The following disclosure is directed to methods and systems for dynamically adjusting aspect ratios of videos and, more specifically, methods and systems for dynamically adjusting aspect ratios of videos via automatically determining the display area of the videos and/or dynamically re-encoding the videos.
Aspect ratio is the ratio of the width (w) of a display compared to its height (h) and is typically expressed as w:h. Aspect ratio can be important in displaying images or video in a display, especially when the aspect ratio of the image(s) (or the images that compose a video) is different from the screen used to display the image(s). Two conventional methods exist for adjusting the aspect ratio of an image(s) to conform to a given screen. One conventional method is “pan-and-scan” in which the screen is entirely (or nearly entirely) filled with the image but due to the difference in the screen aspect ratio and the image aspect ratio, a part of the image is lost or not displayed. The selection may be performed manually by a user. Another conventional method is “boxing” which can include “letterboxing”, “pillarboxing”, or “windowboxing”. By letterboxing an image, the entire image is fit inside the screen boundaries and any space remaining on the top and bottom of the image is filled in with bars or “mattes”. These mattes are typically black but can be any color. Similarly, in pillarboxing, any remaining space on the left and right sides of the image is filled in with mattes. In windowboxing, the image is surrounded on all four edges with mattes, creating the “window” effect. These techniques can be challenging for videos that have interactive components and/or include multiple videos with different aspect ratios.
Disclosed herein are systems and methods for dynamically adjusting video aspect ratios. Specifically, for videos that include user interface elements and/or multiple videos with different aspect ratios, dynamic adjustment of the video's aspect ratio can be beneficial in providing a desirable user experience.
In one aspect, the disclosure features a method for dynamically adjusting an aspect ratio of a video in which the method includes receiving (i) a video having an original aspect ratio and at least one user experience (UX) (e.g., user interface (UI)) element configured to be selected by a user of the video and (ii) an aspect ratio of a display screen for presenting the video. The UI element(s) can have a default position for at least a portion of the video. The method can include automatically determining a display area of the video to be presented based on at least one of: (i) the default position of the at least one UI element in the video, (ii) an active area in the video, or (iii) a central area in the video, the display area having an aspect ratio equal to the aspect ratio of the display screen; and presenting the video display area in the display screen with the at least one UI element for at least the portion of the video.
Various embodiments of the method can include one or more of the following features. Automatically determining the display area of the video to be presented can be based on the default position of the at least one UI element. The at least one UI element can be configured to be displayed for the portion of the video. The display area of the video to be presented can include the default position of the at least one UI element in the video. The method can include determining the central area in the video, the central area having an aspect ratio equal to the aspect ratio of the display screen; and for another portion of the video without the at least one UI element, presenting the central area in the display screen.
The method can include determining the active area in the video, the active area having an aspect ratio equal to the aspect ratio of the display screen; and for another portion of the video without the at least one UI element, presenting the active area in the display screen. The active area can be determined based on collected user data comprising data of user cursor position within the display screen. The at least one UI element can be invisible to the user of the video for the portion of the video. Automatically determining the display area of the video to be presented can be based on the active area in the video. The display area can include the active area in the video. The method can further include moving the at least one UI element to the active area for at least the portion of the video.
Automatically determining the display area of the video to be presented can be based on the central area in the video. The display area can include the central area in the video. The method can include moving the at least one UI element to the central area for at least the portion of the video. Automatically determining the display area of the video to be presented can be based on the active area in the video. The display area can include the active area in the video. The method can include determining whether the default position of the at least one UI element is within the display area; if the default position of the at least one UI element is outside of the display area, reducing a size of the video such that the at least one UI element is within the display area; and adding at least one matted area to the video, the matted area equal to a difference between the display area and an area of the reduced-size video. The video can include a plurality of video segments organized into a video tree having at least two paths. Automatically determining the display area of the video to be presented based on the active area in the video is performed individually for each video segment of the plurality of video segments.
In another aspect, the disclosure features a method for dynamically adjusting an aspect ratio of a video in which the method includes receiving (i) a video having an original aspect ratio and (ii) a first aspect ratio. The original aspect ratio can be different from the first aspect ratio. The method includes storing the original aspect ratio as separate data from the video; and encoding the video such that at least a first matted area equal to a difference between an area of the first aspect ratio and an area of the original aspect ratio is added to the video. The method includes transmitting the encoded video for presentation in a display screen with the stored original aspect ratio, the display screen having a second aspect ratio different from the first aspect ratio and the original aspect ratio. The transmitting can include decoding the video to remove the first matted area according the stored original aspect ratio; and re-encoding the video such that the video is presented according to the second aspect ratio. The method can include presenting the re-encoded video in the display screen.
Various embodiments of the method can include one or more of the following features. The transmitting can be performed in real time or near real time with the presenting. The re-encoding the video can include adding a second matted area to the video in preparation for presentation of the video in the second display screen. The second matted area can be equal to a difference between an area of the original aspect ratio and an area of the second aspect ratio. The second matted area can include a first bar and a second bar added to a top and a bottom, respectively, of the video. The second matted area can include a first bar and a second bar added to a left side and a right side, respectively, of the video. Re-encoding the video can include determining an area of visual interest in the video, the area having an aspect ratio equal to the second aspect ratio; and removing one or more portions of the video outside of the area of visual interest.
The video can include a plurality of video segments organized into a video tree having at least two paths. Each segment of the plurality of video segments has a respective original aspect ratio. A first original aspect ratio of at least a first video segment can be different from a second original aspect ratio of at least a second video segment. The transmitting the encoded video for presentation in the second display screen with the stored original aspect ratio can include transmitting each video segment for presentation in the second display screen with the respective original aspect ratio. The first matted area can include a first bar and a second bar added to a top and a bottom, respectively, of the video. The first matted area can include a first bar and a second bar added to a left side and a right side, respectively, of the video. The method can be for dynamically adjusting the aspect ratio for at least two videos, wherein at least one video of the at least two videos has an aspect ratio different from the original aspect ratio.
A more complete appreciation of the invention and many attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings. In the drawings, like reference characters generally refer to the same parts throughout the different views. Further, the drawings are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of the invention.
Described herein are various implementations of methods and supporting systems for dynamically adjusting aspect ratios of videos.
The application 112 can be a video player/editor and library browser that is implemented as a native application, web application, or other form of software. In some implementations, the application 112 is in the form of a web page, widget, and/or Java, JavaScript, .Net, Silverlight, Flash, and/or other applet or plug-in that is downloaded to the user device 110 and runs in conjunction with a web browser. The application 112 and the web browser can be part of a single client-server interface; for example, the application 112 can be implemented as a plugin to the web browser or to another framework or operating system. Any other suitable client software architecture, including but not limited to widget frameworks and applet technology, can also be employed.
Media content can be provided to the user device 110 by content server 102, which can be a web server, media server, a node in a content delivery network, or other content source. In some implementations, the application 112 (or a portion thereof) is provided by application server 106. For example, some or all of the described functionality of the application 112 can be implemented in software downloaded to or existing on the user device 110 and, in some instances, some or all of the functionality exists remotely. For example, certain video encoding and processing functions can be performed on one or more remote servers, such as application server 106. In some implementations, the user device 110 serves only to provide output and input functionality, with the remainder of the processes being performed remotely.
The user device 110, content server 102, application server 106, and/or other devices and servers can communicate with each other through communications network 114. The communication can take place via any media such as standard telephone lines, LAN or WAN links (e.g., T1, T3, 56 kb, X.25), broadband connections (ISDN, Frame Relay, ATM), wireless links (802.11, Bluetooth, GSM, CDMA, etc.), and so on. The network 114 can carry TCP/IP protocol communications and HTTP/HTTPS requests made by a web browser, and the connection between clients and servers can be communicated over such TCP/IP networks. The type of network is not a limitation, however, and any suitable network can be used.
More generally, the techniques described herein can be implemented in any suitable hardware or software. If implemented as software, the processes can execute on a system capable of running one or more custom operating systems or commercial operating systems such as the Microsoft Windows® operating systems, the Apple OS X® operating systems, the Apple iOS® platform, the Google Android™ platform, the Linux® operating system and other variants of UNIX® operating systems, and the like. The software can be implemented a computer including a processing unit, a system memory, and a system bus that couples various system components including the system memory to the processing unit.
The system can include a plurality of software modules stored in a memory and executed on one or more processors. The modules can be in the form of a suitable programming language, which is converted to machine language or object code to allow the processor or processors to read the instructions. The software can be in the form of a standalone application, implemented in any suitable programming language or framework.
Method steps of the techniques described herein can be performed by one or more programmable processors executing a computer program to perform functions of the invention by operating on input data and generating output. Method steps can also be performed by, and apparatus of the invention can be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit). Modules can refer to portions of the computer program and/or the processor/special circuitry that implements that functionality.
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. One or more memories can store media assets (e.g., audio, video, graphics, interface elements, and/or other media files), configuration files, and/or instructions that, when executed by a processor, form the modules, engines, and other components described herein and perform the functionality associated with the components. The processor and the memory can be supplemented by, or incorporated in special purpose logic circuitry.
