Systems and methods for dynamic neurophysiological stimulation

Information

  • Patent Grant
  • 11992339
  • Patent Number
    11,992,339
  • Date Filed
    Friday, May 3, 2019
    5 years ago
  • Date Issued
    Tuesday, May 28, 2024
    6 months ago
Abstract
An intraoperative neurophysiological monitoring (IONM) system for identifying and assessing neural structures comprises at least one probe, at least one reference electrode, at least one strip or grid electrode, at least one sensing electrode, and a stimulation module. Threshold responses determined by stimulation during a surgical procedure are used to identify and assess functionality of neural structures. The identified neural structures are avoided and preserved while diseased or damaged tissue is resected during said surgical procedure.
Description
FIELD

The present specification is related generally to the field of neurophysiological stimulation. More specifically the present specification is related to a stimulation module that enables user-preferred selection of one or any combination of a plurality of low current stimulation outputs or channels.


BACKGROUND

Intraoperative neurophysiological monitoring (IONM) is directed towards identifying, mapping and monitoring neural structures in accordance with their functions with a goal of preserving the structural integrity of these neural structures during physically invasive procedures such as surgery.


In some methods, identifying, mapping and monitoring neural structures comprises applying electrical stimulation at or near an area where the target neural structures are believed to be located. Application of the electrical stimulation is transmitted through the nervous system structures to excite or depress the associated response(s) or function(s). For example, an electrical impulse is generated in the muscle(s), as a result of the excitation, that can be sensed using recording electrodes, thereby indicating presence and functionality of a neural structure to a surgeon. For example, cortical stimulation mapping (CSM) is a type of electrocorticography that involves a physically invasive procedure and aims to localize the function of specific brain regions through direct electrical stimulation of the cerebral cortex.


Prior art nerve integrity monitoring systems pose limitations when used across varied surgical procedures and accompanied neuro-stimulation scenarios. As an example, a critical limitation of majority of prior art nerve integrity monitoring systems is the availability of a limited number of low current outputs or channels for delivering stimulation to a plurality of neural regions thereby limiting the ability to simultaneously stimulate multiple nerves or multiple branches of single nerves. For example, the ES-IX stimulator, from Cadwell Industries Inc., also the Applicant of the present specification, has a maximum of one low current stimulation output. Such limitation necessitates frequent manual intervention, such as having to move the connections of stimulation components (for example, electrodes and probes) to change the location of the delivered stimulus on a patient's anatomy.


Another drawback of prior art nerve integrity monitoring systems is that these are not designed to provide electrical stimulation of sufficient amplitude to elicit excitation activity of the muscles. Another limitation is a lack of integration of the stimulators with a multi-modality monitoring system. For example, the Nicolet® Cortical Stimulator supports recording of only electroencephalography and connection of a single probe (bipolar). The Inomed® stimulator also supports connection of a single probe.


As a result of these limitations, prior art nerve integrity monitoring systems are associated with various disadvantages including the need for additional operational steps which increase the duration of the surgical procedures to the detriment of patients and medical personnel, increased complexity and confusion associated with intraoperative neural monitoring, a need for greater human and/or mechanical intervention and an inability to efficiently integrate multiple neural stimulation and monitoring modalities.


Thus, there is a need for systems and methods that enable a user to select all or any combination of multiple stimulation modalities available to the user. There is also a need to enable the user to stimulate the neurological system with minimal, less frequent and more streamlined manual or electromechanical intervention.


SUMMARY

The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods, which are meant to be exemplary and illustrative, and not limiting in scope. The present application discloses numerous embodiments.


The present specification discloses a method of using cortical stimulation to identify and assess neural structures during a surgical procedure, the method comprising: providing an intraoperative neurophysiological monitoring (IONM) system comprising at least one probe, at least one reference electrode, at least one strip electrode or grid electrode, at least one sensing electrode, and a stimulation module; placing the at least one reference electrode in a perimeter of a surgical field of a patient; positioning the at least one probe and/or the at least one strip electrode or grid electrode at target locations on the anatomy of said patient; preparing for recordation of said patient's responses to stimulation by positioning said at least one sensing electrode on said patient's anatomy; initiating a stimulation protocol; adjusting stimulation parameters of the stimulation protocol to determine a threshold response; and identifying or assessing the neural structures based on said threshold response, wherein assessing comprises determining if the patient's anatomy is functioning in a manner indicative of an underlying disease or, alternatively, is functioning in a non-pathological manner.


Optionally, the stimulation protocol is a motor cortex stimulation protocol, a speech stimulation protocol, or a language stimulation protocol.


Optionally, said stimulation module comprises a first plurality of output connectors and a second plurality of probe ports. Optionally, the first plurality of output connectors comprise at least 12 output connectors. Optionally, the first plurality of output connectors are configured to enable connection to the at least one strip electrode or grid electrode, wherein the at least one strip electrode or grid electrode has a plurality of contacts and wherein a total number of the plurality of contacts does not exceed a total number of the first plurality of output connectors. Optionally, the second plurality of probe ports comprises a first probe port and a second probe port, wherein each of the first probe port and the second probe port is configured to connect to the at least one probe, wherein the at least one probe comprises passive probes, and wherein the passive probes comprise at least one of a monopolar probe or a bipolar probe. Optionally, each of the plurality of output connectors are configurable as either an anode or a cathode through a user interface in data communication with the IONM system. Optionally, the method further comprises providing a user interface in data communication with the IONM system, receiving, via the user interface, user-defined stimuli, and delivering signals representative of the user-defined stimuli to pairs of the plurality of output connectors, each of the plurality of output connectors being configurable as either an anode or a cathode through the user interface. Optionally, the second plurality of probe ports comprises a probe port adapted to connect the at least one probe, wherein the at least one probe comprises an anode and a cathode and wherein the probe port comprises first and second outputs for connection of to the anode and the cathode of the at least one probe, a first pair of connection ports adapted to connect to a power supply and a second pair of connection ports adapted to connect to a communication module.


Optionally, the at least one sensing electrode comprises an electromyography needle electrode.


Optionally, the stimulation protocol comprises a multi-pulse train having 2 to 10 pulses wherein each of the pulses is defined by a pulse width in a range of 50 μsec to 1000 μsec, an inter-stimulus interval in a range of 0.5 to 10 milliseconds and a pulse amplitude in a range of 0.01 mA to 20 mA.


The present specification also discloses a method of using direct nerve stimulation to identify nerve fibers and nerve pathways during a surgical procedure, the method comprising: providing an intraoperative neurophysiological monitoring (IONM) system comprising at least one probe, at least one sensing electrode, and a stimulation module, wherein the stimulation module comprises at least twelve output connectors and a plurality of probe ports; positioning the at least one probe at a first target location on the patient; positioning the at least one sensing electrode at a second target location in the patient; initiating a direct nerve stimulation protocol; adjusting stimulation parameters of the direct nerve stimulation protocol to determine a threshold motor response; and identifying the nerve fibers and nerve pathways based on the threshold motor response.


Optionally, the IONM system further comprises at least one strip electrode or grid electrode having a total number of contacts not exceeding a total number of the at least twelve output connectors, wherein the at least twelve output connectors are adapted to connect to the at least one strip electrode or grid electrode.


Optionally, the plurality of probe ports comprises a first probe port and a second probe port and is configured to connect to the at least one probe, wherein the at least one probe comprises at least one passive monopolar probe or passive bipolar probe.


Optionally, each of the at least twelve output connectors are configurable as either an anode or a cathode.


Optionally, the method further comprises providing a user interface in data communication with the IONM system, receiving, via the user interface, user-defined stimuli, and delivering signals representative of the user-defined stimuli to pairs of the plurality of output connectors, each of the plurality of output connectors being configurable as either an anode or a cathode through the user interface.


Optionally, the plurality of probe ports comprises a probe port configured to connect to the at least one probe, wherein the at least one probe comprises an anode connection and a cathode connection, and wherein the probe port comprises first and second outputs adapted to connect to the anode and the cathode of the probe port, a first pair of connection ports adapted to connect to a power supply and a second pair of connection ports adapted to connect to a transceiver.


Optionally, the at least one sensing electrode comprises an electromyography needle electrode.


Optionally, the direct nerve stimulation protocol comprises a single pulse stimulation, wherein the single pulse has a frequency of 0.05 Hz to 90 Hz, a pulse width of 50 μsec to 1000 μsec, an interval between pulses of 0.5 millisecond to 10 milliseconds and a pulse amplitude in a range of 0.01 mA to 20 mA, with 2 mA or less for cranial nerves and 5 mA or less for peripheral nerves.


Optionally, the IONM system further comprises a handle having a proximal end configured to connect to the stimulation module and a distal end configured to attach to the at least one probe. Optionally, the handle comprises a first visual indicator, a second visual indicator, and an actuator configured to manually or automatically switch the stimulation module between a first mode of operation and a second mode operation depending upon a type of the at least one probe. Optionally, first visual indicator is configured to indicate at least one of the first mode of operation, the second mode of operation, a connection state of the at least one probe or what part of the at least one probe is active. Optionally, the second visual indicator provides a first indication signifying that a site of stimulation is at a first distance from a nerve and a second indication signifying that the site of stimulation is at a second distance from the nerve, wherein the first distance is less than the second distance.


The present specification also discloses a method of using cortical stimulation to identify neural structures during a surgical procedure, the method comprising: providing an intraoperative neurophysiological monitoring (IONM) system comprising at least one probe, at least one reference electrode, at least one strip or grid electrode, at least one sensing electrode, and a stimulation module; placing said at least one reference electrode in a perimeter of a surgical field of a patient; positioning said at least one probe and said at least ones strip or grid electrode at target locations on the anatomy of said patient; preparing for recordation of said patient's responses to stimulation by positioning said at least one sensing electrode on said patient's anatomy; initiating a stimulation protocol; adjusting stimulation parameters of said stimulation protocol to determine a threshold response; and identifying said neural structures based on said threshold response.


Optionally, the stimulation protocol is a motor cortex stimulation protocol, a speech stimulation protocol, or a language stimulation protocol.


Optionally, said stimulation module comprises a first plurality of twelve output connectors and a second plurality of probe ports.


Optionally, said twelve output connectors enable connection to said at least one strip or grid electrode having multiple contacts not exceeding said twelve output connectors.


Optionally, said plurality of probe ports comprises a first probe port and a second probe port and enables connection to said at least one probe, wherein said at least one probe comprises passive and smart probes, and wherein said passive probes include monopolar and bipolar probes.


Optionally, each of the twelve output connectors are configurable as either an anode or a cathode allowing user-defined stimuli to be delivered to arbitrary anode and cathode pairs.


Optionally, said second plurality of probe ports further comprises a third probe port, said third probe port configured for connecting a smart probe and comprising a pair of outputs for connection of an anode and a cathode of said smart probe and a first connection port for power and a second connection port for communications.


Optionally, said at least one sensing electrode includes an EMG needle electrode.


Optionally, said stimulation protocol comprises a multi-pulse train of 3 to 5 pulses, a pulse width of 500 μsec, an inter-stimulus interval of 2 to 4 milliseconds and a pulse amplitude of up to 20 mA.


The present specification also discloses a method of using direct nerve stimulation to identify nerve fibers and pathways during a surgical procedure, the method comprising: providing an intraoperative neurophysiological monitoring (IONM) system comprising at least one probe, at least one sensing electrode, and a stimulation module; positioning said at least one probe at a target location on the anatomy of said patient; preparing for recordation of said patient's responses to stimulation by positioning said at least one sensing electrode on said patient's anatomy; initiating a direct nerve stimulation protocol; adjusting stimulation parameters of said stimulation protocol to determine a threshold motor response; and identifying said nerve fibers and pathways based on said threshold motor response.


Optionally, said stimulation module comprises a first plurality of twelve output connectors and a second plurality of probe ports.


Optionally, said twelve output connectors enable connection to at least one strip or grid electrode having multiple contacts not exceeding said twelve output connectors.


Optionally, said plurality of probe ports comprises a first probe port and a second probe port and enables connection to said at least one probe, wherein said at least one probe comprises passive and smart probes, and wherein said passive probes include monopolar and bipolar probes.


Optionally, each of the twelve output connectors are configurable as either an anode or a cathode allowing user-defined stimuli to be delivered to arbitrary anode and cathode pairs.


