Systems and methods for encoding alternative streams of video for playback on playback devices having predetermined display aspect ratios and network connection maximum data rates

Information

  • Patent Grant
  • 10708587
  • Patent Number
    10,708,587
  • Date Filed
    Tuesday, October 25, 2016
    7 years ago
  • Date Issued
    Tuesday, July 7, 2020
    3 years ago
Abstract
Systems and methods for adaptive bitrate streaming of alternative streams of video encoded at resolution and sample aspect ratio combinations and maximum bitrates in accordance with embodiments of the invention are disclosed. In one embodiment of the invention, a source encoder configured to encode a source video stream as a plurality of alternative streams of video for playback on a playback device includes a processor configured to receive multimedia content including source video data having a primary resolution, a primary sample aspect ratio, and a primary frame rate and to encode the source video data as alternative streams of video, where the resolution and sample aspect ratio of at least one of the alternative streams of video are selected to have an aspect ratio that is the same as a predetermined display aspect ratio and at least one of the alternative streams is encoded at a maximum bitrate.
Description
FIELD OF THE INVENTION

The present invention relates to the delivery of multimedia content and more specifically streaming video content encoded at a variety of recommended maximum bitrates optimized for a variety of scaled display resolutions and network connection maximum data rates of playback devices receiving the streams.


BACKGROUND OF THE INVENTION

The term streaming media describes the playback of media on a playback device, where the media is stored on a server and continuously sent to the playback device over a network during playback. Typically, the playback device stores a sufficient quantity of media in a buffer at any given time during playback to prevent disruption of playback due to the playback device completing playback of all the buffered media prior to receipt of the next portion of media. Adaptive bit rate streaming or adaptive streaming involves detecting the present streaming conditions (e.g. the user's network bandwidth and CPU capacity) in real time and adjusting the quality of the streamed media accordingly.


In adaptive streaming systems, the source media is typically stored on a media server as a top level index file pointing to a number of alternate streams that contain the actual video and audio data. Each stream is typically stored in one or more container files. Different adaptive streaming solutions typically utilize different index and media containers. The Matroska container is a media container developed as an open standard project by the Matroska non-profit organization of Aussonne, France. The Matroska container is based upon Extensible Binary Meta Language (EBML), which is a binary derivative of the Extensible Markup Language (XML). Decoding of the Matroska container is supported by many consumer electronics (CE) devices. The DivX Plus file format developed by DivX, LLC of San Diego, Calif. utilizes an extension of the Matroska container format, including elements that are not specified within the Matroska format.


SUMMARY OF THE INVENTION

Systems and methods for adaptive bitrate streaming of alternative streams of video encoded at resolution and sample aspect ratio combinations and maximum bitrates corresponding to the display aspect ratios and network connection maximum data rates of playback devices receiving the streams in accordance with embodiments of the invention are disclosed. In one embodiment of the invention, a source encoder configured to encode a source video stream as a plurality of alternative streams of video for playback on a playback device includes a processor configured by an encoding application to receive multimedia content, where the multimedia content includes source video data having a primary resolution, a primary sample aspect ratio, and a primary frame rate and to encode the source video data as a set of alternative streams of video, where the resolution and sample aspect ratio of at least one of the alternative streams of video are selected to have an aspect ratio that is the same as a predetermined display aspect ratio and at least one of the alternative streams is encoded at a maximum bitrate corresponding to a predetermined network connection maximum data rate.


In another embodiment of the invention, the encoding application further configures the processor to select a resolution, sample aspect ratio, and frame rate for one of the alternative streams, determine a maximum bitrate threshold beyond which higher video quality can be achieved using a higher resolution than the selected resolution at the selected frame rate, and encode the source video stream at the predetermined network connection maximum data rate, when the predetermined network connection maximum data rate is less than the maximum bitrate threshold.


In an additional embodiment of the invention, the source encoder includes an encoding profile, where the encoding profile specifies a plurality of maximum bitrates including a maximum bitrate corresponding to the predetermined network connection maximum data rate, wherein the encoding application further configures the processor to select a resolution, sample aspect ratio and frame rate for each alternative stream, determine a maximum bitrate threshold beyond which higher video quality can be achieved using a higher resolution than the selected resolution at the selected frame rate of each alternative stream, select a maximum bitrate from the profile for each alternative stream, where the selected maximum bitrate is the highest maximum bitrate specified in the profile that is less than the maximum bitrate threshold determined for the alternative stream, and generate each alternative stream by encoding the source video stream at the selected maximum bitrate, selected resolution, sample aspect ratio and frame rate.


