The present specification is related generally to the field of neurophysiological stimulation. More specifically, the present specification is related to a stimulation module and a corresponding intraoperative neurophysiological monitoring software engine that enables a user to select from any combination of nine outputs and a plurality of stimulation variables using software controls to elicit an optimal neurological response.
Intraoperative neurophysiological monitoring (IONM) is a diagnostic process that identifies, maps, and monitors neural structures in accordance with their functions with a goal of preserving the structural integrity of these neural structures during physically invasive procedures such as surgery.
In some methods, identifying, mapping and monitoring neural structures comprises applying electrical stimulation at or near an area where the target neural structures are believed to be located. Application of the electrical stimulation is transmitted through the nerve structures to excite the associated muscle(s). An electrical impulse is generated in the muscle(s), as a result of the excitation, that can be sensed using recording electrodes, thereby indicating presence of a neural structure to a surgeon. For example, cortical stimulation mapping (CSM) is a type of electrocorticography that involves a physically invasive procedure and aims to localize the function of specific brain regions through direct electrical stimulation of the cerebral cortex.
Conventional nerve integrity monitoring systems pose limitations when used across varied surgical procedures and accompanied neuro-stimulation scenarios. By way of example, a majority of prior art nerve integrity monitoring systems only have a limited number of outputs or channels for delivering stimulation to a plurality of neural regions thereby limiting the ability to simultaneously stimulate multiple nerves or multiple branches of single nerves. This is a critical limitation as it necessitates frequent manual intervention, such as having to move the connections of stimulation components (for example, electrodes and probes) to change the location of the delivered stimulus on a patient's anatomy.
Additional drawbacks of prior art nerve integrity monitoring systems include: stimulators that can function in a single mode, that is, functionality in either constant-voltage or constant-current configuration mode but not both; the use of single or biphasic pulses and pulse trains requiring a separate priming stimulus followed by a test stimulus; a lack of synchronization with facilitation stimulators; a lack of availability of fixed output or channel pairs constraining the flexibility in determining the best stimulation site; a limited pulse width (such as, for example, of 75 microseconds or less) and no electrode impedance measurement.
As a result of these limitations, prior art nerve integrity monitoring systems are associated with various disadvantages including the need for additional operational steps which increase the duration of the surgical procedures to the detriment of patients and medical personnel, an increased complexity and confusion associated with intraoperative neural monitoring, a requirement for human and/or mechanical intervention, and an inability to efficiently integrate multiple neural stimulation and monitoring modalities.
Thus, there is a need for systems and methods that provide versatility of operation and function to a user by integrating a plurality of stimulation modalities. There is also a need for systems and methods that enable a user to stimulate the neurological system with minimal, less frequent and more streamlined manual, semi-automatic, automatic and/or electromechanical intervention.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods, which are meant to be exemplary and illustrative, and not limiting in scope. The present application discloses numerous embodiments.
The present specification discloses an intraoperative neurophysiological monitoring (IONM) system, comprising: a computing device executing an IONM software engine, said computing device comprising at least one processor, at least one non-transitory memory, one or more input devices, and one or more output devices, wherein said computing device is in data communication with one or more databases; a console in electrical communication with the computing device; a stimulation module comprising a housing and connected to a distal end of a cable, a proximal end of said cable being connected to the console, wherein said stimulation module comprises nine output ports; one or more stimulation components connected to one or more output ports of the stimulation module; and a plurality of sensing electrodes connected to the console.
The present specification also discloses a method of transcranial electrical stimulation and motor evoked potential (MEP) monitoring during a surgical procedure, said method being implemented using an intraoperative neurophysiological monitoring (IONM) system comprising a computing device capable of executing an IONM software engine, a stimulation module having nine ports, a plurality of stimulation components and a plurality of recording electrodes, the method comprising: positioning at least one recording electrode on a patient; connecting said plurality of stimulation components to at least one port on said stimulation module; positioning said plurality of stimulation components on a patient's head; activating, using said IONM software engine, at least one port; delivering stimulation to the patient; and recording a stimulatory response on the patient.
The present specification also discloses a stimulation module configured to generate and deliver an electrical stimulus comprising at least one stimulation pulse, the stimulation module comprising: a plurality of output ports adapted to connect to a plurality of stimulation electrodes; a controller, wherein the controller is configured to simultaneously activate any combination of the plurality of output ports and is configured to set any of the plurality of output ports to being either an anode or a cathode; an adjustable voltage converter, wherein the adjustable voltage converter is configured to raise or lower an output supply voltage; a pulse generator comprising: a constant current sink adapted to enable a setting of an intensity of an output current of the stimulation module; a current intensity digital-to-analog converter adapted to generate voltage for the current sink that is proportional to the set output current intensity; trigger logic adapted to enable the stimulation module to switch between a plurality of current intensities; and a current sense circuit to measure delivered current; and a constant voltage source adapted to enable a setting of an intensity of an output voltage of the stimulation module.
Optionally, the stimulation module further comprises an impedance circuit comprising an impedance voltage generator, an impedance pulse generator, and an impedance sense circuit, wherein the impedance circuit is configured to measure impedance of the plurality of stimulation electrodes.
Optionally, the adjustable voltage converter is configured to adjust a voltage to raise or lower the output supply voltage.
Optionally, the stimulation module is operably connected to a computing device of an intraoperative neurophysiological monitoring (IONM) system wherein the controller comprises an IONM software engine adapted to execute in the computing device.
Optionally, the plurality of outputs ports comprise at least nine output ports.
Optionally, the adjustable voltage converter is a DC to DC voltage converter and capable of converting a voltage in a range of 200 to 1200 volts. Optionally, the adjustable voltage converter comprises a digital-to-analog converter wherein the digital-to-analog converter is configured to vary a voltage in a feedback loop of the DC-DC converter thereby causing a DC-DC controller to adjust a switching duty cycle to raise or lower the output supply voltage.
Optionally, the constant voltage source generates an output voltage using an emitter follower field-effect transistor. Optionally, a gate voltage of the field-effect transistor is set by a digital-to-analog converter wherein the output voltage is proportional to the digital-to-analog converter voltage.
Optionally, the current sink comprises two digital-to-analog converters and a high speed amplifier to control separate phases of the pulse.
Optionally, an output current is set by the digital-to-analog converter voltage at an input of an amplifier. Optionally, the setting of the output current is adapted to force a voltage across a ground referenced transistor at an output.
Optionally, the pulse generator comprises a field-effect transistor and an amplifier, wherein the pulse generator is adapted to limit and sense an impedance current.
Optionally, the plurality of output ports are configured to be controlled by a gate drive optocoupler and H-Bridge transformer driver.
Optionally, the controller is configured to monitor voltage values on a first side and a second side of a high voltage rail, wherein the controller is configured to monitor a value of current, and wherein the controller is configured to output a measurement of a delivered pulse based upon the monitored voltage values and the monitored current value.
Optionally, the controller is adapted to use the monitored voltage values and the monitored current value to compute an on-the-fly impedance value.
Optionally, the stimulation module is configured to be in time synchronization with a plurality of facilitation stimulators and a plurality of recording electrodes and wherein the plurality of facilitation stimulators and the plurality of recording electrodes are in data communication with a computing device of an intraoperative neurophysiological monitoring (IONM) system. Optionally, the time synchronization is achieved using a digital timing signal and coordination of a timestamp by the computing device.
Optionally, the at least one stimulation pulse is polyphasic.
Optionally, the stimulation module is configured to generate the at least one stimulation pulse having a voltage output up to 1000 Volts and a current of 1.5 Amps as any combination of single pulses or pulse trains.
Optionally, the controller is configured to modulate at least one of a plurality of stimulation parameters of the at least one stimulation pulse.
Optionally, the stimulation module further comprises an impedance circuit configured to measure an impedance of the plurality of stimulation electrodes based upon a plurality of pulses, wherein the plurality of pulses is a generated by combination of one of the plurality of output ports being configured as an anode and remaining ones of the plurality of output ports being configured as cathodes.
Optionally, the stimulation module is configured to operate in a constant voltage mode wherein the output current is limited in the constant voltage mode.
Optionally, the stimulation module is configured to operate in a constant current mode wherein the output voltage is limited in the constant current mode.
Optionally, the stimulation module further comprises first and second safety circuits.
Optionally, the stimulation module is configured to be powered down if communication is lost between the stimulation module and a computing device of an intraoperative neurophysiological monitoring (IONM) system.
The present specification also discloses an intraoperative neurophysiological monitoring (IONM) system, comprising: a computing device executing an IONM software engine, said computing device comprising at least one processor, at least one non-transitory memory, one or more input devices, and one or more output devices, wherein said computing device is in data communication with one or more databases; a console in electrical communication with the computing device; a stimulation module comprising a housing and connected to a distal end of a cable, a proximal end of said cable being connected to the console, wherein said stimulation module comprises nine output ports; one or more stimulation components connected to one or more output ports of the stimulation module; and a plurality of sensing electrodes connected to the console.
The present specification also discloses a method of transcranial electrical stimulation and motor evoked potential (MEP) monitoring during a surgical procedure, said method being implemented using an intraoperative neurophysiological monitoring (IONM) system comprising a computing device capable of executing an IONM software engine, a stimulation module having nine ports, a plurality of stimulation components and a plurality of recording electrodes, the method comprising: positioning at least one recording electrode on a patient; connecting said plurality of stimulation components to at least one port on said stimulation module; positioning said plurality of stimulation components on a patient's head; activating, using said IONM software engine, at least one port; delivering stimulation to the patient; and recording a stimulatory response on the patient.
Optionally, a recording electrode is positioned on the patient's right leg, wherein said plurality of stimulation components are connected to six ports of said stimulation module, wherein first and second ports are activated as anode and cathode respectively, and wherein stimulation is delivered in accordance with a first stimulation protocol. Optionally, the first stimulation protocol comprises a constant voltage of 100V having a train of 5 pulses and an inter-stimulus interval (ISI) of 2 ms. Optionally, if no stimulatory response is recorded at the patient's right leg then the method further comprises the steps of: increasing an area of stimulation by adding a third port as an anode; activating said first, second and third ports; and delivering stimulation to the patient using said first stimulation protocol. Optionally, the method further comprises increasing the constant voltage intensity to achieve a larger stimulatory response; activating said first, second and third ports; and delivering stimulation to the patient using a second stimulation protocol. Optionally, the second stimulation protocol comprises said increased constant voltage of 200V having a train of 5 pulses and an inter-stimulus interval (ISI) of 2 ms.
Optionally, recording electrodes are positioned on the patient's right arm and right leg, wherein said plurality of stimulation components are connected to six ports of said stimulation module, wherein first and second ports are activated as anode and cathode respectively, and wherein stimulation is delivered in accordance with a first stimulation protocol. Optionally, the first stimulation protocol comprises a constant voltage of 100V having a train of 5 pulses and an inter-stimulus interval (ISI) of 2 ms. Optionally, if no stimulatory response is recorded at the patient's right arm or leg then the method further comprises the steps of: increasing an area of stimulation by adding a third port as an anode; activating said first, second and third ports; and delivering stimulation to the patient using said first stimulation protocol. Optionally, said method further comprises changing a mode of stimulation to constant-current to reduce effects of electrode impedance and increase stimulatory response; activating said first, second and third ports; and delivering stimulation to the patient using a second stimulation protocol. Optionally, the second stimulation protocol comprises constant-current at an amplitude of 100 mA having a train of 5 pulses and an inter-stimulus interval (ISI) of 2 ms.
Optionally, recording electrodes are positioned on the patient's left and right legs, wherein said plurality of stimulation components are connected to six ports of said stimulation module, wherein first and second ports are activated as anode and cathode, respectively, during a first phase of a biphasic pulse and third and second ports are activated as anode and cathode, respectively, during a second phase of the biphasic stimulation pulse, and wherein stimulation is delivered in accordance with a first stimulation protocol.
Optionally, the first stimulation protocol comprises a constant voltage of 100V having a train of 5 pulses and an inter-stimulus interval (ISI) of 2 ms. Optionally, if no stimulatory response is recorded at the patient's left and right legs then the method further comprises the steps of: increasing an area of stimulation by adding fourth and fifth ports as anodes; activating said first, fourth and second ports during the first phase and said third, fifth and second ports during the second phase; and delivering stimulation to the patient using said first stimulation protocol.
Optionally, the method further comprises increasing the constant voltage intensity to achieve a larger stimulatory response; activating said first, fourth and second ports during the first phase and said third, fifth and second ports during the second phase; and delivering stimulation to the patient using a second stimulation protocol. Optionally, said second stimulation protocol comprises said increased constant voltage of 200V having a train of 5 pulses and an inter-stimulus interval (ISI) of 2 ms.