Optionally, said second plurality of probe ports further comprises a third probe port, said third probe port configured for connecting a smart probe and comprising a pair of outputs for connection of an anode and a cathode of said smart probe and a first connection port for power and a second connection port for communications.


Optionally, said at least one sensing electrode includes an EMG needle electrode.


Optionally, said direct nerve stimulation protocol comprises single pulse stimulation, wherein each stimulation has a frequency of 2 to 3 Hz, a pulse width of 200 μsec, an inter-stimulus interval of 1 millisecond and a pulse amplitude of 0.01 mA to 20 mA, with 2 mA or less for cranial nerves and 5 mA or less for peripheral nerves.


The aforementioned and other embodiments of the present shall be described in greater depth in the drawings and detailed description provided below.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present specification will be further appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings:



FIG. 1A is a block diagram illustration of an Intraoperative Neuro-Monitoring (IONM) system, in accordance with an embodiment of the present specification;



FIG. 1B illustrates a multi-modality stimulation module, in accordance with an embodiment of the present specification;



FIG. 1C illustrates a handle in communication with the multi-modality stimulation module of FIG. 1B through an electrical connector, in accordance with an embodiment of the present specification;



FIG. 2 illustrates a monopolar probe, in accordance with an embodiment of the present specification;



FIG. 3 illustrates a bipolar probe, in accordance with an embodiment of the present specification;



FIG. 4A illustrates a strip electrode configured in a monopolar setup, in accordance with an embodiment of the present specification;



FIG. 4B illustrates the strip electrode of FIG. 4A configured in a bipolar setup, in accordance with an embodiment of the present specification;



FIG. 5 shows a tumor or epileptogenic region with reference to a map of the functional areas of a human brain, in accordance with an embodiment of the present specification;



FIG. 6 is a flowchart illustrating a plurality of steps of a use case of cortical stimulation, using the IONM system of the present specification; and,



FIG. 7 is a flowchart illustrating a plurality of steps of another use case of direct nerve stimulation, using the IONM system of the present specification.





DETAILED DESCRIPTION

A “computing device” is at least one of a cellular phone, PDA, smart phone, tablet computing device, patient monitor, custom kiosk, or other computing device capable of executing programmatic instructions. It should further be appreciated that each device and monitoring system may have wireless and wired receivers and transmitters capable of sending and transmitting data. Each “computing device” may be coupled to at least one display, which displays information about the patient parameters and the functioning of the system, by means of a GUI. The GUI also presents various menus that allow users to configure settings according to their requirements. The system further comprises at least one processor (not shown) to control the operation of the entire system and its components. It should further be appreciated that the at least one processor is capable of processing programmatic instructions, has a memory capable of storing programmatic instructions, and employs software comprised of a plurality of programmatic instructions for performing the processes described herein. In one embodiment, the at least one processor is a computing device capable of receiving, executing, and transmitting a plurality of programmatic instructions stored on a volatile or non-volatile computer readable medium. In addition, the software comprised of a plurality of programmatic instructions for performing the processes described herein may be implemented by a computer processor capable of processing programmatic instructions and a memory capable of storing programmatic instructions.


The term ‘user’ is used interchangeably to refer to a surgeon, neuro-physician, neuro-surgeon, neuro-physiologist, technician or operator of the IONM system and/or other patient-care personnel or staff.


The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.


In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.


As used herein, the indefinite articles “a” and “an” mean “at least one” or “one or more” unless the context clearly dictates otherwise.


An Intraoperative Neuro-Monitoring (IONM) System



FIG. 1A is a block diagram illustration of an IONM system 100, in accordance with an embodiment of the present specification. In embodiments, the system 100 enables stimulation based assessment of nerve proximity, direction, pathways and/or changes to nerve pathology, health or status during physically invasive procedures. The system 100 comprises a computing device 105 capable of implementing or executing an IONM software application or engine 110, at least one multi-connection console 115 connected to the computing device 105 using a cable 104, a multi-modality stimulation module 120 connected to the console 115 using a cable 112, a plurality of stimulation components 135 such as, but not limited to, a monopolar probe, a bipolar probe, and a strip or grid electrode along with an integrated or discrete reference electrode capable of being coupled to the stimulation module 120 simultaneously or in any combination thereof via respective cables 133, a plurality of recording or sensing electrodes such as, but not limited to, EMG (Electromyography) electrodes 125 connected to the console 115 through respective cables 122 and a plurality of surgical instruments, components and accessories 130 coupled to the console 115 via respective accessory cables 128. In embodiments of the present specification, the multi-modality stimulation module 120 comprises a plurality of connection ports such that more than one stimulation component 135 may be connected to the system 100 at the same time. Specifically, both a monopolar probe and a bipolar probe can be simultaneously attached to the multi-modality stimulation module 120 without having to unplug and re-plug the probes to switch back and forth between the probes.


In various embodiments, the computing device 105 comprises at least one processor, at least one non-transitory memory, one or more input devices (such as, but not limited to, keyboard, mouse, touch-screen, camera and combinations thereof) and one or more output devices (such as, but not limited to, display screens, printers, speakers and combinations thereof) all of which may be stand-alone, integrated into a single unit, partially or completely network-based or cloud-based, and not necessarily located in a single physical location. The computing device 105 is in data communication with one or more databases 140 that may be co-located with the computing device 105 or located remotely.


The IONM software application or engine 110 implements a plurality of instructions to: deliver a plurality of stimulation protocols or schedules (stored in the one or more databases 140) through any one, any combination or all of the plurality of stimulation components 135, generate a plurality of graphical user interfaces (GUIs) rendered on one or more display screens (that are coupled to the computing device 105) to display a plurality of EMG activity waveforms sensed by the EMG electrodes 125 and extract a plurality of parameters related thereto and enable user-interaction with the system 100 to perform a plurality of functions such as, but not limited to, selecting and activating/initiating one or more stimulation protocols and modulating one or more stimulation parameters of the protocols. The IONM software application or engine 110 is configured to apply one or more stimulation protocols to one or more nerve structures 145 of a patient 150 through the plurality of stimulation components 135 and acquire and record correspondingly evoked EMG activity through the plurality of EMG electrodes 125 positioned within a plurality of muscle sites or locations 148 of the patient 150.


The systems and methods of the embodiments of the present specification are used for mapping and locating anatomical structures and also for assessing these structures, wherein assessing is defined as determining if these structures are functioning in a manner indicative of an underlying disease or, alternatively, are functioning in a non-pathological manner. The functions include, but are not limited to, cognitive functions such as speech and language and motor functions (movement). A neural structure is determined to be functioning based on the presence or absence of a non-pathological response when stimulated. In some embodiments, for a motor response, a non-pathological response is defined as movement or non-movement of a muscle group. In some embodiments, for a cognitive response, a non-pathological response is defined as a patient properly reading a sentence aloud correctly naming a pictured object. It should be appreciated by those of ordinary skill in the art that, although described herein with reference to cortical stimulation and direct nerve stimulation during cerebrospinal surgical procedures, the system 100 and related methods or use cases of the present specification have application in a plurality of surgical procedures during which tissue having critical neural structures must be approached, retracted, and/or impinged upon and consequently requiring that such physically invasive procedures be planned and executed while preserving critical neural structures or bundles. It should also be appreciated that, although embodiments have been described herein with reference to EMG activity, the system 100 and related methods or use cases of the present specification may, in various alternate embodiments, use a plurality of different types of neural monitoring modalities such as, for example, triggered electromyography, spontaneous electromyography, mechanomyography, somatosensory evoked potential, motor evoked potentials, nerve conduction velocity and/or train of fours.


The Multi-Modality Stimulation Module



FIG. 1B illustrates a multi-modality stimulation module 120, in accordance with an embodiment of the present specification. Referring to FIGS. 1A and 1B, the module 120 comprises a housing or enclosure 155 connected, in some embodiments, to a distal end of the electrical cable 112 while a proximal end of the cable 112 is connected to the console 115. In alternate embodiments, the proximal end of the cable 112 may be connected directly to the computing device 105 via a connector such as a D-subminiature connector. In other alternate embodiments, the module 120 may be connected to the console 115 through the electrical cable 112 that serves only to deliver power to the module 120, while the module 120 is in wireless data communication with the computing device 105. Also, in some embodiments, the module 120 is configured as a hand-held device.


In embodiments, the module 120 comprises a first plurality of connectors 160 and a second plurality of separate probe ports 165 (that is, ports 165a, 165b and 165c). In accordance with an embodiment, the first plurality of connectors 160 comprises twelve anode/cathode ports or connectors (160a, 160b, 160c, 160d, 160e, 160f, 160g, 160h, 160i, 160j, 160k, 160l) while the second plurality of separate probe ports 165 comprises a first probe port 165a, a second probe port 165b, and a third probe port 165c. In embodiments, the first probe port 165a and the second probe port 165b are used to connect either a monopolar probe or a bipolar probe and the third probe port 165c is used to connect a smart probe. The first probe port 165a comprises a first output 166 and a second output 168 for connection of an anode and a cathode of a first probe. The second probe port 165b comprises a third output 167 and a fourth output 169 for connection of an anode and a cathode of a second probe. The third probe port 165c comprises a fifth output 171 and a sixth output 173 for connection of an anode and a cathode of a smart probe and a first pair of connection port 175 for power and a second pair of connection port 177 for communications for the smart probe.


The first probe port 165a and the second probe port 165b are both configured to receive either a monopolar probe or a bipolar probe. Therefore, the first probe port 165a and the second probe port 165b allow both a monopolar probe and a bipolar probe to be simultaneously attached to the multi-modality stimulation module 120. A user may perform a procedure on a patient without having to unplug and re-plug monopolar and bipolar probes to switch back and forth between the probes. In various embodiments, the system 100 includes a switching circuit configured to switch each of the twelve ports or connectors 160a-l and each of the outputs 166, 167, 168, 169, 171, 173 such that each connector or output can function as either a cathode output or an anode output.


In embodiments, the twelve ports 160a-160l enable connection to one or more strips, each of which has multiple contacts, not exceeding the twelve ports or channels. In accordance with an embodiment, any of the twelve ports 160a-160l can be configured and flexibly chosen as either an anode or a cathode, thereby allowing user-defined stimuli to be delivered to arbitrary anode and cathode pairs. In one embodiment, a strip or grid electrode, which includes a reference electrode as part of the collection of electrodes contained therein, is connected to the required number of output ports from the available twelve ports 160a-160l.


In embodiments, the second plurality of separate probe ports 165 (that is, ports 165a, 165b and 165c) enables connection to passive and smart probes. In various embodiments, the passive stimulation probes are monopolar and bipolar probes. The smart probe dynamically switches between stimulation functions and provides visual and/or auditory feedback to the user about one or more characteristics (such as, but not limited to, amplitude, latency, location of response, similarity to prior and/or baseline response) of a sensed/detected response. The smart probe (that is available in either a monopolar or a bipolar version) enables the user to control stimulation parameters whereas the passive monopolar and bipolar probes require dependency on another user to adjust parameters using the IONM software engine 110.


In some embodiments, as shown in FIG. 1C, an electrical connector 180 is configured to engage (and disengage) with the third probe port 165c comprising the outputs 171, 173 and the connection port pairs 175, 177. A proximal end of a handle 185 is connected to the connector 180 through a cable 181. A distal end of the handle 185 is configured to (detachably) receive, hold or support a plurality of types (monopolar and bipolar) and sub-types of probe tips 182 such as, for example, a monopolar probe, a monopolar ball tip probe, a bipolar probe, a monopolar/bipolar concentric probe, a monopolar/microfork probe or a monopolar/bipolar prong probe. In embodiments, the probe tips 182 have a common base or connector 189 configured to connect to the handle 185 via a receiving port 183 of the handle. Thus, a plurality of different probe tips can be used with the single handle 185 that is connected to the multi-modality stimulation module 120 via the connector 180. In some embodiments, a design of the electrical connector 180 is of the design disclosed in the assignee's application Ser. No. 29/378,861, now U.S. Pat. No. D670,656, which is hereby incorporated by reference. In embodiments, the handle 185 and probe tip 182 comprise a ‘smart probe’ and are configured to connect to the module 120 via the connector 180, cable 181, and third probe port 165c.