In yet another additional embodiment of the invention, the encoding application further configures the processor to determine a maximum bitrate threshold beyond which higher video quality can be achieved using a higher resolution than the selected resolution at the selected frame rate by configuring the processor to determine the maximum bitrate threshold using an adjusted number of macroblocks per second determined based upon the selected resolution, and frame rate.


In still another embodiment of the invention, the encoding application configures the microprocessor to determine the adjusted number of macroblocks per second (AMBPS) as follows:

AMBPS=((width*height*FPS)/256)*AdjustmentFactor(FPS),

where width and height are the width and height of the encoding resolution, FPS is the frame rate per second for the video data, and AdjustmentFactor(FPS) is a predetermined value based on the FPS of the video data.


In yet still another additional embodiment of the invention, the adjustment factor is selected from the group including:

    • an AdjustmentFactor(FPS)=1, where FPS=29.97,
    • an AdjustmentFactor(FPS)=1.1333, where FPS=25, and
    • an AdjustmentFactor(FPS)=1.1606, where FPS=23.976.


In yet another embodiment of the invention, the encoding application configures the processor to determine the adjustment factor is determined as follows:

AdjustmentFactor(FPS)=1+((MaxFPS−FPS)/(MaxFPS*1.25))

where MaxFPS is Ceiling (FPS/30)*30.


Still another embodiment of the invention includes encoding a source video stream as a plurality of alternative streams of video for playback on a playback device, including receiving multimedia content using a source encoder, where the multimedia content comprises source video data having a primary resolution, a primary sample aspect ratio, and a primary frame rate and encoding the source video data using the source encoder as a set of alternative streams of video, where encoding the source video includes selecting the resolution and sample aspect ratio of at least one of the alternative streams of video to have an aspect ratio that is the same as the predetermined display aspect ratio and encoding at least one of the alternative streams at a maximum bitrate corresponding to the predetermined network connection maximum data rate.


In yet another additional embodiment of the invention, encoding a source video stream as a plurality of alternative streams of video for playback on a playback device further includes selecting a resolution, sample aspect ratio, and frame rate for one of the alternative streams, determining a maximum bitrate threshold beyond which higher video quality can be achieved using a higher resolution than the selected resolution at the selected frame rate using the source encoder, and encoding the source video stream at the predetermined network connection maximum data rate using the source encoder, when the predetermined network connection maximum data rate is less than the maximum bitrate threshold.


In still another additional embodiment of the invention, encoding a source video stream as a plurality of alternative streams of video for playback on a playback device further includes retrieving an encoding profile using the source encoder, where the encoding profile specifies a plurality of maximum bitrates including a maximum bitrate corresponding to the predetermined network connection maximum data rate, selecting a resolution, sample aspect ratio and frame rate for each alternative stream, determining a maximum bitrate threshold beyond which higher video quality can be achieved using a higher resolution than the selected resolution at the selected frame rate of each alternative stream using the source encoder, selecting a maximum bitrate from the profile for each alternative stream using the source encoder, where the selected maximum bitrate is the highest maximum bitrate specified in the profile that is less than the maximum bitrate threshold determined for the alternative stream, and generating each alternative stream using the source encoder by encoding the source video stream at the selected maximum bitrate, selected resolution, sample aspect ratio and frame rate.


In still yet another additional embodiment of the invention, determining the maximum bitrate threshold using an adjusted number of macroblocks per second determined based upon the selected resolution and frame rate.


In still another embodiment of the invention, determining the adjusted number of macroblocks per second (AMBPS) as follows:

AMBPS=((width*height*FPS)/256)*AdjustmentFactor(FPS),

where width and height are the width and height of the encoding resolution, FPS is the frame rate per second for the video data, and AdjustmentFactor(FPS) is a predetermined value based on the FPS of the video data.