Optionally, recording electrodes are positioned on the patient's left and right arms as well as left and right legs, wherein said plurality of stimulation components are connected to six ports of said stimulation module, wherein during a first phase of a biphasic stimulation pulse first and second ports are activated as anodes and third and fourth ports are activated as cathodes and during a second phase of the biphasic stimulation pulse third and fourth ports are activated as anodes and first and second ports are activated as cathodes, and wherein stimulation is delivered in accordance with a first stimulation protocol. Optionally, the first stimulation protocol comprises a constant voltage of 100V having a train of 5 pulses and an inter-stimulus interval (ISI) of 2 ms. Optionally, if no stimulatory response is recorded at the patient's left and right arms as well as left and right legs then the method further comprises the steps of: changing a mode of stimulation to constant-current to reduce effects of electrode impedance and increase stimulatory response; activating said first and second ports as anodes and third and fourth ports as cathodes during the first phase of the biphasic stimulation pulse and activating third and fourth ports as anodes and first and second ports as cathodes during the second phase of the biphasic stimulation pulse; and delivering stimulation to the patient using a second stimulation protocol. Optionally, the second stimulation protocol comprises said constant current of amplitude 120 mA having a train of 5 pulses and an inter-stimulus interval (ISI) of 2 ms.
The present specification also discloses a method of facilitation stimulation for transcranial electrical stimulation and motor evoked potential (MEP) monitoring during a surgical procedure, said method being implemented using an intraoperative neurophysiological monitoring (IONM) system comprising a computing device capable of executing an IONM software engine, a stimulation module having nine ports, a plurality of facilitation stimulators, a plurality of stimulation components and a plurality of recording electrodes, the method comprising: positioning at least one recording electrode on a patient; connecting said plurality of stimulation components to at least one port on said stimulation module; positioning said plurality of stimulation components on a patient's head; positioning at least one facilitation stimulator on the patient; activating, using said IONM software engine, said at least one facilitation stimulator; using the facilitation stimulator to deliver facilitation stimulus to at least one nerve structure of the patient, wherein said facilitation stimulation is delivered at a first stimulation protocol; modulating at least one parameter of the first stimulation protocol; activating, using said IONM software engine, at least one port; delivering stimulation to the patient at a second stimulation protocol; and recording a stimulatory response on the patient.
Optionally, said at least one recording electrode is positioned on the patient's right leg, wherein said plurality of stimulation components are connected to six ports of said stimulation module, wherein said at least one facilitation stimulator is positioned on the patient's right leg, wherein the nerve structure is a right posterior tibial nerve, wherein the first stimulation protocol comprises constant current at an amplitude of 25 mA having a train of 3 pulses and an inter-stimulus interval of 2 ms, wherein the inter-train interval is modulated in a range of 40 ms to 50 ms, wherein first and second ports are activated as anode and cathode, respectively, and wherein the second stimulation protocol comprises constant voltage at an amplitude of 80V having a train of 5 pulses and an inter-stimulus interval of 2 ms.
Optionally, said plurality of recording electrodes are positioned on the patient's left and right arms as well left and right legs, wherein said plurality of stimulation components are connected to six ports of said stimulation module, wherein said plurality of facilitation stimulators are positioned on the patient's left and right arms as well left and right legs, wherein the nerve structures are left and right median nerves as well as left and right posterior tibial nerve, wherein the first stimulation protocol comprises constant current at an amplitude of 25 mA having a train of 3 pulses and an inter-stimulus interval of 2 ms, wherein the inter-train interval is modulated in a range of 40 ms to 50 ms, wherein during a first phase of a biphasic pulse first and second ports are activated as anodes while third and fourth ports are activated as cathodes and during a second phase of the biphasic pulse third and fourth ports are activated as anodes while first and second ports are activated as cathodes, and wherein the second stimulation protocol comprises constant current at an amplitude of 80 mA having a train of 5 pulses and an inter-stimulus interval of 2 ms.
The present specification also discloses a method of transcranial electrical stimulation and motor evoked potential (MEP) monitoring during a surgical procedure, said method being implemented using an intraoperative neurophysiological monitoring (IONM) system comprising a computing device capable of executing an IONM software engine, a stimulation module having nine ports, a plurality of stimulation components and a plurality of recording electrodes, the method comprising: positioning a recording electrode on a patient's right leg; connecting said plurality of stimulation components to six ports on said stimulation module; positioning said plurality of stimulation components on a patient's head; activating, using said IONM software engine, first and second ports as anode and cathode respectively; delivering stimulation to the patient at a first stimulation protocol, wherein said first protocol comprises a constant voltage of 100V having a train of 5 pulses and an inter-stimulus interval of 2 ms; recording a first stimulatory response on the patient, wherein said first response is nil; increasing an area of stimulation by adding a third port as an anode; activating, using said IONM software engine, said first, second and third ports; delivering stimulation to the patient using said first stimulation protocol; recording a second stimulatory response on the patient; increasing a constant voltage intensity of stimulation to achieve a third stimulatory response; activating said first, second and third ports; delivering stimulation to the patient using a second stimulation protocol, wherein said second stimulation protocol comprises said increased constant voltage intensity of 200V having a train of 5 pulses and an inter-stimulus interval of 2 ms; and recording the third stimulatory response on the patient, wherein said third response is greater than said second response.
The present specification also discloses a method of transcranial electrical stimulation and motor evoked potential (MEP) monitoring during a surgical procedure, said method being implemented using an intraoperative neurophysiological monitoring (IONM) system comprising a computing device capable of executing an IONM software engine, a stimulation module having nine ports, a plurality of stimulation components and a plurality of recording electrodes, the method comprising: positioning a recording electrode on a patient's right arm and right leg; connecting said plurality of stimulation components to six ports on said stimulation module; positioning said plurality of stimulation components on a patient's head; activating, using said IONM software engine, first and second ports as anode and cathode respectively; delivering stimulation to the patient at a first stimulation protocol, wherein said first protocol comprises a constant voltage of 100V having a train of 5 pulses and an inter-stimulus interval of 2 ms; recording a first stimulatory response on the patient, wherein said first response corresponds to no response at the right arm; increasing an area of stimulation by adding a third port as an anode; activating, using said IONM software engine, said first, second and third ports; delivering stimulation to the patient using said first stimulation protocol; recording a second stimulatory response on the patient; changing a mode of stimulation to constant current to reduce effects of electrode impedance and to achieve a third stimulatory response; activating said first, second and third ports; delivering stimulation to the patient using a second stimulation protocol, wherein said second stimulation protocol comprises said constant current of 100 mA having a train of 5 pulses and an inter-stimulus interval of 2 ms; and recording the third stimulatory response on the patient, wherein said third response is greater than said second response.
The present specification also discloses a method of transcranial electrical stimulation and motor evoked potential (MEP) monitoring during a surgical procedure, said method being implemented using an intraoperative neurophysiological monitoring (IONM) system comprising a computing device capable of executing an IONM software engine, a stimulation module having nine ports, a plurality of stimulation components and a plurality of recording electrodes, the method comprising: positioning a recording electrode on a patient's left and right legs; connecting said plurality of stimulation components to six ports on said stimulation module; positioning said plurality of stimulation components on a patient's head; using said IONM software engine to activate first and second ports as anode and cathode respectively during a first phase of a biphasic pulse and activate third and second ports as anode and cathode respectively during a second phase of the biphasic pulse; delivering stimulation to the patient at a first stimulation protocol, wherein said first protocol comprises a constant voltage of 100V having a train of 5 pulses and an inter-stimulus interval of 2 ms; recording a first stimulatory response on the patient, wherein said first response corresponds to no response at the left and right legs; increasing an area of stimulation by adding a fourth and fifth ports; using said IONM software engine to activate said first and fourth ports as anodes while said second port as cathode during the first phase of the biphasic pulse and activate said third and fifth ports as anodes while said second port as cathode during the second phase of the biphasic pulse; delivering stimulation to the patient using said first stimulation protocol; recording a second stimulatory response on the patient; increasing a voltage intensity of stimulation to achieve a third stimulatory response; using said IONM software engine to activate said first and fourth ports as anodes while said second port as cathode during the first phase of the biphasic pulse and activate said third and fifth ports as anodes while said second port as cathode during the second phase of the biphasic pulse; delivering stimulation to the patient using a third stimulation protocol, wherein said third stimulation protocol comprises said increased constant voltage of 200V having a train of 5 pulses and an inter-stimulus interval of 2 ms; and recording the third stimulatory response on the patient, wherein said third response is greater than said second response.
The present specification also discloses a method of transcranial electrical stimulation and motor evoked potential (MEP) monitoring during a surgical procedure, said method being implemented using an intraoperative neurophysiological monitoring (IONM) system comprising a computing device capable of executing an IONM software engine, a stimulation module having nine ports, a plurality of stimulation components and a plurality of recording electrodes, the method comprising: positioning a recording electrode on a patient's left and right arms as well as left and right legs; connecting said plurality of stimulation components to six ports on said stimulation module; positioning said plurality of stimulation components on a patient's head; using said IONM software engine to activate first and second ports as anodes and third and fourth ports as cathodes during a first phase of a biphasic pulse and activate third and fourth ports as anodes and first and second ports as cathodes during a second phase of the biphasic pulse; delivering stimulation to the patient at a first stimulation protocol, wherein said first protocol comprises a constant voltage of 100V having a train of 5 pulses and an inter-stimulus interval of 2 ms; recording a first stimulatory response on the patient, wherein said first response corresponds to no response at the left and right arms as well as the left and right legs; changing a mode of stimulation to constant current to reduce effects of electrode impedance and to achieve a second stimulatory response; using said IONM software engine to activate first and second ports as anodes and third and fourth ports as cathodes during a first phase of a biphasic pulse and activate third and fourth ports as anodes and first and second ports as cathodes during a second phase of the biphasic pulse; delivering stimulation to the patient using a second stimulation protocol, wherein said second stimulation protocol comprises said constant current of 120 mA having a train of 5 pulses and an inter-stimulus interval of 2 ms; and recording the second stimulatory response on the patient.
The present specification also discloses a method of facilitation stimulation for transcranial electrical stimulation and motor evoked potential (MEP) monitoring during a surgical procedure, said method being implemented using an intraoperative neurophysiological monitoring (IONM) system comprising a computing device capable of executing an IONM software engine, a stimulation module having nine ports, a plurality of facilitation stimulators, a plurality of stimulation components and a plurality of recording electrodes, the method comprising: positioning at least one recording electrode on a patient's right leg; connecting said plurality of stimulation components to six ports on said stimulation module; positioning said plurality of stimulation components on a patient's head; positioning at least one facilitation stimulator on the patient's right leg; activating, using said IONM software engine, said at least one facilitation stimulator; using said IONM software engine to activate said at least one facilitation stimulator and deliver a facilitation stimulus to a right posterior tibial nerve of the patient, wherein said facilitation stimulation is delivered at a first stimulation protocol comprising constant current of 25 mA having a train of 3 pulses and an inter-stimulus interval of 2 ms; modulating the inter-train interval, of the first stimulation protocol, in a range of 40 ms to 50 ms; activating, using said IONM software engine, first and second ports as anode and cathode respectively; delivering stimulation to the patient at a second stimulation protocol comprising constant voltage of 80V having a train of 5 pulses and an inter-stimulus interval of 2 ms; and recording a stimulatory response on the right leg.
The present specification also discloses a method of facilitation stimulation for transcranial electrical stimulation and motor evoked potential (MEP) monitoring during a surgical procedure, said method being implemented using an intraoperative neurophysiological monitoring (IONM) system comprising a computing device capable of executing an IONM software engine, a stimulation module having nine ports, a plurality of facilitation stimulators, a plurality of stimulation components and a plurality of recording electrodes, the method comprising: positioning said plurality of recording electrodes on a patient's left and right arms as well as left and right legs; connecting said plurality of stimulation components to six ports on said stimulation module; positioning said plurality of stimulation components on a patient's head; positioning said plurality of facilitation stimulators on the patient's left and right arms as well as left and right legs; activating, using said IONM software engine, said plurality of facilitation stimulators; using said IONM software engine to activate said at least one facilitation stimulator and deliver facilitation stimulation to left and right median nerves as well as left and right posterior tibial nerves of the patient, wherein said facilitation stimulation is delivered at a first stimulation protocol comprising constant current of 25 mA having a train of 3 pulses and an inter-stimulus interval of 2 ms; modulating the inter-train interval, of the first stimulation protocol, in a range of 40 ms to 50 ms; using said IONM software engine to activate first and second ports as anodes while third and fourth ports as cathodes during a first phase of a biphasic pulse and activate third and fourth ports as anodes while first and second ports as cathodes during a second phase of the biphasic pulse; delivering stimulation to the patient at a second stimulation protocol comprising constant current of 80 mA having a train of 5 pulses and an inter-stimulus interval of 2 ms; and recording stimulatory responses on the left and right arms as well as left and right legs.
The present specification also discloses a stimulation module for delivering electrical stimulus comprising at least one stimulation pulse, said stimulation module being operably connected to a computing device of an intraoperative neurophysiological monitoring (IONM) system, wherein said computing device executes an IONM software engine, said stimulation module comprising: nine output ports to enable connection to a plurality of stimulation electrodes, wherein said IONM software engine can simultaneously activate any combination of said nine output ports and can set all of said nine output ports as anode or cathode; an adjustable 200 to 1200 volt DC-DC converter and a high voltage sense circuit, wherein said DC-DC converter uses a digital-to-analog converter to vary a voltage in a feedback loop of said DC-DC converter thereby causing a DC-DC controller to adjust a switching duty cycle to raise or lower said output supply voltage; a pulse generator comprising: a constant current sink that enables setting an output current intensity of said stimulation module; a current intensity digital-to-analog converter (DAC) for generating voltage for said current sink that is proportional to a requested stimulus current intensity; trigger logic to enable said stimulation module to switch between a plurality of current intensities; and a current sense circuit to measure delivered current; a constant voltage source that enables setting an output voltage intensity of said stimulation module; and an impedance voltage generator functioning in conjunction with an impedance pulse generator and an impedance sense circuit for measuring impedance of said plurality of stimulation electrodes.