In some embodiments, the handle 185 has an actuator 186, such as a toggle button, to enable manual switching between monopolar and bipolar modes depending upon the type or subtype of probe tip attached to the handle 185 or a sensing switch configured to enable an automatic switching between modes depending upon the type or subtype of probe tip attached to the handle 185. In some embodiments, the handle 185 also has a visual (light) indicator 187 that indicates monopolar or bipolar modes depending upon the type of probe tip 182 attached to the handle 185, an active or inactive connection state or status of the probe tip 182 attached to the handle 185 and/or which part (monopolar or bipolar) of the prong probe type is active when a monopolar/bipolar prong probe is attached to the handle 185. In some embodiments, the handle 185 further has a visual (light) proximity indicator 188 to provide visual feedback indicative of whether a nerve is far or near from a site where stimulation is being applied. It should be appreciated that the indicator 188 eliminates the need for the user to repeatedly look at a display screen of the IONM system 100. In some embodiments, the proximity indicator 188 is configured to generate or provide at least two indications—a first visual indication (such as, for example, green) signifying that a high stimulation intensity (that is, a stimulation intensity above a predefined threshold stimulation intensity) is required to elicit an evoked response thereby meaning that the site of stimulation is ‘far’ from the nerve, and a second visual indication (such as, for example, red) signifying that a relatively low stimulation intensity (that is, a stimulation intensity below a predefined threshold stimulation intensity) is required to elicit an evoked response thereby meaning that the site of stimulation is ‘near’ or ‘close’ to the nerve.


In embodiments, the power port pair 175 provides power to the handle 185 and probe tip 182 through the connector 180 and cable 181. In embodiments, the communication port pair 177 enables the proximity indicator 188, recordation of the type of stimulator being used and a type of mode (i.e. monopolar and/or bipolar) in clinical data of the IONM system 100, and connection state (i.e. connected or disconnected) of the handle 185 and probe tip 182 type, via the connector 180 and cable 181. The communication port pair 177 may be in data communication with a transceiver to enable the transfer of data.


Referring back to FIG. 1A, in accordance with an aspect of the present specification, the stimulation module 120 is configured as a low current stimulator that supports any one or any combination of up to three stimulation modalities—such as, but not limited to, strip or grid electrode, monopolar probe and/or bipolar probe. It should be appreciated that there may be scenarios where one or a combination of the three stimulation modalities may be of value in a surgical procedure, depending on a stage of a surgical procedure and/or based on what anatomical structure is being stimulated. For example, as shown in FIG. 2, a monopolar probe 205 is desirable when sensitivity of a physiological response from the nervous system (such as a muscle action potential) is of priority. The monopolar probe 205 has a spread or expanded field 210 of stimulation to ensure a stimulus encompasses a nerve structure 215. A discrete reference electrode is typically placed some distance away from where the monopolar stimulation probe 205 makes contact. As shown in FIG. 3, a bipolar probe 305 is desirable when selectivity of the stimulus is to be prioritized. The bipolar probe 305 has a focused field 310 of stimulation to apply stimuli to a selective nerve structure 315. However, a strip electrode may perform similarly to a monopolar or bipolar probe in terms of prioritization of sensitivity or selectivity, depending on which contacts of the strip electrode are activated.



FIGS. 4A and 4B illustrate a strip electrode 405 comprising four electrical contacts 410a-410d, in accordance with an embodiment. In FIG. 4A, the strip electrode 405 is configured in a monopolar setup where two contacts 410a and 410d, that are away from each other, are activated. This setup results in stimulation of two neurological structures 415, 416 simultaneously. On the other hand, in FIG. 4B, the strip electrode 405 is configured in a bipolar setup where two contacts 410a and 410b, that are placed closer to each other, are activated. This setup results in stimulation of only one neurological structure 415.


Because an optimal stimulation paradigm may differ across patients and surgical procedure types, the multi-modality stimulation module 120 allows the user to easily prepare a varied neuro-stimulation setup, without having to physically move electrodes and/or probes and/or adjust the stimulus paradigm via dials and switches on a device at the computing device or near the OR (operating room) table.


Stimulation Parameters, Protocols or Schedules


The IONM software application of the present specification implements a plurality of stimulation protocols or schedules, comprising a plurality of stimulation parameters, that are available to the user for automatic delivery or application to a patient depending at least upon a combination of the stimulation modalities configured at the stimulation module 120 of FIG. 1B, FIG. 1C, a neurostimulation and neuromonitoring objective such as, but not limited to, cortical stimulation or direct nerve stimulation and/or a surgical procedure being performed. It should be appreciated that the IONM software application provides the user with a degree of independence and automation with respect to delivery of stimuli and recordation of the stimuli as well as that of the correspondingly elicited neuromusculature response.


In various embodiments, stimulation protocols or schedules comprise driving a plurality of stimulation parameters such as, but not limited to, duration of the stimulation; time or moment of application of the stimulation sessions; intensity of stimulations, stimulation pulse shape, frequency, width and amplitude; stimulation duty cycle; stimulation continuity profile. Following are exemplary standard setting ranges for some of the stimulation parameters, including for motor cortex, speech, and language stimulation protocols and a direct nerve stimulation protocol:

  • Pulse Width: 50 μsec to 2000 μsec and any increment therein
  • Pulse Amplitude: 0.01 mA to 20 mA and any increment therein
  • Pulse Frequency: 0.5 Hz to 100 Hz, 100 Hz to 1000 Hz, 100 Hz to 2000 Hz and any increment therein
  • Pulse Shape: Monophasic positive, monophasic negative, biphasic
  • Single Pulse Mode of Stimulation (i.e., direct nerve stimulation protocol) comprising a single pulse stimulation, wherein the single pulse has a frequency in a range of 0.5 to 100 Hz (or any increment therein, preferably 1 to 10 Hz and more preferably 2 to 3 Hz), a pulse width in a range of 1 μsec to 100 milliseconds (preferably 50 to 500 μsec and more preferably 200 μsec), an inter-stimulus interval of 0.5 to 10 milliseconds (or any increment therein, preferably 0.5 to 2 milliseconds, and more preferably 1 millisecond) and a pulse amplitude in a range of 0.01 mA to 20 mA (preferably 1 to 5 mA and more preferably 2 mA or less) for cranial nerves and a pulse amplitude in a range of 0.1 mA to 20 mA (preferably 2 to 8 mA and more preferably 5 mA or less) for peripheral nerves.
  • Multi-pulse train (MPT) stimulation (i.e. motor cortex stimulation protocol) comprising, for example, 1 to 10 pulses (or any increment therein, preferably 2 to 8 pulses and more preferably 3 to 5 pulses), where each of the pulses is defined by a pulse width in a range of 1 μsec to 100 milliseconds (preferably 250 to 750 μsecs and more preferably 500 μsec), an inter-stimulus interval of 1 to 10 milliseconds (preferably 2 to 4 milliseconds) and a pulse amplitude of 0.01 mA to 100 mA, preferably 0.01 mA to 20 mA.
  • Duration of stimulation: 5 to 7 seconds


In various embodiments, the IONM software application implements a plurality of sub-sets of the aforementioned stimulation parameters and protocols depending at least upon the type of neurostimulation being delivered—such as, but not limited to, cortical stimulation or direct nerve stimulation.


Use Case Illustrations


In accordance with various aspects of the present specification, the IONM system of the present specification enables the user to apply a plurality of stimulation protocols, patterns or schedules to the patient using at least one or any combination of the three stimulation modalities of the stimulation module with none and/or minimal physical or electromechanical intervention, monitoring and management from the user.


The IONM system of the present specification has application in a plurality of neurostimulation and neuromonitoring scenarios such as, but not limited to, cortical stimulation whereby the motor cortex is stimulated using a strip and/or probe(s) to determine functionality of the cortical structure(s) and direct nerve stimulation whereby a structure is stimulated to determine proximity to nervous system structures and wherein use of one or more types of stimulation probes may be advantageous to create stimulation fields of varying size/depth.



FIG. 6 is a flowchart illustrating a plurality of steps of a use case of cortical stimulation, using the IONM system of the present specification. Persons of ordinary skill in the art would appreciate that cortical stimulation may be employed in surgical procedures such as, but not limited to, craniotomy for resection of epileptogenic region and for resection of tumor. It should be appreciated that the steps of the use case of FIG. 6 are similar for craniotomy of either resection of epileptogenic region or tumor and that the procedures differ only in the number of strip and/or grid output channels or ports (of the stimulation module 120 of FIG. 1B) used.


Referring now to FIGS. 1B and 6, at step 605 a monopolar probe, a bipolar probe, a strip electrode, and/or grid electrode are opened on a sterile field and their respective connection cables are passed off the sterile field. Optionally, if a monopolar probe is being used, a reference electrode is also opened and its cable is passed off the sterile field. At step 610, contacts of the bipolar probe, monopolar probe, strip electrode and/or grid electrode, and a needle or a reference electrode (for a monopolar probe), are placed in the patient in a perimeter of a surgical field. At step 615, a user connects the monopolar and bipolar probes to the pair of probe ports 165a, 165b and the strip/grid electrode and optionally the reference electrode to the twelve connectors 160a-160l of the stimulation module 120.


At step 620, the monopolar, bipolar probes, strip and/or grid electrodes are positioned at appropriate locations on the patient's anatomy to stimulate, identify, and assess functional areas related to motor, speech and language. In an embodiment, the monopolar probe is used for motor cortex stimulation and the bipolar probe is used for motor cortex and/or speech/language stimulation. FIG. 5 shows a tumor or epileptogenic region with reference to a map of the functional areas of a human brain, in accordance with an embodiment of the present specification. The figure shows the tumor or epileptogenic region 505 encompassing portions of the motor, sensory, speech and language areas 510, 515, 520, and 525. Consequently, resection of the tumor or epileptogenic region 505 poses significant risks to functions associated with the areas 510, 515, 520, and 525. To monitor integrity of neural structures associated with the areas 510, 515, 520, and 525, the monopolar probe is positioned in the motor cortex area 510 while the bipolar probe is sequentially positioned in the motor cortex 510 and/or speech, language areas 520, 525.


Referring back to FIG. 6, at step 625, necessary preparations are made to enable recordation of the patient's musculature responses as a result of motor cortex stimulation and of the patient's verbal responses as a result of stimulation of the speech/language areas.


In some embodiments, a plurality of recording or sensing electrodes are positioned at a plurality of muscle sites of the patient to record responses due to neurostimulation of the patient's motor cortex area. In an embodiment, the recording or sensing electrodes comprise pairs of EMG needle electrodes 125 of FIG. 1A placed in, for example, muscles of the face, arm and leg contralateral to the side of surgery. Recording muscles are chosen based on the location of the tumor or epileptogenic region. Example muscles include orbicularis oculi, orbicularis oris, masseter, mentalis, deltoid, biceps, flexor carpi ulnaris, flexor carpi radialis, abductor digiti minimi, adductor vastus lateralis, tibialis anterior, adductor hallucis. Also, responses to neurostimulation of speech/language areas are documented based on the patient's verbal responses.


At step 630, the user initiates a motor cortex stimulation protocol, using a graphical user interface of the IONM software application. It should be appreciated that the motor cortex stimulation protocol is one of a plurality of stimulation protocols pre-stored in a database associated with the IONM system. In some embodiments, the motor cortex stimulation protocol comprises of the following exemplary parameters and values/ranges:

  • Mode of Stimulation: Multi-pulse train (for example, 3-5 pulses)
  • Trigger: Single trigger (that is, single pulse stimulation)
  • Pulse Width: 500 μsec
  • Inter-stimulus interval: 2 to 4 milliseconds (equivalent to 250-500 Hz)
    • Pulse Amplitude: Up to 10 mA (permitted up to 20 mA)


At step 635, the user iteratively adjusts the stimulation parameters, using at least one graphical user interface generated by the IONM software application or engine, to find threshold motor response using monopolar probe, bipolar probe and/or strip/grid electrodes and consequently identify or map functional areas of the motor cortex that need to be preserved during resection. The probes and/or strip/grid electrodes are utilized depending on whether sensitivity or specificity of stimulation is desired.


