Systems and methods for enclosing an anatomical opening, including coil-tipped aneurysm devices

Information

  • Patent Grant
  • 9259229
  • Patent Number
    9,259,229
  • Date Filed
    Thursday, March 14, 2013
    11 years ago
  • Date Issued
    Tuesday, February 16, 2016
    8 years ago
Abstract
The present disclosure describes implantable therapeutic devices and methods for endovascular placement of devices at a target site, such as an opening at a neck of an aneurysm. In particular, selected embodiments of the present technology comprise a coil loop, or tip, on a portion of the implantable device. The coil tip can provide a soft and/or smooth interface with the aneurysm and can provide improved coverage of the neck of the aneurysm.
Description
TECHNICAL FIELD

The present technology relates to implantable therapeutic devices and methods for endovascular placement of devices at a target site, such as an opening at a neck of an aneurysm. For example, selected embodiments of the present technology comprise coil-tipped aneurysm devices that can occlude the opening at the neck of the aneurysm and inhibit dislodgement of the device relative to the aneurysm.


BACKGROUND

Many of the currently available surgical approaches for closing openings and repairing defects in anatomical lumens and tissues (e.g., blood vessels), septal defects, and other types of anatomical irregularities and defects are highly invasive. Surgical methods for clipping brain aneurysms, for example, require opening the skull, cutting or removing overlying brain tissue, clipping and repairing the aneurysm from outside the blood vessel, and then reassembling tissue and closing the skull. Surgical techniques for repairing septal defects are also highly invasive. The risks related to anesthesia, bleeding, and infection associated with these types of procedures are high, and tissue that is affected during the procedure may or may not survive and continue functioning.


Minimally invasive surgical techniques have been developed to place occlusive devices within or across an opening or cavity in the body, such as in the vasculature, spinal column, fallopian tubes, bile ducts, bronchial and other air passageways, and the like. In general, an implantable device is guided along a delivery catheter and through a distal opening of the catheter using a pusher or delivery wire to deploy the device at a target site in the vasculature. Once the occlusive device has been deployed at the target site, it is detached from the pusher mechanism without disturbing placement of the occlusive device or damaging surrounding structures.


Minimally invasive techniques are also highly desirable for treating aneurysms. In general, the minimally invasive therapeutic objective is to prevent material that collects or forms in the cavity from entering the bloodstream and to prevent blood from entering and collecting in the aneurysm. This is often accomplished by introducing various materials and devices into the aneurysm. One class of embolic agents includes injectable fluids or suspensions, such as microfibrillar collagen, various polymeric beads, and polyvinylalcohol foam. Polymeric agents may also be cross-linked to extend their stability at the vascular site. These agents are typically deposited at a target site in the vasculature using a catheter to form a solid space-filling mass. Although some of these agents provide for excellent short-term occlusion, many are thought to allow vessel recanalization due to their absorption into the blood. Other materials, such as hog hair and suspensions of metal particles, have also been proposed and used to promote occlusion of aneurysms. Polymer resins, such as cyanoacrylates, are also employed as injectable vaso-occlusive materials. These resins are typically mixed with a radiopaque contrast material or are made radiopaque by the addition of a tantalum powder. Accurate and timely placement of these mixtures is crucial and very difficult because it is difficult or impossible to control them once they have been placed in the blood flow.


Implantable vaso-occlusive metallic structures are also well known and commonly used. Many conventional vaso-occlusive devices have helical coils constructed from a shape memory material or noble metal that forms a desired coil configuration upon exiting the distal end of a delivery catheter. The function of the coil is to fill the space formed by an anatomical defect and to facilitate the formation of an embolus with the associated allied tissue. Multiple coils of the same or different structures may be implanted serially in a single aneurysm or other vessel defect during a procedure. Implantable framework structures are also used in an attempt to stabilize the wall of the aneurysm or defect prior to insertion of filling material such as coils.


Techniques for delivering conventional metallic vaso-occlusive devices to a target site generally involve a delivery catheter and a detachment mechanism that detaches the devices, such as a coil, from a delivery mechanism after placement at the target site. For example, a microcatheter can be initially steered through the delivery catheter into or adjacent to the entrance of an aneurysm either with or without a steerable guidewire. If a guidewire is used, it is then withdrawn from the microcatheter lumen and replaced by the implantable vaso-occlusive coil. The vaso-occlusive coil is advanced through and out of the microcatheter and thus deposited within the aneurysm or other vessel abnormality. It is crucial to accurately implant such vaso-occlusive devices within the internal volume of a cavity and to maintain the device within the internal volume of the aneurysm. Migration or projection of a vaso-occlusive device from the cavity may interfere with blood flow or nearby physiological structures and poses a serious health risk.