In yet another additional embodiment of the invention, the adjustment factor is selected from the group comprising:

    • an AdjustmentFactor(FPS)=1, where FPS=29.97;
    • an AdjustmentFactor(FPS)=1.1333, where FPS=25; and
    • an AdjustmentFactor(FPS)=1.1606, where FPS=23.976.


In still yet another embodiment of the invention, the encoding application configures the processor to determine the adjustment factor is determined as follows:

AdjustmentFactor(FPS)=1+((MaxFPS−FPS)/(MaxFPS*1.25))

where MaxFPS is Ceiling (FPS/30)*30.


Still another embodiment of the invention includes a playback device configured to playback content on a display having a display aspect ratio, including a processor configured to communicate with a memory, where the memory contains a client application, wherein the client application configures the processor to connect to a content distribution system via a network connection, where the network connection has a predetermined maximum likely data rate, obtain an index file from the content distribution system, where the index file describes a plurality of alternative video streams, where at least one of the alternative video streams has the same aspect ratio as the display aspect ratio and is encoded at a maximum bitrate corresponding to the predetermined maximum likely data rate, and request a portion of at least one of the alternative streams using the index file.


Still another embodiment of the invention includes playing back content, including connecting to a content distribution system using a playback device via a network connection, where the network connection has a predetermined maximum likely data rate, obtaining an index file from the content distribution system using the playback device, where the index file describes a plurality of alternative video streams, where at least one of the alternative video streams has the same aspect ratio as the display aspect ratio and is encoded at a maximum bitrate corresponding to the predetermined maximum likely data rate, requesting a portion of at least one of the alternative streams using the playback device and the index file, and playing back the requested portions of the at least one alternative streams using the playback device.


Still another embodiment of the invention includes a machine readable medium containing processor instructions, where execution of the instructions by a processor causes the processor to perform a process including retrieving an encoding profile, where the encoding profile specifies a plurality of maximum bitrates including a maximum bitrate corresponding to the predetermined network connection maximum data rate, and a set of predetermined minimum adjusted macroblocks per second (MAMBPS) corresponding to each one of the maximum bitrates, selecting an encoding bitrate according to the corresponding value of the MAMBPS, selecting a resolution, sample aspect ratio and frame rate for each alternative stream, determining a maximum bitrate threshold beyond which higher video quality can be achieved using a higher resolution than the selected resolution at the selected frame rate of each alternative stream, selecting a maximum bitrate from the profile for each alternative stream, where the selected maximum bitrate corresponds to the MAMBPS that generates the highest positive difference between the AMBPS and the MAMBPS for the alternative stream, and generating each alternative stream by encoding the source video stream at the selected maximum bitrate, selected resolution, sample aspect ratio and frame rate.


In yet another additional embodiment of the invention, if the highest positive number that corresponds to the difference between the AMBPS and MAMBPS is zero, the resolution corresponding to the AMBPS is not allowed by the encoding profile.


Still another embodiment of the invention includes a machine readable medium containing processor instructions, where execution of the instructions by a processor causes the processor to perform a process including connecting to a content distribution system via a network connection, where the network connection has a predetermined maximum likely data rate, obtaining an index file from the content distribution system, where the index file describes a plurality of alternative video streams, where at least one of the alternative video streams has the same aspect ratio as the display aspect ratio and is encoded at a maximum bitrate corresponding to the predetermined maximum likely data rate, requesting a portion of at least one of the alternative streams using the index file, and playing back the requested portions of the at least one alternative streams.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a network diagram of an adaptive bitrate streaming system configured to stream video encoded at recommended maximum bitrates in accordance with an embodiment of the invention.



FIG. 2 is a flow chart illustrating a process for determining a recommended bitrate in accordance with an embodiment of the invention.



FIG. 3 is a flow chart illustrating a process for determining an adjustment factor in accordance with an embodiment of the invention.



FIG. 4 conceptually illustrates a source encoder configured to encode video data utilizing different video bitrates in accordance with an embodiment of the invention.



FIG. 5 is a table illustrating an example of a profile with defined maximum bitrates in accordance with an embodiment of the invention.



FIG. 6 is a table illustrating an example of a set of maximum bitrates and corresponding encoding and decoding minimum adjusted macroblocks per second in accordance with an embodiment of the invention.