As an illustration, in one embodiment, the monopolar probe is applied to the patient's motor cortex area for stimulation and the pulse amplitude is modulated in a gradual stepped manner. In some embodiments, the pulse amplitude is modulated automatically by the IONM software engine. For example, the stimulation is initiated with 2 mA and stepped up, say by increments of 2 mA for example, to 10 mA till a muscle response is detected. Suppose that at 10 mA, a 200 μV EMG response is detected at deltoid, biceps, flexor carpi ulnaris. The pulse amplitude is now reduced to 9 mA and a 100 μV EMG response is detected at biceps, flexor carpi ulnaris. The pulse amplitude is now reduced to 8.5 mA that does not produce any EMG response from the muscles. Thus, the pulse amplitude of 9 mA is determined to be the threshold amplitude corresponding to the threshold EMG response. Consequently, the stimulated area is mapped or identified as corresponding to cerebral cortex representing biceps and flexor carpi ulnaris.


Now the bipolar probe is applied to the patient's motor cortex area for stimulation at the first threshold amplitude of 9 mA. However, in an embodiment, a stimulation at 9 mA using the bipolar probe may elicit a response only at the biceps. Consequently, the iterative stimulation process of determining the threshold amplitude and response (as done, earlier, using the monopolar probe) is repeated for the monopolar and bipolar probes at another site on the motor cortex. Let us assume that, at the other site, the threshold amplitude is determined to be 10 mA for orbicularis oculi and orbicularis oris using the monopolar probe and orbicularis oculi only using the bipolar probe.


Next, a strip electrode, such as the electrode 405 of FIGS. 4A, 4B with four contacts 410a-410d, and a reference electrode are placed over the motor cortex area identified as corresponding to orbicularis oculi, orbicularis oris, biceps and flexor carpi ulnaris (as already identified through the earlier performed iterative stimulation processes of determining the threshold amplitude and response). The IONM software now activates different combinations of the four contacts 410a-410d and a reference electrode to stimulate the identified motor cortex area to elicit corresponding motor response. For example, when contacts 410a, 410b are activated there may be no response, when contacts 410a, 410c are activated there may be a response from the orbicularis oculi only, when contact 410b and the reference electrode are activated there may be a response from the orbicularis oris only, when contact 410c and the reference electrode are activated there may be a response from the biceps only. However, when contacts 410b, 410d are activated there may be a response from all muscles. Accordingly, the combination of contacts 410b, 410d is determined to be ideal for frequent stimulation of the motor cortex during resection of the epileptogenic region or tumor.


At step 640, resection of portions of the epileptogenic region or tumor is planned and performed with intent to preserve the neural structures identified and associated with the identified contacts 410b, 410d which elicit response from all muscles. During resection, the monopolar probe is used to stimulate corticospinal tracts (CST) subcortically. An iterative stimulation process, such as one described above using the monopolar probe is used to estimate distance from CST. After completion of the monopolar probe stimulation, stimulation through the four contact strip electrode commences during the resection.


At step 645, the user initiates a speech/language stimulation protocol, using a graphical user interface of the IONM software application. It should be appreciated that the speech/language stimulation protocol is one of a plurality of stimulation protocols pre-stored in the database associated with the IONM system. In some embodiments, the speech/language stimulation protocol comprises of the following exemplary parameters and values/ranges:

  • Mode of Stimulation: Repetitive train stimulation
  • Duration of stimulation: 5 to 7 seconds
  • Pulse Width: 200 μsec
  • Inter-stimulus interval: 16.6 milliseconds (equivalent to 60 Hz)
  • Pulse Amplitude: 5 mA (for speech/language responses, which are lower because a patient is awake)


At step 650, the bipolar probe is used to stimulate and map or identify the patient's speech/language areas. The patient is administered with speech/language tasks and the patient's verbal responses are documented while stimulation is delivered to tissues of the speech/language areas. 0Speech arrest and aphasia are examples of patient responses that are indicative that the stimulated tissue corresponds to speech/language functionality.


At step 655, resection of additional portions of the epileptogenic region or tumor is planned and performed with intent to preserve the identified eloquent tissue. Speech/language tasks continue to be administered to the patient throughout resection.



FIG. 7 is a flowchart illustrating a plurality of steps of another use case of direct nerve stimulation, using the IONM system of the present specification. Persons of ordinary skill in the art would appreciate that direct nerve stimulation may be employed in procedures such as, but not limited to, nerve graft, peripheral nerve tumor resection, brachial plexus repair, acoustic neuroma resection and microvascular decompression.


Referring now to FIGS. 1B and 7, at step 705 a monopolar probe, a reference electrode, and a bipolar probe are opened on a sterile field and their respective connection cables are passed off the sterile field. At step 710, a user connects the reference electrode to one of the first plurality of connectors 160 and the monopolar and bipolar probes to the pair of first and second probe ports 165a, 165b of the stimulation module 120.


At step 715, the monopolar and bipolar probes are positioned at appropriate target locations on the patient's anatomy for stimulation and the reference electrode is placed in a perimeter of the surgical field. In an embodiment, the target locations are associated with direct nerve stimulation of peripheral nerves comprising the brachial plexus. At step 720, necessary preparations are made to enable recordation of the patient's musculature responses as a result of direct nerve stimulation of peripheral nerves. In some embodiments, a plurality of recording or sensing electrodes are positioned at a plurality of muscle sites of the patient to record responses due to neurostimulation of the patient's peripheral nerves comprising the brachial plexus. In an embodiment, the recording or sensing electrodes comprise a plurality of pairs of EMG needle electrodes placed in, for example, muscles of the face, arm trunk and/or leg depending on the nerve(s) to be stimulated. Example muscles include trapezius, deltoid, biceps, triceps, flexor carpi ulnaris, flexor carpi radialis, abductor pollicis brevis, and abductor digiti minimi.


At step 725, the user initiates a direct nerve stimulation protocol, using a graphical user interface of the IONM software application. It should be appreciated that the direct nerve stimulation protocol is one of a plurality of stimulation protocols pre-stored in a database associated with the IONM system. In some embodiments, the direct nerve stimulation protocol comprises of the following exemplary parameters and values/ranges:

  • Mode of Stimulation: Single pulse stimulation
  • Frequency: 2 to 3 Hz
  • Pulse Width: 200 μsec


Inter-stimulus interval: 1 millisecond

  • Pulse Amplitude: Up to 2 mA for cranial nerves and 5 mA for peripheral nerves


At step 730, the user iteratively adjusts the stimulation parameters to find threshold response using monopolar probe and/or bipolar probe and consequently map or identify target nerve fibers and pathways that need to be preserved during resection or repair procedures. The probes are utilized depending on whether sensitivity or specificity of stimulation is desired.


As an illustration, in one embodiment, the monopolar probe is applied to the patient's target nerve bundle for stimulation and the pulse amplitude is modulated in a gradual stepped manner. In some embodiments, the pulse amplitude is modulated automatically by the IONM software engine. For example, the stimulation is initiated with 0.5 mA and stepped up, say by increments of 0.5 mA for example, to 2.5 mA till a muscle response is detected. Suppose that at 2.5 mA, a 200 μV EMG response is detected at deltoid, biceps, and triceps. The pulse amplitude is now reduced to 2.2 mA and a 100 μV EMG response is detected at biceps and triceps. The pulse amplitude is now further reduced to 2.1 mA that does not produce any EMG response from the muscles. Thus, the pulse amplitude of 2.2 mA is determined to be the threshold amplitude corresponding to the threshold EMG response of the nerve or nerve fibers that innervate the biceps and triceps. Consequently, the stimulated nerve or nerve fibers are mapped or identified as corresponding to cerebral cortex representing biceps and triceps.


Now the bipolar probe is applied to the patient's target nerve bundle for stimulation at the threshold amplitude of 2.2 mA. However, in an embodiment, the stimulation at 2.2 mA using the bipolar probe may elicit a response only at the biceps. Thus, the pulse amplitude of 2.2 mA is determined to be the threshold amplitude corresponding to the threshold EMG response of the nerve or nerve fibers that innervate the biceps. Consequently, the stimulated nerve or nerve fibers are mapped or identified as corresponding to cerebral cortex representing biceps.


Stimulation of the target nerve bundles is iteratively repeated at different sites of the patient's anatomy and musculature responses are recorded in order to map or identify nerve fibers and pathways that are critical to various motor functions and, therefore, need to be preserved.


At step 735, a procedure comprising tumor resection, nerve repair and/or decompression is planned and performed with intent to preserve the identified nerve fibers and pathways.


The above examples are merely illustrative of the many applications of the system and method of present specification. Although only a few embodiments of the present specification have been described herein, it should be understood that the present specification might be embodied in many other specific forms without departing from the spirit or scope of the specification. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the specification may be modified within the scope of the appended claims.

Claims
  • 1. A method of using cortical stimulation to assess neural structures during a surgical procedure, the method comprising: providing an intraoperative neurophysiological monitoring (IONM) system comprising at least one probe, at least one reference electrode, at least one strip electrode or grid electrode, at least one sensing electrode, a stimulation module and a handle having a proximal end configured to connect to the stimulation module and a distal end configured to attach to the at least one probe, wherein the handle comprises a first visual indicator, a second visual indicator, and an actuator configured to automatically switch the stimulation module between a first mode of operation and a second mode of operation depending upon a type of the at least one probe, and wherein the first mode of operation is a bipolar mode and the second mode of operation is a monopolar mode;placing the at least one reference electrode in a perimeter of a surgical field of a patient;positioning the at least one probe and/or the at least one strip electrode or grid electrode at target locations on the anatomy of said patient;preparing for recordation of said patient's responses to stimulation by positioning said at least one sensing electrode on said patient's anatomy;initiating a stimulation protocol in accordance with the automatically selected first mode of operation or second mode of operation;adjusting stimulation parameters of the stimulation protocol to determine a threshold response; andassessing the neural structures based on said threshold response, wherein assessing comprises determining whether the patient's anatomy is functioning in a manner indicative of an underlying disease.
  • 2. The method of claim 1, wherein the stimulation protocol is a motor cortex stimulation protocol, a speech stimulation protocol, or a language stimulation protocol.
  • 3. The method of claim 1, wherein said stimulation module comprises a first plurality of output connectors and a second plurality of probe ports.
  • 4. The method of claim 3, wherein the first plurality of output connectors are configured to enable connection to the at least one strip electrode or grid electrode, wherein the at least one strip electrode or grid electrode has a plurality of contacts and wherein a total number of the plurality of contacts does not exceed a total number of the first plurality of output connectors.
  • 5. The method of claim 3, wherein the second plurality of probe ports comprises a first probe port and a second probe port, wherein each of the first probe port and the second probe port is configured to connect to the at least one probe, wherein the at least one probe comprises passive probes, and wherein the passive probes comprise at least one of a monopolar probe or a bipolar probe.
  • 6. The method of claim 3, wherein each of the plurality of output connectors are configurable as either an anode or a cathode through a user interface in data communication with the IONM system.
  • 7. The method of claim 3, further comprising providing a user interface in data communication with the IONM system, receiving, via the user interface, user-defined stimuli, and delivering signals representative of the user-defined stimuli to pairs of the plurality of output connectors, each of the plurality of output connectors being configurable as either an anode or a cathode through the user interface.
  • 8. The method of claim 3, wherein the second plurality of probe ports comprises a probe port adapted to connect the at least one probe, wherein the at least one probe comprises an anode and a cathode and wherein the probe port comprises first and second outputs for connection of to the anode and the cathode of the at least one probe, a first pair of connection ports adapted to connect to a power supply and a second pair of connection ports adapted to connect to a communication module.
  • 9. The method of claim 1, wherein the at least one sensing electrode comprises an electromyography needle electrode.
  • 10. The method of claim 1, wherein the stimulation protocol comprises a multi-pulse train having 2 to 10 pulses and wherein each of the pulses is defined by a pulse width in a range of 50 μsec to 1000 μsec, an inter-stimulus interval in a range of 0.5 to 10 milliseconds and a pulse amplitude in a range of 0.01 mA to 20 mA.
  • 11. The method of claim 1, wherein the first visual indicator is configured to indicate at least one of the first mode of operation, the second mode of operation, a connection state of the at least one probe or what part of the at least one probe is active.
  • 12. The method of claim 11, wherein the second visual indicator provides a first indication signifying that a site of stimulation is at a first distance from a nerve and a second indication signifying that the site of stimulation is at a second distance from the nerve, wherein the first distance is less than the second distance.
  • 13. A method of using direct nerve stimulation to identify nerve fibers and nerve pathways during a surgical procedure, the method comprising: providing an intraoperative neurophysiological monitoring (IONM) system comprising at least one probe, at least one sensing electrode, a stimulation module, and a handle having a proximal end configured to connect to the stimulation module and a distal end configured to attach to the at least one probe, wherein the stimulation module comprises at least twelve output connectors and a plurality of probe ports, wherein the handle comprises a first visual indicator, a second visual indicator, and an actuator configured to automatically switch the stimulation module between a first mode of operation and a second mode of operation depending upon a type of the at least one probe, and wherein the first mode of operation is a bipolar mode and the second mode of operation is a monopolar mode; positioning the at least one probe at a first target location on the patient;positioning the at least one sensing electrode at a second target location in the patient;initiating a direct nerve stimulation protocol in accordance with the automatically selected first mode of operation or second mode of operation;adjusting stimulation parameters of the direct nerve stimulation protocol to determine a threshold motor response; andidentifying the nerve fibers and nerve pathways based on the threshold motor response.
  • 14. The method of claim 13, wherein the IONM system further comprises at least one strip electrode or grid electrode having a total number of contacts not exceeding a total number of the at least twelve output connectors, wherein the at least twelve output connectors are adapted to connect to the at least one strip electrode or grid electrode.
  • 15. The method of claim 13, wherein the plurality of probe ports comprises a first probe port and a second probe port and is configured to connect to the at least one probe, wherein the at least one probe comprises at least one passive monopolar probe or passive bipolar probe.
  • 16. The method of claim 13, wherein each of the at least twelve output connectors are configurable as either an anode or a cathode.
  • 17. The method of claim 13, further comprising providing a user interface in data communication with the IONM system, receiving, via the user interface, user-defined stimuli, and delivering signals representative of the user-defined stimuli to pairs of the plurality of output connectors, each of the plurality of output connectors being configurable as either an anode or a cathode through the user interface.
  • 18. The method of claim 13, wherein the plurality of probe ports comprises a probe port configured to connect to the at least one probe, wherein the at least one probe comprises an anode connection and a cathode connection, and wherein the probe port comprises first and second outputs adapted to connect to the anode and the cathode of the probe port, a first pair of connection ports adapted to connect to a power supply and a second pair of connection ports adapted to connect to a transceiver.
  • 19. The method of claim 13, wherein the at least one sensing electrode comprises an electromyography needle electrode.
  • 20. The method of claim 13, wherein the direct nerve stimulation protocol comprises a single pulse stimulation, wherein the single pulse has a frequency of 0.05 Hz to 90 Hz, a pulse width of 50 μsec to 1000 μsec, an interval between pulses of 0.5 millisecond to 10 milliseconds and a pulse amplitude in a range of 0.01 mA to 20 mA.
  • 21. The method of claim 20, wherein the interval between pulses is 2 mA or less for cranial nerves and 5 mA or less for peripheral nerves.
  • 22. The method of claim 13, wherein the first visual indicator is configured to indicate at least one of the first mode of operation, the second mode of operation, a connection state of the at least one probe or what part of the at least one probe is active.
  • 23. The method of claim 22, wherein the second visual indicator provides a first indication signifying that a site of stimulation is at a first distance from a nerve and a second indication signifying that the site of stimulation is at a second distance from the nerve, wherein the first distance is less than the second distance.
CROSS-REFERENCE

