Systems and methods for dynamic weighting of branched video paths

Information

  • Patent Grant
  • 11050809
  • Patent Number
    11,050,809
  • Date Filed
    Friday, December 30, 2016
    7 years ago
  • Date Issued
    Tuesday, June 29, 2021
    3 years ago
Abstract
Systems and methods for dynamically weighting media segments and paths in a structured media presentation are disclosed. The structured media presentation can be, for example, a video tree representing a branching video presentation and defining multiple branches, each defining a path of one or more video content segments. Different portions of the video tree are associated with weights, and during playback of the branching video presentation, a video content segment is automatically selected for presentation based on one or more of the associated weights.
Description
FIELD OF THE INVENTION

The present disclosure relates generally to audiovisual presentations and, more particularly, to systems and methods for dynamically weighting media segments and paths in a structured media presentation.


BACKGROUND

Over the past decade there has been exponential growth in the prevalence of digital streaming media. Users frequently consume streaming media on their devices through streaming music services, video providers, social networks, and other media providers. Interactive streaming multimedia content, though less common, is also available. Existing forms of interactive videos allow a viewer to make choices on how to proceed through predefined video paths; however, this functionality is accomplished using separate video segments that are quickly transitioned to upon selection, resulting in a noticeable disconnect in audio and video between consecutive segments. Further still, such transitions rely on user or random selections, and do not exhibit any dynamic adaptation in response to the same.


SUMMARY

Systems and methods for dynamically weighting media segments and paths in a structured media presentation are disclosed. In one aspect defining a computer-implemented method, the structured media presentation is a video tree representing a branching video presentation and defining multiple branches, each branch further defining a path of one or more video content segments. Different portions of the video tree are associated with weights, and during playback of the branching video presentation, a video content segment is automatically selected for presentation based on one or more of the associated weights. Additional aspects of this invention include corresponding systems and computer programs on non-transitory storage media.


Various implementations of these aspects can include one or more of the following features. Particular portions of the video tree to which weights are applied include child video content segments branching from a parent video content segment, video content segments each at an end of a respective branch, and/or paths of one or more video content segments. An associated weight of a video content segment is decreased following a selection thereof for presentation. An associated weight of one or more video content segments is increased following a selection of a different video content segment for presentation. A particular weight is associated with a portion of the video tree based on a received monetary value and/or a characteristic associated with a user viewing the branching video presentation.


In one implementation, automatically selecting a video content segment includes: identifying a plurality of alternative video content segments, each associated with a respective weight; and selecting one of the alternative video content segments to present based on the respective associated weights thereof, wherein each alternative video content segment has a probability of being selected based on the associated weight of the alternative video content segment compared to a total of the respective associated weights of the alternative video content segments.


In another implementation, an associated weight of the selected video content segment is modified based on a user action received with respect to the selected video content segment. The user action can include an instruction to skip the selected video content segment, an instruction to delete the selected video content segment, an indication of liking the selected video content segment, or an indication of disliking the video content segment.


Further aspects and advantages of the invention will become apparent from the following drawings, detailed description, and claims, all of which illustrate the principles of the invention, by way of example only.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and many attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings. In the drawings, like reference characters generally refer to the same parts throughout the different views. Further, the drawings are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of the invention.



FIG. 1 depicts a high-level system architecture according to an implementation.



FIG. 2 depicts an example architecture of a video player/editor application according to an implementation.



FIG. 3 depicts an example of dynamic weight modifications in the traversal of a media presentation.



FIG. 4 depicts an example branching video presentation having weighted nodes.



FIG. 5 depicts an example branching video presentation having weighted paths.



FIGS. 6 and 7 depict an example playthrough of a game with dynamically weighted options.





DETAILED DESCRIPTION

Described herein are various implementations of methods and supporting systems for dynamically weighting paths and segments in a multimedia presentation. FIG. 1 depicts a high-level architecture of such a system according to an implementation. A media presentation having multiple video and/or audio streams can be presented to a user on a user device 110 having an application 112 capable of playing and/or editing the content. The user device 110 can be, for example, a smartphone, tablet, laptop, desktop, palmtop, television, gaming device, virtual reality headset, smart glasses, smart watch, music player, mobile telephone, workstation, or other computing device configured to execute the functionality described herein. The user device 110 can have output functionality (e.g., display monitor, touchscreen, image projector, etc.) and input functionality (e.g., touchscreen, keyboard, mouse, remote control, etc.).


The application 112 can be a video player and/or editor that is implemented as a native application, web application, or other form of software. In some implementations, the application 112 is in the form of a web page, widget, and/or Java, JavaScript, .Net, Silverlight, Flash, and/or other applet or plug-in that is downloaded to the user device 110 and runs in conjunction with a web browser. The application 112 and the web browser can be part of a single client-server interface; for example, the application 112 can be implemented as a plugin to the web browser or to another framework or operating system. Any other suitable client software architecture, including but not limited to widget frameworks and applet technology, can also be employed.


Media content can be provided to the user device 110 by content server 102, which can be a web server, media server, a node in a content delivery network, or other content source. In some implementations, the application 112 (or a portion thereof) is provided by application server 106. For example, some or all of the described functionality of the application 112 can be implemented in software downloaded to or existing on the user device 110 and, in some instances, some or all of the functionality exists remotely. For example, certain video encoding and processing functions can be performed on one or more remote servers, such as application server 106. In some implementations, the user device 110 serves only to provide output and input functionality, with the remainder of the processes being performed remotely.


The user device 110, content server 102, application server 106, and/or other devices and servers can communicate with each other through communications network 114. The communication can take place via any media such as standard telephone lines, LAN or WAN links (e.g., T1, T3, 56 kb, X.25), broadband connections (ISDN, Frame Relay, ATM), wireless links (802.11, Bluetooth, GSM, CDMA, etc.), and so on. The network 114 can carry TCP/IP protocol communications and HTTP/HTTPS requests made by a web browser, and the connection between clients and servers can be communicated over such TCP/IP networks. The type of network is not a limitation, however, and any suitable network can be used.


More generally, the techniques described herein can be implemented in any suitable hardware or software. If implemented as software, the processes can execute on a system capable of running one or more custom operating systems or commercial operating systems such as the Microsoft Windows® operating systems, the Apple OS X® operating systems, the Apple iOS® platform, the Google Android™ platform, the Linux® operating system and other variants of UNIX® operating systems, and the like. The software can be implemented a computer including a processing unit, a system memory, and a system bus that couples various system components including the system memory to the processing unit.


The system can include a plurality of software modules stored in a memory and executed on one or more processors. The modules can be in the form of a suitable programming language, which is converted to machine language or object code to allow the processor or processors to read the instructions. The software can be in the form of a standalone application, implemented in any suitable programming language or framework.


Method steps of the techniques described herein can be performed by one or more programmable processors executing a computer program to perform functions of the invention by operating on input data and generating output. Method steps can also be performed by, and apparatus of the invention can be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit). Modules can refer to portions of the computer program and/or the processor/special circuitry that implements that functionality.


Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. One or more memories can store media assets (e.g., audio, video, graphics, interface elements, and/or other media files), configuration files, and/or instructions that, when executed by a processor, form the modules, engines, and other components described herein and perform the functionality associated with the components. The processor and the memory can be supplemented by, or incorporated in special purpose logic circuitry.


It should also be noted that the present implementations can be provided as one or more computer-readable programs embodied on or in one or more articles of manufacture. The article of manufacture can be any suitable hardware apparatus, such as, for example, a floppy disk, a hard disk, a CD-ROM, a CD-RW, a CD-R, a DVD-ROM, a DVD-RW, a DVD-R, a flash memory card, a PROM, a RAM, a ROM, or a magnetic tape. In general, the computer-readable programs can be implemented in any programming language. The software programs can be further translated into machine language or virtual machine instructions and stored in a program file in that form. The program file can then be stored on or in one or more of the articles of manufacture.


The media presentations referred to herein can be structured in various forms. For example, a particular media presentation can be an online streaming video having multiple tracks or streams that a user can switch among in real-time or near real-time. For example, a media presentation can be structured using parallel audio and/or video tracks as described in U.S. patent application Ser. No. 14/534,626, filed on Nov. 6, 2014, and entitled “Systems and Methods for Parallel Track Transitions,” the entirety of which is incorporated by reference herein. More specifically, a playing video file or stream can have one or more parallel tracks that can be switched among in real-time automatically and/or based on user interactions. In some implementations, such switches are made seamlessly and substantially instantaneously, such that the audio and/or video of the playing content can continue without any perceptible delays, gaps, or buffering. In further implementations, switches among tracks maintain temporal continuity; that is, the tracks can be synchronized to a common timeline so that there is continuity in audio and/or video content when switching from one track to another (e.g., the same song is played using different instruments on different audio tracks; same storyline performed by different characters on different video tracks, and the like).


Such media presentations can also include interactive video structured in a video tree, hierarchy, or other form. A video tree can be formed by nodes that are connected in a branching, hierarchical, or other linked form. Nodes can each have an associated video segment, audio segment, graphical user interface (GUI) elements, and/or other associated media. Users (e.g., viewers) can watch a video that begins from a starting node in the tree and proceeds along connected nodes in a branch or path. Upon reaching a point during playback of the video where multiple video segments (child nodes) branch off from a segment (parent node), the user can interactively select the branch or path to traverse and, thus, the next video segment to watch.


As referred to herein, a particular branch or path in an interactive media structure, such as a video tree, can refer to a set of consecutively linked nodes between a starting node and ending node, inclusively, or can refer to some or all possible linked nodes that are connected subsequent to (e.g., sub-branches) or that include a particular node. Branched video can include seamlessly assembled and selectably presentable multimedia content such as that described in U.S. patent application Ser. No. 13/033,916, filed on Feb. 24, 2011, and entitled “System and Method for Seamless Multimedia Assembly” (the “Seamless Multimedia Assembly application”), and U.S. patent application Ser. No. 14/107,600, filed on Dec. 16, 2013, and entitled “Methods and Systems for Unfolding Video Pre-Roll,” the entireties of which are hereby incorporated by reference.