Optionally, said constant voltage source generates an output voltage using an emitter follower field-effect transistor whose gate voltage is set by a digital-to-analog converter, and wherein said output voltage is proportional to the digital-to-analog converter voltage.
Optionally, said current sink comprises two digital-to-analog converters and a high speed amplifier to control separate phases of said pulse.
Optionally, an output current is set by the digital-to-analog converter voltage at an input of the high speed amplifier which then forces the voltage across a ground referenced transistor at the output.
Optionally, said pulse generator comprising of a field-effect transistor, fixed impedance and an amplifier, wherein said pulse generator is used to limit and sense an impedance current.
Optionally, said nine output ports are controlled by a gate drive optocoupler and H-Bridge transformer driver.
Optionally, voltage values on both sides of a high voltage rail are monitored along with current value to provide an accurate measurement of a delivered pulse, and wherein said monitored values are used to compute an “on the fly” impedance.
Optionally, said IONM system further comprises a plurality of facilitation stimulators and a plurality of recording electrodes, and wherein said stimulation module, said plurality of facilitation stimulators and said plurality of recording electrodes are in time synchronization with each other.
Optionally, said time synchronization is achieved using a digital timing signal and coordination of a timestamp by said computing device.
Optionally, said at least one stimulation pulse is polyphasic.
Optionally, said electrical stimulus has output up to 1000 Volts and 1.5 Amps, and wherein said electrical stimulus is configurable as any combination of single pulses or pulse trains.
Optionally, at least one of a plurality of stimulation parameters of said electrical stimulus is modulated using said IONM software engine.
Optionally, at least one of said nine output ports can be activated using said IONM software engine.
Optionally, at least one of said output ports is configured as an anode.
Optionally, at least one of said output ports is configured as a cathode anode.
Optionally, said high voltage and current sense circuits enable measurement of said delivered electrical stimulus using voltage dividers, amplifiers and analog-to-digital converters.
Optionally, measurement of electrode impedance is achieved using both successive approximation and averaging of nine pulses, wherein each of said nine pulses is a combination of one output port configured as an anode and the remaining output ports configured as cathodes.
Optionally, said stimulation module is a battery-powered wireless module.
Optionally, said stimulation module is operated in a constant voltage mode, and wherein current is limited in said constant voltage mode.
Optionally, said stimulation module is operated in a constant current mode, and wherein voltage is limited in said constant current mode.
Optionally, said stimulation module further comprises first and second safety circuits.
Optionally, said stimulation module is powered down if communication is lost between said stimulation module and said computing device.
The aforementioned and other embodiments of the present shall be described in greater depth in the drawings and detailed description provided below.
These and other features and advantages of the present specification will be further appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings:
A “computing device” is at least one of a cellular phone, PDA, smart phone, tablet computing device, patient monitor, custom kiosk, or other computing device capable of executing programmatic instructions. It should further be appreciated that each device and monitoring system may have wireless and wired receivers and transmitters capable of sending and transmitting data. Each “computing device” may be coupled to at least one display, which displays information about the patient parameters and the functioning of the system, by means of a GUI. The GUI also presents various menus that allow users to configure settings according to their requirements. The system further comprises at least one processor (not shown) to control the operation of the entire system and its components. It should further be appreciated that the at least one processor is capable of processing programmatic instructions, has a memory capable of storing programmatic instructions, and employs software comprised of a plurality of programmatic instructions for performing the processes described herein. In one embodiment, at least one processor is a computing device capable of receiving, executing, and transmitting a plurality of programmatic instructions stored on a volatile or non-volatile computer readable medium. In addition, the software comprised of a plurality of programmatic instructions for performing the processes described herein may be implemented by a computer processor capable of processing programmatic instructions and a memory capable of storing programmatic instructions.
The term ‘user’ is used interchangeably to refer to a surgeon, neuro-physician, neuro-surgeon, neuro-physiologist, technician or operator of the IONM system and/or other patient-care personnel or staff.
The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.
In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.
As used herein, the indefinite articles “a” and “an” mean “at least one” or “one or more” unless the context clearly dictates otherwise.
An Intraoperative Neuro-Monitoring (IONM) System
In various embodiments, the computing device 105 comprises at least one processor, at least one non-transitory memory, one or more input devices (such as, but not limited to, keyboard, mouse, touch-screen, camera and combinations thereof) and one or more output devices (such as, but not limited to, display screens, printers, speakers and combinations thereof) all of which may be stand-alone, integrated into a single unit, partially or completely network-based or cloud-based, and not necessarily located in a single physical location. The computing device 105 is in data communication with one or more databases 140 that may be co-located with the computing device 105 or located remotely.
The IONM software application or engine 110 implements a plurality of instructions to: deliver a plurality of stimulation protocols or schedules (stored in the one or more databases 140) through any one, any combination or all of the plurality of stimulation components 135, generate a plurality of graphical user interfaces (GUIs) rendered on one or more display screens (that are coupled to the computing device 105) to display a plurality of MEP (Motor Evoked Potential) activity waveforms sensed by the electrodes 125 and extract a plurality of parameters related thereto and enable user-interaction with the system 100 to perform a plurality of functions such as, but not limited to, selecting and activating/initiating one or more stimulation protocols and modulating one or more stimulation parameters of the protocols. The IONM software application or engine 110 is configured to apply one or more stimulation protocols to one or more nerve structures 145 of a patient 150 through the plurality of stimulation components 135 and acquire and record correspondingly MEP activity through the plurality of electrodes 125 positioned within a plurality of muscle sites or locations 148 of the patient 150.
It should be appreciated by those of ordinary skill in the art that, although described herein with reference to transcranial electrical stimulation (TES) and motor evoked potential monitoring (MEP) during cerebrospinal surgical procedures, the system 100 and related methods or use cases of the present specification have application in a plurality of surgical procedures during which tissue having critical neural structures must be approached, retracted, and/or impinged upon. There is a requirement that such physically invasive procedures be planned and executed while preserving critical neural structures or bundles. It should also be appreciated that, although embodiments have been described herein with reference to MEP activity, the system 100 and related methods or use cases of the present specification may, in various alternate embodiments, use a plurality of different types of neural monitoring modalities such as, for example, triggered electromyography, spontaneous electromyography, mechanomyography, somatosensory evoked potential, nerve conduction velocity and/or train of fours.
The Stimulation Module
In embodiments, the module 120 comprises a plurality of output channels or ports 160. In accordance with an embodiment, the plurality of output channels comprise nine ports 160a, 160b, 160c, 160d, 160e, 160f, 160g, 160h, 160i. In accordance with an embodiment, any of the nine ports 160a-160i can be configured and flexibly chosen as any combination of anode or cathode per stimulus thereby allowing user-defined stimuli to be delivered to arbitrary anode and cathode outputs. In one embodiment, a plurality of subdermal needle electrodes are connected to the required number of output ports from the available nine ports 160a-160i.
It should be appreciated that there may be scenarios where one or a combination of stimulation modalities may be of value in a surgical procedure, depending on a stage of a surgical procedure and/or based on what anatomical structure is being stimulated. Because an optimal stimulation paradigm may differ across patients and surgical procedure types, the stimulation module 120 allows the user to easily prepare a varied neuro-stimulation setup, without having to physically move electrodes and/or probes and/or adjust the stimulus paradigm via dials and switches on a device at the computing device or near the operating room table.
In accordance with various further aspects of the present specification, the stimulation module 120 delivers polyphasic electrical stimulus with an output of 0 to 1000 Volts, amplitude of 0 to 1.5 Amps and is configurable as any combination of single pulses or multiple pulse trains, enables modulation of one or more of a plurality of stimulation parameters digitally using the IONM software engine 110, is operable as a constant-current or constant-voltage stimulator with current and voltage sensing of delivered stimulus, supports electrode impedance measurement and determination of individual electrode impedance, is tightly synchronized with additional one or more stimulators for neural facilitation, supports transformer-coupled output switching without need for high-side voltage charge pump, is a battery-powered, wireless stimulator and supports a power management scheme, has built-in safety features including redundant circuitry, energy limited power supply, non-stimulating mode with loss of communication, self-diagnostic tests, current and voltage limiting, and includes printed-circuit board spacing and trace management for high energy pulse switching as well as low voltage control signals in a single module.
The second safety circuit element 210 comprises a microcontroller providing control signals to perform at least one of the following functions or tasks, but is not limited to said functions or tasks:
The redundant safety circuits 205, 210 prevent unintended stimulation. Both circuits 205, 210 must be online and configured by the host computer (computing device 105 of
Circuit element 220 consists of a digital-to-analog converter, operational amplifier, resistors and a MOSFET transistor. The digital-to-analog voltage and operational amplifier control the voltage applied to the gate of the MOSFET transistor to operate the MOSFET transistor in its linear region. Varying the digital-to-analog voltage varies the current through the MOSFET transistor and a resistor divider causing a voltage increase or decrease at the feedback node of the DC-DC flyback controller 215. When the feedback voltage is increased above a certain threshold, the DC-DC flyback controller 215 will reduce its duty cycle causing the voltage at the output of the DC-DC flyback converter 218 to decrease until the feedback voltage is within the threshold range. When the feedback voltage is decreased below a certain threshold, the DC-DC flyback controller 215 will increase its duty cycle causing the voltage at the output of the DC-DC flyback converter 218 to increase until the feedback voltage is within the threshold range. This behavior allows the output of the 200 to 1200 volt supply to be adjusted depending on the stimulation parameters. In various embodiments, the adjustable 200 to 1200 volt DC-DC converter 218 uses a digital-to-analog converter to vary the voltage in the feedback loop of the DC-DC flyback converter 218. This causes the DC-DC flyback controller 215 to adjust the switching duty cycle to raise or lower the output voltage. The adjustable nature of the circuit allows for built-in headroom which keeps the output voltage constant while the supply voltage decreases with each pulse. The 200 to 1200 volt supply can be turned off when not in use, reducing power consumption which allows for a battery-powered option. The high voltage sense circuit 222 provides a means of measuring the output voltage of the 200 to 1200 volt supply. High voltage sense circuit 222 consists of resistors, an operational amplifier and analog-to-digital converter. The output voltage of the 200 to 1200 volt supply is measured by dividing the voltage using a resistor divider, buffering the divided voltage and monitoring the buffered voltage with an internal analog-to-digital converter channel of circuit element 210 of
Element 230 is a voltage source for setting an output voltage intensity. The 200 to 1200 volt supply discharge circuit 232 discharges the 200 to 1200 volt supply under the control of the safety circuit elements 205 and 210 of
Hardware clamp circuit 237 is activated under the control of the safety circuit elements 205 and 210 of
A current sink pulse gate 242 is controlled by the safety circuit element 205 of
Impedance voltage generator 250 is a constant voltage source used in conjunction with an impedance pulse generator 252 and an impedance sense circuit 255 for measuring electrode impedance. A method of impedance calculation uses both successive approximation and averaging of 9 pulses, where each pulse is a combination of one output channel or port configured as an anode and the remaining channels configured as cathodes.
High voltage plus sense 257 and high voltage minus sense 260 provide means of measuring the delivered voltage. The delivered voltage is monitored by the safety circuit element 210. The voltage source 230 generates the output voltage for the stimulation module using an emitter follower field-effect transistor whose gate voltage is set by a digital-to-analog converter. The output voltage is proportional to the digital-to-analog converter voltage. A precision current sink is controlled by the trigger logic circuit element 225 that consists of two independent digital-to-analog converters and a high speed operational amplifier to control separate phases of a polyphasic pulse. The output current for the stimulation module is set by the digital-to-analog converter voltage at the input of the high speed operational amplifier which then forces the voltage across a ground referenced transistor at the output. The impedance pulse generator 252 and impedance sense circuit 255, consisting of a field-effect transistor, fixed impedance and an amplifier, are used to limit and sense the impedance current.
In embodiments, current and voltage sensing are implemented using voltage dividers, amplifiers and analog-to-digital converters. Both sides of a high voltage rail are monitored along with the current to provide an accurate measurement of the delivered pulse. These values can also be used to compute an “on the fly” impedance measurement.
In embodiments, time clock synchronization of the stimulation module and one or more facilitation stimulators is accomplished with a precise digital timing signal and coordination of the timestamp by the host software (computing device 105 of
Stimulation Parameters, Protocols or Schedules
The IONM software application of the present specification implements a plurality of stimulation protocols or schedules, comprising a plurality of stimulation parameters, that are available to the user for modulation, control and automatic delivery or application to a patient depending at least upon a neurostimulation and neuromonitoring objective such as, but not limited to, transcranial stimulation, cortical stimulation or direct nerve stimulation and/or a surgical procedure being performed. It should be appreciated that the IONM software application provides the user with a degree of ease, accuracy and automation with respect to delivery of intended stimuli and recordation of the stimuli as well as that of the correspondingly elicited neuromusculature response.