The present application relies on U.S. Provisional Patent Application No. 62/666,959, entitled “Systems and Methods for Neurophysiological Stimulation” and filed on May 4, 2018, for priority, which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (703)
Number Name Date Kind
751475 De Vilbiss Feb 1904 A
972983 Arthur Oct 1910 A
1328624 Graham Jan 1920 A
1477527 Raettig Dec 1923 A
1548184 Cameron Aug 1925 A
1717480 Wappler Jun 1929 A
1842323 Lorand Jan 1932 A
2110735 Marton Mar 1938 A
2320709 Arnesen Jun 1943 A
2516882 Kalom Aug 1950 A
2704064 Fizzell Mar 1955 A
2736002 Oriel Feb 1956 A
2807259 Guerriero Sep 1957 A
2808826 Reiner Oct 1957 A
2994324 Lemos Aug 1961 A
3035580 Guiorguiev May 1962 A
3057356 Greatbatch Oct 1962 A
3060923 Reiner Oct 1962 A
3087486 Kilpatrick Apr 1963 A
3147750 Fry Sep 1964 A
3188605 Slenker Jun 1965 A
3212496 Preston Oct 1965 A
3219029 Richards Nov 1965 A
3313293 Chesebrough Apr 1967 A
3364929 Ide Jan 1968 A
3580242 La Croix May 1971 A
3611262 Marley Oct 1971 A
3617616 O'Loughlin Nov 1971 A
3641993 Gaarder Feb 1972 A
3646500 Wessely Feb 1972 A
3651812 Samuels Mar 1972 A
3662744 Richardson May 1972 A
3664329 Naylor May 1972 A
3682162 Colyer Aug 1972 A
3703900 Holznagel Nov 1972 A
3718132 Holt Feb 1973 A
3733574 Scoville May 1973 A
3785368 McCarthy Jan 1974 A
3830226 Staub Aug 1974 A
3857398 Rubin Dec 1974 A
3880144 Coursin Apr 1975 A
3933157 Bjurwill Jan 1976 A
3957036 Normann May 1976 A
3960141 Bolduc Jun 1976 A
3985125 Rose Oct 1976 A
4062365 Kameny Dec 1977 A
4088141 Niemi May 1978 A
4099519 Warren Jul 1978 A
4127312 Fleischhacker Nov 1978 A
4141365 Fischell Feb 1979 A
4155353 Rea May 1979 A
4164214 Pelzner Aug 1979 A
4175551 D Haenens Nov 1979 A
4177799 Masreliez Dec 1979 A
4184492 Fastenmeier Jan 1980 A
4200104 Harris Apr 1980 A
4204545 Yamakoshi May 1980 A
4207897 Evatt Jun 1980 A
4224949 Scott Sep 1980 A
4226228 Shin Oct 1980 A
4232680 Hudleson Nov 1980 A
4233987 Feingold Nov 1980 A
4235242 Heule Nov 1980 A
4263899 Burgin Apr 1981 A
4265237 Schwanbom May 1981 A
4285347 Hess Aug 1981 A
4291705 Severinghaus Sep 1981 A
4294245 Bussey Oct 1981 A
4295703 Osborne Oct 1981 A
4299230 Kubota Nov 1981 A
4308012 Tamler Dec 1981 A
4331157 Keller, Jr. May 1982 A
4372319 Ichinomiya Feb 1983 A
4373531 Wittkampf Feb 1983 A
4374517 Hagiwara Feb 1983 A
4402323 White Sep 1983 A
4444187 Perlin Apr 1984 A
4461300 Christensen Jul 1984 A
4469098 Davi Sep 1984 A
4483338 Bloom Nov 1984 A
4485823 Yamaguchi Dec 1984 A
4487489 Takamatsu Dec 1984 A
4503842 Takayama Mar 1985 A
4503863 Katims Mar 1985 A
4510939 Brenman Apr 1985 A
4515168 Chester May 1985 A
4517976 Murakoshi May 1985 A
4517983 Toyosu May 1985 A
4519403 Dickhudt May 1985 A
4537198 Corbett Aug 1985 A
4545374 Jacobson Oct 1985 A
4557273 Stoller Dec 1985 A
4558703 Mark Dec 1985 A
4561445 Berke Dec 1985 A
4562832 Wilder Jan 1986 A
4565200 Cosman Jan 1986 A
4570640 Barsa Feb 1986 A
4573448 Kambin Mar 1986 A
4573449 Warnke Mar 1986 A
4576178 Johnson Mar 1986 A
4582063 Mickiewicz Apr 1986 A
4592369 Davis Jun 1986 A
4595018 Rantala Jun 1986 A
4616635 Caspar Oct 1986 A
4616660 Johns Oct 1986 A
4622973 Agarwala Nov 1986 A
4633889 Talalla Jan 1987 A
4641661 Kalarickal Feb 1987 A
4643507 Coldren Feb 1987 A
4658835 Pohndorf Apr 1987 A
4667676 Guinta May 1987 A
4697598 Bernard Oct 1987 A
4697599 Woodley Oct 1987 A
4705049 John Nov 1987 A
4716901 Jackson Jan 1988 A
4739772 Hokanson Apr 1988 A
4744371 Harris May 1988 A
4759377 Dykstra Jul 1988 A
4763666 Strian Aug 1988 A
4765311 Kulik Aug 1988 A
4784150 Voorhies Nov 1988 A
4785812 Pihl Nov 1988 A
4795998 Dunbar Jan 1989 A
4807642 Brown Feb 1989 A
4807643 Rosier Feb 1989 A
4817587 Janese Apr 1989 A
4817628 Zealear Apr 1989 A
4827935 Geddes May 1989 A
4841973 Stecker Jun 1989 A
4844091 Bellak Jul 1989 A
4862891 Smith Sep 1989 A
4892105 Prass Jan 1990 A
4895152 Callaghan Jan 1990 A
4920968 Takase May 1990 A
4926865 Oman May 1990 A
4926880 Claude May 1990 A
4934377 Bova Jun 1990 A
4934378 Perry, Jr. Jun 1990 A
4934957 Bellusci Jun 1990 A
4962766 Herzon Oct 1990 A
4964411 Johnson Oct 1990 A
4964811 Hayes, Sr. Oct 1990 A
4984578 Keppel Jan 1991 A
4998796 Bonanni Mar 1991 A
5007902 Witt Apr 1991 A
5015247 Michelson May 1991 A
5018526 Gaston-Johansson May 1991 A
5020542 Rossmann Jun 1991 A
5024228 Goldstone Jun 1991 A
5058602 Brody Oct 1991 A
5080606 Burkard Jan 1992 A
5081990 Deletis Jan 1992 A
5085226 Deluca Feb 1992 A
5092344 Lee Mar 1992 A
5095905 Klepinski Mar 1992 A
5125406 Goldstone Jun 1992 A
5127403 Brownlee Jul 1992 A
5131389 Giordani Jul 1992 A
5143081 Young Sep 1992 A
5146920 Yuuchi Sep 1992 A
5161533 Prass Nov 1992 A
5163328 Holland Nov 1992 A
5171279 Mathews Dec 1992 A
5190048 Wilkinson Mar 1993 A
5191896 Gafni Mar 1993 A
5195530 Shindel Mar 1993 A
5195532 Schumacher Mar 1993 A
5196015 Neubardt Mar 1993 A
5199899 Ittah Apr 1993 A
5201325 McEwen Apr 1993 A
5215100 Spitz Jun 1993 A
RE34390 Culver Sep 1993 E
5253656 Rincoe Oct 1993 A
5255691 Otten Oct 1993 A
5277197 Church Jan 1994 A
5282468 Klepinski Feb 1994 A
5284153 Raymond Feb 1994 A
5284154 Raymond Feb 1994 A
5292309 Van Tassel Mar 1994 A
5299563 Seton Apr 1994 A
5306236 Blumenfeld Apr 1994 A
5312417 Wilk May 1994 A
5313956 Knutsson May 1994 A
5313962 Obenchain May 1994 A
5327902 Lemmen Jul 1994 A
5333618 Lekhtman Aug 1994 A
5343871 Bittman Sep 1994 A
5347989 Monroe Sep 1994 A
5358423 Burkhard Oct 1994 A
5358514 Schulman Oct 1994 A
5368043 Sunouchi Nov 1994 A
5373317 Salvati Dec 1994 A
5375067 Berchin Dec 1994 A
5377667 Patton Jan 1995 A
5381805 Tuckett Jan 1995 A
5383876 Nardella Jan 1995 A
5389069 Weaver Feb 1995 A
5405365 Hoegnelid Apr 1995 A
5413111 Wilkinson May 1995 A
5454365 Bonutti Oct 1995 A
5470349 Kleditsch Nov 1995 A
5472426 Bonati Dec 1995 A
5474558 Neubardt Dec 1995 A
5480440 Kambin Jan 1996 A
5482038 Ruff Jan 1996 A
5484437 Michelson Jan 1996 A
5485852 Johnson Jan 1996 A
5491299 Naylor Feb 1996 A
5514005 Jaycox May 1996 A
5514165 Malaugh May 1996 A
5522386 Lerner Jun 1996 A
5540235 Wilson Jul 1996 A
5549656 Reiss Aug 1996 A
5560372 Cory Oct 1996 A
5565779 Arakawa Oct 1996 A
5566678 Cadwell Oct 1996 A
5569248 Mathews Oct 1996 A
5575284 Athan Nov 1996 A
5579781 Cooke Dec 1996 A
5591216 Testerman Jan 1997 A
5593429 Ruff Jan 1997 A
5599279 Slotman Feb 1997 A
5601608 Mouchawar Feb 1997 A
5618208 Crouse Apr 1997 A
5620483 Minogue Apr 1997 A
5622515 Hotea Apr 1997 A
5630813 Kieturakis May 1997 A
5634472 Raghuprasad Jun 1997 A
5671752 Sinderby Sep 1997 A
5681265 Maeda Oct 1997 A
5687080 Hoyt Nov 1997 A
5707359 Bufalini Jan 1998 A
5711307 Smits Jan 1998 A
5725514 Grinblat Mar 1998 A
5728046 Mayer Mar 1998 A
5741253 Michelson Apr 1998 A
5741261 Moskovitz Apr 1998 A
5759159 Masreliez Jun 1998 A
5769781 Chappuis Jun 1998 A
5772597 Goldberger Jun 1998 A
5772661 Michelson Jun 1998 A
5775331 Raymond Jul 1998 A
5776144 Leysieffer Jul 1998 A
5779642 Nightengale Jul 1998 A
5785648 Min Jul 1998 A
5785658 Benaron Jul 1998 A
5792044 Foley Aug 1998 A
5795291 Koros Aug 1998 A
5797854 Hedgecock Aug 1998 A
5806522 Katims Sep 1998 A
5814073 Bonutti Sep 1998 A
5830150 Palmer Nov 1998 A
5830151 Hadzic Nov 1998 A
5833714 Loeb Nov 1998 A
5836880 Pratt Nov 1998 A
5851191 Gozani Dec 1998 A
5853373 Griffith Dec 1998 A
5857986 Moriyasu Jan 1999 A
5860829 Hower Jan 1999 A
5860973 Michelson Jan 1999 A
5862314 Jeddeloh Jan 1999 A
5868668 Weiss Feb 1999 A
5872314 Clinton Feb 1999 A
5885210 Cox Mar 1999 A
5885219 Nightengale Mar 1999 A
5888196 Bonutti Mar 1999 A
5891147 Moskovitz Apr 1999 A
5895298 Faupel Apr 1999 A
5902231 Foley May 1999 A
5924984 Rao Jul 1999 A
5928030 Daoud Jul 1999 A
5928139 Koros Jul 1999 A
5928158 Aristides Jul 1999 A
5931777 Sava Aug 1999 A
5944658 Koros Aug 1999 A
5954635 Foley Sep 1999 A
5954716 Sharkey Sep 1999 A
5993385 Johnston Nov 1999 A
5993434 Dev Nov 1999 A
6004262 Putz Dec 1999 A
6004312 Finneran Dec 1999 A
6004341 Zhu Dec 1999 A
6009347 Hofmann Dec 1999 A