It should also be noted that the present implementations can be provided as one or more computer-readable programs embodied on or in one or more articles of manufacture. The article of manufacture can be any suitable hardware apparatus, such as, for example, a floppy disk, a hard disk, a CD-ROM, a CD-RW, a CD-R, a DVD-ROM, a DVD-RW, a DVD-R, a flash memory card, a PROM, a RAM, a ROM, or a magnetic tape. In general, the computer-readable programs can be implemented in any programming language. The software programs can be further translated into machine language or virtual machine instructions and stored in a program file in that form. The program file can then be stored on or in one or more of the articles of manufacture.
The media presentations referred to herein can be structured in various forms. For example, a particular media presentation can be an online streaming video having multiple tracks or streams that a user can switch among in real-time or near real-time. For example, a media presentation can be structured using parallel audio and/or video tracks as described in U.S. patent application Ser. No. 14/534,626, filed on Nov. 6, 2014, and entitled “Systems and Methods for Parallel Track Transitions,” the entirety of which is incorporated by reference herein. More specifically, a playing video file or stream can have one or more parallel tracks that can be switched among in real-time automatically and/or based on user interactions. In some implementations, such switches are made seamlessly and substantially instantaneously, such that the audio and/or video of the playing content can continue without any perceptible delays, gaps, or buffering. In further implementations, switches among tracks maintain temporal continuity; that is, the tracks can be synchronized to a common timeline so that there is continuity in audio and/or video content when switching from one track to another (e.g., the same song is played using different instruments on different audio tracks; same storyline performed by different characters on different video tracks, and the like).
Such media presentations can also include interactive video structured in a video tree, hierarchy, or other form. A video tree can be formed by nodes that are connected in a branching, hierarchical, or other linked form. Nodes can each have an associated video segment, audio segment, graphical user interface (GUI) elements, and/or other associated media. Users (e.g., viewers) can watch a video that begins from a starting node in the tree and proceeds along connected nodes in a branch or path. Upon reaching a point during playback of the video where multiple video segments (child nodes) branch off from a segment (parent node), the user can interactively select the branch or path to traverse and, thus, the next video segment to watch.
As referred to herein, a particular branch or path in an interactive media structure, such as a video tree, can refer to a set of consecutively linked nodes between a starting node and ending node, inclusively, or can refer to some or all possible linked nodes that are connected subsequent to (e.g., sub-branches) or that include a particular node. Branched video can include seamlessly assembled and selectably presentable multimedia content such as that described in U.S. patent application Ser. No. 13/033,916, filed on Feb. 24, 2011, and entitled “System and Method for Seamless Multimedia Assembly” (the “Seamless Multimedia Assembly application”), and U.S. patent application Ser. No. 14/107,600, filed on Dec. 16, 2013, and entitled “Methods and Systems for Unfolding Video Pre-Roll,” the entireties of which are hereby incorporated by reference.
The prerecorded video segments in a video tree or other structure can be selectably presentable multimedia content; that is, some or all of the video segments in the video tree can be individually or collectively played for a user based upon the user's selection of a particular video segment, an interaction with a previous or playing video segment, or other interaction that results in a particular video segment or segments being played. The video segments can include, for example, one or more predefined, separate multimedia content segments that can be combined in various manners to create a continuous, seamless presentation such that there are no noticeable gaps, jumps, freezes, delays, or other visual or audible interruptions to video or audio playback between segments. In addition to the foregoing, “seamless” can refer to a continuous playback of content that gives the user the appearance of watching a single, linear multimedia presentation, as well as a continuous playback of multiple content segments that have smooth audio and/or video transitions (e.g., fadeout/fade-in, linking segments) between two or more of the segments.
In some instances, the user is permitted to make choices or otherwise interact in real-time at decision points or during decision periods interspersed throughout the multimedia content. Decision points and/or decision periods can occur at any time and in any number during a multimedia segment, including at or near the beginning and/or the end of the segment. Decision points and/or periods can be predefined, occurring at fixed points or during fixed periods in the multimedia content segments. Based at least in part on the user's choices made before or during playback of content, one or more subsequent multimedia segment(s) associated with the choices can be presented to the user. In some implementations, the subsequent segment is played immediately and automatically following the conclusion of the current segment, whereas in other implementations, the subsequent segment is played immediately upon the user's interaction with the video, without waiting for the end of the decision period or the end of the segment itself.
If a user does not make a selection at a decision point or during a decision period, a default, previously identified selection, or random selection can be made by the system. In some instances, the user is not provided with options; rather, the system automatically selects the segments that will be shown based on information that is associated with the user, other users, or other factors, such as the current date. For example, the system can automatically select subsequent segments based on the user's IP address, location, time zone, the weather in the user's location, social networking ID, saved selections, stored user profiles, preferred products or services, and so on. The system can also automatically select segments based on previous selections made by other users, such as the most popular suggestion or shared selections. The information can also be displayed to the user in the video, e.g., to show the user why an automatic selection is made. As one example, video segments can be automatically selected for presentation based on the geographical location of three different users: a user in Canada will see a twenty-second beer commercial segment followed by an interview segment with a Canadian citizen; a user in the US will see the same beer commercial segment followed by an interview segment with a US citizen; and a user in France is shown only the beer commercial segment.
Multimedia segment(s) selected automatically or by a user can be presented immediately following a currently playing segment, or can be shown after other segments are played. Further, the selected multimedia segment(s) can be presented to the user immediately after selection, after a fixed or random delay, at the end of a decision period, and/or at the end of the currently playing segment. Two or more combined segments can form a seamless multimedia content path or branch, and users can take multiple paths over multiple playthroughs, and experience different complete, start-to-finish, seamless presentations. Further, one or more multimedia segments can be shared among intertwining paths while still ensuring a seamless transition from a previous segment and to the next segment. The content paths can be predefined, with fixed sets of possible transitions in order to ensure seamless transitions among segments. The content paths can also be partially or wholly undefined, such that, in some or all instances, the user can switch to any known video segment without limitation. There can be any number of predefined paths, each having any number of predefined multimedia segments. Some or all of the segments can have the same or different playback lengths, including segments branching from a single source segment.
Traversal of the nodes along a content path in a tree can be performed by selecting among options that appear on and/or around the video while the video is playing. In some implementations, these options are presented to users at a decision point and/or during a decision period in a content segment. Some or all of the displayed options can hover and then disappear when the decision period ends or when an option has been selected. Further, a timer, countdown or other visual, aural, or other sensory indicator can be presented during playback of content segment to inform the user of the point by which he should (or, in some cases, must) make his selection. For example, the countdown can indicate when the decision period will end, which can be at a different time than when the currently playing segment will end. If a decision period ends before the end of a particular segment, the remaining portion of the segment can serve as a non-interactive seamless transition to one or more other segments. Further, during this non-interactive end portion, the next multimedia content segment (and other potential next segments) can be downloaded and buffered in the background for later playback (or potential playback).
A segment that is played after (immediately after or otherwise) a currently playing segment can be determined based on an option selected or other interaction with the video. Each available option can result in a different video and audio segment being played. As previously mentioned, the transition to the next segment can occur immediately upon selection, at the end of the current segment, or at some other predefined or random point. Notably, the transition between content segments can be seamless. In other words, the audio and video continue playing regardless of whether a segment selection is made, and no noticeable gaps appear in audio or video playback between any connecting segments. In some instances, the video continues on to another segment after a certain amount of time if none is chosen, or can continue playing in a loop.
In one example, the multimedia content is a music video in which the user selects options upon reaching segment decision points to determine subsequent content to be played. First, a video introduction segment is played for the user. Prior to the end of the segment, a decision point is reached at which the user can select the next segment to be played from a listing of choices. In this case, the user is presented with a choice as to who will sing the first verse of the song: a tall, female performer, or a short, male performer. The user is given an amount of time to make a selection (i.e., a decision period), after which, if no selection is made, a default segment will be automatically selected. The default can be a predefined or random selection. Of note, the media content continues to play during the time the user is presented with the choices. Once a choice is selected (or the decision period ends), a seamless transition occurs to the next segment, meaning that the audio and video continue on to the next segment as if there were no break between the two segments and the user cannot visually or audibly detect the transition. As the music video continues, the user is presented with other choices at other decisions points, depending on which path of choices is followed. Ultimately, the user arrives at a final segment, having traversed a complete multimedia content path.
In a “pan-and-scan” scheme, a display screen is filled with a selected area of an image or a frame of a video. The portion of the image or frame may be selected based on the “action” area (or the part of the video having greater action than other parts of the video) or based on a central area of the video.