In addition to the difficulties of delivering implantable occlusion devices, some types of aneurysms are challenging to treat because of structural features of the aneurysm or because of particularities of the site. Wide-neck aneurysms, for example, are known to present particular difficulty in the placement and retention of vaso-occlusive coils. Aneurysms at sites of vascular bifurcation are another example where the anatomical structure poses challenges to methods and devices that are effective in treating the typical sidewall aneurysms.


In view of such challenges, implanting conventional embolic coils, other structures, or materials in the internal space of an aneurysm has not been an entirely satisfactory surgical approach. The placement procedure may be arduous and lengthy because it often requires implanting multiple devices, such as coils, serially in the internal space of the aneurysm. Higher risks of complication from such sources as anesthesia, bleeding, thromboembolic events, procedural stroke, and infection are associated with such longer procedures. Moreover, because placement of structures in the internal space of an aneurysm does not generally completely occlude the opening, recanalization of the original aneurysm may occur, and debris and occlusive material may escape from within the aneurysm to create a risk of stroke or vessel blockage. Blood may also flow into the aneurysm after the placement of embolic devices, which may increase the risks of complication and further enlargement of the aneurysm.


Despite the numerous conventional devices and systems available for implanting embolic materials in an aneurysm and for occluding physiological defects using minimally invasive techniques, these procedures remain risky and rarely restore the physiological structure to its normal, healthy condition. It is also challenging to position conventional implantable devices during deployment, prevent shifting or migration of such devices after deployment, and preserve blood flow in neighboring vessels following after deployment.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a front isometric view of an aneurysm device having coil tips configured in accordance with an embodiment of the technology.



FIG. 1B is a top isometric view of the aneurysm device of FIG. 1A.



FIG. 2 is a front view of the aneurysm device of FIG. 1A implanted at an aneurysm and configured in accordance with embodiments of the technology.





DETAILED DESCRIPTION

The present disclosure describes implantable therapeutic devices and methods for endovascular placement of devices at a target site, such as an opening at a neck of an aneurysm. In particular, selected embodiments of the present technology comprise a coil loop, or tip, on a portion of the implantable device. The coil tip can provide a soft and/or smooth interface with the aneurysm and can provide improved coverage of the neck of the aneurysm. The following description provides many specific details for a thorough understanding of, and enabling description for, embodiments of the disclosure. Well-known structures, systems, and methods often associated with such systems have not been shown or described in detail to avoid unnecessarily obscuring the description of the various embodiments of the disclosure. In addition, those of ordinary skill in the relevant art will understand that additional embodiments may be practiced without several of the details described below.



FIGS. 1A and 1B are views of an aneurysm device 150 having coil tips 101 configured in accordance with an embodiment of the technology. In particular, FIG. 1A is a front isometric view of the aneurysm device 150, and FIG. 1B is a top isometric view of the device 150. Referring to FIGS. 1A and 1B together, the aneurysm device 150 comprises a closure structure 152 having one or more coil tips or loops 101 (two are shown in the illustrated embodiment), and an optional supplemental stabilizer or support 153 extending from the closure structure 152. In further embodiments, the closure structure 152 may be employed without the supplemental stabilizer 153.


The closure structure 152 can be a frame, scaffold, or other structure that can at least partially occlude, span, or block the neck of an aneurysm to prevent embolic coils or other coagulative material within the aneurysm from escaping into the bloodstream. The proximally-extending sides of the closure structure 152 and the supplemental stabilizer 153 hold a curved portion of the closure structure 152 at the neck of the aneurysm. The closure structure 152 includes a perimeter support 160 and an inner support 170. The supports 160 and 170 can have a rhombus-like (e.g., diamond-shaped) shape or configuration. The perimeter support 160 and inner support 170 can be joined at junctions 162 and 164. The aneurysm device 150 can also have struts 180a-d projecting proximally from the junctions 162 and 164. Struts 180a-b are connected at junction 162 and struts 180c-d are connected at junction 164 to form the supplemental stabilizer 153 with proximal anchoring segments.