In various embodiments, stimulation protocols or schedules comprise driving a plurality of stimulation parameters such as, but not limited to, duration of the stimulation; time or moment of application of the stimulation sessions; intensity of stimulations, stimulation pulse shape, frequency, width, amplitude and polarity; stimulation duty cycle; stimulation continuity profile.
Following are exemplary standard setting ranges for some of the stimulation parameters:
In various embodiments, the IONM software application implements a plurality of sub-sets of the aforementioned stimulation parameters and protocols depending at least upon the type of neurostimulation being delivered—such as, but not limited to, transcranial stimulation.
In some embodiments, the stimulation module 120 of
In some embodiments, the stimulation module 120 is configured to deliver a lower intensity, longer pulse width stimulus, for example 200V and 500 uS, which reduces the threshold needed to elicit a neurological response. In embodiments, the stimulation module 120 can be operated for constant-current or constant-voltage output which provides a benefit of delivering an intended stimulus regardless of electrode impedance. In embodiments, the stimulation module 120 includes electrode impedance measurement and reports delivered current and voltage allowing the user to select an optimal stimulation method (that is, constant-current or constant-voltage) and determine if the stimulation module is delivering the intended stimulus.
Exemplary Use Cases
In accordance with various aspects of the present specification, the IONM system of the present specification enables the user to apply a plurality of stimulation protocols, patterns or schedules to the patient with none and/or minimal physical or electromechanical intervention, monitoring and management from the user. The IONM system of the present specification has application in a plurality of neurostimulation and neuromonitoring scenarios such as, but not limited to, transcranial stimulation whereby the motor cortex is stimulated using one or more stimulation probes/electrodes to determine functionality of the cortical structure(s), determine proximity to nervous system structures and create stimulation fields of varying size/depth.
The use case process flowcharts, being described henceforth, illustrate neurophysiological electrical stimulation treatment scenarios utilizing configurable and time-synchronized stimulators to elicit the best neurological response with minimal intervention required by a user. In the illustrated use case scenarios, it is assumed that the user has connected at least six of the nine outputs, of the stimulation module 120 of
The use case process flowcharts, being described henceforth, illustrate a plurality of functional features of the IONM system of the present specification in general and of the stimulation module 120 of
Exemplary Use Case 1
Referring now to
At step 310, the IONM software engine 105 activates ports C1 (anode) and C2 (cathode) of the stimulation module 120 to deliver stimulation. In an embodiment, the stimulation is delivered at a constant voltage of 100V using a train of 5 pulses having an inter-stimulus interval (ISI) of 2 ms. As a result of the delivered stimulation, no response is recorded at the patient's right leg at step 315. At step 320, the area of stimulation is increased by adding an anode at port Cz+6. At step 325, the IONM software engine 105 activates ports C1 (anode), Cz+6 (anode) and C2 (cathode) of the stimulation module 120 to deliver stimulation. The stimulation is delivered at a constant voltage of 100V using a train of 5 pulses having an inter-stimulus interval (ISI) of 2 ms. As a result of the delivered stimulation, a response of amplitude 100 μV is recorded at the patient's right leg at step 330. At step 335, the voltage intensity is increased to 200V to achieve a larger response at the patient's right leg. At step 340, the IONM software engine 105 activates ports C1 (anode), Cz+6 (anode) and C2 (cathode) of the stimulation module 120 to deliver stimulation. This time, the stimulation is delivered at an increased constant voltage of 200V using a train of 5 pulses having an inter-stimulus interval (ISI) of 2 ms. As a result of the delivered stimulation, a response of amplitude 200 μV is recorded at the patient's right leg at step 345.
Exemplary Use Case 2
Referring now to
At step 420, the area of stimulation is increased by adding anode at port C1 in order to improve response at the upper extremity (right arm) and elicit response at the lower extremity (right leg). At step 425, the IONM software engine 105 activates ports C1 (anode), C3 (anode) and C4 (cathode) of the stimulation module 120 to deliver stimulation. The stimulation is delivered at a constant voltage of 100V using a train of 5 pulses having an inter-stimulus interval (ISI) of 2 ms. As a result of the delivered stimulation, a response of amplitude 50 μV is recorded at the patient's right arm and right leg, at step 430.
At step 435, the stimulation mode of the stimulation module 120 is changed from constant-voltage to constant-current to reduce effects of electrode impedance and increase response. At step 440, the IONM software engine 105 activates ports C1 (anode), C3 (anode) and C4 (cathode) of the stimulation module 120 to deliver stimulation. This time, the stimulation is delivered at constant current of amplitude 100 mA, using a train of 5 pulses having an inter-stimulus interval (ISI) of 2 ms. As a result of the delivered stimulation, a response of amplitude 200 μV is recorded at the patient's right arm and right leg, at step 445.
Exemplary Use Case 3
Referring now to
At step 525, the area of stimulation is increased by adding anode at ports C3 and C4. At step 530, in order to deliver stimulation, the IONM software engine 105 activates ports C1 (anode), C3 (anode) and Cz+6 (cathode) of the stimulation module 120 during the first phase of the biphasic pulse and activates ports C2 (anode), C4 (anode) and Cz+6 (cathode) of the stimulation module 120 during the second phase of the biphasic pulse. In an embodiment, the stimulation is delivered at a constant voltage of 100V using a train of 5 pulses having an inter-stimulus interval (ISI) of 2 ms. As a result of the delivered stimulation, a response of amplitude 100 μV is recorded at the patient's right leg and a response of amplitude 75 μV is recorded at the patient's left leg, at step 535.
Now, at step 540, the voltage intensity is increased to 200V to achieve larger response at the patient's left and right legs. At step 545, the IONM software engine 105 activates ports C1 (anode), C3 (anode) and Cz+6 (cathode) of the stimulation module 120 during the first phase of the biphasic pulse and activates ports C2 (anode), C4 (anode) and Cz+6 (cathode) of the stimulation module 120 during the second phase of the biphasic pulse. In an embodiment, the stimulation is delivered at an increased constant voltage of 200V using a train of 5 pulses having an inter-stimulus interval (ISI) of 2 ms. As a result of the delivered stimulation, a response of amplitude 200 μV is recorded at the patient's right leg and a response of amplitude 150 μV is recorded at the patient's left leg, at step 550.
Exemplary Use Case 4
Referring now to
At step 610, a stimulation protocol is chosen or activated, at the IONM software engine 105, to use a biphasic pulse with multiple anodes and cathodes per phase to stimulate all extremities of the patient's body with one stimulus. At step 615, in order to deliver stimulation, the IONM software engine 105 activates ports C3 (anode), C1 (anode), C2 (cathode) and C4 (cathode) of the stimulation module 120 during the first phase of the biphasic pulse and activates ports C2 (anode), C4 (anode), C3 (cathode) and C1 (cathode) of the stimulation module 120 during the second phase of the biphasic pulse. In an embodiment, the stimulation is delivered at a constant voltage of 100V using a train of 5 pulses having an inter-stimulus interval (ISI) of 2 ms. As a result of the delivered stimulation, no response is recorded at any of the patient's extremities at step 620.
Now, at step 625, the mode of stimulation is modified from constant-voltage to constant-current to reduce effects of electrode impedance and increase response. At step 630, in order to deliver stimulation, the IONM software engine 105 activates ports C3 (anode), C1 (anode), C2 (cathode) and C4 (cathode) of the stimulation module 120 during the first phase of the biphasic pulse and activates ports C2 (anode), C4 (anode), C3 (cathode) and C1 (cathode) of the stimulation module 120 during the second phase of the biphasic pulse. In an embodiment, the stimulation is delivered at a constant current of amplitude 120 mA using a train of 5 pulses having an inter-stimulus interval (ISI) of 2 ms. As a result of the delivered stimulation, a response of amplitude 150 μV is recorded at the patient's left and right legs and a response of amplitude 200 μV is recorded at the patient's left and right arms, at step 635.
Exemplary Use Case 5
Referring now to
At step 710, a stimulation protocol is chosen or activated, at the IONM software engine 105, to initiate a facilitation stimulus using the facilitation stimulators 701 and 702 positioned at the lower extremity right side to reduce an intensity of stimulation required (from the stimulation module 120) to elicit an MEP response. Now, at step 715, the IONM software engine 105 activates the facilitation stimulators 701 and 702 to deliver a facilitation stimulus to the patient's right posterior tibial nerve. In one embodiment, the facilitation stimulus is delivered at a constant current of amplitude 25 mA using a train of 3 pulses having an inter-stimulus interval (ISI) of 2 ms. At step 720, the inter-stimulus interval of the facilitation stimulus is modulated in a range of 40 ms to 50 ms.
Now, at step 725, the IONM software engine 105 configures the stimulation module 120 to deliver a stimulation protocol having relatively lower intensities to achieve desired responses. At step 730, in one embodiment, the IONM software engine 105 activates C1 (anode) and C2 (cathode) of the stimulation module 120 to deliver stimulation. In one embodiment, the stimulation is delivered at a constant voltage of amplitude 80V using a train of 5 pulses having an inter-stimulus interval (ISI) of 2 ms. As a result of the delivered stimulation, a response of amplitude 200 μV is recorded at the patient's right leg, at step 735.
Exemplary Use Case 6
Referring now to
At step 810, a stimulation protocol is chosen or activated, at the IONM software engine 105, to initiate a facilitation stimulus using the facilitation stimulators 801 and 802 positioned at all extremities reduce an intensity of stimulation required (from the stimulation module 120) to elicit an MEP response. Now, at step 815, the IONM software engine 105 activates the facilitation stimulators 801 and 802 to deliver facilitation stimulus at the patient's left and right median nerve as well as the left and right posterior tibial nerve. In one embodiment, the facilitation stimulus is delivered at a constant current of amplitude 25 mA using a train of 3 pulses having an inter-stimulus interval (ISI) of 2 ms. At step 820, the inter-stimulus interval of the facilitation stimulus is modulated in a range of 40 ms to 50 ms.
Now, at step 825, the IONM software engine 105 configures the stimulation module 120 to deliver a stimulation protocol having relatively lower intensities to achieve desired responses.
At step 830, in order to deliver stimulation, the IONM software engine 105 activates ports C3 (anode), C1 (anode), C2 (cathode) and C4 (cathode) of the stimulation module 120 during a first phase of a biphasic stimulation pulse and activates ports C2 (anode), C4 (anode), C3 (cathode) and C1 (cathode) of the stimulation module 120 during a second phase of the biphasic stimulation pulse. In an embodiment, the stimulation is delivered at a constant current of amplitude 80 mA using a train of 5 pulses having an inter-stimulus interval (ISI) of 2 ms. As a result of the delivered stimulation, a response of amplitude 150 μV is recorded at the patient's left and right legs while a response of amplitude 200 μV is recorded at the patient's left and right arms, at step 835.
The above examples are merely illustrative of the many applications of the system and method of present specification. Although only a few embodiments of the present specification have been described herein, it should be understood that the present specification might be embodied in many other specific forms without departing from the spirit or scope of the specification. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the specification may be modified within the scope of the appended claims.