The prerecorded video segments in a video tree or other structure can be selectably presentable multimedia content; that is, some or all of the video segments in the video tree can be individually or collectively played for a user based upon the user's selection of a particular video segment, an interaction with a previous or playing video segment, or other interaction that results in a particular video segment or segments being played. The video segments can include, for example, one or more predefined, separate multimedia content segments that can be combined in various manners to create a continuous, seamless presentation such that there are no noticeable gaps, jumps, freezes, delays, or other visual or audible interruptions to video or audio playback between segments. In addition to the foregoing, “seamless” can refer to a continuous playback of content that gives the user the appearance of watching a single, linear multimedia presentation, as well as a continuous playback of multiple content segments that have smooth audio and/or video transitions (e.g., fadeout/fade-in, linking segments) between two or more of the segments.


In some instances, the user is permitted to make choices or otherwise interact in real-time at decision points or during decision periods interspersed throughout the multimedia content. Decision points and/or decision periods can occur at any time and in any number during a multimedia segment, including at or near the beginning and/or the end of the segment. Decision points and/or periods can be predefined, occurring at fixed points or during fixed periods in the multimedia content segments. Based at least in part on the user's choices made before or during playback of content, one or more subsequent multimedia segment(s) associated with the choices can be presented to the user. In some implementations, the subsequent segment is played immediately and automatically following the conclusion of the current segment, whereas in other implementations, the subsequent segment is played immediately upon the user's interaction with the video, without waiting for the end of the decision period or the end of the segment itself.


If a user does not make a selection at a decision point or during a decision period, a default, previously identified selection, or random selection can be made by the system. In some instances, the user is not provided with options; rather, the system automatically selects the segments that will be shown based on information that is associated with the user, other users, or other factors, such as the current date. For example, the system can automatically select subsequent segments based on the user's IP address, location, time zone, the weather in the user's location, social networking ID, saved selections, stored user profiles, preferred products or services, and so on. In further implementations, the system can select one or more segments to be presented based on a weighting mechanism, further described below. The system can also automatically select segments based on previous selections made by other users, such as the most popular suggestion or shared selections. The information can also be displayed to the user in the video, e.g., to show the user why an automatic selection is made. As one example, video segments can be automatically selected for presentation based on the geographical location of three different users: a user in Canada will see a twenty-second beer commercial segment followed by an interview segment with a Canadian citizen; a user in the US will see the same beer commercial segment followed by an interview segment with a US citizen; and a user in France is shown only the beer commercial segment.


Multimedia segment(s) selected automatically or by a user can be presented immediately following a currently playing segment, or can be shown after other segments are played. Further, the selected multimedia segment(s) can be presented to the user immediately after selection, after a fixed or random delay, at the end of a decision period, and/or at the end of the currently playing segment. Two or more combined segments can form a seamless multimedia content path or branch, and users can take multiple paths over multiple play-throughs, and experience different complete, start-to-finish, seamless presentations. Further, one or more multimedia segments can be shared among intertwining paths while still ensuring a seamless transition from a previous segment and to the next segment. The content paths can be predefined, with fixed sets of possible transitions in order to ensure seamless transitions among segments. The content paths can also be partially or wholly undefined, such that, in some or all instances, the user can switch to any known video segment without limitation. There can be any number of predefined paths, each having any number of predefined multimedia segments. Some or all of the segments can have the same or different playback lengths, including segments branching from a single source segment.


Traversal of the nodes along a content path in a tree can be performed by selecting among options that appear on and/or around the video while the video is playing. In some implementations, these options are presented to users at a decision point and/or during a decision period in a content segment. Some or all of the displayed options can hover and then disappear when the decision period ends or when an option has been selected. Further, a timer, countdown or other visual, aural, or other sensory indicator can be presented during playback of content segment to inform the user of the point by which he should (or, in some cases, must) make his selection. For example, the countdown can indicate when the decision period will end, which can be at a different time than when the currently playing segment will end. If a decision period ends before the end of a particular segment, the remaining portion of the segment can serve as a non-interactive seamless transition to one or more other segments. Further, during this non-interactive end portion, the next multimedia content segment (and other potential next segments) can be downloaded and buffered in the background for later playback (or potential playback).


A segment that is played after (immediately after or otherwise) a currently playing segment can be determined based on an option selected or other interaction with the video. Each available option can result in a different video and audio segment being played. As previously mentioned, the transition to the next segment can occur immediately upon selection, at the end of the current segment, or at some other predefined or random point. Notably, the transition between content segments can be seamless. In other words, the audio and video continue playing regardless of whether a segment selection is made, and no noticeable gaps appear in audio or video playback between any connecting segments. In some instances, the video continues on to another segment after a certain amount of time if none is chosen, or can continue playing in a loop.


In one example, the multimedia content is a music video in which the user selects options upon reaching segment decision points to determine subsequent content to be played. First, a video introduction segment is played for the user. Prior to the end of the segment, a decision point is reached at which the user can select the next segment to be played from a listing of choices. In this case, the user is presented with a choice as to who will sing the first verse of the song: a tall, female performer, or a short, male performer. The user is given an amount of time to make a selection (i.e., a decision period), after which, if no selection is made, a default segment will be automatically selected. The default can be a predefined or random selection. Of note, the media content continues to play during the time the user is presented with the choices. Once a choice is selected (or the decision period ends), a seamless transition occurs to the next segment, meaning that the audio and video continue on to the next segment as if there were no break between the two segments and the user cannot visually or audibly detect the transition. As the music video continues, the user is presented with other choices at other decisions points, depending on which path of choices is followed. Ultimately, the user arrives at a final segment, having traversed a complete multimedia content path.



FIG. 2 depicts one implementation of a detailed architecture of client-side components in application 112 on user device 110, including inputs received from remote sources, such as content server 102 and application server 106. Client side components include Weight Mechanism 212, Choice Manager 216, Inputs Collector 244, GUI Manager 254, Loading Manager 262, and Video Appender 270. Weight Mechanism 212 receives video node segment weighting information and/or path weighting information from weights configuration file 210, which can exist locally on the client (user device 110) or, as depicted, be obtained externally from a remote server (e.g., content server 102 or application server 106). Weights configuration file 210 can include an initial assigned weight for some or all nodes and/or paths in a video presentation, as well as define changes that can be made to the weights based on user inputs, selected nodes, and other factors. As will be described further, below, Weight Mechanism 212 uses the weight information from weights configuration file 210 to determine weights for upcoming segments, then receives information from Inputs Collector 244 (this information can include, e.g., user interactions) and Choice Manager 216 (this information can include, e.g., a currently selected path in a video tree), which is used to dynamically update the weights.


Inputs Collector 244 receives user inputs 240 from input components such as a device display screen 272, keyboard, mouse, microphone, virtual reality headset, and the like. Such inputs 240 can include, for example, mouse clicks, keyboard presses, touchpad presses, eye movement, head movement, voice input, etc. Inputs Collector 244 provides input information based on the inputs 240 to Weight Mechanism 212 and Choice Manager 216, the latter of which also receives information from Weight Mechanism 212 as well as a project configuration file 230 to determine which video segment should be currently played and which video segments may be played at a later time. Choice Manager 216 notifies Video Appender 270 of the video segment to be currently played, and Video Appender 270 seamlessly connects that video segment to the video stream being played in real time. Choice Manager 216 notifies Loading Manager 262 of the video segments that may be played at a later time.


Project configuration file 230 can include information defining the media presentation, such as the video tree or other structure, and how video segments can be linked together in various manners to form one or more paths. The project configuration file 230 can further specify which audio, video, and/or other media files correspond to each segment (e.g., node in a video tree), that is, which audio, video, and/or other media should be retrieved when application 112 determines that a particular segment should be played. Additionally, the project configuration file 230 can indicate interface elements that should be displayed or otherwise presented to users, as well as when the elements should be displayed, such that the audio, video, and interactive elements of the media presentation are synchronized. The project configuration file 230 can be stored on user device 110 or can be remotely accessed by Choice Manager 216.


In some implementations, the project configuration file 230 is also used in determining which media files should be loaded or buffered prior to being played (or potentially played). Because decision points can occur near the end of a segment, it may be necessary to begin transferring one or more of the potential next segments to viewers prior to a selection being made. For example, if a viewer is approaching a decision point with three possible branches, all three potential next segments can be preloaded partially or fully to ensure a smooth transition upon conclusion of the current segment. Intelligent buffering and progressive downloading of the video, audio, and/or other media content can be performed as described in U.S. patent application Ser. No. 13/437,164, filed Apr. 2, 2012, and entitled “Systems and Methods for Loading More Than One Video Content at a Time,” the entirety of which is incorporated by reference herein.


Using information in the project configuration file 230, Choice Manager 216 can inform GUI Manager 254 of which interface elements should be displayed to viewers on screen 272. The project configuration file 230 can further indicate the specific timings for which actions can be taken with respect to the interface elements (e.g., when a particular element is active and can be interacted with). The interface elements can include, for example, playback controls (pause, stop, play, seek, etc.), segment option selectors (e.g., buttons, images, text, animations, video thumbnails, and the like, that a viewer can interact with during decision periods, the selection of which results in a particular multimedia segment being seamlessly played following the conclusion of the current segment), timers (e.g., a clock or other graphical or textual countdown indicating the amount of time remaining to select an option or next segment, which, in some cases, can be the amount of time remaining until the current segment will transition to the next segment), links, popups, an index (e.g., for browsing and/or selecting other multimedia content to view or listen to), and/or a dynamic progress bar such as that described in U.S. patent application Ser. No. 13/622,795, filed Sep. 19, 2012, and entitled “Progress Bar for Branched Videos,” the entirety of which is incorporated by reference herein. In addition to visual elements, sounds or other sensory elements can be presented. For example, a timer can have a “ticking” sound synchronized with the movement of a clock hand. The interactive interface elements can be shared among multimedia segments or can be unique to one or more of the segments.