DETAILED DISCLOSURE OF THE INVENTION

Turning now to the drawings, systems and methods for adaptive bitrate streaming of alternative streams of video encoded at resolution and sample aspect ratio combinations and maximum bitrates corresponding to the display aspect ratios and network connection maximum data rates of playback devices receiving the streams in accordance with embodiments of the invention are illustrated. Adaptive bitrate streaming systems can stream alternative streams of video data encoded at maximum bitrates. In order to provide the highest quality video experience independent of the network data rate, the adaptive bitrate streaming systems switch between the available streams of video data throughout the delivery of the video data according to a variety of factors, including, but not limited to, the available network data rate and video decoder performance. Systems and methods for switching between video streams during playback are disclosed in U.S. patent application Ser. No. 13/221,682 entitled “Systems and Methods for Adaptive Bitrate Streaming of Media Stored in Matroska Container Files Using Hypertext Transfer Protocol” to Braness et al., filed Aug. 30, 2011, the disclosure of which is incorporated by reference herein in its entirety.


The data rate experienced by a playback device during adaptive bitrate streaming typically depends upon the technologies that the playback device utilizes to connect to the Internet and the Internet Service Provider that provides the Internet connection. Playback devices that utilize the same Internet Service Provider often experience similar maximum data rates that can deteriorate from time to time based upon network congestion and/or the processing load of the playback device. In adaptive bitrate streaming systems, the highest quality video that a playback device can receive is typically video encoded at a maximum bitrate equal to the maximum data rate of the network connection of a playback device. Where the video stream is transmitted in conjunction with other streams such as (but not limited to) an audio stream, a subtitle stream and/or a metadata stream, then the effective maximum data rate available for the video stream is equal to the maximum data rate, less the maximum data rates of each of the other streams along with a reserved data rate value that is greater than or equal to zero. An adaptive bitrate streaming system designed to deliver a video stream via the Internet to a variety of playback devices utilizing different Internet Service Providers can identify a set of effective maximum data rates corresponding to the effective maximum data rates likely to be experienced by each of the playback devices. For each effective maximum data rate in the set, the adaptive bitrate streaming system can then encode an alternative video stream having a maximum bitrate corresponding to the effective maximum data rate. In this way, a playback device is likely to be able to stream video encoded at the highest quality that can be supported by the playback device's network connection. In the event that streaming conditions deteriorate, the adaptive bitrate streaming system can stream video encoded at a lower maximum bitrate. Under normal streaming conditions, however, a video stream is available that is encoded to fully utilize the available network connection.


Due to standardization, video sources typically have a display aspect ratio selected from one of a number of common display aspect ratios. As is described in U.S. patent application Ser. No. 13/430,032, the performance of an adaptive bitrate streaming system can be enhanced by encoding each of the alternative streams using resolutions and sample aspect ratios that result in a common aspect ratio across the alternative streams corresponding to the display aspect ratio of the original video source. When a set of alternative video streams is encoded with resolutions and sample aspect ratios that result in an aspect ratio corresponding to the display aspect ratio of the original source, then each pixel of encoded video can be scaled to an integer number of pixels on the display and the playback device can smoothly transition between the streams without the need to resample the streams or add padding rows and/or columns to the decoded video to fit it to the display resolution.


U.S. patent application Ser. No. 13/430,032 also notes that the video quality of a stream encoded with a specific resolution and sample aspect ratio typically does not improve appreciably beyond a specific maximum bitrate threshold. Beyond that threshold, increasing the resolution of the encoded video can increase video quality.


Adaptive bitrate steaming systems in accordance with embodiments of the invention select a set of resolutions and sample aspect ratio combinations that have an aspect ratio corresponding to a specific display aspect ratio and encode an alternative stream at each resolution and sampling aspect ratio combination. The maximum bitrate used to encode each alternative stream is selected based upon a set of predetermined maximum bitrates corresponding to the maximum effective data rates of the network connections of the playback devices within the adaptive bitrate streaming system. The specific maximum bitrate selected for a specific resolution and sample aspect ratio combination may be determined based upon estimating the maximum bitrate threshold for the specific resolution and sample aspect ratio combination beyond which video quality does not appreciably improve and then identifying a maximum bitrate from the set of predetermined maximum bitrates that is the closest maximum bitrate that is less than the threshold. As is discussed further below, the maximum bitrate threshold for a specific resolution and sample aspect ratio combination typically depends upon the frame rate of the video.