The present application is a continuation application of U.S. patent application Ser. No. 16/402,456, titled “Apparatus and Method for Polyphasic Multi-Output Constant-Current and Constant-Voltage Neurophysiological Stimulation” and filed on May 3, 2019, which relies on U.S. Patent Provisional Application No. 62/667,028, titled “Systems and Methods for Neurophysiological Stimulation” and filed on May 4, 2018, for priority, both of which are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
751475 | Vilbiss | Feb 1904 | A |
972983 | Arthur | Oct 1910 | A |
1328624 | Graham | Jan 1920 | A |
1477527 | Raettig | Dec 1923 | A |
1548184 | Cameron | Aug 1925 | A |
1717480 | Wappler | Jun 1929 | A |
1842323 | Gluzek | Jan 1932 | A |
2110735 | Marton | Mar 1938 | A |
2320709 | Arnesen | Jun 1943 | A |
2516882 | Kalom | Aug 1950 | A |
2704064 | Fizzell | Mar 1955 | A |
2736002 | Oriel | Feb 1956 | A |
2807259 | Guerriero | Sep 1957 | A |
2808826 | Reiner | Oct 1957 | A |
2994324 | Lemos | Aug 1961 | A |
3035580 | Methodi | May 1962 | A |
3057356 | Greatbatch | Oct 1962 | A |
3060923 | Reiner | Oct 1962 | A |
3087486 | Kilpatrick | Apr 1963 | A |
3147750 | Fry | Sep 1964 | A |
3188605 | Slenker | Jun 1965 | A |
3212496 | Preston | Oct 1965 | A |
3219029 | Richards | Nov 1965 | A |
3313293 | Chesebrough | Apr 1967 | A |
3364929 | Ide | Jan 1968 | A |
3580242 | La Croix | May 1971 | A |
3611262 | Marley | Oct 1971 | A |
3617616 | O'Loughlin | Nov 1971 | A |
3641993 | Gaarder | Feb 1972 | A |
3646500 | Wessely | Feb 1972 | A |
3651812 | Samuels | Mar 1972 | A |
3662744 | Richardson | May 1972 | A |
3664329 | Naylor | May 1972 | A |
3682162 | Colyer | Aug 1972 | A |
3703900 | Holznagel | Nov 1972 | A |
3718132 | Holt | Feb 1973 | A |
3733574 | Scoville | May 1973 | A |
3785368 | McCarthy | Jan 1974 | A |
3830226 | Staub | Aug 1974 | A |
3857398 | Rubin | Dec 1974 | A |
3880144 | Coursin | Apr 1975 | A |
3933157 | Bjurwill | Jan 1976 | A |
3957036 | Normann | May 1976 | A |
3960141 | Bolduc | Jun 1976 | A |
3985125 | Ewald | Oct 1976 | A |
4062365 | Kameny | Dec 1977 | A |
4088141 | Niemi | May 1978 | A |
4099519 | Warren | Jul 1978 | A |
4127312 | Fleischhacker | Nov 1978 | A |
4141365 | Fischell | Feb 1979 | A |
4155353 | Rea | May 1979 | A |
4164214 | Pelzner | Aug 1979 | A |
4175551 | D Haenens | Nov 1979 | A |
4177799 | Masreliez | Dec 1979 | A |
4184492 | Fastenmeier | Jan 1980 | A |
4200104 | Harris | Apr 1980 | A |
4204545 | Yamakoshi | May 1980 | A |
4207897 | Evatt | Jun 1980 | A |
4224949 | Scott | Sep 1980 | A |
4226228 | Shin | Oct 1980 | A |
4232680 | Hudleson | Nov 1980 | A |
4233987 | Feingold | Nov 1980 | A |
4235242 | Heule | Nov 1980 | A |
4263899 | Burgin | Apr 1981 | A |
4265237 | Schwanbom | May 1981 | A |
4285347 | Hess | Aug 1981 | A |
4291705 | Severinghaus | Sep 1981 | A |
4294245 | Bussey | Oct 1981 | A |
4295703 | Osborne | Oct 1981 | A |
4299230 | Kubota | Nov 1981 | A |
4308012 | Tamler | Dec 1981 | A |
4331157 | Keller, Jr. | May 1982 | A |
4372319 | Ichinomiya | Feb 1983 | A |
4373531 | Wittkampf | Feb 1983 | A |
4374517 | Hagiwara | Feb 1983 | A |
4402323 | White | Sep 1983 | A |
4444187 | Perlin | Apr 1984 | A |
4461300 | Christensen | Jul 1984 | A |
4469098 | Davi | Sep 1984 | A |
4483338 | Bloom | Nov 1984 | A |
4485823 | Yamaguchi | Dec 1984 | A |
4487489 | Takamatsu | Dec 1984 | A |
4503842 | Takayama | Mar 1985 | A |
4503863 | Katims | Mar 1985 | A |
4510939 | Brenman | Apr 1985 | A |
4515168 | Chester | May 1985 | A |
4517976 | Murakoshi | May 1985 | A |
4517983 | Toyosu | May 1985 | A |
4519403 | Dickhudt | May 1985 | A |
4537198 | Corbett | Aug 1985 | A |
4545374 | Jacobson | Oct 1985 | A |
4557273 | Stoller | Dec 1985 | A |
4558703 | Mark | Dec 1985 | A |
4561445 | Berke | Dec 1985 | A |
4562832 | Wilder | Jan 1986 | A |
4565200 | Cosman | Jan 1986 | A |
4570640 | Barsa | Feb 1986 | A |
4573448 | Kambin | Mar 1986 | A |
4573449 | Warnke | Mar 1986 | A |
4576178 | Johnson | Mar 1986 | A |
4582063 | Mickiewicz | Apr 1986 | A |
4592369 | Davis | Jun 1986 | A |
4595018 | Rantala | Jun 1986 | A |
4616635 | Caspar | Oct 1986 | A |
4616660 | Johns | Oct 1986 | A |
4622973 | Agarwala | Nov 1986 | A |
4633889 | Talalla | Jan 1987 | A |
4641661 | Kalarickal | Feb 1987 | A |
4643507 | Coldren | Feb 1987 | A |
4658835 | Pohndorf | Apr 1987 | A |
4667676 | Guinta | May 1987 | A |
4697598 | Bernard | Oct 1987 | A |
4697599 | Woodley | Oct 1987 | A |
4705049 | John | Nov 1987 | A |
4716901 | Jackson | Jan 1988 | A |
4739772 | Hokanson | Apr 1988 | A |
4744371 | Harris | May 1988 | A |
4759377 | Dykstra | Jul 1988 | A |
4763666 | Strian | Aug 1988 | A |
4765311 | Kulik | Aug 1988 | A |
4784150 | Voorhies | Nov 1988 | A |
4785812 | Pihl | Nov 1988 | A |
4795998 | Dunbar | Jan 1989 | A |
4807642 | Brown | Feb 1989 | A |
4807643 | Rosier | Feb 1989 | A |
4817587 | Janese | Apr 1989 | A |
4817628 | Zealear | Apr 1989 | A |
4827935 | Geddes | May 1989 | A |
4841973 | Stecker | Jun 1989 | A |
4844091 | Bellak | Jul 1989 | A |
4862891 | Smith | Sep 1989 | A |
4892105 | Prass | Jan 1990 | A |
4895152 | Callaghan | Jan 1990 | A |
4920968 | Takase | May 1990 | A |
4926865 | Oman | May 1990 | A |
4926880 | Claude | May 1990 | A |
4934377 | Bova | Jun 1990 | A |
4934378 | Perry, Jr. | Jun 1990 | A |
4934957 | Bellusci | Jun 1990 | A |
4962766 | Herzon | Oct 1990 | A |
4964411 | Johnson | Oct 1990 | A |
4964811 | Hayes, Sr. | Oct 1990 | A |
4984578 | Keppel | Jan 1991 | A |
4998796 | Bonanni | Mar 1991 | A |
5007902 | Witt | Apr 1991 | A |
5015247 | Michelson | May 1991 | A |
5018526 | Gaston-Johansson | May 1991 | A |
5020542 | Rossmann | Jun 1991 | A |
5024228 | Goldstone | Jun 1991 | A |
5058602 | Brody | Oct 1991 | A |
5080606 | Burkard | Jan 1992 | A |
5081990 | Deletis | Jan 1992 | A |
5085226 | DeLuca | Feb 1992 | A |
5092344 | Lee | Mar 1992 | A |
5095905 | Klepinski | Mar 1992 | A |
5125406 | Goldstone | Jun 1992 | A |
5127403 | Brownlee | Jul 1992 | A |
5131389 | Giordani | Jul 1992 | A |
5143081 | Young | Sep 1992 | A |
5146920 | Yuuchi | Sep 1992 | A |
5161533 | Prass | Nov 1992 | A |
5163328 | Holland | Nov 1992 | A |
5171279 | Mathews | Dec 1992 | A |
5190048 | Wilkinson | Mar 1993 | A |
5191896 | Gafni | Mar 1993 | A |
5195530 | Shindel | Mar 1993 | A |
5195532 | Schumacher | Mar 1993 | A |
5196015 | Neubardt | Mar 1993 | A |
5199899 | Ittah | Apr 1993 | A |
5201325 | McEwen | Apr 1993 | A |
5215100 | Spitz | Jun 1993 | A |
RE34390 | Culver | Sep 1993 | E |
5253656 | Rincoe | Oct 1993 | A |
5255691 | Otten | Oct 1993 | A |
5277197 | Church | Jan 1994 | A |
5282468 | Klepinski | Feb 1994 | A |
5284153 | Raymond | Feb 1994 | A |
5284154 | Raymond | Feb 1994 | A |
5292309 | Van Tassel | Mar 1994 | A |
5299563 | Seton | Apr 1994 | A |
5306236 | Blumenfeld | Apr 1994 | A |
5312417 | Wilk | May 1994 | A |
5313956 | Knutsson | May 1994 | A |
5313962 | Obenchain | May 1994 | A |
5327902 | Lemmen | Jul 1994 | A |
5333618 | Lekhtman | Aug 1994 | A |
5343871 | Bittman | Sep 1994 | A |
5347989 | Monroe | Sep 1994 | A |
5358423 | Burkhard | Oct 1994 | A |
5358514 | Schulman | Oct 1994 | A |
5368043 | Sunouchi | Nov 1994 | A |
5373317 | Salvati | Dec 1994 | A |
5375067 | Berchin | Dec 1994 | A |
5377667 | Patton | Jan 1995 | A |
5381805 | Tuckett | Jan 1995 | A |
5383876 | Nardella | Jan 1995 | A |
5389069 | Weaver | Feb 1995 | A |
5405365 | Hoegnelid | Apr 1995 | A |
5413111 | Wilkinson | May 1995 | A |
5454365 | Bonutti | Oct 1995 | A |
5470349 | Kleditsch | Nov 1995 | A |
5472426 | Bonati | Dec 1995 | A |
5474558 | Neubardt | Dec 1995 | A |
5480440 | Kambin | Jan 1996 | A |
5482038 | Ruff | Jan 1996 | A |
5484437 | Michelson | Jan 1996 | A |
5485852 | Johnson | Jan 1996 | A |
5491299 | Naylor | Feb 1996 | A |
5514005 | Jaycox | May 1996 | A |
5514165 | Malaugh | May 1996 | A |
5522386 | Lerner | Jun 1996 | A |
5540235 | Wilson | Jul 1996 | A |
5549656 | Reiss | Aug 1996 | A |
5560372 | Cory | Oct 1996 | A |
5565779 | Arakawa | Oct 1996 | A |
5566678 | Cadwell | Oct 1996 | A |
5569248 | Mathews | Oct 1996 | A |
5575284 | Athan | Nov 1996 | A |
5579781 | Cooke | Dec 1996 | A |
5591216 | Testerman | Jan 1997 | A |
5593429 | Ruff | Jan 1997 | A |
5599279 | Slotman | Feb 1997 | A |
5601608 | Mouchawar | Feb 1997 | A |
5618208 | Crouse | Apr 1997 | A |
5620483 | Minogue | Apr 1997 | A |
5622515 | Hotea | Apr 1997 | A |
5630813 | Kieturakis | May 1997 | A |
5634472 | Raghuprasad | Jun 1997 | A |
5671752 | Sinderby | Sep 1997 | A |
5681265 | Maeda | Oct 1997 | A |
5687080 | Hoyt | Nov 1997 | A |
5707359 | Bufalini | Jan 1998 | A |
5711307 | Smits | Jan 1998 | A |
5725514 | Grinblat | Mar 1998 | A |
5728046 | Mayer | Mar 1998 | A |
5741253 | Michelson | Apr 1998 | A |
5741261 | Moskovitz | Apr 1998 | A |
5759159 | Masreliez | Jun 1998 | A |
5769781 | Chappuis | Jun 1998 | A |
5772597 | Goldberger | Jun 1998 | A |
5772661 | Michelson | Jun 1998 | A |
5775331 | Raymond | Jul 1998 | A |
5776144 | Leysieffer | Jul 1998 | A |
5779642 | Nightengale | Jul 1998 | A |
5785648 | Min | Jul 1998 | A |
5785658 | Benaron | Jul 1998 | A |
5792044 | Foley | Aug 1998 | A |
5795291 | Koros | Aug 1998 | A |
5797854 | Hedgecock | Aug 1998 | A |
5806522 | Katims | Sep 1998 | A |
5814073 | Bonutti | Sep 1998 | A |
5830150 | Palmer | Nov 1998 | A |
5830151 | Hadzic | Nov 1998 | A |
5833714 | Loeb | Nov 1998 | A |
5836880 | Pratt | Nov 1998 | A |
5851191 | Gozani | Dec 1998 | A |
5853373 | Griffith | Dec 1998 | A |
5857986 | Moriyasu | Jan 1999 | A |
5860829 | Hower | Jan 1999 | A |
5860973 | Michelson | Jan 1999 | A |
