The present disclosure relates to systems and methods for electroplating actinides onto a source in preparation for alpha spectroscopy to minimize gas bubbles between electrodes during electroplating.
Preparing alpha spectrometry sources requires plating a thin, uniform sheet of the material, such as an actinide, to minimize energy losses. If the coating is too thick, there will be attenuation of the alpha spectrum due to self-absorption. In addition, additional material cannot be covering the actinide, as this can also cause attenuation of the alpha spectrum.
Electrodeposition plays an important role in both purification and preparation of alpha spectrometry sources by providing a uniform and adherent source for high resolution alpha spectrometric measurement. However, during the electroplating procedure, various gas bubbles can form between the anode and the cathode. During an aqueous deposition process, gas is being formed at both electrodes. Hydrogen gas is being formed at the cathode, and oxygen gas at the anode. If left alone, these bubbles can act as insulators and slow or even stop the electroplating process.
The description will be more fully understood with reference to the following figures and data graphs, which are presented as various examples of the disclosure and should not be construed as a complete recitation of the scope of the disclosure, wherein:
The disclosure can be understood by reference to the following detailed description, taken in conjunction with the drawings as described below. It is noted that, for purposes of illustrative clarity, certain elements in various drawings cannot be drawn to scale. In addition, numerous specific details are set forth in order to provide a thorough understanding of the implementations described herein. However, those of ordinary skill in the art will understand that the implementations described herein can be practiced without these specific details. In other instances, methods, procedures and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the implementations described herein.
Several definitions that apply throughout this disclosure will now be presented. The term “coupled” as used herein can refer to the linking or connection of two objects. The coupling can be direct or indirect. An indirect coupling includes connecting two objects through one or more intermediary objects. Coupling can also refer to electrical or mechanical connections. Coupling can also include magnetic linking without physical contact.
Another term used herein is “electroplating cell.” An electroplating cell is any container that can be used to conduct an electrodeposition process. For example, an electroplating cell can be a container which includes a cathode, an anode, and an electrolyte solution.
Another term used herein is “coupling mechanism” is a mechanism that allows for vibrational motion of the platform in a planar direction. For example, a coupling mechanism can be a ball bearing or an elastic cushion.
The present disclosure provides a system and method for the electrodeposition of alpha emitting radionuclides on a target for use in an alpha spectrometer by dislodging gas bubbles that form between the electrodes in an electroplating cell. The systems and methods herein provide for electroplating alpha emitting radionuclides in a thin, uniform sheet without the presence of gas bubbles. The reduction or absence of gas bubbles can reduce or prevent bubbles from acting as insulators or slow or even stop the electroplating process.
The electrodeposition system and method described herein provide for the electrodeposition of alpha emitting radionuclides onto a target that can then be counted under the vacuum of an alpha spectrometer. In various examples, the alpha emitting radionuclides can be actinides. Non-limiting examples of alpha emitting radionuclides include actinium, thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, lawrencium, and any isotope thereof.
As seen in
The electrodeposition system 100 can further include at least one electroplating cell 117 supported by the platform 104. An electroplating cell 117 is any container that can be used to conduct an electrodeposition process. For example, the electroplating cell 117 may be configured to include a metal target 119 that acts as the cathode, a metal anode 116, and an electrolyte solution with the alpha emitting radionuclide.
The electrodeposition system 100 includes a metal target 119, as seen in
Further included in the electrodeposition system 100 is an elongated clip bar 108 that is suspended above the platform 104 by at least two shafts 105 and spans the length of the platform 104. As seen in
As seen in
The platform 104, as seen in
As illustrated in
The elastic cushion can be made of any elastomeric material that allows for the transfer of energy from the flywheel to the electroplating cells. In one example, the elastic cushion is rubber. The elastic cushion can be any shape or size necessary to suspend and cushion the platform 104. In various aspects, the elastic cushion can be circular, oval, or rectangular. In another example, the platform 104 includes at least two tabs (not shown) made of the elastic cushion material that can be inserted into corresponding support grooves 126 on the left and right platform supports 102/103 to allow vibrational movement of the platform 104. In an example, the platform 104 can include at least 2 tabs or at least 4 tabs which can be seated within at least at least one support groove 126 or at least two support grooves 126 on each of the left and right platform support 102/103, respectively. In yet another example, the platform 104 does not couple or touch the left or right platform supports 102/103.
As seen in
The electrodeposition system 100 can further include a current source and/or a voltage source, as seen in
The electrodeposition system 100 can further include a motor 129 and a flywheel 130. In an example, the motor and the flywheel can be contained within the motor housing 118, as seen in
To create the vibration, the flywheel can have an uneven weight distribution. In an example, the flywheel can be heavier on one side than the other side to create the uneven weight distribution. The uneven weight distribution in combination with the rotation of the flywheel can cause the flywheel to vibrate and therefore cause the platform holding the electroplating cell(s) to vibrate. The vibration can then cause any bubbles that have formed between the electrodes of the electroplating cell to be dislodged or rocked up to the surface of the electrolyte solution and therefore the bubbles are no longer between the electrodes to interfere with the electroplating process.
Gas bubbles can form between the metal anode and the metal target receiving the alpha emitting radionuclide. If left alone, the bubbles can act as insulators and slow or even stop the electroplating process. Because of the sensitivities of alpha spectroscopy, any impurities can affect the output of the spectrometer. For example, impurities or disruption of the electroplating process can result in a false lower energy reading or broader peaks in the spectra. Therefore, the electrodeposition system can be used when electroplating an alpha emitting radionuclide on a metal target to remove the bubbles from between the electrodes and reduce the likelihood of impurities or an incomplete deposition.