In addition to reading information from the project configuration file 230, Choice Manager 216 is notified of user interactions (e.g., mouse clicks, keyboard presses, touchpad presses, eye movements, etc.) from Inputs Collector 244, which interactions can be translated into actions associated with the playback of a media presentation (e.g., segment selections, playback controls, etc.). Based thereon, Choice Manager 216 notifies Loading Manager 262, which can process the actions as further described below. Choice Manager 216 can also interface with Loading Manager 262 and Video Appender 270. For example, Choice Manager 216 can listen for user interaction information from Inputs Collector 244 and notify Loading Manager 262 when an interaction by the viewer (e.g., a selection of an option displayed during the video) has occurred. In some implementations, based on its analysis of received events, Choice Manager 216 causes the presentation of various forms of sensory output, such as visual, aural, tactile, olfactory, and the like.


As earlier noted, Choice Manager 216 can also notify Loading Manager 262 of video segments that may be played at a later time, and Loading Manger 262 can retrieve the corresponding videos 225 (whether stored locally or on, e.g., content server 102) to have them prepared for potential playback through Video Appender 270. Choice Manager 216 and Loading Manager 262 can function to manage the downloading of hosted streaming media according to a loading logic. In one implementation, Choice Manager 216 receives information defining the media presentation structure from the project configuration file 230 and, using information from Inputs Collector 244 and Weight Mechanism 212, determines which media segments to download and/or buffer (e.g., if the segments are remotely stored). For example, if Choice Manager 216 informs Loading Manager 262 that a particular segment A will or is likely to be played at an upcoming point in the presentation timeline, Loading Manager 262 can intelligently request the segment for download, as well as additional media segments X, Y and Z that can be played following segment A, in advance of playback or notification of potential playback thereof. The downloading can occur even if fewer than all of X, Y, Z will be played (e.g., if X, Y and Z are potential segment choices branching off segment A and only one will be selected for playback).


In some implementations, Loading Manager 262 ceases or cancels downloading of content segments or other media if it determines that it is no longer possible for a particular media content segment (or other content) to be presented on a currently traversed media path. Referring to the above example, a user interacts with the video presentation such that segment Y is determined to be the next segment that will be played. The interaction can be received by Choice Manager 216 and, based on its knowledge of the path structure of the video presentation, Loading Manager 262 is notified to stop active downloads or dequeue pending downloads of content segments no longer reachable now that segment Y has been selected.


Video Appender 270 receives media content from Loading Manager 262 and instructions from Choice Manager 216 on which media segments to include in a media presentation. Video Appender 270 can analyze and/or modify raw video or other media content, for example, to concatenate two separate media streams into a single timeline. Video Appender 270 can also insert cue points and other event markers, such as junction events, into media streams. Further, Video Appender 270 can form one or more streams of bytes from multiple video, audio or other media streams, and feed the formed streams to a video playback function such that there is seamless playback of the combined media content on display screen 272 (as well as through speakers for audio, for example).


In some implementations, application 112 tracks data regarding user interactions, users, and/or player devices, and provides the data to an analytics server. Collected analytics can include, but are not limited to: the number, type, and/or location of a device; user data, such as login information, name, address, age, sex, and the like; user interactions, such as button/touchpad presses, mouse clicks, mouse/touchpad movements, interaction timings, and the like; decisions made by users or automatically (e.g., content segment user choices or default selections); and content paths followed in the presentation content structure. The analytics can include those described in U.S. patent application Ser. No. 13/034,645, entitled “System and Method for Data Mining within Interactive Multimedia,” and filed Feb. 24, 2011, the entirety of which is incorporated by reference herein.



FIG. 3 depicts an example of a dynamic weighting mechanism applied to child node options branching from a parent node. As shown, the four options and their corresponding initial weights (in the format, {Option, Weight}) at Time 1 are {{Politics, 40}, {Economy, 20}, {Sports, 20}, {Culture, 20}}. In order to select an available option based on these weights, a number is randomly selected between 1 and the sum of the weights of the available options (inclusive range). Accordingly, options with higher weights are more likely to be selected. Here, the four weights (40+20+20+20) have a sum of 100, thus, the random number selected is in the inclusive range of 1 to 100. Note that, although the weights sum to 100 to provide a clear mathematical example, the weights can add up to any particular value and can be distributed in any manner, as shown in other examples herein. In this example, then, the option “Politics” has a 40% chance of being selected, and the other options each have a 20% chance of being selected. As depicted in the “Range” column at Time 1, if the random number falls in the range of 1-40, the “Politics” node is selected, if the random number falls in the range of 41-60, the “Economy” node is selected, and so on. It is to be appreciated, however, that using continuous positive numerical ranges having the same number of integer entries as the weight value is just one manner of selecting a node based on weight, and other techniques are contemplated. In other words, other suitable techniques can be used that would result in the “Politics” node being chosen 40% of the time and each other node being chosen 20% of the time.


Advantageously, the weights assigned to individual media segments or paths can be updated dynamically while proceeding through or restarting a media presentation. Still referring to FIG. 3, as noted above, the four child nodes have initially assigned weights at Time 1. Upon an automatic selection of a node based on the weight (in the example depicted, the random number is 65, resulting in media content associated with the “Sports” node being played), the weights associated with those four nodes can be updated so that there is a different balance of weights the next time the user encounters the nodes, which can be in the same or a different playback of the media presentation. Accordingly, as shown in FIG. 3, the selection of the “Sports” node at Time 1 results in an automatic decrease in the weight attributed to that node so that it is less likely to be randomly selected at future times. Here, the weight is reduced by 50% from 20 to 10, although any suitable reduction is possible, even a 100% reduction to effectively remove the option. The total of all weights then becomes 90 (i.e., 40+20+10+20).


Continuing on with this example, at Time 2, the random number is 13, resulting in media content associated with the “Politics” node being presented. Accordingly, the weight associated with “Politics” is reduced by 50%, from 40 to 20. Weights of one or more nodes that were not selected during the last choice encounter, the last two choice encounters, or some other number of previous encounters, can be increased. As shown, the “Sports” node, having not been selected at Time 2, can have its weight increased by 50% (i.e., from 10 to 15). The next random number selection of 24 at Time 3 results in the “Economy” node being selected, and its weight is reduced by 50%, from 20 to 10. This time, two unselected nodes are selected for an increase in weight: “Politics” and “Sports.” The “Politics” node weight is increased 50%, from 20 to 30, and the “Sports” node weight is increased 25%, from 15 to 19 (rounded up). Any suitable technique can be used for determining which unselected nodes should have their weights altered, and by how much (e.g., predefined, random, etc.). Some or all nodes can also have predefined minimum and maximum weights beyond which a weight cannot decrease or increase, respectively.


In some implementations, instead of or in addition to the dynamic weight adjustment described above, users can interact with the media presentation to alter the weights associated with a particular segment or path. For example, during the playback of a media segment, the user can be provided with GUI buttons that allow the user to skip, delete, like, or dislike the playing segment. The weight associated with the playing segment can then be altered in response to the user selecting one of the buttons. As one example, the corresponding change in weight is as follows: (1) if the user chooses to “skip” the segment, the weight is reduced by 50% (this can be instead of or in addition to a decrease resulting from the segment having been selected, as described above), (2) if the user chooses to “delete” the segment, the weight is reduced to zero, and the segment will not be automatically selected at least the next time it is encountered as an option, (3) if the user “likes” the segment, its weight is increased by 5%, making it more likely it will be automatically selected when next encountered, and (4) if the user “dislikes” the segment, its weight is decreased by 5%, making it less likely it will be automatically selected when next encountered. In further implementations, the weights of related segments can be changed as well. For example, if the user chooses to “skip” a sports-related video segment, the weight of all sports-related video segments can be reduced by the same or a different amount (i.e., more or less).



FIG. 4 depicts an example application of the above-described weighting mechanism to an interactive media presentation in the form of a video tree structure 400 having corresponding timeline 410. Possible paths for traversal of the video tree structure 400 are shown in dotted lines, and the path taken for purposes of the depicted example is shown in solid lines. With the video tree structure 400 and timeline 410 running from left to right, the presentation begins with playback of video segment A. At time T1, segment A ends and a choice is available between segments B1 and B2. As shown in the depiction of the video tree structure 400, the weight for B1=3, and the weight for B2=5. At that time T1, the timeline 410 indicates that a random number is chosen between 1 and 8, inclusive, to determine which path to take. Here, the random number is 6, which falls in the weight range associated with B2 (i.e., 4 to 8), and so segment B2 is played, following by segment C, for which there are no alternative options. The presentation continues similarly when reaching time T2, where the random number is determined to be 1 (corresponding to segment D1's weight range of 1 to 2), and so segment D1 is played. The presentation ends with the playback of the final video segment, E. Although the depicted video tree structure 400 is fairly simplistic, one will appreciate that many configurations of various complexities are possible.


The weighting techniques described herein can be used in various manners. As just a few examples, dynamically weighted segments and/or paths can be used in interactive advertisements, music videos, games, story-based videos, and other forms of media presentations. Referring again to FIG. 4, video tree structure 400 with weighted node options can represent a digital video with alternative advertisement options that can play upon reaching branching points. That is, segments B1 and B2 can be different ads with respective weights, one of which can be played at time T1 (after video content segment A and before video content segment C), and segments D1 and D2 can be different ads with respective weights, one of which can be played at time T2 (after video content segment C and before video content segment E). The weight attributed to a particular advertising video segment can be based on, for example, advertiser payment (e.g., the advertiser pays more to increase the weight relative to other advertising segments) and/or user targeting information. With respect to the latter, the weight of an advertising video segment can be dynamically increased if the ad has targeting parameters relevant to the user (e.g., the user is a 22 year old male, and the targeting parameters specify males in the age range of 18-25), or decreased if the ad does not have targeting parameters relevant to the user. The weight can be increased more or less depending on how relevant the ad may be to the user, based on the targeting parameters.