In step 202 of exemplary method 200, a video 208 having at least one UX element (e.g., elements 210a, 210b, 210c, 210d, 210e (collectively referred to as 210)) configured to be selected by a user of the video is received. The video 208 has an original aspect ratio of wv:hv. For example, the exemplary video 208 can have an aspect ratio wv:hv of 16:7. In some embodiments, multiple videos 208 can be received (e.g., multiple videos forming a branching video as described above). For example, at least one of the videos can have an aspect ratio (e.g., wv1:hv1) different from other videos (e.g., wv2:hv2, wv3:hv3, wv4:hv4, etc.). As illustrated in
In step 202, the aspect ratio wd:hd of the display screen 212 for presenting the video 208 is received. For example, the display screen 212 can have a different aspect ratio wd:hd (e.g., 13:7) than the aspect ratio wv:hv (e.g., 16:7) of the video 208. Common display aspect ratios wd:hd include 4:3, 16:10, 5:3, 16:9, etc. Another example includes smartphone displays which can display “vertical video” with a vertically-oriented aspect ratio wd:hd (e.g., 9:16).
In step 204, the display area of the video 208 may be automatically determined based on the default position of the UX element(s) in the video. For example, the display area of the video 208 can be automatically determined based on the default position of UX element(s) 210 in the video 208. The display area can be determined by comparing the aspect ratios of the display screen 212 and the video 208 such that the display screen 212 is entirely or almost entirely filled in. For example, in
In step 206, the video display area having the UX element(s) 210 is presented in the display screen 212 for at least a portion of the video 208. For example, the UX element(s) 210 may be presented for a particular duration of the video 208 (e.g., at the beginning, at the end, during the video, at a branching point, etc. of the video 208).
In some embodiments, the display area of a video may be selected based on the active area in the video itself and/or a central area of the video.
In step 301 of exemplary method 300, a video 208 having at least one UX element (e.g., elements 210a, 210b, 210c, 210d, 210e (collectively referred to as 210)) configured to be selected by a user of the video is received. The video 208 has an original aspect ratio of wv:hv. Additionally, in step 301, the aspect ratio wd:hd of the display screen 304 for presenting the video 208 is received.
In step 302, the display area of the video 208 may be automatically determined based on the an active area in the video 208 or a central area in the video 208. The display area can have an aspect ratio equal to the aspect ratio wd:hd of the display screen 304. In some embodiments, method 300 includes determining the active area or central area in the video 208. Note that the active area and the central area in a video may not necessarily coincide. In some embodiments, method 300 includes moving the UX elements 210 from their default position to the active area or central area. For example, in
In some embodiments, one or more characteristics (e.g., size, shape, color, associated audio, etc.) of the UX element(s) 210 can be changed. For example, the size of the UX element(s) 210 can be changed when the element(s) 210 move from one area of the video to another area. If, for example, the default position of element(s) 210 was near the edge of the video 208, the size of the element(s) 210 may be larger to catch the attention of a viewer of the video 208. If the element(s) 210 are moved to a more central area (or active area) 306 of the video 208, the size of the element(s) 210 may be reduced, under the assumption that a viewer's attention would naturally be attracted to the central area or active area 306.
In some embodiments, multiple videos 208 may be received in which at least one of the videos has a different aspect ratio (e.g., wv3:hv3) than the other videos in the multiple videos (e.g., wv1:hv1, wv2:hv2, wv4:hv4, etc.). In some embodiments, the active area may be determined individually for two or more videos of the multiple videos. Accordingly, the adjusted positions for the UX element(s) 210 may be different for the individually-determined active areas of the two or more videos. Therefore, the positions of the UX element(s) 210 may change from video to video in the multiple videos. In some embodiments, the UX element(s) 210 may be in different positions in each of two or more videos of the multiple videos. In such a case, the UX element(s) 210 may be moved to be in the same or similar positions from video to video in the multiple videos.
In step 303, the video display area having the UX element(s) 210 is presented in the display screen 212 for at least a portion of the video 208. For example, the UX element(s) 210 may be presented for a particular duration of the video 208 (e.g., at the beginning, at the end, during the video, at a branching point, etc. of the video 208).
In some embodiments, the display area of the video 208 can be automatically determined on two or more factors: (i) the default position of the UX element(s) in the video, (ii) an active area in the video, and/or (iii) a central area in the video, as described above. In some embodiments, the automatic determination may depend on the timing of the one or more factors. For example, the display area may be determined for a first duration of the video(s) 208 based on the active area in the video or the central area of the video and, for a second duration, the display area may change to the portion of the video including the default position of the UX element(s) 210 (or vice or versa).
In some embodiments, automatically determining the display area can include determining whether the display screen is too small or shaped such that a minimum area of a video cannot be displayed. In some embodiments, the video(s) 208 may be associated with a threshold that determines the amount of the video 208 that can be “cut” or not displayed in the screen (e.g., screen 212 or 304). The threshold may be 60% or greater, 70% or greater, 80% or greater, 90% or greater. For example, for a threshold of 70%, if 70% or more of the video 208 is able to be displayed in the screen, the display screen will display 70% of the video 208 in “pan-and-scan” mode.
If less than 70% of the video 208 can be displayed, then the display mode can change from “pan-and-scan” to “boxing”. In other words, if a display screen is too small or shaped such that less than 70% of the video 208 can be displayed, 70% or more of the video 208 frame is then displayed within the display screen with added mattes.
In some embodiments, automatically determining the display area can include determining whether the default position of the UX element(s) 210 is within the display area. In some embodiments, the threshold may be determined by the existence of the UX element(s) 210 in the video 208. Further, the threshold may be determined by the size and/or position of the UX element(s) 210 in the video 208. For example, if the UX element(s) 210 are positioned toward an outer edge of the video 208, the threshold is likely to be higher to accommodate the position of the UX element(s) 210, thereby ensuring that the UX element(s) 210 are displayed within the display screen.
In some embodiments, the video 208 can include multiple videos. In such a case, each video of the multiple videos 208 can have a threshold. In some embodiments, at least one threshold may be different from the other thresholds. Therefore, the transition from “pan-and-scan” mode to “boxing” mode may differ from video to video based on the different threshold(s). In some embodiments, the videos may have different UX element(s) in different locations. In this case, the transition from “pan-and-scan” mode to “boxing” mode may differ from video to video based on the UX element(s). In some embodiments, it is important that the transition from “pan-and-scan” mode to “boxing” mode be smooth and/or imperceptible to the viewer. In some embodiments, the transition may be determined by the video creator (e.g., at a scene change, change between videos in a branching video, before UX element(s) 210 appear, after UX element(s) appear, etc.). The transition may be immediate or gradual.
In step 608, the video's original aspect ratio wv:hv can be stored separately (e.g., as separate metadata 616) from the video(s) 208. In step 610, the video(s) 208 can be encoded such that at least one matte (e.g., 602a, 602b (collectively referred to as 602)) is added to the video 208. The matte(s) 602 can have an area equal to a difference between the area of the display area 618 and the video 208.
In step 612, the encoded video 620 is transmitted for presentation in a display screen 622 with the stored original aspect ratio wv:hv 616. The display screen 622 can have a second aspect ratio wd2:hd2 (e.g., 18×7) different from the first aspect ratio wd1:hd1 and the original aspect ratio wv:hv. In some embodiments, step 612 can include decoding the encoded video 620 to remove the mattes 602a, 602b according to the stored original aspect ratio wv:hv 616. The original aspect ratio wv:hv (e.g., 16×7) can be restored in the decoded video 624. Step 612 can include re-encoding the decoded video 624 according to the second aspect ratio wd2:hd2. In some embodiments, the re-encoding may include “boxing” the video 624, as illustrated in
In step 614, the re-encoded video 626 can be presented in display screen 622 having the second aspect ratio wd2:hd2 (e.g., 18×7). In some embodiments, the transmission (in step 612) of the encoded video for presentation in the display screen 622 can be in real-time or near real-time with the presenting (in step 614).
In some embodiments, multiple videos 208 can be received and processed according to exemplary method 604, as described above. This can be beneficial in circumstances in which one or more videos have different aspect ratios wv:hv from the other videos. For example, multiple videos may be drawn from different sources to create a presentation (e.g., a branching video, as described above). These videos may have different aspect ratios, especially if they were filmed using different video cameras or originally encoded for a different aspect ratio than the ultimate display screen. Each of the corresponding aspect ratios of the multiple videos may be stored separately as metadata 616.
In some embodiments, a branching video tree may include at least two paths of video segments. One or more of these video segments may have different aspect ratios wv:hv (e.g., wv1:hv1, wv2:hv2, etc.) from the other segments that present a challenge in presenting the branching video tree in a single display screen 622 having a particular aspect ratio wd2:hd2. By using method 604, multiple videos can be received with their respective aspect ratios wv:hv and ultimately re-encoded for the display screen 622, using the steps described above.
The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
The term “approximately”, the phrase “approximately equal to”, and other similar phrases, as used in the specification and the claims (e.g., “X has a value of approximately Y” or “X is approximately equal to Y”), should be understood to mean that one value (X) is within a predetermined range of another value (Y). The predetermined range may be plus or minus 20%, 10%, 5%, 3%, 1%, 0.1%, or less than 0.1%, unless otherwise indicated.
The indefinite articles “a” and “an,” as used in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.” The phrase “and/or,” as used in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
As used in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.