6011985 Athan Jan 2000 A
6027456 Feler Feb 2000 A
6029090 Herbst Feb 2000 A
6038469 Karlsson Mar 2000 A
6038477 Kayyali Mar 2000 A
6042540 Johnston Mar 2000 A
6050992 Nichols Apr 2000 A
6074343 Nathanson Jun 2000 A
6077237 Campbell Jun 2000 A
6095987 Shmulewitz Aug 2000 A
6104957 Alo Aug 2000 A
6104960 Duysens Aug 2000 A
6119068 Kannonji Sep 2000 A
6120503 Michelson Sep 2000 A
6126660 Dietz Oct 2000 A
6128576 Nishimoto Oct 2000 A
6132386 Gozani Oct 2000 A
6132387 Gozani Oct 2000 A
6135965 Tumer Oct 2000 A
6139493 Koros Oct 2000 A
6139545 Utley Oct 2000 A
6146334 Laserow Nov 2000 A
6146335 Gozani Nov 2000 A
6152871 Foley Nov 2000 A
6161047 King Dec 2000 A
6181961 Prass Jan 2001 B1
6196969 Bester Mar 2001 B1
6206826 Mathews Mar 2001 B1
6210324 Reno Apr 2001 B1
6214035 Streeter Apr 2001 B1
6224545 Cocchia May 2001 B1
6224549 Drongelen May 2001 B1
6234953 Thomas May 2001 B1
6249706 Sobota Jun 2001 B1
6259945 Epstein Jul 2001 B1
6266558 Gozani Jul 2001 B1
6273905 Streeter Aug 2001 B1
6287322 Zhu Sep 2001 B1
6292701 Prass Sep 2001 B1
6298256 Meyer Oct 2001 B1
6302842 Auerbach Oct 2001 B1
6306100 Prass Oct 2001 B1
6309349 Bertolero Oct 2001 B1
6312392 Herzon Nov 2001 B1
6314324 Lattner Nov 2001 B1
6325764 Griffith Dec 2001 B1
6334068 Hacker Dec 2001 B1
6346078 Ellman Feb 2002 B1
6348058 Melkent Feb 2002 B1
6366813 DiLorenzo Apr 2002 B1
6391005 Lum May 2002 B1
6393325 Mann May 2002 B1
6425859 Foley Jul 2002 B1
6425901 Zhu Jul 2002 B1
6441747 Khair Aug 2002 B1
6450952 Rioux Sep 2002 B1
6451015 Rittman, III Sep 2002 B1
6461352 Morgan Oct 2002 B2
6466817 Kaula Oct 2002 B1
6487446 Hill Nov 2002 B1
6500128 Marino Dec 2002 B2
6500173 Underwood Dec 2002 B2
6500180 Foley Dec 2002 B1
6500210 Sabolich Dec 2002 B1
6507755 Gozani Jan 2003 B1
6511427 Sliwa, Jr. Jan 2003 B1
6535759 Epstein Mar 2003 B1
6543299 Taylor Apr 2003 B2
6546271 Reisfeld Apr 2003 B1
6564078 Marino May 2003 B1
6568961 Liburdi May 2003 B1
6572545 Knobbe Jun 2003 B2
6577236 Harman Jun 2003 B2
6579244 Goodwin Jun 2003 B2
6582441 He Jun 2003 B1
6585638 Yamamoto Jul 2003 B1
6609018 Cory Aug 2003 B2
6618626 West, Jr. Sep 2003 B2
6623500 Cook Sep 2003 B1
6638101 Botelho Oct 2003 B1
6692258 Kurzweil Feb 2004 B1
6712795 Cohen Mar 2004 B1
6719692 Kleffner Apr 2004 B2
6730021 Vassiliades, Jr. May 2004 B2
6770074 Michelson Aug 2004 B2
6805668 Cadwell Oct 2004 B1
6819956 DiLorenzo Nov 2004 B2
6839594 Cohen Jan 2005 B2
6847849 Mamo Jan 2005 B2
6851430 Tsou Feb 2005 B2
6855105 Jackson, III Feb 2005 B2
6870109 Villarreal Mar 2005 B1
6901928 Loubser Jun 2005 B2
6902569 Parmer Jun 2005 B2
6916294 Ayad Jul 2005 B2
6916330 Simonson Jul 2005 B2
6926728 Zucherman Aug 2005 B2
6929606 Ritland Aug 2005 B2
6932816 Phan Aug 2005 B2
6945933 Branch Sep 2005 B2
7024247 Gliner Apr 2006 B2
7072521 Cadwell Jul 2006 B1
7079883 Marino Jul 2006 B2
7089059 Pless Aug 2006 B1
7104965 Jiang Sep 2006 B1
7129836 Lawson Oct 2006 B2
7153279 Ayad Dec 2006 B2
7156686 Sekela Jan 2007 B1
7177677 Kaula Feb 2007 B2
7214197 Prass May 2007 B2
7216001 Hacker May 2007 B2
7230688 Villarreal Jun 2007 B1
7236822 Dobak, III Jun 2007 B2
7258688 Shah Aug 2007 B1
7261688 Smith Aug 2007 B2
7294127 Leung Nov 2007 B2
7306563 Huang Dec 2007 B2
7310546 Prass Dec 2007 B2
7353068 Tanaka Apr 2008 B2
7363079 Thacker Apr 2008 B1
7374448 Jepsen May 2008 B2
D574955 Lash Aug 2008 S
7470236 Kelleher Dec 2008 B1
7496407 Odderson Feb 2009 B2
7522953 Kaula Apr 2009 B2
7546993 Walker Jun 2009 B1
7605738 Kuramochi Oct 2009 B2
7664544 Miles Feb 2010 B2
7689292 Hadzic Mar 2010 B2
7713210 Byrd May 2010 B2
D621041 Mao Aug 2010 S
7775974 Buckner Aug 2010 B2
7789695 Radle Sep 2010 B2
7789833 Urbano Sep 2010 B2
7801601 Maschino Sep 2010 B2
7824410 Simonson Nov 2010 B2
7869881 Libbus Jan 2011 B2
7878981 Strother Feb 2011 B2
7914350 Bozich Mar 2011 B1
7963927 Kelleher Jun 2011 B2
7974702 Fain Jul 2011 B1
7983761 Giuntoli Jul 2011 B2
7987001 Teichman Jul 2011 B2
7988688 Webb Aug 2011 B2
7993269 Donofrio Aug 2011 B2
8002770 Swanson Aug 2011 B2
8061014 Smith Nov 2011 B2
8068910 Gerber Nov 2011 B2
8126736 Anderson Feb 2012 B2
8137284 Miles Mar 2012 B2
8147421 Farquhar Apr 2012 B2
8160694 Salmon Apr 2012 B2
8192437 Simonson Jun 2012 B2
8255045 Gharib Aug 2012 B2
8295933 Gerber Oct 2012 B2
D670656 Jepsen Nov 2012 S
8311791 Avisar Nov 2012 B1
8323208 Davis Dec 2012 B2
8343079 Bartol Jan 2013 B2
8374673 Adcox Feb 2013 B2
RE44049 Herzon Mar 2013 E
8419758 Smith Apr 2013 B2
8428733 Carlson Apr 2013 B2
8457734 Libbus Jun 2013 B2
8498717 Lee Jul 2013 B2
8515520 Brunnett Aug 2013 B2
8568312 Cusimano Reaston Oct 2013 B2
8568317 Gharib Oct 2013 B1
8594779 Denison Nov 2013 B2
8647124 Bardsley Feb 2014 B2
8670830 Carlson Mar 2014 B2
8680986 Costantino Mar 2014 B2
8688237 Stanislaus Apr 2014 B2
8695957 Quintania Apr 2014 B2
8740783 Gharib Jun 2014 B2
8753333 Johnson Jun 2014 B2
8764654 Chmiel Jul 2014 B2
8805527 Mumford Aug 2014 B2
8876813 Min Nov 2014 B2
8886280 Kartush Nov 2014 B2
8892259 Bartol Nov 2014 B2
8926509 Magar Jan 2015 B2
8942797 Bartol Jan 2015 B2
8956418 Wasielewski Feb 2015 B2
8958869 Kelleher Feb 2015 B2
8971983 Gilmore Mar 2015 B2
8986301 Wolf Mar 2015 B2
8989855 Murphy Mar 2015 B2
9031658 Chiao May 2015 B2
9037226 Hacker May 2015 B2
9078671 Beale Jul 2015 B2
9084550 Bartol Jul 2015 B1
9084551 Brunnett Jul 2015 B2
9119533 Ghaffari Sep 2015 B2
9121423 Sharpe Sep 2015 B2
9149188 Eng Oct 2015 B2
9155503 Cadwell Oct 2015 B2
9204830 Zand Dec 2015 B2
9247952 Bleich Feb 2016 B2
9295401 Cadwell Mar 2016 B2
9295461 Bojarski Mar 2016 B2
9339332 Srivastava May 2016 B2
9352153 Van Dijk May 2016 B2
9370654 Scheiner Jun 2016 B2
9579503 Mckinney Feb 2017 B2
9616233 Shi Apr 2017 B2
9622684 Wybo Apr 2017 B2
9714350 Hwang Jul 2017 B2
9730634 Cadwell Aug 2017 B2
9788905 Avisar Oct 2017 B2
9820768 Gee Nov 2017 B2
9855431 Ternes Jan 2018 B2
9913594 Li Mar 2018 B2
9935395 Jepsen Apr 2018 B1
9999719 Kitchen Jun 2018 B2
10022090 Whitman Jul 2018 B2
10039461 Cadwell Aug 2018 B2
10039915 Mcfarlin Aug 2018 B2
10092349 Engeberg Oct 2018 B2
10154792 Sakai Dec 2018 B2
10292883 Jepsen May 2019 B2
10342452 Sterrantino Jul 2019 B2
10349862 Sterrantino Jul 2019 B2
10398369 Brown Sep 2019 B2
10418750 Jepsen Sep 2019 B2
10631912 Mcfarlin Apr 2020 B2
10783801 Beaubien Sep 2020 B1
11189379 Giataganas Nov 2021 B2
20010031916 Bennett Oct 2001 A1
20010039949 Loubser Nov 2001 A1
20010049524 Morgan Dec 2001 A1
20010056280 Underwood Dec 2001 A1
20020001995 Lin Jan 2002 A1
20020001996 Seki Jan 2002 A1
20020007129 Marino Jan 2002 A1
20020007188 Arambula Jan 2002 A1
20020055295 Itai May 2002 A1
20020065481 Cory May 2002 A1
20020072686 Hoey Jun 2002 A1
20020095080 Cory Jul 2002 A1
20020149384 Reasoner Oct 2002 A1
20020161415 Cohen Oct 2002 A1
20020183647 Gozani Dec 2002 A1
20020193779 Yamazaki Dec 2002 A1
20020193843 Hill Dec 2002 A1
20020194934 Taylor Dec 2002 A1
20030032966 Foley Feb 2003 A1
20030045808 Kaula Mar 2003 A1
20030078618 Fey Apr 2003 A1
20030088185 Prass May 2003 A1
20030105503 Marino Jun 2003 A1
20030171747 Kanehira Sep 2003 A1
20030199191 Ward Oct 2003 A1
20030212335 Huang Nov 2003 A1
20040019370 Gliner Jan 2004 A1
20040034340 Biscup Feb 2004 A1
20040068203 Gellman Apr 2004 A1
20040135528 Yasohara Jul 2004 A1
20040172114 Hadzic Sep 2004 A1
20040199084 Kelleher Oct 2004 A1
20040204628 Rovegno Oct 2004 A1
20040225228 Ferree Nov 2004 A1
20040229495 Negishi Nov 2004 A1
20040230131 Kassab Nov 2004 A1
20040260358 Vaughan Dec 2004 A1
20050004593 Simonson Jan 2005 A1
20050004623 Miles Jan 2005 A1
20050075067 Lawson Apr 2005 A1
20050075578 Gharib Apr 2005 A1
20050080418 Simonson Apr 2005 A1
20050085743 Hacker Apr 2005 A1
20050119660 Bourlion Jun 2005 A1
20050149143 Libbus Jul 2005 A1
20050159659 Sawan Jul 2005 A1
20050182454 Gharib Aug 2005 A1
20050182456 Ziobro Aug 2005 A1
20050215993 Phan Sep 2005 A1
20050256582 Ferree Nov 2005 A1
20050261559 Mumford Nov 2005 A1
20060004424 Loeb Jan 2006 A1
20060009754 Boese Jan 2006 A1