Various features can be included in this and other implementations. For example, prior to reaching a decision point (e.g., at time T1 during timeline 410), segments that may potentially be played (e.g., B1 and B2) are pre-loaded (partially or fully buffered) to allow for a seamless transition from the preceding segment regardless of which segment is ultimately played. In other implementations, segment options (e.g., advertisement video segments B1 and/or B2) can be removed or swapped out with different segment options, and new segment options can be added (e.g., increase the number of possible options from two to three), and corresponding weights can be updated appropriately. In yet another implementation, and as further described above, user interaction with a media presentation can cause changes to particular weights. Thus, for example, if a viewer were to indicate that advertising video segment option D1 is not relevant to him or his interests (e.g., by selecting a “not relevant” button on the screen while the ad is playing), the ad segment option could be swapped out with a different ad segment having its own corresponding weight.


Instead of or in addition to weighting individual segment options, entire paths or portions thereof can be attributed respective weights. FIG. 5 depicts an example video tree 500 of a branching media presentation, where each path in the video tree 500 has an associated weight. The weight of a particular path can be, for example, a sum of the weights of all of the segments in the path, an assigned number unrelated to the path segment weights, or some other value. For purposes of illustration, the media presentation is a seamlessly-presented music video during which different audiovisual segments are played over the course of the presentation depending on which path is traversed through the video tree 500. As shown, each arrow represents a video segment, and there are nine different paths (A through I) that can be taken through the video tree 500, with eight different endings (paths F and G share an ending). Each path A-I has an assigned weight (A=12, B=4, C=9, D=16, E=10, F=8, G=12, H=5, I=9) and so only one random number is selected between 1 and the total of the path weights (i.e., between 1 and 85, inclusive) to determine the individual video segments that will be presented to a viewer. Thus, according to the weighting mechanisms described herein, if the random number selected is equal to 20, the default path traversed for presentation of the music video is path C (20 falls within the weight range of 17 to 25 for path C), and the linked segments between “Start” and the end of path C are played. Accordingly, there are nine possible versions of the music video that a user can experience, each chosen not by mere randomness, but using weights that can be dynamically modified through the techniques described herein.


In one implementation, the viewer is not permitted to switch paths after one has been selected based on weights. In this instance, pre-loading of the presentation is more efficient, as it is unnecessary to buffer segments in other paths that will not be shown as part of the presentation. In another implementation, after a weighted path is selected for traversal and commences playing, a user can nonetheless switch to other paths by, e.g., selecting alternative options using interface controls, while the video is playing. In this case, buffering of alternative segment options may still occur.



FIGS. 6 and 7 depict an example flow of an interactive media presentation in the form of a video basketball game, in which the user can interact with the video to play the game while certain events occur based on a weighting mechanism. In this example, the basketball game is formed using individual video segments depicting different events in the game (e.g., offensive player moves to the left while the defensive player attempts to block). The user controls one player and the second player is computer controlled, and together the decisions of the two players result in a particular path being traversed through the game. In particular, subsequent video segments shown to the user can be selected based on a combination of user interactions and automated system decisions based on weights.


In the depicted example, the offensive (attacking) player is system-controlled, and the user chooses the actions of the defending player. During the game, the user is provided with defensive options, but may not be aware of which action the system will take until he has made his choice. For example, referring to FIG. 6, at “Choice 1,” the user can select whether to defend left or defend right, and at “Choice 2,” the user can select the options of defending left, defending right, or blocking. The system, on the other hand, selects an offensive move based on weights associated with different possible moves. For example, at “Choice 1,” the system can select whether to attack to the left or the right, each having an associated weight that results in a 50% chance of being selected. Further, at “Choice 2,” the system can select whether to attack right (20% weight), attack left (20% weight) or shoot the ball (60% weight). If the system shoots the ball and the user has not selected a blocking option, the system is more likely to successfully score (e.g., 60% weighted chance to play a video segment showing a successful shot, 40% weighted chance to play a video segment showing a miss) than if the user has selected a blocking option (e.g., 20% weighted chance to score, 80% weighted chance to miss). Thus, as shown in FIG. 6, this example play-through of the game progresses through three events: (1) system attacks to the right, user defends to the right; (2) system shoots, user defends left; and (3) system either scores or misses based on the weights of those respective options.



FIG. 7 depicts “Choice 1” of FIG. 6 in further detail, along timeline 700. The video game progresses during the five-second time segment 702 (e.g., a video showing the basketball being dribbled down the court), following which the system decides whether to attack right or attack left based on the weights assigned to those options (here, 50% weight to each option) during time segment 704. The user also makes his choice at this point (i.e., defend left or defend right), and the video segment corresponding to the combination of the system and user choices is played out over time segment 706. In some implementations, there is some separation between system choices and user choices. For example, as depicted, time segment 704 is a one-second time period following the system offensive choice during which a video segment showing the start of that choice is shown, and the user has a limited amount of time to respond with a defensive move. In this manner, the game can progress based on the user's quick decisions, rather on than luck. Additional choices made during the video game can play out accordingly over timeline 700.


Advantageously, the user can continue playing the video game over and over again, and weights associated with the video segments and paths in the game can change according to various factors including the outcome or other events in previous games. For example, if in one play-through of the video game the system selects “attack right,” the weight associated with that option can be reduced in the next play-through to make that choice less likely (e.g., reduce from a 50% chance of being chosen to a 25% chance). It is to be appreciated that the difficulty of the game can also be adjusted through weighting particular options more heavily than others. Other factors can result in real-time weighting changes to the video game segments (or segments, paths, etc., in other media presentations incorporating the techniques described herein), and such factors can include, but not be limited to, user interactions with the video game, selected options (nodes or paths), the addition or removal of media segments, information associated with the user (e.g., demographics), and information associated with previous plays by the same user and/or different users (e.g., previous choices made, most popular choices, etc.).


Although the systems and methods described herein relate primarily to audio and video playback, the invention is equally applicable to various streaming and non-streaming media, including animation, video games, interactive media, and other forms of content usable in conjunction with the present systems and methods. Further, there can be more than one audio, video, and/or other media content stream played in synchronization with other streams. Streaming media can include, for example, multimedia content that is continuously presented to a user while it is received from a content delivery source, such as a remote video server. If a source media file is in a format that cannot be streamed and/or does not allow for seamless connections between segments, the media file can be transcoded or converted into a format supporting streaming and/or seamless transitions.


While various implementations of the present invention have been described herein, it should be understood that they have been presented by example only. For example, one of skill in the art will appreciate that the techniques for creating seamless audio segments can be applied to creating seamless video segments and other forms of seamless media as well. Where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art having the benefit of this disclosure would recognize that the ordering of certain steps can be modified and that such modifications are in accordance with the given variations. For example, although various implementations have been described as having particular features and/or combinations of components, other implementations are possible having any combination or sub-combination of any features and/or components from any of the implementations described herein.