The coil tips 101 can be coupled to the closure structure 152 and/or the supplemental stabilizer 153. In the illustrated embodiment, for example, the coil tips 101 are coupled to the junctions 162 and 164 (e.g., by soldering or other attachment mechanism). In further embodiments, the coil tips 101 may be co-formed with the closure structure 152 and/or supplemental stabilizer 153. In several embodiments, the coil tips 101 extend peripherally and/or distally beyond the perimeter supports 160. In some embodiments, the coil tips 101 replace the perimeter supports 160. The coil tips 101 can comprise various biocompatible materials, such as biocompatible metal or plastic. In one particular embodiment, for example, the coil tips 101 comprise a platinum coil having a 0.005 inch outside diameter. In further embodiments, the coil tips 101 can comprise different materials or sizes. In several embodiments, the coil tips 101 can be a soft and/or smooth shape or material to easily interface with an aneurysm.


While FIGS. 1A and 1B illustrate an embodiment wherein the coil tips 101 are in a generally “Figure 8” shape (having two “loops”), the coil tips 101 can take on alternate or additional 2-dimensional or 3-dimensional shapes in further embodiments. For example, the coil tips 101 can comprise one or more triangles, helices, spheres, complex basket shapes, or other atrial configurations. In some embodiments, the size and/or shape of the coil tips 101 can be tailored for improved neck coverage, improved anchoring ability, ease of delivery to a treatment site, or other feature. In other embodiments, there can be more or fewer coil tips 101 or portions of coil tips 101. In still further embodiments, a portion of the inner supports 170, perimeter supports 160, and/or coil tips 101 can be at least partially covered with a barrier configured to occlude at least a portion of the aneurysm


In multiple device embodiments, the aneurysm device 150 is deployed such that it is anchored along a specific portion of an aneurysm neck. For example, FIG. 2 is a front view of the aneurysm device of FIG. 1A in a deployed configuration and implanted at an aneurysm A in accordance with embodiments of the technology. In the deployed configuration, the closure structure 152 has a distally projecting, arched framework portion. A proximal-facing aspect of the arch of the closure structure 152 extends laterally over the lumina of the bifurcating arteries. A distal-facing aspect of the arch of the closure structure 152 generally presses against the luminal surfaces of the bifurcating arteries. The distal-facing aspect of the closure structure 152 is configured to substantially align with or otherwise conform to the neck of the aneurysm by forming a curved surface that compatibly aligns with or engages the neck and the surrounding wall of the side branch vessels. In some embodiments, the distal-facing aspect has a complex curve, such as a hyperbolic paraboloid (e.g., a generally saddle-shaped form). In the illustrated embodiment, the hyperbolic paraboloid comprises a generally Y-shaped curve with a depressed central portion.


The coil tips 101 can extend distally and/or peripherally along or into the aneurysm and can improve the aneurysm device's ability to provide aneurysm neck coverage, as the coil tip 101 can be configured to be placed inside the aneurysm. For example, the coil tips 101 can be curved (e.g., complex curved) or parabolic shaped to better conform to the shape of the aneurysm or the vasculature to provide the desired degree of aneurysm occlusion and device stability. In the illustrated embodiment, the coil tips 101 can be placed within the aneurysm and can conform against the aneurysm wall, while the rest of the closure structure 152 (i.e., the inner supports 170 and perimeter supports 160) can conform against the luminal wall outside of the aneurysm. In some embodiments, the coil tips 101 contained in the aneurysm reside in the neck portion of the aneurysm and do not significantly or at all protrude past the neck portion into a body portion of the aneurysm. In still further embodiments, the coil tips 101 extend into the body of the aneurysm but do not conform to the aneurysm walls. In other embodiments, the coil tips 101 can conform against the luminal wall outside of the aneurysm.


The closure structure 152 can bridge a portion or all of the aneurysm neck and control blood flow into the aneurysm. In several embodiments, for example, the closure structure 152 spans unobtrusively over the lumina of the bifurcating arteries, forming no incursion into the vascular flow path. More particularly, the closure structure 152 can form a non-enclosed opening or hole, and in some embodiments can be entirely open in the proximal direction. In some embodiments, the coil tips 101 at least partially block or are positioned in the neck portion of the aneurysm A without causing significant stasis of flow in the aneurysm A.


The optional supplemental stabilizer 153 extends proximally from the closure structure 152 at an angle relative to a lateral axis. The supplemental stabilizer 153 can have struts that extend down into the parent artery and press outwardly against the luminal surface thereof. In further embodiments, the supplemental stabilizer 153 is absent.