As used in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
The use of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof, is meant to encompass the items listed thereafter and additional items.
Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed. Ordinal terms are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term), to distinguish the claim elements.
Number | Name | Date | Kind |
---|---|---|---|
4569026 | Best | Feb 1986 | A |
5137277 | Kitaue | Aug 1992 | A |
5161034 | Klappert | Nov 1992 | A |
5568602 | Callahan et al. | Oct 1996 | A |
5568603 | Chen et al. | Oct 1996 | A |
5597312 | Bloom et al. | Jan 1997 | A |
5607356 | Schwartz | Mar 1997 | A |
5610653 | Abecassis | Mar 1997 | A |
5636036 | Ashbey | Jun 1997 | A |
5676551 | Knight et al. | Oct 1997 | A |
5715169 | Noguchi | Feb 1998 | A |
5734862 | Kulas | Mar 1998 | A |
5737527 | Shiels et al. | Apr 1998 | A |
5745738 | Ricard | Apr 1998 | A |
5751953 | Shiels et al. | May 1998 | A |
5754770 | Shiels et al. | May 1998 | A |
5818435 | Kozuka et al. | Oct 1998 | A |
5848934 | Shiels et al. | Dec 1998 | A |
5887110 | Sakamoto et al. | Mar 1999 | A |
5894320 | Vancelette | Apr 1999 | A |
5956037 | Osawa et al. | Sep 1999 | A |
5983190 | Trower, II et al. | Nov 1999 | A |
6067400 | Saeki et al. | May 2000 | A |
6122668 | Teng et al. | Sep 2000 | A |
6128712 | Hunt et al. | Oct 2000 | A |
6191780 | Martin et al. | Feb 2001 | B1 |
6222925 | Shiels et al. | Apr 2001 | B1 |
6240555 | Shoff et al. | May 2001 | B1 |
6298020 | Kumagami | Oct 2001 | B1 |
6298482 | Seidman et al. | Oct 2001 | B1 |
6460036 | Herz | Oct 2002 | B1 |
6535639 | Uchihachi et al. | Mar 2003 | B1 |
6657906 | Martin | Dec 2003 | B2 |
6698020 | Zigmond et al. | Feb 2004 | B1 |
6728477 | Watkins | Apr 2004 | B1 |
6771875 | Kunieda et al. | Aug 2004 | B1 |
6801947 | Li | Oct 2004 | B1 |
6947966 | Oko, Jr. et al. | Sep 2005 | B1 |
7085844 | Thompson | Aug 2006 | B2 |
7155676 | Land et al. | Dec 2006 | B2 |
7231132 | Davenport | Jun 2007 | B1 |
7296231 | Loui et al. | Nov 2007 | B2 |
7310784 | Gottlieb et al. | Dec 2007 | B1 |
7379653 | Yap et al. | May 2008 | B2 |
7430360 | Abecassis | Sep 2008 | B2 |
7444069 | Bernsley | Oct 2008 | B1 |
7472910 | Okada et al. | Jan 2009 | B1 |
7627605 | Lamere et al. | Dec 2009 | B1 |
7669128 | Bailey et al. | Feb 2010 | B2 |
7694320 | Yeo et al. | Apr 2010 | B1 |
7779438 | Davies | Aug 2010 | B2 |
7787973 | Lambert | Aug 2010 | B2 |
7917505 | van Gent et al. | Mar 2011 | B2 |
8024762 | Britt | Sep 2011 | B2 |
8046801 | Ellis et al. | Oct 2011 | B2 |
8065710 | Malik | Nov 2011 | B2 |
8151139 | Gordon | Apr 2012 | B1 |
8176425 | Wallace et al. | May 2012 | B2 |
8190001 | Bernsley | May 2012 | B2 |
8202167 | Ackley et al. | Jun 2012 | B2 |
8276058 | Gottlieb et al. | Sep 2012 | B2 |
8281355 | Weaver et al. | Oct 2012 | B1 |
8321905 | Streeter et al. | Nov 2012 | B1 |
8350908 | Morris et al. | Jan 2013 | B2 |
8405706 | Zhang | Mar 2013 | B2 |
8600220 | Bloch et al. | Dec 2013 | B2 |
8612517 | Yadid et al. | Dec 2013 | B1 |
8626337 | Corak et al. | Jan 2014 | B2 |
8646020 | Reisman | Feb 2014 | B2 |
8650489 | Baum et al. | Feb 2014 | B1 |
8667395 | Hosogai et al. | Mar 2014 | B2 |
8750682 | Nicksay et al. | Jun 2014 | B1 |
8752087 | Begeja et al. | Jun 2014 | B2 |
8826337 | Issa et al. | Sep 2014 | B2 |
8860882 | Bloch et al. | Oct 2014 | B2 |
8930975 | Woods et al. | Jan 2015 | B2 |
8977113 | Rumteen et al. | Mar 2015 | B1 |
9009619 | Bloch et al. | Apr 2015 | B2 |
9021537 | Funge et al. | Apr 2015 | B2 |
9082092 | Henry | Jul 2015 | B1 |
9094718 | Barton et al. | Jul 2015 | B2 |
9190110 | Bloch | Nov 2015 | B2 |
9257148 | Bloch et al. | Feb 2016 | B2 |
9268774 | Kim et al. | Feb 2016 | B2 |
9271015 | Bloch et al. | Feb 2016 | B2 |
9363464 | Alexander | Jun 2016 | B2 |
9367196 | Goldstein et al. | Jun 2016 | B1 |
9374411 | Goetz | Jun 2016 | B1 |
9390099 | Wang et al. | Jul 2016 | B1 |
9456247 | Pontual et al. | Sep 2016 | B1 |
9465435 | Zhang et al. | Oct 2016 | B1 |
9473582 | Fraccaroli | Oct 2016 | B1 |
9510044 | Pereira et al. | Nov 2016 | B1 |
9520155 | Bloch et al. | Dec 2016 | B2 |
9530454 | Bloch et al. | Dec 2016 | B2 |
9538219 | Sakata et al. | Jan 2017 | B2 |
9554061 | Proctor, Jr. et al. | Jan 2017 | B1 |
9571877 | Lee et al. | Feb 2017 | B2 |
9607655 | Bloch et al. | Mar 2017 | B2 |
9641898 | Bloch et al. | May 2017 | B2 |
9653115 | Bloch et al. | May 2017 | B2 |
9653116 | Paulraj et al. | May 2017 | B2 |
9672868 | Bloch et al. | Jun 2017 | B2 |
9715901 | Singh et al. | Jul 2017 | B1 |
9736503 | Bakshi et al. | Aug 2017 | B1 |
9792026 | Bloch et al. | Oct 2017 | B2 |
9792957 | Bloch et al. | Oct 2017 | B2 |
9826285 | Mishra et al. | Nov 2017 | B1 |
9967621 | Armstrong et al. | May 2018 | B2 |
10070192 | Baratz | Sep 2018 | B2 |
10178304 | Tudor et al. | Jan 2019 | B1 |
10178421 | Thomas et al. | Jan 2019 | B2 |
10187687 | Harb et al. | Jan 2019 | B2 |
10194189 | Goetz et al. | Jan 2019 | B1 |
10257572 | Manus et al. | Apr 2019 | B2 |
10419790 | Gersten | Sep 2019 | B2 |
10460765 | Bloch et al. | Oct 2019 | B2 |
10523982 | Oyman | Dec 2019 | B2 |
10771824 | Haritaoglu et al. | Sep 2020 | B1 |
20010056427 | Yoon et al. | Dec 2001 | A1 |
20020019799 | Ginsberg et al. | Feb 2002 | A1 |
20020029218 | Bentley et al. | Mar 2002 | A1 |
20020053089 | Massey | May 2002 | A1 |
20020086724 | Miyaki et al. | Jul 2002 | A1 |
20020089523 | Hodgkinson | Jul 2002 | A1 |
20020091455 | Williams | Jul 2002 | A1 |
20020105535 | Wallace et al. | Aug 2002 | A1 |
20020106191 | Betz et al. | Aug 2002 | A1 |
20020120456 | Berg et al. | Aug 2002 | A1 |
20020120931 | Huber et al. | Aug 2002 | A1 |
20020124250 | Proehl et al. | Sep 2002 | A1 |
20020129374 | Freeman et al. | Sep 2002 | A1 |
20020140719 | Amir et al. | Oct 2002 | A1 |
20020144262 | Plotnick et al. | Oct 2002 | A1 |
20020174430 | Ellis et al. | Nov 2002 | A1 |
20020177914 | Chase | Nov 2002 | A1 |
20020194595 | Miller et al. | Dec 2002 | A1 |
20030007560 | Mayhew et al. | Jan 2003 | A1 |
20030012409 | Overton et al. | Jan 2003 | A1 |
20030020744 | Ellis et al. | Jan 2003 | A1 |
20030023757 | Ishioka et al. | Jan 2003 | A1 |
20030039471 | Hashimoto | Feb 2003 | A1 |
20030069057 | Defrees-Parrott | Apr 2003 | A1 |
20030076347 | Barrett et al. | Apr 2003 | A1 |
20030101164 | Pic et al. | May 2003 | A1 |
20030148806 | Weiss | Aug 2003 | A1 |
20030159566 | Sater et al. | Aug 2003 | A1 |
20030183064 | Eugene et al. | Oct 2003 | A1 |
