2014, Report dated Apr. 3, 2014 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/058093, Report Issued Sep. 18, 2013, dated Oct. 22, 2013, 40 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2012/056166, Report Completed Nov. 10, 2012, dated Nov. 20, 2012, 9 pgs. |
Supplementary European Search Report for European Application No. 09763194.9, Search Completed Nov. 7, 2011, dated Nov. 29, 2011, 9 pages. |
Collins et al., “An Active Camera System for Acquiring Multi-View Video”, IEEE 2002 International Conference on Image Processing, Date of Conference: Sep. 22-25, 2002, Rochester, NY, 4 pgs. |
Holoeye Photonics AG, “LC 2012 Spatial Light Modulator (transmissive)”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918151716/http://holoeye.com/spatial-light-modulators/lc-2012-spatial-light-modulator/ on Oct. 20, 2017, 3 pages. |
Joshi, Neel S., “Color Calibration for Arrays of Inexpensive Image Sensors”, Master's with Distinction in Research Report, Stanford University, Department of Computer Science, Mar. 2004, 30 pgs. |
Robert et al., “Dense Depth Map Reconstruction :A Minimization and Regularization Approach which Preserves Discontinuities”, European Conference on Computer Vision (ECCV), pp. 439-451, 1996. |
Number | Date | Country | |
---|---|---|---|
20170244960 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
62057196 | Sep 2014 | US | |
62106168 | Jan 2015 | US |