EXAMPLES

The following Examples are illustrative of several embodiments of the present technology.


1. An aneurysm device endovascularly deliverable to a site proximate to an aneurysm in an artery, the aneurysm device comprising:

    • a closure structure comprising a distal-facing aspect configured to at least partially span the aneurysm, and a proximal-facing aspect configured to arch over lumina of the artery; and
    • a coil tip extending distally and/or peripherally from the closure structure and at least partially contained in the aneurysm.


2. The aneurysm device of example 1 wherein the coil tip comprises a loop shape, a basket shape, or a coil shape.


3. The aneurysm device of example 1 wherein the coil tip comprises platinum.


4. The aneurysm device of example 1, further comprising an attachment feature configured to couple the coil tip to the closure structure.


5. The aneurysm device of example 4 wherein the attachment feature comprises hardened solder.


6. The aneurysm device of example 1 wherein a portion of at least one of the closure structure or coil tip is at least partially covered with a barrier configured to occlude at least a portion of the aneurysm


7. The aneurysm device of example 1 wherein the coil tip resides in a neck portion of the aneurysm.


8. The aneurysm device of example 1 wherein the coil tip comprises a permeable framework configured to allow flow to or from the aneurysm.


9. The aneurysm device of example 1, further comprising a supplemental stabilizer proximally connected to the closure structure, wherein the supplemental stabilizer is configured to reside in the artery and press outward against a luminal wall thereof.


10. The aneurysm device of example 1 wherein the coil tip comprises a first coil tip, and wherein the device further comprises a second coil tip extending from the closure structure, and wherein the first coil tip and second coil tip extend peripherally from opposing lateral sides of the closure structure.


11. The aneurysm device of example 10 wherein the first coil tip and second coil tip each comprise a loop and together form a generally Figure-8 shape.


12. The aneurysm device of example 1 wherein the closure structure comprises a plurality of laterally opposing supports.


13. The aneurysm device of example 1 wherein at least one of the distal-facing aspect of the closure structure or the coil tip form a complex curved surface.


14. An aneurysm device endovascularly deliverable to a site proximate to an aneurysm, the aneurysm device comprising:

    • a closure structure having a distal-facing aspect configured to at least partially occlude the aneurysm;
    • a plurality of coil tips extending distally and/or peripherally from the closure structure and at least partially contained in the aneurysm; and
    • a supplemental stabilizer connected to the closure structure, the supplemental stabilizer configured to reside in the artery and press outward against a luminal wall thereof.


15. The aneurysm device of example 14 wherein the coil tips each comprise a loop shape, a basket shape, or a coil shape.


16. The aneurysm device of example 14 wherein the coil tips reside in a neck portion of the aneurysm.


17. The aneurysm device of example 14 wherein the closure structure and coil tips comprise a permeable framework configured to allow flow to or from the aneurysm.


18. An aneurysm enclosure framework endovascularly deliverable to a site proximate to an aneurysm, the framework, when expanded at the site, comprising:

    • a distal framework portion comprising a distal-facing aspect configured to at least partially enclose the aneurysm, and a proximal-facing aspect configured to arch over lumina of an artery; and
    • a first coil tip distally extending in a first lateral direction relative to the distal framework portion and at least partially contained in the aneurysm; and
    • a second coil tip distally extending in a second lateral direction opposite the first lateral direction and at least partially contained in the aneurysm.


19. The aneurysm device of example 18 wherein the first coil tip and second coil tip each comprise a loop and together form a generally Figure-8 shape.


20. The aneurysm device of example 18 wherein the first coil tip and second coil tip press or contour against at least one of a neck portion or wall portion of the aneurysm.


From the foregoing, it will be appreciated that specific embodiments of the disclosure have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the disclosure. For example, structures and/or processes described in the context of particular embodiments may be combined or eliminated in other embodiments. In particular, the aneurysm devices described above with reference to particular embodiments can include one or more additional features or components, or one or more of the features described above can be omitted. Further, the coil tips described herein may be employed with a variety of different aneurysm devices or assemblies in addition to those described above. Moreover, while advantages associated with certain embodiments of the disclosure have been described in the context of these embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the disclosure.