5862314 | Jeddeloh | Jan 1999 | A |
5868668 | Weiss | Feb 1999 | A |
5872314 | Clinton | Feb 1999 | A |
5885210 | Cox | Mar 1999 | A |
5885219 | Nightengale | Mar 1999 | A |
5888196 | Bonutti | Mar 1999 | A |
5891147 | Moskovitz | Apr 1999 | A |
5895298 | Faupel | Apr 1999 | A |
5902231 | Foley | May 1999 | A |
5924984 | Rao | Jul 1999 | A |
5928030 | Daoud | Jul 1999 | A |
5928139 | Koros | Jul 1999 | A |
5928158 | Aristides | Jul 1999 | A |
5931777 | Sava | Aug 1999 | A |
5944658 | Koros | Aug 1999 | A |
5954635 | Foley | Sep 1999 | A |
5954716 | Sharkey | Sep 1999 | A |
5993385 | Johnston | Nov 1999 | A |
5993434 | Dev | Nov 1999 | A |
6004262 | Putz | Dec 1999 | A |
6004312 | Finneran | Dec 1999 | A |
6004341 | Zhu | Dec 1999 | A |
6009347 | Hofmann | Dec 1999 | A |
6011985 | Athan | Jan 2000 | A |
6027456 | Feler | Feb 2000 | A |
6029090 | Herbst | Feb 2000 | A |
6038469 | Karlsson | Mar 2000 | A |
6038477 | Kayyali | Mar 2000 | A |
6042540 | Johnston | Mar 2000 | A |
6050992 | Nichols | Apr 2000 | A |
6074343 | Nathanson | Jun 2000 | A |
6077237 | Campbell | Jun 2000 | A |
6095987 | Shmulewitz | Aug 2000 | A |
6104957 | Alo | Aug 2000 | A |
6104960 | Duysens | Aug 2000 | A |
6119068 | Kannonji | Sep 2000 | A |
6120503 | Michelson | Sep 2000 | A |
6126660 | Dietz | Oct 2000 | A |
6128576 | Nishimoto | Oct 2000 | A |
6132386 | Gozani | Oct 2000 | A |
6132387 | Gozani | Oct 2000 | A |
6135965 | Tumer | Oct 2000 | A |
6139493 | Koros | Oct 2000 | A |
6139545 | Utley | Oct 2000 | A |
6146334 | Laserow | Nov 2000 | A |
6146335 | Gozani | Nov 2000 | A |
6152871 | Foley | Nov 2000 | A |
6161047 | King | Dec 2000 | A |
6181961 | Prass | Jan 2001 | B1 |
6196969 | Bester | Mar 2001 | B1 |
6206826 | Mathews | Mar 2001 | B1 |
6210324 | Reno | Apr 2001 | B1 |
6214035 | Streeter | Apr 2001 | B1 |
6224545 | Cocchia | May 2001 | B1 |
6224549 | Drongelen | May 2001 | B1 |
6234953 | Thomas | May 2001 | B1 |
6249706 | Sobota | Jun 2001 | B1 |
6259945 | Epstein | Jul 2001 | B1 |
6266558 | Gozani | Jul 2001 | B1 |
6273905 | Streeter | Aug 2001 | B1 |
6287322 | Zhu | Sep 2001 | B1 |
6292701 | Prass | Sep 2001 | B1 |
6298256 | Meyer | Oct 2001 | B1 |
6302842 | Auerbach | Oct 2001 | B1 |
6306100 | Prass | Oct 2001 | B1 |
6309349 | Bertolero | Oct 2001 | B1 |
6312392 | Herzon | Nov 2001 | B1 |
6314324 | Lattner | Nov 2001 | B1 |
6325764 | Griffith | Dec 2001 | B1 |
6334068 | Hacker | Dec 2001 | B1 |
6346078 | Ellman | Feb 2002 | B1 |
6348058 | Melkent | Feb 2002 | B1 |
6366813 | Dilorenzo | Apr 2002 | B1 |
6391005 | Lum | May 2002 | B1 |
6393325 | Mann | May 2002 | B1 |
6425859 | Foley | Jul 2002 | B1 |
6425901 | Zhu | Jul 2002 | B1 |
6441747 | Khair | Aug 2002 | B1 |
6450952 | Rioux | Sep 2002 | B1 |
6451015 | Rittman, III | Sep 2002 | B1 |
6461352 | Morgan | Oct 2002 | B2 |
6466817 | Kaula | Oct 2002 | B1 |
6487446 | Hill | Nov 2002 | B1 |
6500128 | Marino | Dec 2002 | B2 |
6500173 | Underwood | Dec 2002 | B2 |
6500180 | Foley | Dec 2002 | B1 |
6500210 | Sabolich | Dec 2002 | B1 |
6507755 | Gozani | Jan 2003 | B1 |
6511427 | Sliwa, Jr. | Jan 2003 | B1 |
6535759 | Epstein | Mar 2003 | B1 |
6543299 | Taylor | Apr 2003 | B2 |
6546271 | Reisfeld | Apr 2003 | B1 |
6564078 | Marino | May 2003 | B1 |
6568961 | Liburdi | May 2003 | B1 |
6572545 | Knobbe | Jun 2003 | B2 |
6577236 | Harman | Jun 2003 | B2 |
6579244 | Goodwin | Jun 2003 | B2 |
6582441 | He | Jun 2003 | B1 |
6585638 | Yamamoto | Jul 2003 | B1 |
6609018 | Cory | Aug 2003 | B2 |
6618626 | West, Jr. | Sep 2003 | B2 |
6623500 | Cook | Sep 2003 | B1 |
6638101 | Botelho | Oct 2003 | B1 |
6692258 | Kurzweil | Feb 2004 | B1 |
6712795 | Cohen | Mar 2004 | B1 |
6719692 | Kleffner | Apr 2004 | B2 |
6730021 | Vassiliades, Jr. | May 2004 | B2 |
6770074 | Michelson | Aug 2004 | B2 |
6805668 | Cadwell | Oct 2004 | B1 |
6819956 | Dilorenzo | Nov 2004 | B2 |
6839594 | Cohen | Jan 2005 | B2 |
6847849 | Mamo | Jan 2005 | B2 |
6851430 | Tsou | Feb 2005 | B2 |
6855105 | Jackson, III | Feb 2005 | B2 |
6870109 | Villarreal | Mar 2005 | B1 |
6901928 | Loubser | Jun 2005 | B2 |
6902569 | Parmer | Jun 2005 | B2 |
6916294 | Ayad | Jul 2005 | B2 |
6916330 | Simonson | Jul 2005 | B2 |
6926728 | Zucherman | Aug 2005 | B2 |
6929606 | Ritland | Aug 2005 | B2 |
6932816 | Phan | Aug 2005 | B2 |
6945933 | Branch | Sep 2005 | B2 |
7024247 | Gliner | Apr 2006 | B2 |
7072521 | Cadwell | Jul 2006 | B1 |
7079883 | Marino | Jul 2006 | B2 |
7089059 | Pless | Aug 2006 | B1 |
7104965 | Jiang | Sep 2006 | B1 |
7129836 | Lawson | Oct 2006 | B2 |
7153279 | Ayad | Dec 2006 | B2 |
7156686 | Sekela | Jan 2007 | B1 |
7177677 | Kaula | Feb 2007 | B2 |
7214197 | Prass | May 2007 | B2 |
7216001 | Hacker | May 2007 | B2 |
7230688 | Villarreal | Jun 2007 | B1 |
7236822 | Dobak, III | Jun 2007 | B2 |
7258688 | Shah | Aug 2007 | B1 |
7261688 | Smith | Aug 2007 | B2 |
7294127 | Leung | Nov 2007 | B2 |
7306563 | Huang | Dec 2007 | B2 |
7310546 | Prass | Dec 2007 | B2 |
7363079 | Thacker | Apr 2008 | B1 |
7374448 | Jepsen | May 2008 | B2 |
D574955 | Lash | Aug 2008 | S |
7470236 | Kelleher | Dec 2008 | B1 |
7496407 | Odderson | Feb 2009 | B2 |
7522953 | Kaula | Apr 2009 | B2 |
7546993 | Walker | Jun 2009 | B1 |
7605738 | Kuramochi | Oct 2009 | B2 |
7664544 | Miles | Feb 2010 | B2 |
7689292 | Hadzic | Mar 2010 | B2 |
7713210 | Byrd | May 2010 | B2 |
D621041 | Mao | Aug 2010 | S |
7775974 | Buckner | Aug 2010 | B2 |
7789695 | Radle | Sep 2010 | B2 |
7789833 | Urbano | Sep 2010 | B2 |
7801601 | Maschino | Sep 2010 | B2 |
7824410 | Simonson | Nov 2010 | B2 |
7869881 | Libbus | Jan 2011 | B2 |
7878981 | Strother | Feb 2011 | B2 |
7914350 | Bozich | Mar 2011 | B1 |
7963927 | Kelleher | Jun 2011 | B2 |
7974702 | Fain | Jul 2011 | B1 |
7983761 | Giuntoli | Jul 2011 | B2 |
7987001 | Teichman | Jul 2011 | B2 |
7988688 | Webb | Aug 2011 | B2 |
7993269 | Donofrio | Aug 2011 | B2 |
8002770 | Swanson | Aug 2011 | B2 |
8061014 | Smith | Nov 2011 | B2 |
8068910 | Gerber | Nov 2011 | B2 |
8126736 | Anderson | Feb 2012 | B2 |
8137284 | Miles | Mar 2012 | B2 |
8147421 | Farquhar | Apr 2012 | B2 |
8160694 | Salmon | Apr 2012 | B2 |
8192437 | Simonson | Jun 2012 | B2 |
8255045 | Gharib | Aug 2012 | B2 |
8295933 | Gerber | Oct 2012 | B2 |
D670656 | Jepsen | Nov 2012 | S |
8311791 | Avisar | Nov 2012 | B1 |
8323208 | Davis | Dec 2012 | B2 |
8343079 | Bartol | Jan 2013 | B2 |
8374673 | Adcox | Feb 2013 | B2 |
RE44049 | Herzon | Mar 2013 | E |
8419758 | Smith | Apr 2013 | B2 |
8428733 | Carlson | Apr 2013 | B2 |
8457734 | Libbus | Jun 2013 | B2 |
8498717 | Lee | Jul 2013 | B2 |
8515520 | Brunnett | Aug 2013 | B2 |
8568312 | Cusimano Reaston | Oct 2013 | B2 |
8568317 | Gharib | Oct 2013 | B1 |
8594779 | Denison | Nov 2013 | B2 |
8647124 | Bardsley | Feb 2014 | B2 |
8670830 | Carlson | Mar 2014 | B2 |
8680986 | Costantino | Mar 2014 | B2 |
8688237 | Stanislaus et al. | Apr 2014 | B2 |
8695957 | Quintania | Apr 2014 | B2 |
8740783 | Gharib | Jun 2014 | B2 |
8753333 | Johnson | Jun 2014 | B2 |
8764654 | Chmiel | Jul 2014 | B2 |
8805527 | Mumford | Aug 2014 | B2 |
8876813 | Min | Nov 2014 | B2 |
8886280 | Kartush | Nov 2014 | B2 |
8892259 | Bartol | Nov 2014 | B2 |
8926509 | Magar | Jan 2015 | B2 |
8942797 | Bartol | Jan 2015 | B2 |
8956418 | Wasielewski | Feb 2015 | B2 |
8958869 | Kelleher | Feb 2015 | B2 |
8971983 | Gilmore | Mar 2015 | B2 |
8986301 | Wolf | Mar 2015 | B2 |
8989855 | Murphy | Mar 2015 | B2 |
9031658 | Chiao | May 2015 | B2 |
9037226 | Hacker | May 2015 | B2 |
9078671 | Beale | Jul 2015 | B2 |
9084550 | Bartol | Jul 2015 | B1 |
9084551 | Brunnett | Jul 2015 | B2 |
9119533 | Ghaffari | Sep 2015 | B2 |
9121423 | Sharpe | Sep 2015 | B2 |
9149188 | Eng | Oct 2015 | B2 |
9155503 | Cadwell | Oct 2015 | B2 |
9204830 | Zand | Dec 2015 | B2 |
9247952 | Bleich | Feb 2016 | B2 |
9295401 | Cadwell | Mar 2016 | B2 |
9295461 | Bojarski | Mar 2016 | B2 |
9339332 | Srivastava | May 2016 | B2 |
9352153 | Van Dijk | May 2016 | B2 |
9370654 | Scheiner | Jun 2016 | B2 |
9579503 | Mckinney | Feb 2017 | B2 |
9616233 | Shi | Apr 2017 | B2 |
9622684 | Wybo | Apr 2017 | B2 |
9714350 | Hwang | Jul 2017 | B2 |
9730634 | Cadwell | Aug 2017 | B2 |
9788905 | Avisar | Oct 2017 | B2 |
9820768 | Gee | Nov 2017 | B2 |
9855431 | Ternes | Jan 2018 | B2 |
9913594 | Li | Mar 2018 | B2 |
9935395 | Jepsen | Apr 2018 | B1 |
9999719 | Kitchen | Jun 2018 | B2 |
10022090 | Whitman | Jul 2018 | B2 |
10039461 | Cadwell | Aug 2018 | B2 |
10039915 | Mcfarlin | Aug 2018 | B2 |
10092349 | Engeberg | Oct 2018 | B2 |
10154792 | Sakai | Dec 2018 | B2 |
10292883 | Jepsen | May 2019 | B2 |
10342452 | Sterrantino | Jul 2019 | B2 |
10349862 | Sterrantino | Jul 2019 | B2 |
10398369 | Brown | Sep 2019 | B2 |
10418750 | Jepsen | Sep 2019 | B2 |
10631912 | Mcfarlin | Apr 2020 | B2 |
10783801 | Beaubien | Sep 2020 | B1 |
11189379 | Giataganas | Nov 2021 | B2 |
20010031916 | Bennett | Oct 2001 | A1 |
20010039949 | Loubser | Nov 2001 | A1 |
20010049524 | Morgan | Dec 2001 | A1 |
20010056280 | Underwood | Dec 2001 | A1 |
20020001995 | Lin | Jan 2002 | A1 |
20020001996 | Seki | Jan 2002 | A1 |
20020007129 | Marino | Jan 2002 | A1 |
20020007188 | Arambula | Jan 2002 | A1 |
20020055295 | Itai | May 2002 | A1 |
20020065481 | Cory | May 2002 | A1 |
20020072686 | Hoey | Jun 2002 | A1 |
20020095080 | Cory | Jul 2002 | A1 |
20020149384 | Reasoner | Oct 2002 | A1 |
20020161415 | Cohen | Oct 2002 | A1 |
20020183647 | Gozani | Dec 2002 | A1 |
20020193779 | Yamazaki | Dec 2002 | A1 |
20020193843 | Hill | Dec 2002 | A1 |
20020194934 | Taylor | Dec 2002 | A1 |
20030032966 | Foley | Feb 2003 | A1 |