Claims
  • 1. A computer-implemented method comprising: receiving a predefined video tree representing a branching video presentation, the predefined video tree defining a plurality of branches, each branch defining a path of one or more video content segments;receiving a weight configuration file comprising a plurality of weights for different respective portions of the video tree, wherein, for each respective portion, the weight configuration file comprises (i) an initial assigned weight and (ii) at least one predefined change in weight;associating, by a user device, the plurality of weights with the different respective portions of the video tree by assigning the initial assigned weights to the different respective portions, the different respective portions comprising a plurality of child video content segments branching from a parent video content segment;at one or more times during playback of the branching video presentation, automatically selecting a video content segment to present based on one or more of the associated weights, the automatically selecting comprising: identifying a plurality of alternative video content segments, each associated with a respective weight; andselecting one of the alternative video content segments to present based on the respective associated weights thereof, wherein each alternative video content segment has a probability of being selected based on the associated weight of the alternative video content segment compared to a total of the respective associated weights of the alternative video content segments; andmodifying, by the user device, the associated weight for a first one of the different respective portions of the video tree by applying the predefined change in weight for the first respective portion to the associated weight for the first respective portion.
  • 2. The method of claim 1, wherein particular portions of the video tree to which weights are applied comprise a plurality of video content segments each at an end of a respective branch.
  • 3. The method of claim 1, wherein particular portions of the video tree to which weights are applied comprise a plurality of paths of one or more video content segments.
  • 4. The method of claim 1, further comprising decreasing an associated weight of a video content segment following a selection thereof for presentation.
  • 5. The method of claim 1, further comprising increasing an associated weight of one or more video content segments following a selection of a different video content segment for presentation.
  • 6. The method of claim 1, further comprising modifying an associated weight of the selected video content segment based on a user action received with respect to the selected video content segment.
  • 7. The method of claim 6, wherein the user action comprises an instruction to skip the selected video content segment, an instruction to delete the selected video content segment, an indication of liking the selected video content segment, or an indication of disliking the video content segment.
  • 8. The method of claim 1, wherein a particular weight is associated with a portion of the video tree based on at least one of a received monetary value and a characteristic associated with a user viewing the branching video presentation.
  • 9. A system comprising: at least one memory for storing computer-executable instructions; andat least one processor for executing the instructions stored on the memory, wherein execution of the instructions programs the at least one processor to perform operations comprising: receiving a predefined video tree representing a branching video presentation, the predefined video tree defining a plurality of branches, each branch defining a path of one or more video content segments;receiving a weight configuration file comprising a plurality of weights for different respective portions of the video tree, wherein, for each respective portion, the weight configuration file comprises (i) an initial assigned weight and (ii) at least one predefined change in weight;associating, by a user device, the plurality of weights with the different respective portions of the video tree by assigning the initial assigned weights to the different respective portions, the different respective portions comprising a plurality of child video content segments branching from a parent video content segment;at one or more times during playback of the branching video presentation, automatically selecting a video content segment to present based on one or more of the associated weights, the automatically selecting comprising: identifying a plurality of alternative video content segments, each associated with a respective weight; andselecting one of the alternative video content segments to present based on the respective associated weights thereof, wherein each alternative video content segment has a probability of being selected based on the associated weight of the alternative video content segment compared to a total of the respective associated weights of the alternative video content segments; andmodifying, by the user device, the associated weight for a first one of the different respective portions of the video tree by applying the predefined change in weight for the first respective portion to the associated weight for the first respective portion.
  • 10. The system of claim 9, wherein particular portions of the video tree to which weights are applied comprise a plurality of video content segments each at an end of a respective branch.
  • 11. The system of claim 9, wherein particular portions of the video tree to which weights are applied comprise a plurality of paths of one or more video content segments.
  • 12. The system of claim 9, wherein the operations further comprise decreasing an associated weight of a video content segment following a selection thereof for presentation.
  • 13. The system of claim 9, wherein the operations further comprise increasing an associated weight of one or more video content segments following a selection of a different video content segment for presentation.
  • 14. The system of claim 9, wherein the operations further comprise modifying an associated weight of the selected video content segment based on a user action received with respect to the selected video content segment.
  • 15. The system of claim 14, wherein the user action comprises an instruction to skip the selected video content segment, an instruction to delete the selected video content segment, an indication of liking the selected video content segment, or an indication of disliking the video content segment.
  • 16. The system of claim 9, wherein a particular weight is associated with a portion of the video tree based on at least one of a received monetary value and a characteristic associated with a user viewing the branching video presentation.
  • 17. The method of claim 1, wherein the weight configuration file is received by the user device from a remote server.
  • 18. The method of claim 1, wherein the weight configuration file is stored in the user device.
  • 19. The system of claim 1, wherein the weight configuration file is received by the user device from a remote server.
  • 20. The system of claim 1, wherein the weight configuration file is stored in the user device.
US Referenced Citations (402)
Number Name Date Kind
4569026 Best Feb 1986 A
5161034 Klappert Nov 1992 A
5568602 Callahan et al. Oct 1996 A
5568603 Chen et al. Oct 1996 A
5597312 Bloom Jan 1997 A
5607356 Schwartz Mar 1997 A
5610653 Abecassis Mar 1997 A
5636036 Ashbey Jun 1997 A
5676551 Knight et al. Oct 1997 A
5715169 Noguchi Feb 1998 A
5734862 Kulas Mar 1998 A
5737527 Shiels et al. Apr 1998 A
5745738 Ricard Apr 1998 A
5751953 Shiels et al. May 1998 A
5754770 Shiels et al. May 1998 A
5818435 Kozuka et al. Oct 1998 A
5848934 Shiels et al. Dec 1998 A
5887110 Sakamoto et al. Mar 1999 A
5894320 Vancelette Apr 1999 A
5956037 Osawa et al. Sep 1999 A
6067400 Saeki et al. May 2000 A
6122668 Teng et al. Sep 2000 A
6128712 Hunt et al. Oct 2000 A
6191780 Martin et al. Feb 2001 B1
6222925 Shiels et al. Apr 2001 B1
6240555 Shoff et al. May 2001 B1
6298482 Seidman et al. Oct 2001 B1
6460036 Herz Oct 2002 B1
6535639 Uchihachi Mar 2003 B1
6657906 Martin Dec 2003 B2
6698020 Zigmond et al. Feb 2004 B1
6728477 Watkins Apr 2004 B1
6771875 Kunieda Aug 2004 B1
6801947 Li Oct 2004 B1
6947966 Oko, Jr. Sep 2005 B1
7085844 Thompson Aug 2006 B2
7155676 Land et al. Dec 2006 B2
7231132 Davenport Jun 2007 B1
7310784 Gottlieb et al. Dec 2007 B1
7379653 Yap et al. May 2008 B2
7444069 Bernsley Oct 2008 B1
7472910 Okada et al. Jan 2009 B1
7627605 Lamere et al. Dec 2009 B1