Claims
  • 1. An aneurysm device endovascularly deliverable to a site proximate to an aneurysm in an artery, the aneurysm device comprising: a closure structure comprising a distal-facing aspect configured to at least partially span the aneurysm, and a proximal-facing aspect configured to arch over lumina of the artery,wherein the closure structure comprises a perimeter support including a plurality of struts and an inner support including a plurality of struts, andwherein the inner support is within a boundary defined by the perimeter support;a first coil tip extending from the closure structure and configured to be at least partially contained within the aneurysm; anda second coil tip extending from the closure structure and configured to be at least partially contained within the aneurysm,wherein the first and second coil tips extend peripherally from opposing lateral sides of the closure structure,wherein a material of the first and the second coil tips is softer than a material of the closure structure, perimeter support, and inner support.
  • 2. The aneurysm device of claim 1 wherein the first coil tip and the second coil tip each comprise a loop shape, a basket shape, or a coil shape.
  • 3. The aneurysm device of claim 1 wherein the first and second coil tips comprise platinum.
  • 4. The aneurysm device of claim 1, further comprising an attachment feature configured to couple the first and second coil tips to the closure structure.
  • 5. The aneurysm device of claim 4 wherein the attachment feature comprises hardened solder.
  • 6. The aneurysm device of claim 1 wherein a portion of at least one of the closure structure, the first coil tip, or the second coil tip is at least partially covered with a barrier configured to occlude at least a portion of the aneurysm.
  • 7. The aneurysm device of claim 1 wherein at least one of the first coil tip and the second coil tip comprises a permeable framework configured to allow flow to or from the aneurysm.
  • 8. The aneurysm device of claim 1, further comprising a supplemental stabilizer proximally connected to the closure structure, wherein the supplemental stabilizer is configured to reside in the artery and press outward against a luminal wall thereof.
  • 9. The aneurysm device of claim 1 wherein the first coil tip and second coil tip each comprise a loop and together form a generally Figure-8 shape.
  • 10. The aneurysm device of claim 1 wherein at least one of the distal-facing aspect of the closure structure, the first coil tip, or the second coil tip form a complex curved surface.
  • 11. An aneurysm device endovascularly deliverable to a site proximate to an aneurysm, the aneurysm device comprising: a closure structure having a distal-facing aspect configured to at least partially occlude the aneurysm;wherein the closure structure comprises a perimeter support and an inner support, and wherein the inner support is within a boundary defined by the perimeter support;a plurality of coil tips extending peripherally from the closure structure and configured to be at least partially contained in the aneurysm,wherein the coil tips have a softer composition than that of the closure structure; anda supplemental stabilizer connected to the closure structure, wherein the supplemental stabilizer is configured to reside in the artery and press outward against a luminal wall thereof.
  • 12. The aneurysm device of claim 11 wherein the coil tips each comprise a loop shape, a basket shape, or a coil shape.
  • 13. The aneurysm device of claim 11 wherein the coil tips reside in a neck portion of the aneurysm.
  • 14. The aneurysm device of claim 11 wherein the closure structure and coil tips comprise a permeable framework configured to allow flow to or from the aneurysm.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/645,496, filed May 10, 2012, which is incorporated herein by reference in its entirety. Further, components and features of embodiments disclosed in the application incorporated by reference may be combined with various components and features disclosed and claimed in the present application.