20030045808 | Kaula | Mar 2003 | A1 |
20030078618 | Fey | Apr 2003 | A1 |
20030088185 | Prass | May 2003 | A1 |
20030105503 | Marino | Jun 2003 | A1 |
20030171747 | Kanehira | Sep 2003 | A1 |
20030199191 | Ward | Oct 2003 | A1 |
20030212335 | Huang | Nov 2003 | A1 |
20040019370 | Gliner | Jan 2004 | A1 |
20040034340 | Biscup | Feb 2004 | A1 |
20040068203 | Gellman | Apr 2004 | A1 |
20040135528 | Yasohara | Jul 2004 | A1 |
20040172114 | Hadzic | Sep 2004 | A1 |
20040199084 | Kelleher | Oct 2004 | A1 |
20040204628 | Rovegno | Oct 2004 | A1 |
20040225228 | Ferree | Nov 2004 | A1 |
20040229495 | Negishi | Nov 2004 | A1 |
20040230131 | Kassab | Nov 2004 | A1 |
20040260358 | Vaughan | Dec 2004 | A1 |
20050004593 | Simonson | Jan 2005 | A1 |
20050004623 | Miles | Jan 2005 | A1 |
20050075067 | Lawson | Apr 2005 | A1 |
20050075578 | Gharib | Apr 2005 | A1 |
20050080418 | Simonson | Apr 2005 | A1 |
20050085743 | Hacker | Apr 2005 | A1 |
20050119660 | Bourlion | Jun 2005 | A1 |
20050149143 | Libbus | Jul 2005 | A1 |
20050159659 | Sawan | Jul 2005 | A1 |
20050182454 | Gharib | Aug 2005 | A1 |
20050182456 | Ziobro | Aug 2005 | A1 |
20050215993 | Phan | Sep 2005 | A1 |
20050256582 | Ferree | Nov 2005 | A1 |
20050261559 | Mumford | Nov 2005 | A1 |
20060004424 | Loeb | Jan 2006 | A1 |
20060009754 | Boese | Jan 2006 | A1 |
20060025702 | Sterrantino | Feb 2006 | A1 |
20060025703 | Miles | Feb 2006 | A1 |
20060052828 | Kim | Mar 2006 | A1 |
20060069315 | Miles | Mar 2006 | A1 |
20060085048 | Cory | Apr 2006 | A1 |
20060085049 | Cory | Apr 2006 | A1 |
20060122514 | Byrd | Jun 2006 | A1 |
20060173383 | Esteve | Aug 2006 | A1 |
20060200023 | Melkent | Sep 2006 | A1 |
20060241725 | Libbus | Oct 2006 | A1 |
20060258951 | Bleich | Nov 2006 | A1 |
20060264777 | Drew | Nov 2006 | A1 |
20060276702 | McGinnis | Dec 2006 | A1 |
20060292919 | Kruss | Dec 2006 | A1 |
20070016097 | Farquhar | Jan 2007 | A1 |
20070021682 | Gharib | Jan 2007 | A1 |
20070032841 | Urmey | Feb 2007 | A1 |
20070049962 | Marino | Mar 2007 | A1 |
20070097719 | Parramon | May 2007 | A1 |
20070184422 | Takahashi | Aug 2007 | A1 |
20070270918 | De Bel | Nov 2007 | A1 |
20070282217 | McGinnis | Dec 2007 | A1 |
20080015612 | Urmey | Jan 2008 | A1 |
20080027507 | Bijelic | Jan 2008 | A1 |
20080039914 | Cory | Feb 2008 | A1 |
20080058606 | Miles | Mar 2008 | A1 |
20080064976 | Kelleher | Mar 2008 | A1 |
20080065144 | Marino | Mar 2008 | A1 |
20080065178 | Kelleher | Mar 2008 | A1 |
20080071191 | Kelleher | Mar 2008 | A1 |
20080077198 | Webb | Mar 2008 | A1 |
20080082136 | Gaudiani | Apr 2008 | A1 |
20080097164 | Miles | Apr 2008 | A1 |
20080167574 | Farquhar | Jul 2008 | A1 |
20080183190 | Adcox | Jul 2008 | A1 |
20080183915 | Iima | Jul 2008 | A1 |
20080194970 | Steers | Aug 2008 | A1 |
20080214903 | Orbach | Sep 2008 | A1 |
20080218393 | Kuramochi | Sep 2008 | A1 |
20080254672 | Dennes | Oct 2008 | A1 |
20080269777 | Appenrodt | Oct 2008 | A1 |
20080281313 | Fagin | Nov 2008 | A1 |
20080300650 | Gerber | Dec 2008 | A1 |
20080306348 | Kuo | Dec 2008 | A1 |
20090018399 | Martinelli | Jan 2009 | A1 |
20090088660 | McMorrow | Apr 2009 | A1 |
20090105604 | Bertagnoli | Apr 2009 | A1 |
20090143797 | Smith | Jun 2009 | A1 |
20090177112 | Gharib | Jul 2009 | A1 |
20090182322 | D Amelio | Jul 2009 | A1 |
20090197476 | Wallace | Aug 2009 | A1 |
20090204016 | Gharib | Aug 2009 | A1 |
20090209879 | Kaula | Aug 2009 | A1 |
20090221153 | Santangelo | Sep 2009 | A1 |
20090240117 | Chmiel | Sep 2009 | A1 |
20090259108 | Miles | Oct 2009 | A1 |
20090279767 | Kukuk | Nov 2009 | A1 |
20090281595 | King | Nov 2009 | A1 |
20090299439 | Mire | Dec 2009 | A1 |
20100004949 | O'Brien | Jan 2010 | A1 |
20100036280 | Ballegaard | Feb 2010 | A1 |
20100036384 | Gorek | Feb 2010 | A1 |
20100049188 | Nelson | Feb 2010 | A1 |
20100106011 | Byrd | Apr 2010 | A1 |
20100152604 | Kaula | Jun 2010 | A1 |
20100152811 | Flaherty | Jun 2010 | A1 |
20100152812 | Flaherty | Jun 2010 | A1 |
20100160731 | Giovannini | Jun 2010 | A1 |
20100168561 | Anderson | Jul 2010 | A1 |
20100191311 | Scheiner | Jul 2010 | A1 |
20100286554 | Davis | Nov 2010 | A1 |
20100317989 | Gharib | Dec 2010 | A1 |
20110004207 | Wallace | Jan 2011 | A1 |
20110028860 | Chenaux | Feb 2011 | A1 |
20110071418 | Stellar | Mar 2011 | A1 |
20110082383 | Cory | Apr 2011 | A1 |
20110160731 | Bleich | Jun 2011 | A1 |
20110184308 | Kaula | Jul 2011 | A1 |
20110230734 | Fain | Sep 2011 | A1 |
20110230782 | Bartol | Sep 2011 | A1 |
20110245647 | Stanislaus | Oct 2011 | A1 |
20110270120 | Mcfarlin | Nov 2011 | A1 |
20110270121 | Johnson | Nov 2011 | A1 |
20110295579 | Tang | Dec 2011 | A1 |
20110313530 | Gharib | Dec 2011 | A1 |
20120004516 | Eng | Jan 2012 | A1 |
20120071784 | Melkent | Mar 2012 | A1 |
20120109000 | Kaula | May 2012 | A1 |
20120109004 | Cadwell | May 2012 | A1 |
20120220891 | Kaula | Aug 2012 | A1 |
20120238893 | Farquhar | Sep 2012 | A1 |
20120245439 | Andre | Sep 2012 | A1 |
20120277780 | Smith | Nov 2012 | A1 |
20120296230 | Davis | Nov 2012 | A1 |
20130027186 | Cinbis | Jan 2013 | A1 |
20130030257 | Nakata | Jan 2013 | A1 |
20130090641 | Mckinney | Apr 2013 | A1 |
20130245722 | Ternes | Sep 2013 | A1 |
20130261422 | Gilmore | Oct 2013 | A1 |
20130267874 | Marcotte | Oct 2013 | A1 |
20140058284 | Bartol | Feb 2014 | A1 |
20140073985 | Sakai | Mar 2014 | A1 |
20140074084 | Engeberg | Mar 2014 | A1 |
20140088463 | Wolf | Mar 2014 | A1 |
20140121555 | Scott | May 2014 | A1 |
20140275914 | Li | Sep 2014 | A1 |
20140275926 | Scott | Sep 2014 | A1 |
20140288389 | Gharib | Sep 2014 | A1 |
20140303452 | Ghaffari | Oct 2014 | A1 |
20150012066 | Underwood | Jan 2015 | A1 |
20150088029 | Wybo | Mar 2015 | A1 |
20150088030 | Taylor | Mar 2015 | A1 |
20150112325 | Whitman | Apr 2015 | A1 |
20150202395 | Fromentin | Jul 2015 | A1 |
20150238260 | Nau, Jr. | Aug 2015 | A1 |
20150250423 | Hacker | Sep 2015 | A1 |
20150311607 | Ding | Oct 2015 | A1 |
20150380511 | Irsigler | Dec 2015 | A1 |
20160000382 | Jain | Jan 2016 | A1 |
20160015299 | Chan | Jan 2016 | A1 |
20160038072 | Brown | Feb 2016 | A1 |
20160038073 | Brown | Feb 2016 | A1 |
20160038074 | Brown | Feb 2016 | A1 |
20160135834 | Bleich | May 2016 | A1 |
20160174861 | Cadwell | Jun 2016 | A1 |
20160199659 | Jiang | Jul 2016 | A1 |
20160235999 | Nuta | Aug 2016 | A1 |
20160262699 | Goldstone | Sep 2016 | A1 |
20160270679 | Mahon | Sep 2016 | A1 |
20160287112 | Mcfarlin | Oct 2016 | A1 |
20160287861 | Mcfarlin | Oct 2016 | A1 |
20160317053 | Srivastava | Nov 2016 | A1 |
20160339241 | Hargrove | Nov 2016 | A1 |
20170056643 | Herb | Mar 2017 | A1 |
20170231508 | Edwards | Aug 2017 | A1 |
20170273592 | Sterrantino | Sep 2017 | A1 |
20180345004 | Mcfarlin | Dec 2018 | A1 |
20190180637 | Mealer | Jun 2019 | A1 |
20190350485 | Sterrantino | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
466451 | May 2010 | AT |
539680 | Jan 2012 | AT |
607977 | Mar 1991 | AU |
2005269287 | Feb 2006 | AU |
2006217448 | Aug 2006 | AU |
2003232111 | Oct 2008 | AU |
2004263152 | Aug 2009 | AU |
2005269287 | May 2011 | AU |
2008236665 | Aug 2013 | AU |
2012318436 | Apr 2014 | AU |
2016244152 | Nov 2017 | AU |
2016244152 | Dec 2018 | AU |
2019201702 | Apr 2019 | AU |
9604655 | Dec 1999 | BR |
0609144 | Feb 2010 | BR |
2144211 | May 2005 | CA |
2229391 | Sep 2005 | CA |
2574845 | Feb 2006 | CA |
2551185 | Oct 2007 | CA |
2662474 | Mar 2008 | CA |
2850784 | Apr 2013 | CA |
2769658 | Jan 2016 | CA |
2981635 | Oct 2016 | CA |
101018585 | Aug 2007 | CN |
100571811 | Dec 2009 | CN |
104066396 | Sep 2014 | CN |
103052424 | Dec 2015 | CN |
104080509 | Sep 2017 | CN |
104717996 | Jan 2018 | CN |
107666939 | Feb 2018 | CN |
111419179 | Jul 2020 | CN |
2753109 | Jun 1979 | DE |
2831313 | Feb 1980 | DE |
8803153 | Jun 1988 | DE |
3821219 | Aug 1989 | DE |
29510204 | Aug 1995 | DE |
19530869 | Feb 1997 | DE |
29908259 | Jul 1999 | DE |
19921279 | Nov 2000 | DE |
19618945 | Feb 2003 | DE |
0161895 | Nov 1985 | EP |
298268 | Jan 1989 | EP |
0719113 | Jul 1996 | EP |
0759307 | Feb 1997 | EP |
0836514 | Apr 1998 | EP |
890341 | Jan 1999 | EP |
972538 | Jan 2000 | EP |
1656883 | May 2006 | EP |
1115338 | Aug 2006 | EP |
1804911 | Jul 2007 | EP |
1534130 | Sep 2008 | EP |
1804911 | Jan 2012 | EP |
2481338 | Sep 2012 | EP |
2763616 | Aug 2014 | EP |
1385417 | Apr 2016 | EP |
1680177 | Apr 2017 | EP |
3277366 | Feb 2018 | EP |
2725489 | Sep 2019 | ES |
73878 | Dec 1987 | FI |
2624373 | Jun 1989 | FR |
2624748 | Oct 1995 | FR |
2796846 | Feb 2001 | FR |
2795624 | Sep 2001 | FR |
2835732 | Nov 2004 | FR |
1534162 | Nov 1978 | GB |
2049431 | Dec 1980 | GB |
2052994 | Feb 1981 | GB |
2452158 | Feb 2009 | GB |
2519302 | Apr 2016 | GB |
1221615 | Jul 1990 | IT |
H0723964 | Jan 1995 | JP |
2000028717 | Jan 2000 | JP |
3188437 | Jul 2001 | JP |
2000590531 | Aug 2003 | JP |
2003524452 | Aug 2003 | JP |
2004522497 | Jul 2004 | JP |
2008508049 | Mar 2008 | JP |
4295086 | Jul 2009 | JP |
4773377 | Sep 2011 | JP |
4854900 | Jan 2012 | JP |
4987709 | Jul 2012 | JP |
5132310 | Jan 2013 | JP |
2014117328 | Jun 2014 | JP |
2014533135 | Dec 2014 | JP |
6145916 | Jun 2017 | JP |
2018514258 | Jun 2018 | JP |
2018514258 | May 2019 | JP |
6749338 | Sep 2020 | JP |
100632980 | Oct 2006 | KR |
1020070106675 | Nov 2007 | KR |
100877229 | Jan 2009 | KR |
20140074973 | Jun 2014 | KR |
1020170133499 | Dec 2017 | KR |
102092583 | Mar 2020 | KR |
1020200033979 | Mar 2020 | KR |
541889 | Apr 2010 | NZ |
467561 | Aug 1992 | SE |
508357 | Sep 1998 | SE |
1999037359 | Jul 1999 | WO |
2000038574 | Jul 2000 | WO |
2000066217 | Nov 2000 | WO |