7669128 Bailey et al. Feb 2010 B2
7694320 Yeo et al. Apr 2010 B1
7779438 Davies Aug 2010 B2
7787973 Lambert Aug 2010 B2
7917505 van Gent et al. Mar 2011 B2
8024762 Britt Sep 2011 B2
8046801 Ellis et al. Oct 2011 B2
8065710 Malik Nov 2011 B2
8151139 Gordon Apr 2012 B1
8176425 Wallace et al. May 2012 B2
8190001 Bernsley May 2012 B2
8276058 Gottlieb et al. Sep 2012 B2
8281355 Weaver et al. Oct 2012 B1
8600220 Bloch et al. Dec 2013 B2
8612517 Yadid et al. Dec 2013 B1
8650489 Baum et al. Feb 2014 B1
8667395 Hosogai et al. Mar 2014 B2
8750682 Nicksay Jun 2014 B1
8826337 Issa et al. Sep 2014 B2
8860882 Bloch et al. Oct 2014 B2
8930975 Woods et al. Jan 2015 B2
8977113 Rumteen et al. Mar 2015 B1
9009619 Bloch et al. Apr 2015 B2
9021537 Funge et al. Apr 2015 B2
9082092 Henry Jul 2015 B1
9094718 Barton et al. Jul 2015 B2
9190110 Bloch Nov 2015 B2
9257148 Bloch et al. Feb 2016 B2
9268774 Kim et al. Feb 2016 B2
9271015 Bloch et al. Feb 2016 B2
9367196 Goldstein et al. Jun 2016 B1
9390099 Wang et al. Jul 2016 B1
9456247 Pontual et al. Sep 2016 B1
9465435 Zhang et al. Oct 2016 B1
9473582 Fraccaroli Oct 2016 B1
9510044 Pereira Nov 2016 B1
9520155 Bloch et al. Dec 2016 B2
9530454 Bloch et al. Dec 2016 B2
9607655 Bloch et al. Mar 2017 B2
9641898 Bloch et al. May 2017 B2
9653115 Bloch et al. May 2017 B2
9653116 Paulraj et al. May 2017 B2
9672868 Bloch et al. Jun 2017 B2
9715901 Singh Jul 2017 B1
9792026 Bloch et al. Oct 2017 B2
9792957 Bloch et al. Oct 2017 B2
9826285 Mishra et al. Nov 2017 B1
9967621 Armstrong May 2018 B2
10178421 Thomas et al. Jan 2019 B2
10523982 Oyman Dec 2019 B2
20010056427 Yoon Dec 2001 A1
20020019799 Ginsberg et al. Feb 2002 A1
20020053089 Massey May 2002 A1
20020086724 Miyaki et al. Jul 2002 A1
20020091455 Williams Jul 2002 A1
20020105535 Wallace et al. Aug 2002 A1
20020106191 Betz et al. Aug 2002 A1
20020120456 Berg et al. Aug 2002 A1
20020124250 Proehl et al. Sep 2002 A1
20020129374 Freeman et al. Sep 2002 A1
20020140719 Amir et al. Oct 2002 A1
20020144262 Plotnick et al. Oct 2002 A1
20020174430 Ellis et al. Nov 2002 A1
20020177914 Chase Nov 2002 A1
20020194595 Miller et al. Dec 2002 A1
20030007560 Mayhew et al. Jan 2003 A1
20030012409 Overton et al. Jan 2003 A1
20030023757 Ishioka Jan 2003 A1
20030076347 Barrett et al. Apr 2003 A1
20030101164 Pic May 2003 A1
20030148806 Weiss Aug 2003 A1
20030159566 Sater et al. Aug 2003 A1
20030183064 Eugene et al. Oct 2003 A1
20030184598 Graham Oct 2003 A1
20030221541 Platt Dec 2003 A1
20040009813 Wind Jan 2004 A1
20040019905 Fellenstein et al. Jan 2004 A1
20040034711 Hughes Feb 2004 A1
20040070595 Atlas et al. Apr 2004 A1
20040091848 Nemitz May 2004 A1
20040125124 Kim et al. Jul 2004 A1
20040128317 Sull et al. Jul 2004 A1
20040138948 Loomis Jul 2004 A1
20040172476 Chapweske Sep 2004 A1
20040194128 McIntyre et al. Sep 2004 A1
20040194131 Ellis et al. Sep 2004 A1
20040199923 Russek Oct 2004 A1
20050019015 Ackley et al. Jan 2005 A1
20050055377 Dorey et al. Mar 2005 A1
20050091597 Ackley Apr 2005 A1
20050102707 Schnitman May 2005 A1
20050107159 Sato May 2005 A1
20050120389 Boss Jun 2005 A1
20050132401 Boccon-Gibod et al. Jun 2005 A1
20050166224 Ficco Jul 2005 A1
20050198661 Collins et al. Sep 2005 A1
20050210145 Kim et al. Sep 2005 A1
20050251820 Stefanik et al. Nov 2005 A1
20050251827 Ellis et al. Nov 2005 A1
20060002895 McDonnell et al. Jan 2006 A1
20060024034 Filo et al. Feb 2006 A1
20060028951 Tozun et al. Feb 2006 A1
20060064733 Norton et al. Mar 2006 A1
20060150072 Salvucci Jul 2006 A1
20060150216 Herz et al. Jul 2006 A1
20060153537 Kaneko Jul 2006 A1
20060155400 Loomis Jul 2006 A1
20060200842 Chapman et al. Sep 2006 A1
20060222322 Levitan Oct 2006 A1
20060224260 Hicken et al. Oct 2006 A1
20060274828 Siemens et al. Dec 2006 A1
20070003149 Nagumo et al. Jan 2007 A1
20070024706 Brannon et al. Feb 2007 A1
20070033633 Andrews et al. Feb 2007 A1
20070055989 Shanks et al. Mar 2007 A1
20070079325 de Heer Apr 2007 A1
20070099684 Butterworth May 2007 A1
20070101369 Dolph May 2007 A1
20070118801 Harshbarger et al. May 2007 A1
20070154169 Cordray et al. Jul 2007 A1
20070157234 Walker Jul 2007 A1
20070157260 Walker Jul 2007 A1
20070157261 Steelberg et al. Jul 2007 A1
20070162395 Ben-Yaacov et al. Jul 2007 A1
20070220583 Bailey et al. Sep 2007 A1
20070226761 Zalewski et al. Sep 2007 A1
20070239754 Schnitman Oct 2007 A1
20070253677 Wang Nov 2007 A1
20070253688 Koennecke Nov 2007 A1
20070263722 Fukuzawa Nov 2007 A1
20080019445 Aono et al. Jan 2008 A1
20080021187 Wescott et al. Jan 2008 A1
20080021874 Dahl et al. Jan 2008 A1
20080022320 Ver Steeg Jan 2008 A1
20080031595 Cho Feb 2008 A1
20080086456 Rasanen et al. Apr 2008 A1
20080086754 Chen et al. Apr 2008 A1
20080091721 Harboe et al. Apr 2008 A1
20080092159 Dmitriev et al. Apr 2008 A1
20080148152 Blinnikka et al. Jun 2008 A1
20080161111 Schuman Jul 2008 A1
20080170687 Moors et al. Jul 2008 A1
20080177893 Bowra et al. Jul 2008 A1
20080178232 Velusamy Jul 2008 A1
20080276157 Kustka et al. Nov 2008 A1
20080300967 Buckley et al. Dec 2008 A1
20080301750 Silfvast et al. Dec 2008 A1
20080314232 Hansson et al. Dec 2008 A1
20090022015 Harrison Jan 2009 A1
20090022165 Candelore et al. Jan 2009 A1
20090024923 Hartwig et al. Jan 2009 A1
20090029771 Donahue Jan 2009 A1
20090055880 Batteram et al. Feb 2009 A1
20090063681 Ramakrishnan et al. Mar 2009 A1
20090077137 Weda et al. Mar 2009 A1
20090079663 Chang et al. Mar 2009 A1
20090083631 Sidi Mar 2009 A1
20090116817 Kim et al. May 2009 A1
20090177538 Brewer et al. Jul 2009 A1
20090191971 Avent Jul 2009 A1
20090195652 Gal Aug 2009 A1
20090199697 Lehtiniemi et al. Aug 2009 A1
20090226046 Shteyn Sep 2009 A1
20090228572 Wall et al. Sep 2009 A1
20090254827 Gonze et al. Oct 2009 A1
20090258708 Figueroa Oct 2009 A1
20090265746 Halen et al. Oct 2009 A1
20090297118 Fink et al. Dec 2009 A1
20090320075 Marko Dec 2009 A1
20100017820 Thevathasan et al. Jan 2010 A1
20100042496 Wang et al. Feb 2010 A1
20100069159 Yamada et al. Mar 2010 A1
20100077290 Pueyo Mar 2010 A1
20100088726 Curtis et al. Apr 2010 A1
20100146145 Tippin et al. Jun 2010 A1
20100153512 Balassanian et al. Jun 2010 A1
20100153885 Yates Jun 2010 A1
20100161792 Palm et al. Jun 2010 A1
20100162344 Casagrande et al. Jun 2010 A1
20100167816 Perlman et al. Jul 2010 A1
20100167819 Schell Jul 2010 A1
20100186032 Pradeep et al. Jul 2010 A1
20100186579 Schnitman Jul 2010 A1
20100210351 Berman Aug 2010 A1
20100251295 Amento et al. Sep 2010 A1
20100262336 Rivas et al. Oct 2010 A1
20100267450 McMain Oct 2010 A1
20100268361 Mantel et al. Oct 2010 A1
20100278509 Nagano et al. Nov 2010 A1
20100287033 Mathur Nov 2010 A1
20100287475 van Zwol et al. Nov 2010 A1
20100293455 Bloch Nov 2010 A1
20100325135 Chen et al. Dec 2010 A1
20100332404 Valin Dec 2010 A1
20110000797 Henry Jan 2011 A1
20110007797 Palmer et al. Jan 2011 A1
20110010742 White Jan 2011 A1
20110026898 Lussier et al. Feb 2011 A1
20110033167 Arling et al. Feb 2011 A1
20110041059 Amarasingham et al. Feb 2011 A1
20110069940 Shimy et al. Mar 2011 A1
20110078023 Aldrey et al. Mar 2011 A1
20110078740 Bolyukh et al. Mar 2011 A1
20110096225 Candelore Apr 2011 A1
20110126106 Ben Shaul et al. May 2011 A1
20110131493 Dahl Jun 2011 A1
20110138331 Pugsley et al. Jun 2011 A1
20110163969 Anzures et al. Jul 2011 A1
20110169603 Fithian et al. Jul 2011 A1
20110191684 Greenberg Aug 2011 A1
20110191801 Vytheeswaran Aug 2011 A1
20110197131 Duffin et al. Aug 2011 A1
20110200116 Bloch et al. Aug 2011 A1
20110202562 Bloch et al. Aug 2011 A1
20110238494 Park Sep 2011 A1
20110246885 Pantos et al. Oct 2011 A1
20110252320 Arrasvuori et al. Oct 2011 A1
20110264755 Salvatore De Villiers Oct 2011 A1
20110282745 Meoded et al. Nov 2011 A1
20110282906 Wong Nov 2011 A1
20110307786 Shuster Dec 2011 A1
20110307919 Weerasinghe Dec 2011 A1
20110307920 Blanchard et al. Dec 2011 A1
20110313859 Stillwell et al. Dec 2011 A1
20110314030 Burba et al. Dec 2011 A1
20120004960 Ma et al. Jan 2012 A1
20120005287 Gadel et al. Jan 2012 A1
20120017141 Eelen et al. Jan 2012 A1
20120062576 Rosenthal et al. Mar 2012 A1
20120081389 Dilts Apr 2012 A1
20120089911 Hosking et al. Apr 2012 A1
20120094768 McCaddon et al. Apr 2012 A1
20120110618 Kilar et al. May 2012 A1
20120110620 Kilar et al. May 2012 A1
20120120114 You et al. May 2012 A1
20120134646 Alexander May 2012 A1
20120147954 Kasai et al. Jun 2012 A1
20120159541 Carton et al. Jun 2012 A1
20120179970 Hayes Jul 2012 A1
20120198412 Creighton et al. Aug 2012 A1
20120213495 Hafeneger et al. Aug 2012 A1
20120233631 Geshwind Sep 2012 A1
20120246032 Beroukhim Sep 2012 A1
20120263263 Olsen et al. Oct 2012 A1
20120308206 Kulas Dec 2012 A1
20120317198 Patton et al. Dec 2012 A1
20120324491 Bathiche et al. Dec 2012 A1
20130028573 Hoofien et al. Jan 2013 A1