US Referenced Citations (199)
Number Name Date Kind
3868956 Alfidi et al. Mar 1975 A
4164045 Bokros et al. Aug 1979 A
4248234 Assenza et al. Feb 1981 A
4645495 Vaillancourt Feb 1987 A
4651751 Swendson et al. Mar 1987 A
4665906 Jervis May 1987 A
4706671 Weinrib Nov 1987 A
4710192 Liotta et al. Dec 1987 A
4739768 Engelson Apr 1988 A
4820298 Leveen et al. Apr 1989 A
4873978 Ginsburg Oct 1989 A
4909787 Danforth Mar 1990 A
4994069 Ritchart et al. Feb 1991 A
5011488 Ginsburg Apr 1991 A
5074869 Daicoff Dec 1991 A
5122136 Guglielmi et al. Jun 1992 A
5226911 Chee et al. Jul 1993 A
5250071 Palermo Oct 1993 A
5261916 Engelson Nov 1993 A
5263964 Purdy Nov 1993 A
5263974 Matsutani et al. Nov 1993 A
5271414 Partika et al. Dec 1993 A
5304195 Twyford, Jr. et al. Apr 1994 A
5334168 Hemmer Aug 1994 A
5342386 Trotta Aug 1994 A
5350397 Palermo et al. Sep 1994 A
5354295 Guglielmi et al. Oct 1994 A
5527338 Purdy Jun 1996 A
5531685 Hemmer et al. Jul 1996 A
5578074 Mirigian Nov 1996 A
5624449 Pham et al. Apr 1997 A
5643254 Scheldrup et al. Jul 1997 A
5665106 Hammerslag Sep 1997 A
5669931 Kupiecki et al. Sep 1997 A
5693067 Purdy Dec 1997 A
5733294 Forber et al. Mar 1998 A
5733329 Wallace et al. Mar 1998 A
5749890 Shaknovich May 1998 A
5749894 Engelson May 1998 A
5759194 Hammerslag Jun 1998 A
5766192 Zacca Jun 1998 A
5769884 Solovay Jun 1998 A
5797953 Tekulve Aug 1998 A
5814062 Sepetka et al. Sep 1998 A
5843103 Wulfman Dec 1998 A
D407818 Mariant et al. Apr 1999 S
5895391 Farnholtz Apr 1999 A
5895410 Forber et al. Apr 1999 A
5910145 Fischell et al. Jun 1999 A
5911737 Lee et al. Jun 1999 A
5916235 Guglielmi Jun 1999 A
5925060 Forber Jul 1999 A
5925062 Purdy Jul 1999 A
5925683 Park Jul 1999 A
5928260 Chin et al. Jul 1999 A
5933329 Tijanoc et al. Aug 1999 A
5935114 Jang et al. Aug 1999 A
5935148 Villar et al. Aug 1999 A
5951599 McCrory Sep 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5980514 Kupiecki et al. Nov 1999 A
5984944 Forber Nov 1999 A
6007544 Kim Dec 1999 A
6013055 Bampos et al. Jan 2000 A
6022341 Lentz Feb 2000 A
6036720 Abrams et al. Mar 2000 A
6063070 Eder May 2000 A
6063104 Villar et al. May 2000 A
6071263 Kirkman Jun 2000 A
6077291 Das Jun 2000 A
6081263 LeGall et al. Jun 2000 A
6090125 Horton Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096021 Helm et al. Aug 2000 A
6096034 Kupiecki et al. Aug 2000 A
6102917 Maitland et al. Aug 2000 A
6110191 Dehdashtian et al. Aug 2000 A
6117157 Tekulve Sep 2000 A
6139564 Teoh Oct 2000 A
6146339 Biagtan et al. Nov 2000 A
6152944 Holman et al. Nov 2000 A
6168615 Ken et al. Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6174322 Schneidt Jan 2001 B1
6183495 Lenker et al. Feb 2001 B1
6193708 Ken et al. Feb 2001 B1
RE37117 Palermo Mar 2001 E
6221066 Ferrera et al. Apr 2001 B1
6221086 Forber Apr 2001 B1
6224610 Ferrera May 2001 B1
6228052 Pohndorf May 2001 B1
6261305 Marotta et al. Jul 2001 B1
6293960 Ken Sep 2001 B1
6296622 Kurz et al. Oct 2001 B1
6309367 Boock Oct 2001 B1
6325807 Que Dec 2001 B1
6344048 Chin et al. Feb 2002 B1
6375668 Gifford et al. Apr 2002 B1
6383174 Eder May 2002 B1
6398791 Que et al. Jun 2002 B1
6478773 Gandhi et al. Nov 2002 B1
6491711 Durcan Dec 2002 B1
6517515 Eidenschink Feb 2003 B1
6530935 Wensel et al. Mar 2003 B2
6533905 Johnson et al. Mar 2003 B2
6554794 Mueller et al. Apr 2003 B1
6589256 Forber Jul 2003 B2
6613074 Mitelberg et al. Sep 2003 B1
6616681 Hanson et al. Sep 2003 B2