The method for electroplating an alpha emitting radionuclide on a metal target for alpha spectroscopy can include vibrating an electroplating cell using an unevenly distributed flywheel to dislodge gas bubbles that have formed in the electrolyte solution between the electrodes of the electroplating cell. The vibration can dislodge the gas bubbles to the surface of the solution such that the gas bubbles do not interfere with, slow, or stop the electroplating process. The method can further include chemically purifying an alpha emitting radionuclide, transferring the purified alpha emitting radionuclide to a suitable electrolyte, placing the electrolyte-radionuclide solution into an electroplating cell containing a metal target, and inserting a metal anode into the solution prior to vibrating the electroplating cell. The electroplating cell, including the metal anode, is then placed onto a platform of the electrodeposition system for dislodging and removing gas bubbles from between the electrodes of the electroplating cell.
The method can further include using a current source and/or a voltage source to apply a current or voltage between the anode and cathode to drive the deposition of the alpha emitting radioniculide on the cathode metal target. In an example, the current between the electrodes can range from about 0.5 A to about 5 A. In various examples, the current may range from about 0.5 A to about 1.5 A, from about 1 A to about 2 A, from about 1.5 A to about 2.5 A, from about 2 A to about 3 A, from about 2.5 A to about 3.5 A, from about 3 A to about 4 A, from about 3.5 to about 4.5 A, and from about 4 A to about 5 A. In one example, the current can be about 1 A. In another example, the voltage provided by the current source and/or voltage source can range from about 5 V to about 10 V, from about 10 V to about 15 V, from about 15 V to about 20 V, and from about 20 V to about 25 V. Since gas bubbles have a higher electrical resistance than either the alpha emitting radionuclide or the electrolyte solution itself, the amount of gas has a significant effect on the current at a given applied voltage. For example, a high amount of bubbles between the electrodes can require a larger current to drive the electrodeposition, or could even stop the electrodeposition process altogether before it is complete. Therefore, the electrodeposition method provided herein, which either provides a low amount of bubbles or no bubbles between the electrodes, can require a lower current and/or voltage than conventional electrodeposition without the removal or reduction of the gas bubbles. The electrodeposition method thus provides a more reliable and consistent method for electrodeposition.
The electroplating process should be run long enough for the alpha emitting radionuclide to be deposited on the metal target. If the amount of alpha emitting radionuclide is too thick on the metal target, then the resulting alpha spectroscopy signal can be attenuated. In at least one example, only a few trillion atoms can be deposited on the metal target, which results in no measurable thickness and no visible quantities. The electrodeposition process can run for about 30 minutes to about 2 hours. In at least one example, the electrodeposition process can run for about 1 hour.
Having described several examples, it will be recognized by those skilled in the art that various modifications, alternative constructions, and equivalents can be used without departing from the spirit of the invention. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.
Those skilled in the art will appreciate that the presently disclosed examples teach by way of example and not by limitation. Therefore, the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. The following claims are intended to cover all generic and specific features described herein, as well as all statements of the scope of the present method and system, which, as a matter of language, might be said to fall therebetween.
This application claims the benefit under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/450,849, filed Jan. 26, 2017, the entire contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5167779 | Henig | Dec 1992 | A |
5462649 | Keeney et al. | Oct 1995 | A |
5653860 | Grant | Aug 1997 | A |
6103295 | Chan et al. | Aug 2000 | A |
6123815 | Omasa | Sep 2000 | A |
6254757 | Lashmore et al. | Jul 2001 | B1 |
6921466 | Hongo et al. | Jul 2005 | B2 |
20010045360 | Omasa | Nov 2001 | A1 |
20020169353 | Chan et al. | Nov 2002 | A1 |
20080117711 | Omasa | May 2008 | A1 |
20130126337 | Grant | May 2013 | A1 |
20160122895 | James et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
101560977 | Oct 2015 | KR |
2014124428 | Aug 2014 | WO |
Entry |
---|
Foreman et al, A Modular System for Electroplating Alpha Nuclides, Analytica Chimica Acta, vol. 81, No. 2, Feb. 1976, pp. 413-417 (Year: 1976). |
Dos Santos et al, Characterization of electrodeposited uranium films, Jounral of Radioanalytical and Nuclear Chemistry, vol. 261, No. 1, Jan. 2004, pp. 203-209 (Year: 2004). |
Saliba-Silva et al, Acidic Aqueous Uranium Electrodeposition for Target Fabrication, 2013 International Nuclear Atlantic Conference, Recife PE, Brazil, Nov. 24-29, 2013, ISBN 978-85-99141-05-2, pp. 1-7 (Year: 2013). |
“Recess Definition” accessed at https://www.dictionary.com/browse/recess on Jan. 16, 2020 (Year: 2020). |
“Recess Synonyms” accessed at https://www.thesaurus.com/browse/recess on Jan. 16, 2020 (Year: 2020). |
International Search Report and Written Opinion dated Mar. 15, 2018 regarding PCT/US2018/015482, 9 pages. |
English translation of Republic of Korea Application No. 101560977, published Oct. 15, 2015, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20180209059 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62450849 | Jan 2017 | US |