20130031582 Tinsman et al. Jan 2013 A1
20130039632 Feinson Feb 2013 A1
20130046847 Zavesky et al. Feb 2013 A1
20130054728 Amir et al. Feb 2013 A1
20130055321 Cline et al. Feb 2013 A1
20130061263 Issa et al. Mar 2013 A1
20130097643 Stone et al. Apr 2013 A1
20130117248 Bhogal et al. May 2013 A1
20130125181 Montemayor et al. May 2013 A1
20130129304 Feinson May 2013 A1
20130129308 Karn et al. May 2013 A1
20130173765 Korbecki Jul 2013 A1
20130177294 Kennberg Jul 2013 A1
20130188923 Hartley et al. Jul 2013 A1
20130202265 Arrasvuori et al. Aug 2013 A1
20130204710 Boland et al. Aug 2013 A1
20130219425 Swartz Aug 2013 A1
20130254292 Bradley Sep 2013 A1
20130259442 Bloch et al. Oct 2013 A1
20130282917 Reznik et al. Oct 2013 A1
20130290818 Arrasvuori et al. Oct 2013 A1
20130298146 Conrad et al. Nov 2013 A1
20130308926 Jang et al. Nov 2013 A1
20130328888 Beaver et al. Dec 2013 A1
20130330055 Zimmermann Dec 2013 A1
20130335427 Cheung et al. Dec 2013 A1
20140019865 Shah Jan 2014 A1
20140025839 Marko et al. Jan 2014 A1
20140040273 Cooper et al. Feb 2014 A1
20140040280 Slaney et al. Feb 2014 A1
20140046946 Friedmann et al. Feb 2014 A2
20140078397 Bloch et al. Mar 2014 A1
20140082666 Bloch et al. Mar 2014 A1
20140085196 Zucker et al. Mar 2014 A1
20140094313 Watson et al. Apr 2014 A1
20140101550 Zises Apr 2014 A1
20140126877 Crawford et al. May 2014 A1
20140129618 Panje et al. May 2014 A1
20140136186 Adami May 2014 A1
20140152564 Gulezian et al. Jun 2014 A1
20140156677 Collins, III Jun 2014 A1
20140178051 Bloch et al. Jun 2014 A1
20140186008 Eyer Jul 2014 A1
20140194211 Chimes et al. Jul 2014 A1
20140210860 Caissy Jul 2014 A1
20140220535 Angelone Aug 2014 A1
20140237520 Rothschild et al. Aug 2014 A1
20140245152 Carter et al. Aug 2014 A1
20140270680 Bloch et al. Sep 2014 A1
20140282013 Amijee Sep 2014 A1
20140282642 Needham et al. Sep 2014 A1
20140298173 Rock Oct 2014 A1
20140380167 Bloch et al. Dec 2014 A1
20150007234 Rasanen et al. Jan 2015 A1
20150012369 Dharmaji et al. Jan 2015 A1
20150015789 Guntur et al. Jan 2015 A1
20150046946 Hassell et al. Feb 2015 A1
20150058342 Kim et al. Feb 2015 A1
20150067723 Bloch et al. Mar 2015 A1
20150104155 Bloch et al. Apr 2015 A1
20150160853 Hwang et al. Jun 2015 A1
20150179224 Bloch et al. Jun 2015 A1
20150181271 Onno Jun 2015 A1
20150181301 Bloch et al. Jun 2015 A1
20150185965 Belliveau et al. Jul 2015 A1
20150195601 Hahm Jul 2015 A1
20150199116 Bloch et al. Jul 2015 A1
20150201187 Ryo Jul 2015 A1
20150258454 King et al. Sep 2015 A1
20150293675 Bloch et al. Oct 2015 A1
20150294685 Bloch et al. Oct 2015 A1
20150304698 Redol Oct 2015 A1
20150331942 Tan Nov 2015 A1
20160021412 Zito, Jr. Jan 2016 A1
20160037217 Harmon et al. Feb 2016 A1
20160062540 Yang et al. Mar 2016 A1
20160066051 Caidar et al. Mar 2016 A1
20160094875 Peterson et al. Mar 2016 A1
20160100226 Sadler et al. Apr 2016 A1
20160104513 Bloch et al. Apr 2016 A1
20160105724 Bloch et al. Apr 2016 A1
20160132203 Seto et al. May 2016 A1
20160162179 Annett Jun 2016 A1
20160170948 Bloch Jun 2016 A1
20160173944 Kilar et al. Jun 2016 A1
20160192009 Sugio et al. Jun 2016 A1
20160217829 Bloch et al. Jul 2016 A1
20160224573 Shahraray et al. Aug 2016 A1
20160277779 Zhang et al. Sep 2016 A1
20160303608 Jossick Oct 2016 A1
20160322054 Bloch et al. Nov 2016 A1
20160323608 Bloch et al. Nov 2016 A1
20170062012 Bloch et al. Mar 2017 A1
20170142486 Masuda May 2017 A1
20170178409 Bloch et al. Jun 2017 A1
20170178601 Bloch et al. Jun 2017 A1
20170195736 Chai et al. Jul 2017 A1
20170264920 Mickelsen Sep 2017 A1
20170286424 Peterson Oct 2017 A1
20170289220 Bloch et al. Oct 2017 A1
20170295410 Bloch et al. Oct 2017 A1
20170337196 Goela Nov 2017 A1
20170345460 Bloch et al. Nov 2017 A1
20180007443 Cannistraro Jan 2018 A1
20180025078 Quennesson Jan 2018 A1
20180068019 Novikoff Mar 2018 A1
20180115592 Samineni Apr 2018 A1
20180130501 Bloch et al. May 2018 A1
20180176573 Chawla Jun 2018 A1
20180262798 Ramachandra Sep 2018 A1
20190075367 van Zessen Mar 2019 A1
Foreign Referenced Citations (26)
Number Date Country
2639491 Mar 2010 CA
004038801 Jun 1992 DE
10053720 Apr 2002 DE
0965371 Dec 1999 EP
1033157 Sep 2000 EP
0965371 Mar 2001 EP
2104105 Sep 2009 EP
2359916 Sep 2001 GB
2428329 Jan 2007 GB
2008005288 Jan 2008 JP
20040005068 Jan 2004 KR
20100037413 Apr 2010 KR
WO-1996013810 May 1996 WO
WO-2000059224 Oct 2000 WO
WO-2007062223 May 2007 WO
WO-2007138546 Dec 2007 WO
WO-2008001350 Jan 2008 WO
WO-2008052009 May 2008 WO
WO-2008057444 May 2008 WO
WO-2008057444 Jul 2008 WO
WO-2007062223 Aug 2008 WO
WO-2008001350 Oct 2008 WO
WO-2008052009 Oct 2008 WO
WO-2007138546 Apr 2009 WO
WO-2009125404 Oct 2009 WO
WO-2009137919 Nov 2009 WO
Non-Patent Literature Citations (86)
Entry
An ffmpeg and SDL Tutorial, “Tutorial 05: Synching Video,” Retrieved from Internet on Mar. 15, 2013: <http://dranger.com/ffmpeg/tutorial05.html>, (4 pages).
Archos Gen 5 English User Manual Version 3.0, Jul. 26, 2007, p. 1-81.
Bartlett, “iTunes 11: How to Queue Next Song,” Technipages, Oct. 6, 2008, pp. 1-8, Retrieved from the Internet on Dec. 26, 2013, http://www.technipages.com/itunes-queue-next-song.html.
International Search Report and Written Opinion for International Patent Application PCT/IB2013/001000 dated Jul. 31, 2013 (11 pages).
International Search Report for International Application PCT/IL2010/000362 dated Aug. 25, 2010 (6 pages).
International Search Report for International Patent Application PCT/IL2012/000080 dated Aug. 9, 2012 (4 pages).
International Search Report for International Patent Application PCT/IL2012/000081 dated Jun. 28, 2012 (4 pages).
Labs.byHook: “Ogg Vorbis Encoder for Flash: Alchemy Series Part 1,” Retrieved from Internet on on Dec. 17, 2012: URL:http://labs.byhook.com/2011/02/15/ogg-vorbis-encoder-for-flash-alchem-y-series-part-1/, 2011, 6 pages.
Miller, Gregor et al., “MiniDiver: A Novel Mobile Media Playback Interface for Rich Video Content on an iPhoneTM”, Entertainment Computing A ICEC 2009, Sep. 3, 2009, pp. 98-109.
Sodagar, I., “The MPEG-DASH Standard for Multimedia Streaming Over the Internet”, IEEE Multimedia, IEEE Service Center, New York, NY US, (2011) 18(4): 62-67.
Supplemental European Search Report for EP13184145 dated Jan. 30, 2014 (5 pages).
Supplemental European Search Report for EP10774637.2 (PCT/IL2010/000362) dated Jun. 28, 2012 (6 pages).
Yang, H, et al., “Time Stamp Synchronization in Video Systems,” Teletronics Technology Corporation, <http://www.ttcdas.com/products/daus_encoders/pdf/_tech_papers/tp_2010_time_stamp_video_system.pdf>, Abstract, (8 pages).
U.S. Appl. No. 12/706,721 U.S. Pat. No. 9,190,110 Published as US2010/0293455, System and Method for Assembling a Recorded Composition, filed Feb. 17, 2010.
U.S. Appl. No. 14/884,285 Published as US2017/0178601, Systems and Method for Assembling a Recorded Composition, filed Oct. 15, 2015.
U.S. Appl. No. 13/033,916 U.S. Pat. No. 9,607,655 Published as US2011/0200116, System and Method for Seamless Multimedia Assembly, filed Feb. 24, 2011.
U.S. Appl. No. 13/034,645 Published as US2011/0202562, System and Method for Data Mining Within Interactive Multimedia, filed Feb. 24, 2011.
U.S. Appl. No. 13/437,164 U.S. Pat. No. 8,600,220 Published as US2013/0259442, Systems and Methods for Loading More Than One Video Content at a Time, filed Apr. 2, 2012.
U.S. Appl. No. 14/069,694 U.S. Pat. No. 9,271,015 Published as US2014/0178051, Systems and Methods for Loading More Than One Video Content at a Time, filed Nov. 1, 2013.
U.S. Appl. Pat. No. 13/622,780 U.S. Pat. No. 8,860,882 Published as US2014/0078397, Systems and Methods for Constructing Multimedia Content Modules, filed Sep. 19, 2012.
U.S. Appl. No. 13/622,795 U.S. Pat. No. 9,009,619 Published as US2014/0082666, Progress Bar for Branched Videos, filed Sep. 19, 2012.
U.S. Appl. No. 14/639,579 U.S. Pat. No. 10,474,334 Published as US2015/0199116, Progress Bar for Branched Videos, filed Mar. 5, 2015.
U.S. Appl. No. 13/838,830 U.S. Pat. No. 9,257,148 Published as US2014/0270680, System and Method for Synchronization of Selectably Presentable Media Streams, filed Mar. 15, 2013.
U.S. Appl. No. 14/984,821 U.S. Pat. No. 10,418,066 Published as US2016/0217829, System and Method for Synchronization of Selectably Presentable Media Streams, filed Dec. 30, 2015.
U.S. Appl. No. 13/921,536 U.S. Pat. No. 9,832,516 Published as US2014/0380167, Systems and Methods for Multiple Device Interaction with Selectably Presentable Media Streams, filed Jun. 19, 2013.
U.S. Appl. No. 14/107,600 U.S. Pat. No. 10,448,119 Published as US2015/0067723, Methods and Systems for Unfolding Video Pre-Roll, filed Dec. 16, 2013.
U.S. Appl. No. 14/335,381 U.S. Pat. No. 9,530,454 Published as US2015/0104155, Systems and Methods for Real-Time Pixel Switching, filed Jul. 18, 2014.