6626889 Simpson et al. Sep 2003 B1
6626928 Raymond et al. Sep 2003 B1
6638268 Niazi Oct 2003 B2
6652556 VanTassel et al. Nov 2003 B1
6663607 Slaikeu et al. Dec 2003 B2
6663648 Trotta Dec 2003 B1
6669795 Johnson et al. Dec 2003 B2
6672338 Esashi et al. Jan 2004 B1
6679836 Couvillon, Jr. Jan 2004 B2
6679903 Kurz Jan 2004 B2
6689141 Ferrera et al. Feb 2004 B2
6694979 Deem et al. Feb 2004 B2
6723112 Ho et al. Apr 2004 B2
6740073 Saville May 2004 B1
6740277 Howell et al. May 2004 B2
6746468 Sepetka et al. Jun 2004 B1
6780196 Chin et al. Aug 2004 B2
6790218 Jayaraman Sep 2004 B2
6824553 Samson et al. Nov 2004 B1
6835185 Ramzipoor et al. Dec 2004 B2
6837870 Duchamp Jan 2005 B2
6863678 Lee et al. Mar 2005 B2
6890218 Patwardhan et al. May 2005 B2
6911037 Gainor et al. Jun 2005 B2
6936055 Ken et al. Aug 2005 B1
6939055 Durrant et al. Sep 2005 B2
6986774 Middleman et al. Jan 2006 B2
6994092 van der Burg et al. Feb 2006 B2
7011094 Rapacki et al. Mar 2006 B2
7033374 Schaefer et al. Apr 2006 B2
7033387 Zadno-Azizi et al. Apr 2006 B2
7122043 Greenhalgh et al. Oct 2006 B2
7147659 Jones Dec 2006 B2
7156871 Jones et al. Jan 2007 B2
7229461 Chin et al. Jun 2007 B2
7232461 Ramer Jun 2007 B2
7267679 McGuckin, Jr. et al. Sep 2007 B2
7322960 Yamamoto et al. Jan 2008 B2
7343856 Blohdorn Mar 2008 B2
7387629 Vanney et al. Jun 2008 B2
7410482 Murphy et al. Aug 2008 B2
7569066 Gerberding et al. Aug 2009 B2
7608088 Jones et al. Oct 2009 B2
7662168 McGuckin, Jr. et al. Feb 2010 B2
7857825 Moran et al. Dec 2010 B2
7892254 Klint et al. Feb 2011 B2
8075585 Lee et al. Dec 2011 B2
8388650 Gerberding et al. Mar 2013 B2
20030057156 Peterson et al. Mar 2003 A1
20030139802 Wulfman et al. Jul 2003 A1
20030181922 Alferness Sep 2003 A1
20030181942 Sutton et al. Sep 2003 A1
20030195385 DeVore Oct 2003 A1
20030195553 Wallace et al. Oct 2003 A1
20030212412 Dillard et al. Nov 2003 A1
20040068314 Jones et al. Apr 2004 A1
20040087998 Lee et al. May 2004 A1
20040111112 Hoffmann Jun 2004 A1
20040167597 Costantino et al. Aug 2004 A1
20040167602 Fischell et al. Aug 2004 A1
20040193246 Ferrera Sep 2004 A1
20040210248 Gordon et al. Oct 2004 A1
20040210298 Rabkin et al. Oct 2004 A1
20050021023 Guglielmi et al. Jan 2005 A1
20050025797 Wang et al. Feb 2005 A1
20050096728 Ramer May 2005 A1
20050177224 Fogarty et al. Aug 2005 A1
20060030929 Musbach Feb 2006 A1
20060052862 Kanamaru et al. Mar 2006 A1
20060058837 Bose et al. Mar 2006 A1
20060106418 Seibold et al. May 2006 A1
20060247680 Amplatz et al. Nov 2006 A1
20060259131 Molaei et al. Nov 2006 A1
20060264905 Eskridge et al. Nov 2006 A1
20060264907 Eskridge et al. Nov 2006 A1
20070067015 Jones et al. Mar 2007 A1
20070088387 Eskridge et al. Apr 2007 A1
20070106311 Wallace et al. May 2007 A1
20070191884 Eskridge et al. Aug 2007 A1
20070270902 Slazas et al. Nov 2007 A1
20080039930 Jones et al. Feb 2008 A1
20080147100 Wallace Jun 2008 A1
20080183143 Palisis et al. Jul 2008 A1
20080221600 Dieck et al. Sep 2008 A1
20080269774 Garcia et al. Oct 2008 A1
20090306678 Hardert et al. Dec 2009 A1
20100094335 Gerberding et al. Apr 2010 A1
20130090682 Bachman et al. Apr 2013 A1
20130204290 Clarke et al. Aug 2013 A1
20130268046 Gerberding et al. Oct 2013 A1
Foreign Referenced Citations (55)
Number Date Country
2006304660 Apr 2007 AU
1399530 Feb 2003 CN
101489492 Jul 2009 CN
102202585 Sep 2011 CN
102762156 Oct 2012 CN
103230290 Aug 2013 CN
103381101 Nov 2013 CN
103582460 Feb 2014 CN