2001037728 | May 2001 | WO |
2001078831 | Oct 2001 | WO |
2001087154 | Nov 2001 | WO |
2001093748 | Dec 2001 | WO |
2002082982 | Oct 2002 | WO |
2003005887 | Jan 2003 | WO |
2003034922 | May 2003 | WO |
2003094744 | Nov 2003 | WO |
2004064632 | Aug 2004 | WO |
2005030318 | Apr 2005 | WO |
2006015069 | Feb 2006 | WO |
2006026482 | Mar 2006 | WO |
2006042241 | Apr 2006 | WO |
2006113394 | Oct 2006 | WO |
2008002917 | Jan 2008 | WO |
2008005843 | Jan 2008 | WO |
2008097407 | Aug 2008 | WO |
2009051965 | Apr 2009 | WO |
2010090835 | Aug 2010 | WO |
2011014598 | Feb 2011 | WO |
2011150502 | Dec 2011 | WO |
2013019757 | Feb 2013 | WO |
2013052815 | Apr 2013 | WO |
2013151770 | Oct 2013 | WO |
2015069962 | May 2015 | WO |
2016160477 | Oct 2016 | WO |
Entry |
---|
Calancie, et. al., “Threshold-level repetitive transcranial electrical stimulation for intraoperative monitoring of central motor conduction”, J. Neurosurg 95:161-168 (2001). |
Deletis et al, “The role of intraoperative neurophysiology in the protection or documentation of surgically induced injury to the spinal cord”, Correspondence Address: Hyman Newman Institute for Neurology & Neurosurgery, Beth Israel Medical Center, 170 East End Ave., Room 311, NY 10128. |
Calancie, et. al., Stimulus-Evoked EMG Monitoring During Transpedicular Lumbosacral Spine Instrumentation, Initial Clinical Results, 19 (24):2780-2786 (1994). |
Lenke, et. al., “Triggered Electromyographic Threshold for Accuracy of Pedicle Screw Placement, An Animal Model and Clinical Correlation”, 20 (14):1585-1591 (1995). |
Raymond, et. al., “The NerveSeeker: A System for Automated Nerve Localization”, Regional Anesthesia 17:151-162 (1992). |
Hinrichs, et al., “A trend-detection algorithm for intraoperative EEG monitoring”, Med. Eng. Phys. 18(8):626-631 (1996). |
Raymond J. Gardocki, MD, “Tubular diskectomy minimizes collateral damage”, AAOS Now, Sep. 2009 Issue, http://www.aaos.org/news/aaosnow/sep09/clinical12.asp. |
Butterworth et. al., “Effects of Halothane and Enflurane on Firing Threshold of Frog Myelinated Axon”, Journal of Physiology 411:493-516, (1989) From the Anesthesia Research Labs, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, jp.physoc.org. |
Rose et al., “Persistently Electrified Pedicle Stimulation Instruments in Spinal Instrumentation: Technique and Protocol Development”, Spine: 22(3): 334-343 (1997). |
Minahan, et. al., “The Effect of Neuromuscular Blockade on Pedicle Screw Stimulation Thresholds” 25(19):2526-2530 (2000). |
Lomanto et al., “7th World Congress of Endoscopic Surgery” Singapore, Jun. 1-4, 2000 Monduzzi Editore S.p.A.; email: monduzzi@monduzzi.com, pp. 97-103 and 105-111. |
H.M. Mayer, “Minimally Invasive Spine Surgery, A Surgical Manual”, Chapter 12, pp. 117-131 (2000). |
Holland, et al., “Continuous Electromyographic Monitoring to Detect Nerve Root Injury During Thoracolumbar Scoliosis Surgery”, 22 (21):2547-2550 (1997), Lippincott-Raven Publishers. |
Bergey et al., “Endoscopic Lateral Transpsoas Approach to the Lumbar Spine”, SPINE 29 (15):1681-1688 (2004). |
Holland, “Spine Update, Intraoperative Electromyography During Thoracolumbar Spinal Surgery”, 23 (17):1915-1922 (1998). |
Dezawa et al., “Retroperitoneal Laparoscopic Lateral Approach to the Lumbar Spine: A New Approach, Technique, and Clinical Trial”, Journal of Spinal Disorders 13(2):138-143 (2000). |
Greenblatt, et. al., “Needle Nerve Stimulator-Locator”, 41 (5):599-602 (1962). |
Goldstein, et. al., “Minimally Invasive Endoscopic Surgery of the Lumbar Spine”, Operative Techniques in Orthopaedics, 7 (1):27-35 (1997). |
Epstein, et al., “Evaluation of Intraoperative Somatosensory-Evoked Potential Monitoring During 100 Cervical Operations”, 18(6):737-747 (1993), J.B. Lippincott Company. |
Glassman, et. al., “A Prospective Analysis of Intraoperative Electromyographic Monitoring of Pedicle Screw Placement with Computed Tomographic Scan Confirmation”, 20(12):1375-1379. |
Reidy, et. al., “Evaluation of electromyographic monitoring during insertion of thoracic pedicle screws”, British Editorial Society of Bone and Joint Surgery 83 (7):1009-1014, (2001). |
Dickman, et al., “Techniques in Neurosurgery”, National Library of Medicine, 3 (4) 301-307 (1997). |
Michael R. Isley, et. al., “Recent Advances in Intraoperative Neuromonitoring of Spinal Cord Function: Pedicle Screw Stimulation Techniques”, Am. J. End Technol. 37:93-126 (1997). |
Bertagnoli, et. al., “The AnteroLateral transPsoatic Approach (ALPA), A New Technique for Implanting Prosthetic Disc-Nucleus Devices”, 16 (4):398-404 (2003). |
Mathews et al., “Laparoscopic Discectomy With Anterior Lumbar Interbody Fusion, A Preliminary Review”, 20 (16):1797-1802, (1995), Lippincott-Raven Publishers. |
MaGuire, et. al., “Evaluation of Intrapedicular Screw Position Using Intraoperative Evoked Electromyography”, 20 (9):1068-1074 (1995). |
Pimenta et. al., “Implante de prótese de núcleo pulposo: análise inicial”, J Bras Neurocirurg 12 (2):93-96, (2001). |
Kossmann, et. al., “Minimally Invasive Vertebral Replacement with Cages in Thoracic and Lumbar Spine”, European Journal of Trauma, 2001, No. 6, pp. 292-300. |
Kossmann et al., “The use of a retractor system (SynFrame) for open, minimal invasive reconstruction of the anterior column of the thoracic and lumbar spine”, 10:396-402 (2001). |
Kevin T. Foley, et. al., “Microendoscipic Discectomy” Techniques in Neurosurgery, 3:(4):301-307, © 1997 Lippincott-Raven Publishers, Philadelphia. |
Hovey, A Guide to Motor Nerve Monitoring, pp. 1-31 Mar. 20, 1998, The Magstim Company Limited. |
Danesh-Clough, et. al., “The Use of Evoked EMG in Detecting Misplaced Thoracolumbar Pedicle Screws”, 26(12):1313-1316 (2001). |
Clements, et. al., “Evoked and Spontaneous Electromyography to Evaluate Lumbosacral Pedicle Screw Placement”, 21 (5):600-604 (1996). |
Aage R. Møller, “Intraoperative Neurophysiologic Monitoring”, University of Pittsburgh, School of Medicine Pennsylvania, © 1995 by Harwood Academic Publishers GmbH. |
Calancie, et. al., “Threshold-level multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring” J Neurosurg 88:457-470 (1998). |
Urmey “Using the nerve stimulator for peripheral or plexus nerve blocks” Minerva Anesthesiology 2006; 72:467-71. |
Digitimer Ltd., 37 Hydeway, Welwyn Garden City, Hertfordshire. AL7 3BE England, email:sales@digitimer.com, website: www.digitimer.com, “Constant Current High Voltage Stimulator, Model DS7A, For Percutaneous Stimulation of Nerve and Muscle Tissue.” |
Carl T. Brighton, “Clinical Orthopaedics and Related Research”, Clinical Orthopaedics and related research No. 384, pp. 82-100 (2001). |
Teresa Riordan “Patents; A businessman invents a device to give laparoscopic surgeons a better view of their work”, New York Times www.nytimes.com/2004/29/business/patents-businessman-invents-device-give-la (Mar. 2004). |
Bose, et. al., “Neurophysiologic Monitoring of Spinal Nerve Root Function During Instrumented Posterior Lumbar Spine Surgery”, 27 (13):1440-1450 (2002). |
Chapter 9, “Root Finding and Nonlinear Sets of Equations”, Chapter 9:350-354, http://www.nr.com. |
Welch, et. al., “Evaluation with evoked and spontaneous electromyography during lumbar instrumentation: a prospective study”, J Neurosurg 87:397-402, (1997). |
Medtronic, “Nerve Integrity Monitor, Intraoperative EMG Monitor, User's Guide”, Medtronic Xomed U.K. Ltd., Unit 5, West Point Row, Great Park Road, Almondsbury, Bristol B5324QG, England, pp. 1-39. |
Ford et al, Electrical characteristics of peripheral nerve stimulators, implications for nerve localization, Dept. of Anesthesia, University of Cincinnati College of Medicine, Cincinnati, OH 45267, pp. 73-77. |
Zouridakis, et. al., “A Concise Guide to Intraoperative Monitoring”, Library of Congress card No. 00-046750, Chapter 3, p. 21, chapter 4, p. 58 and chapter 7 pp. 119-120. |
Toleikis, et. al., “The usefulness of Electrical Stimulation for Assessing Pedicle Screw Placements”, Journal of Spinal Disorders, 13 (4):283-289 (2000). |
U.Schick, et. al., “Microendoscopic lumbar discectomy versus open surgery: an intraoperative EMG study”, pp. 20-26, Published online: Jul. 31, 2001 © Springer-Verlag 2001. |
Vaccaro, et. al., “Principles and Practice of Spine Surgery”, Mosby, Inc. © 2003, Chapter 21, pp. 275-281. |
Vincent C. Traynelis, “Spinal arthroplasty”, Neurosurg Focus 13 (2):1-7. Article 10, (2002). |
Cadwell et al. “Electrophysiologic Equipment and Electrical Safety” Chapter 2, Electrodiagnosis in Clinical Neurology, Fourth Edition; Churchill Livingstone, p. 15, 30-31; 1999. |
Ott, “Noise Reduction Techniques in Electronic Systems” Second Edition; John Wiley & Sons, p. 62, 1988. |
Stecker et al. “Strategies for minimizing 60 Hz pickup during evoked potential recording”, Electroencephalography and clinical Neurophysiology 100 (1996) 370-373. |
Wood et al. “Comparative analysis of power-line interference between two- or three-electrode biopotential amplifiers” Biomedical Engineering, Med. & Biol. Eng. & Comput., 1995, 33, 63-68. |
Review of section 510(k) premarket notification for “K013215: NuVasive NeuroVision JJB System”, Department of Health and Human Services, FDA, Oct. 16, 2001. |
International Search Report for PCT/US2005/026692, dated Nov. 16, 2005. |
International Search Report for PCT/US2016/023903, dated Sep. 6, 2016. |
Number | Date | Country | |
---|---|---|---|
20220202332 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
62667028 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16402456 | May 2019 | US |
Child | 17575828 | US |