By encoding at least one of the alternative streams of video provided by an adaptive bitrate streaming system in accordance with embodiments of the invention using a resolution and sample aspect ratio combination and maximum bitrates corresponding to the aspect ratio of the source content and maximum effective data rate of a playback device, the playback device can stream video encoded to provide the highest quality of video playback capable of being supported by the playback device given its network connection. By encoding lower maximum bitrate streams using resolution and sample aspect ratio combinations having the same aspect ratio as the source content's aspect ratio, the adaptive bitrate streaming system can smoothly transition to streams encoded at lower maximum bitrates when streaming conditions deteriorate. Adaptive bitrate streaming systems configured to stream alternative streams of video encoded at resolution and sample aspect ratio combinations and maximum bitrates corresponding to the display aspect ratios of the source content and network connection maximum effective data rates of the playback devices within the adaptive bitrate streaming system in accordance with embodiments of the invention are discussed further below.


System Overview


An adaptive bitrate streaming system in accordance with an embodiment of the invention is illustrated in FIG. 1. The adaptive bitrate streaming system 100 includes a source encoder 106 configured to encode source video as a number of alternative video streams at resolution and sample aspect ratio combinations and maximum bitrates corresponding to the display aspect ratios of the source content and network connection maximum effective data rates of the playback devices within the adaptive bitrate streaming system. In the illustrated embodiment, the source encoder is a server. In other embodiments, the source encoder can be any processing device including a processor and sufficient resources to perform the transcoding of source media (including but not limited to video, audio, and/or subtitles). The source encoding server 106 typically generates a top level index to a plurality of container files containing the streams, at least a plurality of which are alternative streams. Alternative streams are streams that encode the same media content in different ways. In many instances, alternative streams encode media content (such as but not limited to video) at different resolution and sample aspect ratio combinations and different maximum bitrates. In a number of embodiments, the alternative streams are encoded at different frame rates. In a number of embodiments, alternative video streams form sets of alternative video streams encoded with the same aspect ratio corresponding to the display aspect ratio of a set of source content. In many embodiments, the maximum bitrates used in the encoding of each alternative stream in a set of alternative streams is determined based upon the maximum effective data rate typically experienced by different sets of playback devices based upon factors including (but not limited to) the technology and Internet Service Providers the playback devices use to connect to the Internet. The top level index file and the container files are uploaded to a content distribution server 104. Although the source encoding server 106 is described above as generating the top level index file, in many embodiments the top level index file is dynamically generated in response to a request for a specific piece of content by a playback device.


In the illustrated embodiment, playback devices include personal computers 110, CE players 108, and mobile phones 112. In other embodiments, playback devices can include consumer electronics devices such as DVD players, Blu-ray players, televisions, set top boxes, video game consoles, tablets, and other devices that are capable of connecting to a server via HTTP and playing back encoded media. In the illustrated embodiment, a variety of playback devices use HTTP or another appropriate stateless protocol to request portions of a top level index file and the container files via a network 102 such as the Internet. Prior to a playback device performing adaptive bitrate streaming using portions of media from alternative streams contained within the container files, a bandwidth probe can be performed by the playback device to determine available bandwidth. Once the bandwidth probe has been completed, the playback device can utilize data within the top level index including (but not limited to) the maximum bitrate of each of the available streams to determine the initial streams from which to commence requesting portions of encoded media as part of an adaptive streaming process.


Once playback of content from the initial set of streams commences, the playback device utilizes the top level index to perform adaptive bitrate streaming of the content in response to changes in streaming conditions. In many adaptive bitrate streaming systems, the playback device can progress through a series of operational phases in which the playback device responds differently in each phase to changes in the streaming conditions. In a number of embodiments, stability in streaming conditions or improving streaming conditions can result in a transition to a phase in which the playback device assumes stable operating conditions, buffers more content, and is less responsive to fluctuations in streaming conditions. In many embodiments, a deterioration in streaming conditions results in a stream switch to a set of streams utilizing less bandwidth and resulting in the playback device transitioning to a phase in which the playback device assumes unstable operating conditions, buffers less content, and responds rapidly to variations in streaming conditions.