20060025702 Sterrantino Feb 2006 A1
20060025703 Miles Feb 2006 A1
20060052828 Kim Mar 2006 A1
20060069315 Miles Mar 2006 A1
20060085048 Cory Apr 2006 A1
20060085049 Cory Apr 2006 A1
20060122514 Byrd Jun 2006 A1
20060173383 Esteve Aug 2006 A1
20060200023 Melkent Sep 2006 A1
20060241725 Libbus Oct 2006 A1
20060258951 Bleich Nov 2006 A1
20060264777 Drew Nov 2006 A1
20060276702 McGinnis Dec 2006 A1
20060292919 Kruss Dec 2006 A1
20070016097 Farquhar Jan 2007 A1
20070021682 Gharib Jan 2007 A1
20070032841 Urmey Feb 2007 A1
20070049962 Marino Mar 2007 A1
20070097719 Parramon May 2007 A1
20070184422 Takahashi Aug 2007 A1
20070270918 De Bel Nov 2007 A1
20070282217 McGinnis Dec 2007 A1
20080015612 Urmey Jan 2008 A1
20080027507 Bijelic Jan 2008 A1
20080039914 Cory Feb 2008 A1
20080058606 Miles Mar 2008 A1
20080064976 Kelleher Mar 2008 A1
20080065144 Marino Mar 2008 A1
20080065178 Kelleher Mar 2008 A1
20080071191 Kelleher Mar 2008 A1
20080077198 Webb Mar 2008 A1
20080082136 Gaudiani Apr 2008 A1
20080097164 Miles Apr 2008 A1
20080167574 Farquhar Jul 2008 A1
20080183190 Adcox Jul 2008 A1
20080183915 Iima Jul 2008 A1
20080194970 Steers Aug 2008 A1
20080214903 Orbach Sep 2008 A1
20080218393 Kuramochi Sep 2008 A1
20080254672 Dennes Oct 2008 A1
20080269777 Appenrodt Oct 2008 A1
20080281313 Fagin Nov 2008 A1
20080300650 Gerber Dec 2008 A1
20080306348 Kuo Dec 2008 A1
20090018399 Martinelli Jan 2009 A1
20090088660 McMorrow Apr 2009 A1
20090105604 Bertagnoli Apr 2009 A1
20090143797 Smith Jun 2009 A1
20090177112 Gharib Jul 2009 A1
20090182322 D Amelio Jul 2009 A1
20090197476 Wallace Aug 2009 A1
20090204016 Gharib Aug 2009 A1
20090209879 Kaula Aug 2009 A1
20090221153 Santangelo Sep 2009 A1
20090240117 Chmiel Sep 2009 A1
20090259108 Miles Oct 2009 A1
20090279767 Kukuk Nov 2009 A1
20090281595 King Nov 2009 A1
20090299439 Mire Dec 2009 A1
20100004949 O'Brien Jan 2010 A1
20100036280 Ballegaard Feb 2010 A1
20100036384 Gorek Feb 2010 A1
20100049188 Nelson Feb 2010 A1
20100106011 Byrd Apr 2010 A1
20100152604 Kaula Jun 2010 A1
20100152811 Flaherty Jun 2010 A1
20100152812 Flaherty Jun 2010 A1
20100160731 Giovannini Jun 2010 A1
20100168561 Anderson Jul 2010 A1
20100191311 Scheiner Jul 2010 A1
20100286554 Davis Nov 2010 A1
20100317989 Gharib Dec 2010 A1
20110004207 Wallace Jan 2011 A1
20110028860 Chenaux Feb 2011 A1
20110071418 Stellar Mar 2011 A1
20110082383 Cory Apr 2011 A1
20110160731 Bleich Jun 2011 A1
20110184308 Kaula Jul 2011 A1
20110230734 Fain Sep 2011 A1
20110230782 Bartol Sep 2011 A1
20110245647 Stanislaus Oct 2011 A1
20110270120 Mcfarlin Nov 2011 A1
20110270121 Johnson Nov 2011 A1
20110295579 Tang Dec 2011 A1
20110313530 Gharib Dec 2011 A1
20120004516 Eng Jan 2012 A1
20120071784 Melkent Mar 2012 A1
20120109000 Kaula May 2012 A1
20120109004 Cadwell May 2012 A1
20120220891 Kaula Aug 2012 A1
20120238893 Farquhar Sep 2012 A1
20120245439 Andre Sep 2012 A1
20120277780 Smith Nov 2012 A1
20120296230 Davis Nov 2012 A1
20130027186 Cinbis Jan 2013 A1
20130030257 Nakata Jan 2013 A1
20130090641 Mckinney Apr 2013 A1
20130245722 Ternes Sep 2013 A1
20130261422 Gilmore Oct 2013 A1
20130267874 Marcotte Oct 2013 A1
20140058284 Bartol Feb 2014 A1
20140073985 Sakai Mar 2014 A1
20140074084 Engeberg Mar 2014 A1
20140088463 Wolf Mar 2014 A1
20140121555 Scott May 2014 A1
20140275914 Li Sep 2014 A1
20140275926 Scott Sep 2014 A1
20140288389 Gharib Sep 2014 A1
20140303452 Ghaffari Oct 2014 A1
20150012066 Underwood Jan 2015 A1
20150088029 Wybo Mar 2015 A1
20150088030 Taylor Mar 2015 A1
20150112325 Whitman Apr 2015 A1
20150202395 Fromentin Jul 2015 A1
20150238260 Nau, Jr. Aug 2015 A1
20150250423 Hacker Sep 2015 A1
20150311607 Ding Oct 2015 A1
20150380511 Irsigler Dec 2015 A1
20160000382 Jain Jan 2016 A1
20160015299 Chan Jan 2016 A1
20160038072 Brown Feb 2016 A1
20160038073 Brown Feb 2016 A1
20160038074 Brown Feb 2016 A1
20160135834 Bleich May 2016 A1
20160174861 Cadwell Jun 2016 A1
20160199659 Jiang Jul 2016 A1
20160235999 Nuta Aug 2016 A1
20160262699 Goldstone Sep 2016 A1
20160270679 Mahon Sep 2016 A1
20160287112 Mcfarlin Oct 2016 A1
20160287861 Mcfarlin Oct 2016 A1
20160317053 Srivastava Nov 2016 A1
20160339241 Hargrove Nov 2016 A1
20170056643 Herb Mar 2017 A1
20170231508 Edwards Aug 2017 A1
20170273592 Sterrantino Sep 2017 A1
20180345004 Mcfarlin Dec 2018 A1
20190180637 Mealer Jun 2019 A1
20190350485 Sterrantino Nov 2019 A1
Foreign Referenced Citations (126)
Number Date Country
607977 Mar 1991 AU
2005269287 Feb 2006 AU
2006217448 Aug 2006 AU
2003232111 Oct 2008 AU
2004263152 Aug 2009 AU
2005269287 May 2011 AU
2008236665 Aug 2013 AU
2012318436 Apr 2014 AU
2016244152 Nov 2017 AU
2016244152 Dec 2018 AU
2019201702 Apr 2019 AU
9604655 Dec 1999 BR
0609144 Feb 2010 BR
2144211 May 2005 CA
2229391 Sep 2005 CA
2574845 Feb 2006 CA
2551185 Oct 2007 CA
2662474 Mar 2008 CA
2850784 Apr 2013 CA
2769658 Jan 2016 CA
2981635 Oct 2016 CA
101018585 Aug 2007 CN
100571811 Dec 2009 CN
104066396 Sep 2014 CN
103052424 Dec 2015 CN
104080509 Sep 2017 CN
104717996 Jan 2018 CN
107666939 Feb 2018 CN
111419179 Jul 2020 CN
2753109 Jun 1979 DE
2831313 Feb 1980 DE
8803153 Jun 1988 DE
3821219 Aug 1989 DE
29510204 Aug 1995 DE
19530869 Feb 1997 DE
29908259 Jul 1999 DE
19921279 Nov 2000 DE
19618945 Feb 2003 DE
0161895 Nov 1985 EP
298268 Jan 1989 EP
0719113 Jul 1996 EP
0759307 Feb 1997 EP
0836514 Apr 1998 EP
890341 Jan 1999 EP
972538 Jan 2000 EP
1656883 May 2006 EP
1115338 Aug 2006 EP
1804911 Jul 2007 EP
1804911 Jul 2007 EP
1534130 Sep 2008 EP
1441530 Apr 2010 EP
1804911 Jan 2012 EP
2481338 Sep 2012 EP
2763616 Aug 2014 EP
1385417 Apr 2016 EP
1680177 Apr 2017 EP
3277366 Dec 2021 EP
2725489 Sep 2019 ES
73878 Dec 1987 FI
2624373 Jun 1989 FR
2624748 Oct 1995 FR
2796846 Feb 2001 FR
2795624 Sep 2001 FR
2835732 Nov 2004 FR
1534162 Nov 1978 GB
2049431 Dec 1980 GB
2052994 Feb 1981 GB
2452158 Feb 2009 GB
2519302 Apr 2016 GB
1221615 Jul 1990 IT
H0723964 Jan 1995 JP
2000028717 Jan 2000 JP
3188437 Jul 2001 JP
2000590531 Aug 2003 JP
2003524452 Aug 2003 JP
2004522497 Jul 2004 JP
2008508049 Mar 2008 JP
4295086 Jul 2009 JP
4773377 Sep 2011 JP
4854900 Jan 2012 JP
4987709 Jul 2012 JP
5132310 Jan 2013 JP
2014117328 Jun 2014 JP
2014533135 Dec 2014 JP
6145916 Jun 2017 JP
2018514258 Jun 2018 JP
6749338 Sep 2020 JP
100632980 Oct 2006 KR
1020070106675 Nov 2007 KR
100877229 Jan 2009 KR
20140074973 Jun 2014 KR
1020170133499 Dec 2017 KR
102092583 Mar 2020 KR
1020200033979 Mar 2020 KR
541889 Apr 2010 NZ
467561 Aug 1992 SE
508357 Sep 1998 SE
1999037359 Jul 1999 WO
2000038574 Jul 2000 WO
2000066217 Nov 2000 WO
2001037728 May 2001 WO
2001078831 Oct 2001 WO
2001087154 Nov 2001 WO
2001093748 Dec 2001 WO
2002082982 Oct 2002 WO
2003005887 Jan 2003 WO
2003034922 May 2003 WO
2003094744 Nov 2003 WO
2004064632 Aug 2004 WO
2005030318 Apr 2005 WO
2006015069 Feb 2006 WO
2006026482 Mar 2006 WO
2006042241 Apr 2006 WO
2006113394 Oct 2006 WO
2008002917 Jan 2008 WO
2008005843 Jan 2008 WO
2008097407 Aug 2008 WO
2009051965 Apr 2009 WO
2010090835 Aug 2010 WO
2011014598 Feb 2011 WO
2011150502 Dec 2011 WO
2013019757 Feb 2013 WO
2013052815 Apr 2013 WO
2013151770 Oct 2013 WO
2015069962 May 2015 WO
2016160477 Oct 2016 WO
Non-Patent Literature Citations (56)
Entry
Review of section 510(k) premarket notification for “K013215: NuVasive NeuroVision JJB System”, Department of Health and Human Services, FDA, Oct. 16, 2001.
International Search Report for PCT/US2005/026692, dated Nov. 16, 2005.
International Search Report for PCT/US2016/023903, dated Sep. 6, 2016.
Cadwell et al. “Electrophysiologic Equipment and Electrical Safety” Chapter 2, Electrodiagnosis in Clinical Neurology, Fourth Edition; Churchill Livingstone, p. 15, 30-31; 1999.
Ott, “Noise Reduction Techniques in Electronic Systems” Second Edition; John Wiley & Sons, p. 62, 1988.
Stecker et al. “Strategies for minimizing 60 Hz pickup during evoked potential recording”, Electroencephalography and clinical Neurophysiology 100 (1996) 370-373.