20030184598 | Graham | Oct 2003 | A1 |
20030221541 | Platt | Dec 2003 | A1 |
20040009813 | Wind | Jan 2004 | A1 |
20040019905 | Fellenstein et al. | Jan 2004 | A1 |
20040034711 | Hughes | Feb 2004 | A1 |
20040070595 | Atlas et al. | Apr 2004 | A1 |
20040091848 | Nemitz | May 2004 | A1 |
20040125124 | Kim et al. | Jul 2004 | A1 |
20040128317 | Sull et al. | Jul 2004 | A1 |
20040138948 | Loomis | Jul 2004 | A1 |
20040146275 | Takata et al. | Jul 2004 | A1 |
20040172476 | Chapweske | Sep 2004 | A1 |
20040194128 | McIntyre et al. | Sep 2004 | A1 |
20040194131 | Ellis et al. | Sep 2004 | A1 |
20040199923 | Russek | Oct 2004 | A1 |
20040261127 | Freeman et al. | Dec 2004 | A1 |
20050019015 | Ackley et al. | Jan 2005 | A1 |
20050055377 | Dorey et al. | Mar 2005 | A1 |
20050091597 | Ackley | Apr 2005 | A1 |
20050102707 | Schnitman | May 2005 | A1 |
20050107159 | Sato | May 2005 | A1 |
20050120389 | Boss et al. | Jun 2005 | A1 |
20050132401 | Boccon-Gibod et al. | Jun 2005 | A1 |
20050166224 | Ficco | Jul 2005 | A1 |
20050198661 | Collins et al. | Sep 2005 | A1 |
20050210145 | Kim et al. | Sep 2005 | A1 |
20050251820 | Stefanik et al. | Nov 2005 | A1 |
20050251827 | Ellis et al. | Nov 2005 | A1 |
20060002895 | McDonnell et al. | Jan 2006 | A1 |
20060024034 | Filo et al. | Feb 2006 | A1 |
20060028951 | Tozun et al. | Feb 2006 | A1 |
20060064733 | Norton et al. | Mar 2006 | A1 |
20060080167 | Chen et al. | Apr 2006 | A1 |
20060120624 | Jojic et al. | Jun 2006 | A1 |
20060150072 | Salvucci | Jul 2006 | A1 |
20060150216 | Herz et al. | Jul 2006 | A1 |
20060153537 | Kaneko et al. | Jul 2006 | A1 |
20060155400 | Loomis | Jul 2006 | A1 |
20060200842 | Chapman et al. | Sep 2006 | A1 |
20060222322 | Levitan | Oct 2006 | A1 |
20060224260 | Hicken et al. | Oct 2006 | A1 |
20060274828 | Siemens et al. | Dec 2006 | A1 |
20070003149 | Nagumo et al. | Jan 2007 | A1 |
20070024706 | Brannon et al. | Feb 2007 | A1 |
20070033633 | Andrews et al. | Feb 2007 | A1 |
20070055989 | Shanks et al. | Mar 2007 | A1 |
20070079325 | de Heer | Apr 2007 | A1 |
20070085759 | Lee et al. | Apr 2007 | A1 |
20070099684 | Butterworth | May 2007 | A1 |
20070101369 | Dolph | May 2007 | A1 |
20070118801 | Harshbarger et al. | May 2007 | A1 |
20070154169 | Cordray et al. | Jul 2007 | A1 |
20070157234 | Walker | Jul 2007 | A1 |
20070157260 | Walker | Jul 2007 | A1 |
20070157261 | Steelberg et al. | Jul 2007 | A1 |
20070162395 | Ben-Yaacov et al. | Jul 2007 | A1 |
20070220583 | Bailey et al. | Sep 2007 | A1 |
20070226761 | Zalewski et al. | Sep 2007 | A1 |
20070239754 | Schnitman | Oct 2007 | A1 |
20070253677 | Wang | Nov 2007 | A1 |
20070253688 | Koennecke | Nov 2007 | A1 |
20070263722 | Fukuzawa | Nov 2007 | A1 |
20080019445 | Aono et al. | Jan 2008 | A1 |
20080021187 | Wescott et al. | Jan 2008 | A1 |
20080021874 | Dahl et al. | Jan 2008 | A1 |
20080022320 | Ver Steeg | Jan 2008 | A1 |
20080031595 | Cho | Feb 2008 | A1 |
20080086456 | Rasanen et al. | Apr 2008 | A1 |
20080086754 | Chen et al. | Apr 2008 | A1 |
20080091721 | Harboe et al. | Apr 2008 | A1 |
20080092159 | Dmitriev et al. | Apr 2008 | A1 |
20080148152 | Blinnikka et al. | Jun 2008 | A1 |
20080161111 | Schuman | Jul 2008 | A1 |
20080170687 | Moors et al. | Jul 2008 | A1 |
20080177893 | Bowra et al. | Jul 2008 | A1 |
20080178232 | Velusamy | Jul 2008 | A1 |
20080276157 | Kustka et al. | Nov 2008 | A1 |
20080300967 | Buckley et al. | Dec 2008 | A1 |
20080301750 | Silfvast et al. | Dec 2008 | A1 |
20080314232 | Hansson et al. | Dec 2008 | A1 |
20090022015 | Harrison | Jan 2009 | A1 |
20090022165 | Candelore et al. | Jan 2009 | A1 |
20090024923 | Hartwig et al. | Jan 2009 | A1 |
20090029771 | Donahue | Jan 2009 | A1 |
20090055880 | Batteram et al. | Feb 2009 | A1 |
20090063681 | Ramakrishnan et al. | Mar 2009 | A1 |
20090063995 | Baron et al. | Mar 2009 | A1 |
20090077137 | Weda et al. | Mar 2009 | A1 |
20090079663 | Chang et al. | Mar 2009 | A1 |
20090083631 | Sidi et al. | Mar 2009 | A1 |
20090116817 | Kim et al. | May 2009 | A1 |
20090177538 | Brewer et al. | Jul 2009 | A1 |
20090178089 | Picco et al. | Jul 2009 | A1 |
20090191971 | Avent | Jul 2009 | A1 |
20090195652 | Gal | Aug 2009 | A1 |
20090199697 | Lehtiniemi et al. | Aug 2009 | A1 |
20090226046 | Shteyn | Sep 2009 | A1 |
20090228572 | Wall et al. | Sep 2009 | A1 |
20090254827 | Gonze et al. | Oct 2009 | A1 |
20090258708 | Figueroa | Oct 2009 | A1 |
20090265737 | Issa et al. | Oct 2009 | A1 |
20090265746 | Halen et al. | Oct 2009 | A1 |
20090297118 | Fink et al. | Dec 2009 | A1 |
20090320075 | Marko | Dec 2009 | A1 |
20100017820 | Thevathasan et al. | Jan 2010 | A1 |
20100042496 | Wang et al. | Feb 2010 | A1 |
20100050083 | Axen et al. | Feb 2010 | A1 |
20100069159 | Yamada et al. | Mar 2010 | A1 |
20100070987 | Amento et al. | Mar 2010 | A1 |
20100077290 | Pueyo | Mar 2010 | A1 |
20100088726 | Curtis et al. | Apr 2010 | A1 |
20100122286 | Begeja et al. | May 2010 | A1 |
20100146145 | Tippin et al. | Jun 2010 | A1 |
20100153512 | Balassanian et al. | Jun 2010 | A1 |
20100153885 | Yates | Jun 2010 | A1 |
20100161792 | Palm et al. | Jun 2010 | A1 |
20100162344 | Casagrande et al. | Jun 2010 | A1 |
20100167816 | Perlman et al. | Jul 2010 | A1 |
20100167819 | Schell | Jul 2010 | A1 |
20100186032 | Pradeep et al. | Jul 2010 | A1 |
20100186579 | Schnitman | Jul 2010 | A1 |
20100199299 | Chang et al. | Aug 2010 | A1 |
20100210351 | Berman | Aug 2010 | A1 |
20100251295 | Amento et al. | Sep 2010 | A1 |
20100262336 | Rivas et al. | Oct 2010 | A1 |
20100267450 | McMain | Oct 2010 | A1 |
20100268361 | Mantel et al. | Oct 2010 | A1 |
20100278509 | Nagano et al. | Nov 2010 | A1 |
20100287033 | Mathur | Nov 2010 | A1 |
20100287475 | van Zwol et al. | Nov 2010 | A1 |
20100293455 | Bloch | Nov 2010 | A1 |
20100325135 | Chen et al. | Dec 2010 | A1 |
20100332404 | Valin | Dec 2010 | A1 |
20110000797 | Henry | Jan 2011 | A1 |
20110007797 | Palmer et al. | Jan 2011 | A1 |
20110010742 | White | Jan 2011 | A1 |
20110026898 | Lussier et al. | Feb 2011 | A1 |
20110033167 | Arling et al. | Feb 2011 | A1 |
20110041059 | Amarasingham et al. | Feb 2011 | A1 |
20110069940 | Shimy et al. | Mar 2011 | A1 |
20110078023 | Aldrey et al. | Mar 2011 | A1 |
20110078740 | Bolyukh et al. | Mar 2011 | A1 |
20110096225 | Candelore | Apr 2011 | A1 |
20110126106 | Ben Shaul et al. | May 2011 | A1 |
20110131493 | Dahl | Jun 2011 | A1 |
20110138331 | Pugsley et al. | Jun 2011 | A1 |