In the illustrated embodiment, the adaptive bitrate streaming system includes one or more source encoders capable of encoding a stream of video content into alternative streams of video content encoded at resolution and sample aspect ratio combinations and maximum bitrates corresponding to the display aspect ratios of the source content and network connection maximum effective data rates of the playback devices within the adaptive bitrate streaming system. In many embodiments, the source encoder can be implemented using any device capable of encoding streams of multimedia, where the streams are encoded at different resolutions, sampling rates and/or maximum bitrates. The basic architecture of an adaptive streaming system source encoder in accordance with an embodiment of the invention is illustrated in FIG. 4. The adaptive bitrate streaming system 400 includes a processor 410 in communication with non-volatile memory 430 and volatile memory 420. In the illustrated embodiment, the volatile memory includes a source encoder 422 and alternative streams of video data 424. Although a specific architecture is illustrated in FIG. 4, any of a variety of architectures can be utilized to implement source encoders capable of encoding a stream of video content into alternative streams of video content encoded at resolution and sample aspect ratio combinations and maximum bitrates corresponding to the display aspect ratios of the source content and network connection maximum effective data rates of the playback devices within an adaptive bitrate streaming system in accordance with embodiments of the invention. In many embodiments, the variety of architectures include architectures where the application is located on disk or some other form of storage and is loaded into volatile memory at runtime. Furthermore, any of a variety of system architectures including (but not limited) to the system architecture illustrated in FIG. 1 can be utilized to perform video delivery in accordance with embodiments of the invention. Systems and methods for determining resolution and sample aspect ratios for alternative video streams and the maximum bitrates at which to encode the alternative video streams in accordance with embodiments of the invention are discussed further below.


Determining Maximum Bitrates


Adaptive bitrate streaming systems in accordance with embodiments of the invention select the maximum bitrate at which to encode a video stream having a given resolution and sample aspect ratio based upon the bitrate threshold beyond which video quality no longer appreciably improves and the maximum effective bitrates likely to be experienced by different classes of playback device within the adaptive bitrate streaming system. The set of maximum data rates for different classes of playback devices typically depends upon the requirements of a specific application. Once the set of maximum data rates is determined, the maximum bitrate at which to encode a video stream having a specific resolution, sample aspect ratio and frame rate can be determined by determining the bitrate threshold beyond which video quality no longer appreciably improves and then selecting the maximum data rate that is closest to and less than the bitrate threshold. As noted above, video quality at a given maximum bitrate can be higher at a lower resolution. Beyond a maximum bitrate threshold, however, improvements in video quality at a specific resolution diminish with increases in maximum bitrate. Typically, increasing resolution is the best way to achieve significant improvements in video quality beyond the threshold. The bitrate threshold is largely qualitative and can be defined in any of a variety of ways. Bitrate thresholds can be defined that generally apply to all video streams encoded at a given resolution, sample aspect ratio and frame rate irrespective of the content of the video. In many embodiments, maximum bitrate thresholds are in terms of a maximum number of macroblocks per second or as a maximum bitrate.


A generalized process for selecting maximum bitrates at which to encode a plurality of alternative streams using a profile of maximum bitrates corresponding to typical network connection data rates within an adaptive bitrate streaming system in accordance with an embodiment of the invention is illustrated in FIG. 2. The process 200 commences by selecting (210) resolution and sample aspect ratio combinations for the alternative streams. In a number of embodiments, processes similar to those outlined in U.S. patent application Ser. No. 13/430,032 are utilized to select resolution and sample aspect ratio combinations that have the same aspect ratio. The adjusted macroblocks per second (AMBPS) is then calculated (212) for each encoding resolution. In many embodiments of the invention, the following formula may be utilized to calculate the AMBPS for an encoding resolution:

AMBPS=((width*height*FPS)/256)*AdjustmentFactor(FPS),


where width and height are the width and height of the encoding resolution,

    • fps is the frame rate per second for the video data, and
    • AdjustmentFactor(FPS) is a predetermined value based on the FPS of the video data.