Wood et al. “Comparative analysis of power-line interference between two- or three-electrode biopotential amplifiers” Biomedical Engineering, Med. & Biol. Eng. & Comput., 1995, 33, 63-68.
Clements, et al., “Evoked and Spontaneous Electromyography to Evaluate Lumbosacral Pedicle Screw Placement”, 21 (5):600-604 (1996).
Danesh-Clough, et al., “The Use of Evoked EMG in Detecting Misplaced Thoracolumbar Pedicle Screws”, 26(12):1313-1316 (2001).
Dezawa et al., “Retroperitoneal Laparoscopic Lateral Approach to the Lumbar Spine: A New Approach, Technique, and Clinical Trial”, Journal of Spinal Disorders 13(2):138-143 (2000).
Dickman, et al., “Techniques in Neurosurgery”, National Library of Medicine, 3 (4) 301-307 (1997).
Epstein, et al., “Evaluation of Intraoperative Somatosensory-Evoked Potential Monitoring During 100 Cervical Operations”, 18(6):737-747 (1993), J.B. Lippincott Company.
Glassman, et al., “A Prospective Analysis of Intraoperative Electromyographic Monitoring of Pedicle Screw Placement with Computed Tomographic Scan Confirmation”, 20(12):1375-1379.
Goldstein, et al., “Minimally Invasive Endoscopic Surgery of the Lumbar Spine”, Operative Techniques in Orthopaedics, 7 (1):27-35 (1997).
Greenblatt, et al., “Needle Nerve Stimulator-Locator”, 41 (5):599-602 (1962).
H.M. Mayer, “Minimally Invasive Spine Surgery, A Surgical Manual”, Chapter 12, pp. 117-131 (2000).
Hinrichs, et al., “A trend-detection algorithm for intraoperative EEG monitoring”, Med. Eng. Phys. 18 (8):626-631 (1996).
Bergey et al., “Endoscopic Lateral Transpsoas Approach to the Lumbar Spine”, SPINE 29 (15):1681-1688 (2004).
Holland, “Spine Update, Intraoperative Electromyography During Thoracolumbar Spinal Surgery”, 23 (17):1915-1922 (1998).
Holland, et al., “Continuous Electromyographic Monitoring to Detect Nerve Root Injury During Thoracolumbar Scoliosis Surgery”, 22 (21):2547-2550 (1997), Lippincott-Raven Publishers.
Hovey, A Guide to Motor Nerve Monitoring, pp. 1-31 Mar. 20, 1998, The Magstim Company Limited.
Kevin T. Foley, et al., “Microendoscipic Discectomy” Techniques in Neurosurgery, 3:(4):301-307, © 1997 Lippincott-Raven Publishers, Philadelphia.
Kossmann et al., “The use of a retractor system (SynFrame) for open, minimal invasive reconstruction of the anterior column of the thoracic and lumbar spine”, 10:396-402 (2001).
Kossmann, et. al., “Minimally Invasive Vertebral Replacement with Cages in Thoracic and Lumbar Spine”, European Journal of Trauma, 2001, No. 6, pp. 292-300.
Lenke, et. al., “Triggered Electromyographic Threshold for Accuracy of Pedicle Screw Placement, An Animal Model and Clinical Correlation”, 20 (14):1585-1591 (1995).
Lomanto et al., “7th World Congress of Endoscopic Surgery” Singapore, Jun. 1-4, 2000 Monduzzi Editore S.p.A.; email: monduzzi@monduzzi.com, pp. 97-103 and 105-111.
MaGuire, et. al., “Evaluation of Intrapedicular Screw Position Using Intraoperative Evoked Electromyography”, 20 (9):1068-1074 (1995).
Mathews et al., “Laparoscopic Discectomy With Anterior Lumbar Interbody Fusion, A Preliminary Review”, 20 (16):1797-1802, (1995), Lippincott-Raven Publishers.
Bertagnoli, et. al., “The AnteroLateral transPsoatic Approach (ALPA), A New Technique for Implanting Prosthetic Disc-Nucleus Devices”, 16 (4):398-404 (2003).
Michael R. Isley, et. al., “Recent Advances in Intraoperative Neuromonitoring of Spinal Cord Function: Pedicle Screw Stimulation Techniques”, Am. J. End Technol. 37:93-126 (1997).
Minahan, et. al., “The Effect of Neuromuscular Blockade on Pedicle Screw Stimulation Thresholds” 25(19):2526-2530 (2000).
Pimenta et. al., “Implante de prótese de núcleo pulposo: análise inicial”, J Bras Neurocirurg 12(2):93-96, (2001).
Raymond J. Gardocki, MD, “Tubular diskectomy minimizes collateral damage”, AAOS Now, Sep. 2009 Issue, http://www.aaos.org/news/aaosnow/sep09/clinical12.asp.
Raymond, et. al., “The NerveSeeker: A System for Automated Nerve Localization”, Regional Anesthesia 17:151-162 (1992).
Reidy, et. al., “Evaluation of electromyographic monitoring during insertion of thoracic pedicle screws”, British Editorial Society of Bone and Joint Surgery 83 (7):1009-1014, (2001).
Rose et al., “Persistently Electrified Pedicle Stimulation Instruments in Spinal Instrumentation: Technique and Protocol Development”, Spine: 22(3): 334-343 (1997).
Teresa Riordan “Patents; A businessman invents a device to give laparoscopic surgeons a better view of their work”, New York Times www.nytimes.com/2004/29/business/patents-businessman-invents-device-give-la (Mar. 2004).
Toleikis, et. al., “The usefulness of Electrical Stimulation for Assessing Pedicle Screw Placements”, Journal of Spinal Disorders, 13 (4):283-289 (2000).
U.Schick, et. al., “Microendoscopic lumbar discectomy versus open surgery: an intraoperative EMG study”, pp. 20-26, Published online: Jul. 31, 2001 © Springer-Verlag 2001.
Bose, et. al., “Neurophysiologic Monitoring of Spinal Nerve Root Function During Instrumented Posterior Lumbar Spine Surgery”, 27 (13):1440-1450 (2002).
Vaccaro, et. al., “Principles and Practice of Spine Surgery”, Mosby, Inc. © 2003, Chapter 21, pp. 275-281.
Vincent C. Traynelis, “Spinal arthroplasty”, Neurosurg Focus 13 (2):1-7. Article 10, (2002).
Welch, et. al., “Evaluation with evoked and spontaneous electromyography during lumbar instrumentation: a prospective study”, J Neurosurg 87:397-402, (1997).
Zouridakis, et. al., “A Concise Guide to Intraoperative Monitoring”, Library of Congress card No. 00-046750, Chapter 3, p. 21, chapter 4, p. 58 and chapter 7 pp. 119-120.
Medtronic, “Nerve Integrity Monitor, Intraoperative EMG Monitor, User's Guide”, Medtronic Xomed U.K. Ltd., Unit 5, West Point Row, Great Park Road, Almondsbury, Bristol B5324QG, England, pp. 1-39.
Chapter 9, “Root Finding and Nonlinear Sets of Equations”, Chapter 9:350-354, http://www.nr.com.
Digitimer LTD., 37 Hydeway, Welwyn Garden City, Hertfordshire. AL7 3BE England, email:sales@digitimer.com, website: www.digitimer.com, “Constant Current High Voltage Stimulator, Model DS7A, for Percutaneous Stimulation of Nerve and Muscle Tissue”.
Ford et al, Electrical characteristics of peripheral nerve stimulators, implications for nerve localization, Dept. of Anesthesia, University of Cincinnati College of Medicine, Cincinnati, OH 45267, pp. 73-77.
Deletis et al., “The role of intraoperative neurophysiology in the protection or documentation of surgically induced injury to the spinal cord”, Correspondence Address: Hyman Newman Institute for Neurology & Neurosurgery, Beth Israel Medical Center, 170 East End Ave., Room 311, NY 10128.
Butterworth et. al., “Effects of Halothane and Enflurane on Firing Threshold of Frog Myelinated Axon”, Journal of Physiology 411:493-516, (1989) From the Anesthesia Research Labs, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, jp.physoc.org.
Calancie, et. al., “Threshold-level multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring” J Neurosurg 88:457-470 (1998).
Calancie, et. al., “Threshold-level repetitive transcranial electrical stimulation for intraoperative monitoring of central motor conduction”, J. Neurosurg 95:161-168 (2001).
Calancie, et. al., Stimulus-Evoked EMG Monitoring During Transpedicular Lumbosacral Spine Instrumentation, Initial Clinical Results, 19 (24):2780-2786 (1994).
Carl T. Brighton, “Clinical Orthopaedics and Related Research”, Clinical Orthopaedics and related research No. 384, pp. 82-100 (2001).
Aage R. Møller, “Intraoperative Neurophysiologic Monitoring”, University of Pittsburgh, School of Medicine Pennsylvania, © 1995 by Harwood Academic Publishers GmbH.
Urmey “Using the nerve stimulator for peripheral or plexus nerve blocks” Minerva Anesthesiology 2006; 72:467-71.
Related Publications (1)
Number Date Country
20190336073 A1 Nov 2019 US
Provisional Applications (1)
Number Date Country
62666959 May 2018 US