20110163969 | Anzures et al. | Jul 2011 | A1 |
20110169603 | Fithian et al. | Jul 2011 | A1 |
20110182366 | Frojdh et al. | Jul 2011 | A1 |
20110191684 | Greenberg | Aug 2011 | A1 |
20110191801 | Vytheeswaran | Aug 2011 | A1 |
20110193982 | Kook et al. | Aug 2011 | A1 |
20110197131 | Duffin et al. | Aug 2011 | A1 |
20110200116 | Bloch et al. | Aug 2011 | A1 |
20110202562 | Bloch et al. | Aug 2011 | A1 |
20110238494 | Park | Sep 2011 | A1 |
20110239246 | Woodward et al. | Sep 2011 | A1 |
20110246661 | Manzari et al. | Oct 2011 | A1 |
20110246885 | Pantos et al. | Oct 2011 | A1 |
20110252320 | Arrasvuori et al. | Oct 2011 | A1 |
20110264755 | Salvatore De Villiers | Oct 2011 | A1 |
20110282745 | Meoded et al. | Nov 2011 | A1 |
20110282906 | Wong | Nov 2011 | A1 |
20110307786 | Shuster | Dec 2011 | A1 |
20110307919 | Weerasinghe | Dec 2011 | A1 |
20110307920 | Blanchard et al. | Dec 2011 | A1 |
20110313859 | Stillwell et al. | Dec 2011 | A1 |
20110314030 | Burba et al. | Dec 2011 | A1 |
20120004960 | Ma et al. | Jan 2012 | A1 |
20120005287 | Gadel et al. | Jan 2012 | A1 |
20120011438 | Kim | Jan 2012 | A1 |
20120017141 | Eelen et al. | Jan 2012 | A1 |
20120062576 | Rosenthal et al. | Mar 2012 | A1 |
20120081389 | Dilts | Apr 2012 | A1 |
20120089911 | Hosking et al. | Apr 2012 | A1 |
20120094768 | McCaddon et al. | Apr 2012 | A1 |
20120105723 | van Coppenolle et al. | May 2012 | A1 |
20120110618 | Kilar et al. | May 2012 | A1 |
20120110620 | Kilar et al. | May 2012 | A1 |
20120120114 | You et al. | May 2012 | A1 |
20120134646 | Alexander | May 2012 | A1 |
20120137015 | Sun | May 2012 | A1 |
20120147954 | Kasai et al. | Jun 2012 | A1 |
20120159541 | Carton et al. | Jun 2012 | A1 |
20120179970 | Hayes | Jul 2012 | A1 |
20120198412 | Creighton et al. | Aug 2012 | A1 |
20120213495 | Hafeneger et al. | Aug 2012 | A1 |
20120225693 | Sirpal et al. | Sep 2012 | A1 |
20120233631 | Geshwind | Sep 2012 | A1 |
20120246032 | Beroukhim et al. | Sep 2012 | A1 |
20120263263 | Olsen et al. | Oct 2012 | A1 |
20120308206 | Kulas | Dec 2012 | A1 |
20120317198 | Patton et al. | Dec 2012 | A1 |
20120324491 | Bathiche et al. | Dec 2012 | A1 |
20130021269 | Johnson | Jan 2013 | A1 |
20130024888 | Sivertsen | Jan 2013 | A1 |
20130028446 | Krzyzanowski | Jan 2013 | A1 |
20130028573 | Hoofien et al. | Jan 2013 | A1 |
20130031582 | Tinsman et al. | Jan 2013 | A1 |
20130033542 | Nakazawa | Feb 2013 | A1 |
20130036200 | Roberts et al. | Feb 2013 | A1 |
20130039632 | Feinson | Feb 2013 | A1 |
20130046847 | Zavesky et al. | Feb 2013 | A1 |
20130054728 | Amir et al. | Feb 2013 | A1 |
20130055321 | Cline et al. | Feb 2013 | A1 |
20130061263 | Issa et al. | Mar 2013 | A1 |
20130094830 | Stone et al. | Apr 2013 | A1 |
20130097643 | Stone et al. | Apr 2013 | A1 |
20130117248 | Bhogal et al. | May 2013 | A1 |
20130125181 | Montemayor et al. | May 2013 | A1 |
20130129304 | Feinson | May 2013 | A1 |
20130129308 | Karn et al. | May 2013 | A1 |
20130173765 | Korbecki | Jul 2013 | A1 |
20130177294 | Kennberg | Jul 2013 | A1 |
20130188923 | Hartley et al. | Jul 2013 | A1 |
20130202265 | Arrasvuori et al. | Aug 2013 | A1 |
20130204710 | Boland et al. | Aug 2013 | A1 |
20130219425 | Swartz | Aug 2013 | A1 |
20130235152 | Hannuksela et al. | Sep 2013 | A1 |
20130235270 | Sasaki et al. | Sep 2013 | A1 |
20130254292 | Bradley | Sep 2013 | A1 |
20130259442 | Bloch et al. | Oct 2013 | A1 |
20130282917 | Reznik et al. | Oct 2013 | A1 |
20130290818 | Arrasvuori et al. | Oct 2013 | A1 |
20130298146 | Conrad et al. | Nov 2013 | A1 |
20130308926 | Jang et al. | Nov 2013 | A1 |
20130328888 | Beaver et al. | Dec 2013 | A1 |
20130330055 | Zimmermann et al. | Dec 2013 | A1 |
20130335427 | Cheung et al. | Dec 2013 | A1 |
20140015940 | Yoshida | Jan 2014 | A1 |
20140019865 | Shah | Jan 2014 | A1 |
20140025620 | Greenzeiger et al. | Jan 2014 | A1 |
20140025839 | Marko et al. | Jan 2014 | A1 |
20140040273 | Cooper et al. | Feb 2014 | A1 |
20140040280 | Slaney et al. | Feb 2014 | A1 |
20140046946 | Friedmann et al. | Feb 2014 | A2 |
20140078397 | Bloch et al. | Mar 2014 | A1 |
20140082666 | Bloch et al. | Mar 2014 | A1 |
20140085196 | Zucker et al. | Mar 2014 | A1 |
20140086445 | Brubeck et al. | Mar 2014 | A1 |
20140094313 | Watson et al. | Apr 2014 | A1 |
20140101550 | Zises | Apr 2014 | A1 |
20140105420 | Lee | Apr 2014 | A1 |
20140126877 | Crawford et al. | May 2014 | A1 |
20140129618 | Panje et al. | May 2014 | A1 |
20140136186 | Adami et al. | May 2014 | A1 |
20140152564 | Gulezian et al. | Jun 2014 | A1 |
20140156677 | Collins, III et al. | Jun 2014 | A1 |
20140178051 | Bloch et al. | Jun 2014 | A1 |
20140186008 | Eyer | Jul 2014 | A1 |
20140194211 | Chimes et al. | Jul 2014 | A1 |
20140210860 | Caissy | Jul 2014 | A1 |
20140219630 | Minder | Aug 2014 | A1 |
20140220535 | Angelone | Aug 2014 | A1 |
20140237520 | Rothschild et al. | Aug 2014 | A1 |
20140245152 | Carter et al. | Aug 2014 | A1 |
20140270680 | Bloch et al. | Sep 2014 | A1 |
20140279032 | Roever et al. | Sep 2014 | A1 |
20140282013 | Amijee | Sep 2014 | A1 |
20140282642 | Needham et al. | Sep 2014 | A1 |
20140298173 | Rock | Oct 2014 | A1 |
20140314239 | Meyer et al. | Oct 2014 | A1 |
20140380167 | Bloch et al. | Dec 2014 | A1 |
20150007234 | Rasanen et al. | Jan 2015 | A1 |
20150012369 | Dharmaji et al. | Jan 2015 | A1 |
20150015789 | Guntur et al. | Jan 2015 | A1 |
20150020086 | Chen et al. | Jan 2015 | A1 |
20150033266 | Klappert et al. | Jan 2015 | A1 |
20150046946 | Hassell et al. | Feb 2015 | A1 |
20150058342 | Kim et al. | Feb 2015 | A1 |
20150063781 | Silverman et al. | Mar 2015 | A1 |
20150067596 | Brown | Mar 2015 | A1 |
20150067723 | Bloch et al. | Mar 2015 | A1 |
20150070458 | Kim et al. | Mar 2015 | A1 |
20150104155 | Bloch et al. | Apr 2015 | A1 |
20150106845 | Popkiewicz et al. | Apr 2015 | A1 |
20150124171 | King | May 2015 | A1 |
20150154439 | Anzue et al. | Jun 2015 | A1 |
20150160853 | Hwang et al. | Jun 2015 | A1 |
20150179224 | Bloch et al. | Jun 2015 | A1 |
20150181271 | Onno et al. | Jun 2015 | A1 |
20150181301 | Bloch et al. | Jun 2015 | A1 |
20150185965 | Belliveau et al. | Jul 2015 | A1 |
20150195601 | Hahm | Jul 2015 | A1 |
20150199116 | Bloch et al. | Jul 2015 | A1 |
20150201187 | Ryo | Jul 2015 | A1 |
20150256861 | Oyman | Sep 2015 | A1 |
20150258454 | King et al. | Sep 2015 | A1 |
20150278986 | Edwin | Oct 2015 | A1 |
20150293675 | Bloch et al. | Oct 2015 | A1 |
20150294685 | Bloch et al. | Oct 2015 | A1 |