In several embodiments, the following adjustment factors are used for the following common frame rates:

    • FPS=29.97, AdjustmentFactor(FPS)=1;
    • FPS=25, AdjustmentFactor(FPS)=1.1333; and
    • FPS=23.976, AdjustmentFactor(FPS)=1.1606.


In many embodiments, the following general formula may be applied to determine the adjustment factor for any variety of frame rates, including when the frame rate of the video data is greater than 30 FPS:

AdjustmentFactor(FPS)=1+((MaxFPS−FPS)/(MaxFPS*1.25)),


where FPS is the FPS of the video data and MaxFPS=Ceiling (FPS/30)*30.


Once the AMBPS is calculated, it is compared to the set of minimum adjusted macroblocks per second (MAMBPS) that are associated with maximum bitrates determined based upon the effective maximum data rates that are likely to be experienced by playback devices within the adaptive bitrate streaming system to determine the differences (214) between the calculated AMBPS and the recommended MAMBPS. An example 600 of a set of MAMBPS in accordance with an embodiment of the invention is illustrated in FIG. 6. An example 500 of a set of predetermined bitrates in accordance with an embodiment of the invention is shown in FIG. 5, and the association of MAMBPS and those bitrates in FIG. 6. Once the differences are calculated, in many embodiments the differences are sorted (216). The smallest positive difference between the calculated AMBPS and the MAMBPS is selected (218) (i.e. the highest value of the minimum adjusted macroblocks per second value that is closest to and less than the AMBPS). The bitrate corresponding to the smallest positive difference is selected (220) as the maximum bitrate for the encoding of the alternative video stream at the specified resolution, sample aspect ratio and frame rate. In a number of embodiments, if the bitrate does not have a corresponding smallest positive difference, there is no corresponding encoding bitrate and the resolution and frame rate combination for the video data is not allowed. In other embodiments, if more than one bitrate choice is available for the same MAMBPS, then all of the corresponding bitrates are selected for encoding of the alternative video stream at the specified resolution, sample aspect ratio and frame rate.


In the event that the set of maximum bitrates changes in response to changes in the maximum data rates experienced by the playback device during the streaming of the video data, the maximum bitrates at which the alternative streams are encoded will change accordingly. An example of a set of video encoding bitrates and minimum adjusted macroblocks per second which could be utilized for adaptive bitrate streaming of alternative streams of video encoded at resolution and sample aspect ratio combinations and maximum bitrates corresponding to the display aspect ratios and network connection maximum data rates of playback devices receiving the streams in accordance with embodiments of the invention is illustrated in FIG. 6. As the maximum data rates experienced by the playback device vary during the streaming of video data, alternative streams of video data will be selected. Typically, the alternative streams of video include at least one alternative stream of video data that has a maximum bitrate corresponding to the maximum data rate that is likely to be experienced by the playback device. For example, an adaptive streaming system may be streaming multimedia content to a playback device with video data at a resolution of 1920×1080 at 30 frames per second. This video data may initially have an ideally determined encoded bitrate of 8969 Kbps with calculated adjusted macroblocks per second of 243000. Referring to FIG. 6 and FIG. 5, the column labeled Profile 1 indicates that a group of playback devices have network connections with an anticipated maximum bitrate of 8400 Kbps would have corresponding adjusted macroblocks per second of 217000. Therefore, the video stream at 1920×1080 would have been encoded at 8400 Kbps instead of 8969 Kbps, and selected as the streamed video stream. During streaming, a playback device that typically experiences a maximum bitrate of 8400 Kbps may suffer some network congestion, reducing the maximum available bitrate to 2800 Kbps. In accordance with the above process, the adaptive bitrate streaming system will adjust the video data stream to be streamed by selecting an alternative stream having a maximum bitrate that is less than the data rate of the playback device's network connection. As seen in FIG. 6, the nearest bitrate is 2400, resulting in the adaptive streaming system switching to an alternative stream of video data having a minimum adjusted macroblocks per second of 102000 according to the column labeled Example Profile 1. For example, a stream of video data at a resolution of 1280×720 at 30 frames per second has a calculated adjusted macroblocks per second of 108000; therefore, the adaptive bitrate streaming system will switch to this alternative stream of video data to ensure smooth delivery and playback at the reduced network data rate. Additionally, the video data at resolution of 1280×720 may have been encoded according to the bitrate value of 2400 Kbps, as indicated by the table in FIG. 6. For a system that is based on the streaming characteristics of the column labeled Encode Profile, the video data at resolution of 1280×720 may have been encoded according to the bitrate values of 2400 and 1750 Kbps, because the closest minimum adjusted macroblocks per second value that is less than 108000 is 60000, and this corresponds to the two bitrates which have been specified in FIG. 5. It should be noted, however, that the alternative stream selected will be the stream with the smallest positive difference between the calculated adjusted macroblocks per second of the stream and the adjusted macroblocks per second of the maximum bitrate corresponding to the available data rate.