U.S. Appl. No. 15/356,913, Systems and Methods for Real-Time Pixel Switching, filed Nov. 21, 2016.
U.S. Appl. No. 14/139,996 U.S. Pat. No. 9,641,898 Published as US2015/0181301, Methods and Systems for In-Video Library, filed Dec. 24, 2013.
U.S. Appl. No. 14/140,007 U.S. Pat. No. 9,520,155 Published as US2015/0179224, Methods and Systems for Seeking to Non-Key Frames, filed Dec. 24, 2013.
U.S. Appl. No. 14/249,627 U.S. Pat. No. 9,653,115 Published as US 2015-0294685, Systems and Methods for Creating Linear Video From Branched Video, filed Apr. 10, 2014.
U.S. Appl. No. 15/481,916 Published as US 2017-0345460, Systems and Methods for Creating Linear Video From Branched Video, filed Apr. 7, 2017.
U.S. Appl. No. 14/249,665 U.S. Pat. No. 9,792,026 Published as US2015/0293675, Dynamic Timeline for Branched Video, filed Apr. 10, 2014.
U.S. Appl. No. 14/509,700 U.S. Pat. No. 9,792,957 Published as US2016/0104513, Systems and Methods for Dynamic Video Bookmarking, filed Oct. 8, 2014.
U.S. Appl. No. 14/534,626 Published as US-2018-0130501-A1, Systems and Methods for Dynamic Video Bookmarking, filed Sep. 13, 2017.
U.S. Appl. No. 14/534,626 Published as US2016/0105724, Systems and Methods for Parallel Track Transitions, filed Nov. 6, 2014.
U.S. Appl. No. 14/700,845 U.S. Pat. No. 10,582,265 Published as US2016/0323608, Systems and Methods for Nonlinear Video Playback Using Linear Real-Time Video Players, filed Apr. 30, 2015.
U.S. Appl. No. 16/752,193, Systems and Methods for Nonlinear Video Playback Using Linear Real-Time Video Players, filed Jan. 24, 2020.
U.S. Appl. No. 14/700,862 U.S. Pat. No. 9,672,868 Published as US2016/0322054, Systems and Methods for Seamless Media Creation, filed Apr. 30, 2015.
U.S. Appl. No. 14/835,857 U.S. Pat. No. 10,460,765 Published as US2017/0062012, Systems and Methods for Adaptive and Responsive Video, filed Aug. 26, 2015.
U.S. Appl. No. 16/559,082 Published as US2019/0392868, Systems and Methods for Adaptive and Responsive Video, filed Sep. 3, 2019.
U.S. Appl. No. 14/978,464 Published as US2017/0178601, Intelligent Buffering of Large-Scale Video, filed Dec. 22, 2015.
U.S. Appl. No. 14/978,491 Published as US2017/0178409, Seamless Transitions in Large-Scale Video, filed Dec. 22, 2015.
U.S. Appl. No. 15/085,209 U.S. Pat. No. 10,462,202 Published as US2017/0289220, Media Stream Rate Synchronization, filed Mar. 30, 2016.
U.S. Appl. No. 15/165,373 Published as US 2017-0295410, Symbiotic Interactive Video, filed May 26, 2016.
U.S. Appl. No. 15/189,931 U.S. Pat. No. 10,218,760 Published as US2017/0374120, Dynamic Summary Generation for Real-time Switchable Videos, filed Jun. 22, 2016.
U.S. Appl. No. 15/997,284, Interactive Video Dynamic Adaptation and User Profiling, filed Jun. 4, 2018.
U.S. Appl. No. 15/863,191 U.S. Pat. No. 10,257,578, Dynamic Library Display for Interactive Videos, filed Jan. 5, 2018.
U.S. Appl. No. 16/283,066, Dynamic Library Display for Interactive Videos, filed Feb. 22, 2019.
U.S. Appl. No. 16/591,103, Systems and Methods for Dynamically Adjusting Video Aspect Ratios, filed Oct. 2, 2019.
U.S. Appl. No. 16/793,205, Dynamic Adaptation of Interactive Video Players Using Behavioral Analytics, filed Feb. 18, 2020.
U.S. Appl. No. 16/793,201, Systems and Methods for Detecting Anomalous Activities For Interactive Videos, filed Feb. 18, 2020.
U.S. Appl. No. 12/706,721, now U.S. Pat. No. 9,190,110, the Office Actions dated Apr. 26, 2012, Aug. 17, 2012, Mar. 28, 2013, Jun. 20, 2013, Jan, 3, 2014, Jul. 7, 2014, and Dec. 19, 2014; the Notices of Allowance dated Jun. 19, 2015, Jul. 17, 2015, Jul. 29, 2015, Aug. 12, 2015, and Sep. 14, 2015.
U.S. Appl. No. 14/884,284, the Office Actions dated Sep. 8, 2017; May 18, 2018; Dec. 14, 2018; Jul. 25, 2019; and Nov. 18, 2019.
U.S. Appl. No. 13/033,916, now U.S. Pat. No. 9,607,655, the Office Actions dated Jul. 7, 2013, Jan. 2, 2014, Aug. 28, 2014, Jan. 5, 2015, Jul. 9, 2015, and Jan. 5, 2016; the Advisory Action dated May 11, 2016; and the Notice of Allowance dated Dec. 21, 2016.
U.S. Appl. No. 13/034,645, the Office Actions dated Jul. 23, 2012, Mar. 21, 2013, Sep. 15, 2014, Jun. 4, 2015, Apr. 7, 2017, Oct. 6, 2017, Aug. 10, 2018, Jul. 5, 2016, Apr. 5, 2019 and Dec. 26, 2019.
U.S. Appl. No. 13/437,164, now U.S. Pat. No. 8,600,220, the Notice of Allowance dated Aug. 9, 2013.
U.S. Appl. No. 14/069,694, now U.S. Pat. No. 9,271,015, the Office Actions dated Apr. 17, 2015 and Aug. 31, 2015, the Notice of Allowance dated Oct. 13, 2015.
U.S. Appl. No. 13/622,780, now U.S. Pat. No. 8,860,882, the Office Action dated Jan. 16, 2014, the Notice of Allowance dated Aug. 4, 2014.
U.S. Appl. No. 13/622,795, now U.S. Pat. No. 9,009,619, the Office Actions dated May 23, 2014 and Dec. 1, 2014, the Notice of Allowance dated Jan. 9, 2015.
U.S. Appl. No. 14/639,579, the Office Actions dated May 3, 2017, Nov. 22, 2017 and Jun. 26, 2018, the Notice of Allowance dated Feb. 8, 2019 and Jul. 11, 2019.
U.S. Appl. No. 13/838,830, now U.S. Pat. No. 9,257,148, the Office Action dated May 7, 2015, Notices of Allowance dated Nov. 6, 2015.
U.S. Appl. No. 14/984,821, now U.S. Pat. No. 10,418,066, the Office Actions dated Jun. 1, 2017, Dec. 6, 2017, and Oct. 5, 2018; the Notice of Allowance dated May 7, 2019.
U.S. Appl. No. 13/921,536, now U.S. Pat. No. 9,832,516, the Office Actions dated Feb. 25, 2015, Oct. 20, 2015, Aug. 26, 2016 and Mar. 8, 2017, the Advisory Action dated Jun. 21, 2017, and Notice of Allowance dated Sep. 12, 2017.
U.S. Appl. No. 14/107,600, now U.S. Pat. No. 10,448,119, the Office Actions dated Dec. 19, 2014, Jul. 8, 2015, Jun. 3, 2016, Mar. 8, 2017, Oct. 10, 2017 and Jul. 24, 2018, Notices of Allowance dated Dec. 31, 2018 and Apr. 25, 2019.
U.S. Appl. No. 14/335,381, now U.S. Pat. No. 9,530,454, the Office Action dated Feb. 12, 2016; and the Notice of Allowance dated Aug. 24, 2016,
U.S. Appl. No. 14/139,996, now U.S. Pat. No. 9,641,898, the Office Actions dated Jun. 18, 2015, Feb. 3, 2016 and May 4, 2016; and the Notice of Allowance dated Dec. 23, 2016.
U.S. Appl. No. 14/140,007, now U.S. Pat. No. 9,520,155, the Office Actions dated Sep. 8, 2015 and Apr. 26, 2016; and the Notice of Allowance dated Oct. 11, 2016.
U.S. Appl. No. 14/249,627, now U.S. Pat. No. 9,653,115, the Office Actions dated Jan. 14, 2016 and Aug. 9, 2016; and the Notice of Allowance dated Jan. 13, 2017.
U.S. Appl. No. 15/481,916, the Office Actions dated Oct. 6, 2017, Aug. 6, 2018, Mar. 8. 2019 and Nov. 27, 2019.
U.S. Appl. No. 14/249,665, now U.S. Pat. No. 9,792,026, the Office Actions dated May 16, 2016 and Feb. 22, 2017; and the Notice of Allowance dated Jun. 2, 2017 and Jul. 24, 2017.
U.S. Appl. No. 14/509,700, now U.S. Pat. No. 9,792,957, the Office Action dated Oct. 28, 2016; and the Notice of Allowance dated Jun. 15, 2017.
U.S. Appl. No. 15/703,462, the Office Action dated Jun. 21, 2019, and Dec. 27, 2019.
U.S. Appl. No. 14/534,626, the Office Actions dated Nov. 25, 2015, Jul. 5, 2016, Jun. 5, 2017, Mar. 2, 2018, Sep. 26, 2018, May 8, 2019 and Dec. 27, 2019.
U.S. Appl. No. 14/700,845, the Office Actions dated May 20, 2016, Dec. 2, 2016, May 22, 2017, Nov. 28, 2017, Jun. 27, 2018 and Feb. 19, 2019 and the Notice of Allowance dated Oct. 21, 2019.
U.S. Appl. No. 14/700,862, now U.S. Pat. No. 9,672,868, the Office Action dated Aug. 26, 2016; and the Notice of Allowance dated Mar. 9, 2017.
U.S. Appl. No. 14/835,857, now U.S. Pat. No. 10,460,765, the Office Actions dated Sep. 23, 2016, Jun. 5, 2017 and Aug. 9, 2018, and the Advisory Action dated Oct. 20, 2017; Notice of Allowances dated Feb. 25, 2019 and Jun. 7, 2019.
U.S. Appl. No. 16/559,082, the Office Actions dated Feb. 20, 2020.
U.S. Appl. No. 14/978,464, the Office Actions dated Sep. 8, 2017, May 18, 2018, Dec. 14, 2018, Jul. 25, 2019 and Nov. 18, 2019.
U.S. Appl. No. 14/978,491, the Office Actions date Sep. 8, 2017, May 25, 2018, Dec. 14, 2018, Aug. 12, 2019 and Dec. 23, 2019.
U.S. Appl. No. 15/085,209, now U.S. Pat. No. 10,462,202, the Office Actions dated Feb. 26, 2018 and Dec. 31, 2018; the Notice of Allowance dated Aug. 12, 2019.
U.S. Appl. No. 15/165,373, the Office Actions dated Mar. 24, 2017, Oct. 11, 2017, May 18, 2018; Feb. 1, 2019, Aug. 8, 2019, and Jan. 3, 2020.
U.S. Appl. No. 15/189,931, now U.S. Pat. No. 10,218,760, the Office Actions dated Apr. 6, 2018, the Notice of Allowance dated Oct. 24, 2018.
U.S. Appl. No. 15/997,284, the Office Actions dated Aug. 11, 2019 and Nov. 21, 2019.
U.S. Appl. No. 15/863,191, now U.S. Pat. No. 10/257,578, the Notices of Allowance dated Jul. 5, 2018 and Nov. 23, 2018.
U.S. Appl. No. 16/283,066, the Office Action dated Jan. 6, 2020.
Related Publications (1)
Number Date Country
20180191574 A1 Jul 2018 US