20150304698 | Redol | Oct 2015 | A1 |
20150318018 | Kaiser et al. | Nov 2015 | A1 |
20150331485 | Wilairat et al. | Nov 2015 | A1 |
20150331933 | Tocchini, IV et al. | Nov 2015 | A1 |
20150331942 | Tan | Nov 2015 | A1 |
20150348325 | Voss | Dec 2015 | A1 |
20160009487 | Edwards et al. | Jan 2016 | A1 |
20160021412 | Zito, Jr. | Jan 2016 | A1 |
20160037217 | Harmon et al. | Feb 2016 | A1 |
20160057497 | Kim et al. | Feb 2016 | A1 |
20160062540 | Yang et al. | Mar 2016 | A1 |
20160065831 | Howard et al. | Mar 2016 | A1 |
20160066051 | Caidar et al. | Mar 2016 | A1 |
20160086585 | Sugimoto | Mar 2016 | A1 |
20160094875 | Peterson et al. | Mar 2016 | A1 |
20160099024 | Gilley | Apr 2016 | A1 |
20160100226 | Sadler et al. | Apr 2016 | A1 |
20160104513 | Bloch et al. | Apr 2016 | A1 |
20160105724 | Bloch et al. | Apr 2016 | A1 |
20160132203 | Seto et al. | May 2016 | A1 |
20160142889 | O'Connor et al. | May 2016 | A1 |
20160162179 | Annett et al. | Jun 2016 | A1 |
20160170948 | Bloch | Jun 2016 | A1 |
20160173944 | Kilar et al. | Jun 2016 | A1 |
20160192009 | Sugio et al. | Jun 2016 | A1 |
20160217829 | Bloch et al. | Jul 2016 | A1 |
20160224573 | Shahraray et al. | Aug 2016 | A1 |
20160232579 | Fahnestock | Aug 2016 | A1 |
20160277779 | Zhang et al. | Sep 2016 | A1 |
20160303608 | Jossick | Oct 2016 | A1 |
20160321689 | Turgeman | Nov 2016 | A1 |
20160322054 | Bloch et al. | Nov 2016 | A1 |
20160323608 | Bloch et al. | Nov 2016 | A1 |
20160337691 | Prasad et al. | Nov 2016 | A1 |
20160365117 | Boliek et al. | Dec 2016 | A1 |
20160366454 | Tatourian et al. | Dec 2016 | A1 |
20170006322 | Dury et al. | Jan 2017 | A1 |
20170041372 | Hosur | Feb 2017 | A1 |
20170062012 | Bloch | Mar 2017 | A1 |
20170142486 | Masuda | May 2017 | A1 |
20170178409 | Bloch et al. | Jun 2017 | A1 |
20170178601 | Bloch et al. | Jun 2017 | A1 |
20170195736 | Chai et al. | Jul 2017 | A1 |
20170264920 | Mickelsen | Sep 2017 | A1 |
20170286424 | Peterson | Oct 2017 | A1 |
20170289220 | Bloch et al. | Oct 2017 | A1 |
20170295410 | Bloch et al. | Oct 2017 | A1 |
20170326462 | Lyons et al. | Nov 2017 | A1 |
20170337196 | Goela et al. | Nov 2017 | A1 |
20170345460 | Bloch et al. | Nov 2017 | A1 |
20180007443 | Cannistraro et al. | Jan 2018 | A1 |
20180014049 | Griffin et al. | Jan 2018 | A1 |
20180025078 | Quennesson | Jan 2018 | A1 |
20180048831 | Berwick et al. | Feb 2018 | A1 |
20180068019 | Novikoff et al. | Mar 2018 | A1 |
20180115592 | Samineni | Apr 2018 | A1 |
20180130501 | Bloch et al. | May 2018 | A1 |
20180176573 | Chawla et al. | Jun 2018 | A1 |
20180191574 | Vishnia et al. | Jul 2018 | A1 |
20180254067 | Elder | Sep 2018 | A1 |
20180262798 | Ramachandra | Sep 2018 | A1 |
20180314959 | Apokatanidis et al. | Nov 2018 | A1 |
20190075367 | van Zessen et al. | Mar 2019 | A1 |
20190090002 | Ramadorai et al. | Mar 2019 | A1 |
20190098371 | Keesan | Mar 2019 | A1 |
20190132639 | Panchaksharaiah et al. | May 2019 | A1 |
20190166412 | Panchaksharaiah et al. | May 2019 | A1 |
20190182525 | Steinberg et al. | Jun 2019 | A1 |
20190238719 | Alameh et al. | Aug 2019 | A1 |
20190335225 | Fang et al. | Oct 2019 | A1 |
20190354936 | Deluca et al. | Nov 2019 | A1 |
20200037047 | Cheung et al. | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
2639491 | Mar 2010 | CA |
2428329 | Jan 1975 | DE |
2359916 | Jun 1975 | DE |
004038801 | Jun 1992 | DE |
10053720 | Apr 2002 | DE |
0965371 | Dec 1999 | EP |
1033157 | Sep 2000 | EP |
2104105 | Sep 2009 | EP |
2359916 | Sep 2001 | GB |
2428329 | Jan 2007 | GB |
2003-245471 | Sep 2003 | JP |
2008-005288 | Jan 2008 | JP |
2004-0005068 | Jan 2004 | KR |
2010-0037413 | Apr 2010 | KR |
WO-1996013810 | May 1996 | WO |
WO-2000059224 | Oct 2000 | WO |
WO-2007062223 | May 2007 | WO |
WO-2007138546 | Dec 2007 | WO |
WO-2008001350 | Jan 2008 | WO |
WO-2008052009 | May 2008 | WO |
WO-2008057444 | May 2008 | WO |
WO-2009125404 | Oct 2009 | WO |
WO-2009137919 | Nov 2009 | WO |
Entry |
---|
U.S. Appl. No. 12/706,721 U.S. Pat. No. 9,190,110 Published as US2010/0293455, System and Method for Assembling a Recorded Composition, filed Feb. 17, 2010. |
U.S. Appl. No. 14/884,285 Published as US2017/0178601, Systems and Method for Assembling a Recorded Composition, filed Oct. 15, 2015. |
U.S. Appl. No. 13/033,916 U.S. Pat. No. 9,607,655 Published as US2011/0200116, System and Method for Seamless Multimedia Assembly, filed Feb. 24, 2011. |
U.S. Appl. No. 13/034,645 Published as US2011/0202562, System and Method for Data Mining Within Interactive Multimedia, filed Feb. 24, 2011. |
U.S. Appl. No. 13/437,164 U.S. Pat. No. 8,600,220 Published as US2013/0259442, Systems and Methods for Loading More Than One Video Content at a Time, filed Apr. 2, 2012. |
U.S. Appl. No. 14/069,694 U.S. Pat. No. 9,271,015 Published as US2014/0178051, Systems and Methods for Loading More Than One Video Content at a Time, filed Nov. 1, 2013. |
U.S. Appl. No. 13/622,780 U.S. Pat. No. 8,860,882 Published as US2014/0078397, Systems and Methods for Constructing Multimedia Content Modules, filed Sep. 19, 2012. |
U.S. Appl. No. 13/622,795 U.S. Pat. No. 9,009,619 Published as US2014/0082666, Progress Bar for Branched Videos, filed Sep. 19, 2012. |
U.S. Appl. No. 14/639,579 U.S. Pat. No. 10,474,334 Published as US2015/0199116, Progress Bar for Branched Videos, filed Mar. 5, 2015. |
U.S. Appl. No. 13/838,830 U.S. Pat. No. 9,257,148 Published as US2014/0270680, System and Method for Synchronization of Selectably Presentable Media Streams, filed Mar. 15, 2013. |
U.S. Appl. No. 14/984,821 U.S. Pat. No. 10,418,066 Published as US2016/0217829, System and Method for Synchronization of Selectably Presentable Media Streams, filed Dec. 30, 2015. |
U.S. Appl. No. 13/921,536 U.S. Pat. No. 9,832,516 Published as US2014/0380167, Systems and Methods for Multiple Device Interaction with Selectably Presentable Media Streams, filed Jun. 19, 2013. |
U.S. Appl. No. 14/107,600 U.S. Pat. No. 10,448,119 Published as US2015/0067723, Methods and Systems for Unfolding Video Pre-Roll, filed Dec. 16, 2013. |
U.S. Appl. No. 14/335,381 U.S. Pat. No. 9,530,454 Published as US2015/0104155, Systems and Methods for Real-Time Pixel Switching, filed Jul. 18, 2014. |
U.S. Appl. No. 15/356,913, Systems and Methods for Real-Time Pixel Switching, fied Nov. 21, 2016. |
U.S. Appl. No. 14/139,996 U.S. Pat. No. 9,641,898 Published as US2015/0181301, Methods and Systems for In-Video Library, filed Dec. 24, 2013. |