103607964 Feb 2014 CN
102008028308 Apr 2009 DE
0820726 Jan 1998 EP
00996372 May 2000 EP
1269935 Jan 2003 EP
1527753 May 2005 EP
1951129 Aug 2008 EP
2326259 Jun 2011 EP
2451363 May 2012 EP
2713904 Apr 2014 EP
2713905 Apr 2014 EP
1134421 Mar 2014 HK
2001286478 Oct 2001 JP
2009512515 Mar 2009 JP
2013226419 Nov 2013 JP
20080081899 Sep 2008 KR
WO-9724978 Jul 1997 WO
WO-9726939 Jul 1997 WO
WO-9731672 Sep 1997 WO
WO-9823227 Jun 1998 WO
WO-9850102 Nov 1998 WO
WO-9905977 Feb 1999 WO
WO-9907294 Feb 1999 WO
WO-9915225 Apr 1999 WO
WO-0013593 Mar 2000 WO
WO-0130266 May 2001 WO
WO0200139 Jan 2002 WO
WO-0213899 Feb 2002 WO
WO-02071977 Sep 2002 WO
WO-02078777 Oct 2002 WO
WO-02087690 Nov 2002 WO
WO-03059176 Jul 2003 WO
WO-03075793 Sep 2003 WO
WO-2004019790 Mar 2004 WO
WO-2004026149 Apr 2004 WO
WO-2004105599 Dec 2004 WO
WO-2005033409 Apr 2005 WO
WO-2005082279 Sep 2005 WO
WO-2006119422 Nov 2006 WO
WO-2007047851 Apr 2007 WO
WO-2008151204 Dec 2008 WO
WO-2010028314 Mar 2010 WO
WO-2011029063 Mar 2011 WO
WO-2012167137 Dec 2012 WO
WO-2012167150 Dec 2012 WO
WO-2012167156 Dec 2012 WO
WO-2013052920 Apr 2013 WO
Non-Patent Literature Citations (18)
Entry
Cordis NeuroVascular, Inc.; “Masstransit Microcatheter,” Product Prochure; No. 153-8383-3; Miami Lakes, FL, USA (2003).
Cordis NeuroVascular, Inc.; “Prolwer Select Plus Microcatheter,” Product Brochure; No. 154-9877-1; Miami Lakes, FL, USA (2003).
Cordis NeuroVascular, Inc.; “Prowler Select LP Microcatheter,” Product Brochure; No. 155-5585; Miami Lakes, FL, USA (2004).
Cordis NeuroVascular, Inc.; “Rapid Transit Microcatheter,” Product Brochure; No. 152-7369-2; Miami Lakes, FL, USA (2003).
Extended European Search Report, European Application No. 06826291.4, Nov. 19, 2009, 7 pages.
Gupta et al. SMST-2003: Proc. Intl. Conf. Shape Memory Superelastic Technol.; Pacific Grove, CA; p. 639; 2003.
International Search Report and Written Opinion for Application No. PCT/US2010/047908, Mail Date May 25, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2009/056133, Mail Date Oct. 26, 2009, 11 pages.
International Search Report and Written Opinion for International Application No. PCT/US2010/047908, mailing date Mar. 15, 2012, 11 pages.
International Search Report and Written Opinion for International Application No. PCT/US2012/040552, mailing date Aug. 28, 2012, 14 pages.
International Search Report and Written Opinion for International Application PCT/US2012/040536, mailing date Oct. 15, 2012, 17 pages.
International Search Report and Written Opinion for International Application PCT/US2012/040558, mailing date Oct. 8, 2012, 17 pages.
International Search Report and Written Opinion for International Application PCT/US2012/059133, mailing date Mar. 11, 2013,15 pages.
International Search Report and Written Opinion for International Application PCT/US2013/031793, mailing date Jun. 26, 2013, 14 pages.
International Search Report for International Application No. PCT/US06/40907, Mail Date May 1, 2008, 2 pages.
Micrus Copr.; “Concourse 14 Microcatheter” Product Brochure; Sunnyvale ,CA, USA.
Polytetraflouroethylene Implants, DermNet NZ, Nov. 11, 2005, http://dermetnz.org/polytetrafluoroethylene.html.
Singapore Examination Report for Singapore Application No. 200802811-0, Mail Date Jul. 12, 2009, 7 pages.
Related Publications (1)
Number Date Country
20130304109 A1 Nov 2013 US
Provisional Applications (1)
Number Date Country
61645496 May 2012 US