U.S. Appl. No. 14/140,007 U.S. Pat. No. 9,520,155 Published as US2015/0179224, Methods and Systems for Seeking to Non-Key Frames, filed Dec. 24, 2013. |
U.S. Appl. No. 14/249,627 U.S. Pat. No. 9,653,115 Published as US 2015-0294685, Video Systems and Methods for Creating Linear Video From Branched, filed Apr. 10, 2014. |
U.S. Appl. No. 15/481,916 Published as US 2017-0345460, Systems and Methods for Creating Linear Video From Branched Video, filed Apr. 7, 2017. |
U.S. Appl. No. 16/986,977 Published as US 2020/0365187, Systems and Methods for Creating Linear Video From Branched Video, filed Aug. 6, 2020. |
U.S. Appl. No. 14/249,665 U.S. Pat. No. 9,792,026 Published as US2015/0293675, Dynamic Timeline for Branched Video, filed Apr. 10, 2014. |
U.S. Appl. No. 14/509,700 U.S. Pat. No. 9,792,957 Published as US2016/0104513, Systems and Methods for Dynamic Video Bookmarking, filed Oct. 8, 2014. |
U.S. Appl. No. 14/534,626 Published as US-2018-0130501-A1, Systems and Methods for Dynamic Video Bookmarking, filed Sep. 13, 2017. |
U.S. Appl. No. 16/865,896, Systems and Methods for Dynamic Video Bookmarking, filed May 4, 2020. |
U.S. Appl. No. 17/138,434, Systems and Methods for Dynamic Video Bookmarking, filed Dec. 30, 2020. |
U.S. Appl. No. 14/534,626 Published as U52016/0105724, Systems and Methods for Parallel Track Transitions, filed Nov. 6, 2014. |
U.S. Appl. No. 14/700,845 U.S. Pat. No. 10,582,265 Published as U52016/0323608, Systems and Methods for Nonlinear Video Playback Using Linear Real-Time Video Players, filed Apr. 30, 2015. |
U.S. Appl. No. 16/752,193 Published as US2020/0404382, Systems and Methods for Nonlinear Video Playback Using Linear Real-Time Video Players, filed Jan. 24, 2020. |
U.S. Appl. No. 14/700,862 U.S. Pat. No. 9,672,868 Published as US2016/0322054, Systems and Methods for Seamless Media Creation, filed Apr. 30, 2015. |
U.S. Appl. No. 14/835,857 U.S. Pat. No. 10,460,765 Published as US2017/0062012, Systems and Methods for Adaptive and Responsive Video, filed Aug. 26, 2015. |
U.S. Appl. No. 16/559,082, Systems and Methods for Adaptive and Responsive Video, filed Sep. 3, 2019. |
U.S. Appl. No. 16/800,994, Systems and Methods for Adaptive and Responsive Video, filed Feb. 25, 2020. |
U.S. Appl. No. 14/978,464 Published as US2017/0178601, Intelligent Buffering of Large-Scale Video, filed Dec. 22, 2015. |
U.S. Appl. No. 14/978,491 Published as US2017/0178409, Seamless Transitions in Large-Scale Video, filed Dec. 22, 2015. |
U.S. Appl. No. 15/085,209 U.S. Pat. No. 10,462,202 Published as US2017/0289220, Media Stream Rate Synchronization, filed Mar. 30, 2016. |
U.S. Appl. No. 15/165,373 Published as US 2017-0295410, Symbiotic Interactive Video, filed May 26, 2016. |
U.S. Appl. No. 15/189,931 U.S. Pat. No. 10,218,760 Published as US 2017/0374120, Dynamic Summary Generation for Real-time Switchable Videos, filed Jun. 22, 2016. |
U.S. Appl. No. 15/395,477 U.S. Pat. No. 11,050,809 Published as US 2018/0191574, Systems and Methods for Dynamic Weighting of Branched Video Paths, filed Dec. 30, 2016. |
U.S. Appl. No. 17/328,261, Systems and Methods for Dynamic Weighting of Branched Video Paths, filed May 24, 2021. |
U.S. Appl. No. 15/997,284 Published as US 2019/0373330, Interactive Video Dynamic Adaptation and User Profiling, filed Jun. 4, 2018. |
U.S. Appl. No. 15/863,191 U.S. Pat. No. 10,257,578, Dynamic Library Display for Interactive Videos, filed Jan. 5, 2018. |
U.S. Appl. No. 16/283,066 U.S. Pat. No. 10,856,049 Published as U52019/0349637, Dynamic Library Display for Interactive Videos, filed Feb. 22, 2019. |
U.S. Appl. No. 17/091,149, Dynamic Library Display for Interactive Videos, filed Nov. 6, 2020. |
U.S. Appl. No. 16/793,205, Dynamic Adaptation of Interactive Video Players Using Behavioral Analytics, filed Feb. 18, 2020. |
U.S. Appl. No. 16/793,201, Systems and Methods for Detecting Anomalous Activities for Interactive Videos, filed Feb. 18, 2020. |
U.S. Appl. No. 16/922,540, Systems and Methods for Seamless Audio and Video Endpoint Transitions, filed Jul. 7, 2020. |
U.S. Appl. No. 17/334,027, Automated Platform for Generating Interactive Videos, filed May 28, 2021. |
An ffmpeg and SDL Tutorial, “Tutorial 05: Synching Video,” Retrieved from Internet on Mar. 15, 2013: <http://dranger.com/ffmpeg/tutorial05.html>, 4 pages. |
Archos Gen 5 English User Manual Version 3.0, Jul. 26, 2007, pp. 1-81. |
Barlett M, (2008), “iTunes 11: How to Queue Next Song,” Technipages, Oct. 6, 2008 issue, pp. 1-8, retrieved on Dec. 26, 2013 from the internet: http://www.technipages.com/itunes-queue-next-song.html. |
Google Scholar search, “Inserting metadata inertion advertising video”, Jul. 16, 2021, 2 pages. |
International Preliminary Report and Written Opinion of PCT/IL2012/000080 dated Aug. 27, 2013, 7 pages. |
International Search Report and Written Opinion for International Patent Application PCT/IB2013/001000 dated Jul. 31, 2013 (12 pages). |
International Search Report for International Patent Application PCT/IL2010/000362 dated Aug. 25, 2010 (2 pages). |
International Search Report for International Patent Application PCT/IL2012/000081 dated Jun. 28, 2012 (4 pages). |
International Search Report of PCT/IL2012/000080 dated Aug. 9, 2012, 4 pages. |
Labs.byHook: “Ogg Vorbis Encoder for Flash: Alchemy Series Part 1,” [Online] Internet Article, Retrieved on Jun. 14, 2012 from the Internet: URL:http://labs.byhook.com/2011/02/15/ogg-vorbis-encoder-for-flash-alchemy-series-part-1/, 2011, (pp. 1-8). |
Marciel, M. et al., “Understanding the Detection of View Fraud in Video Content Portals”, (Feb. 5, 2016), Cornell University, pp. 1-13. |
Miller, Gregor et al., “MiniDiver: a Novel Mobile Media Playback Interface for Rich Video Content on an iPhoneTM”, Entertainment Computing A ICEC 2009, Sep. 3, 2009, pp. 98-109. |
Sodagar, I., “The MPEG-DASH Standard for Multimedia Streaming Over the Internet”, IEEE Multimedia, IEEE Service Center, New York, NY US, (2011) 18(4): 62-67. |
Supplemental European Search Report for EP10774637.2 (PCT/IL2010/000362) dated Jun. 28, 2012 (6 pages). |
Supplemental European Search Report for EP13184145, (dated Jan. 30, 2014), 3 pages. |
Yang, H, et al., “Time Stamp Synchronization in Video Systems,” Teletronics Technology Corporation, <http://www.ttcdas.com/products/daus_encoders/pdf/_tech_papers/tp_2010_time_stamp_video_system.pdf>, Abstract, (8 pages). |
Number | Date | Country | |
---|---|---|---|
20210105433 A1 | Apr 2021 | US |