Although a specific process is described above, there are a variety of methods to determine the resolution and sample aspect ratios of alternative streams of video and the maximum bitrates at which to encode each of the alternative streams of video in accordance with embodiments of the invention. Systems and methods for determining adjustment factors for calculating the bitrate threshold beyond which the video quality of an alternative stream encoded at specific frame rate no longer appreciably improves in accordance with embodiments of the invention are discussed below.


The Adjustment Process


Given video data at a particular frame rate, adjustments factors can be utilized when determining bitrate thresholds for video streams at lower frame-rates due to a quality normalization process between lower and higher frame rates. Frames of video data for content with lower frame rates experience a larger time gap between frames; as a result they may experience larger motion between objects between frames than those of a higher frame-rate video sequence. Additionally, due to the non-linear nature of motion, objects may experience a higher degree of prediction error due to the larger potential time gap between frames in the motion estimation process that is common to many video compression standards which may be utilized to encode video data in accordance with embodiments of the invention. In many video compression standards, the larger motion between objects may ultimately necessitate the allocation of more bits to the encoding of inter-frames in a lower frame rate sequence. Besides the inter-frames, it is also possible that a larger percentage of intra-frames are present in lower frame rate content. Other factors may also involve an adjustment to the linear calculation of AMBPS. A generalized process for determining an adjustment factor in accordance with embodiments of the invention is illustrated in FIG. 3. The process 300 may commence by creating (310) source content, such as video data, with varying frame rates. In a number of embodiments, the source content has been previously created. The adjustment factors are initialized (312) to 1. The encoding bitrate of the source content is determined (314) utilizing the frame rate and resolution of the source content, which may be utilized in a formula which provides an estimate for the encoding bitrate. The encoding bitrate is then scaled (316) by the adjustment factor. The content is then encoded (318). Once the content is encoded, the encoded content is analyzed (320). In several embodiments, the analysis (320) is an objective quality analysis. In a number of embodiments, the analysis (320) is a subjective quality analysis. After the content is analyzed, the quality of the encoded content at the maximum frame rate is compared (322) to the quality of the encoded content at the minimum frame rate. A comparison (324) is then made. If the quality of the encoded content at the minimum frame rate is lower than the quality of the encoded content at the maximum frame rate, the adjustment factor is increased (326) and the process begins anew starting with scaling (316) the encoding bitrate. In some embodiments, the adjustment factor may be decreased if the quality of the encoded content at the minimum frame rate is higher than the quality of the encoded content at the maximum frame rate. If the quality is not different, the adjustment factor is saved (328) for the lower frame rates.


In many embodiments of the invention, the process 300 may be performed for a variety of types of source content, where the adjustment factor is calculated as an average of all the encoding of the source content. In addition, alternative processes can be utilized to calculate adjustment factors for the purpose of determining the maximum bitrates at which to encode specific pieces of content based upon the resolution, and frame rate of the encoded content.


Although the present invention has been described in certain specific aspects, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention may be practiced otherwise than specifically described, including playback devices where the set of streaming switching conditions utilized by the playback device are continuously changing, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.

Claims
  • 1. An adaptive bitrate streaming system comprising: a set of one or more source encoding servers, wherein each encoding server of the set of encoding servers comprises: a non-volatile storage containing an encoding application; andat least one processor;wherein the encoding applications cause the processors of the encoding servers to encode source content as a plurality of alternative streams of video for playback on a playback device and direct the processors of the encoding servers to: receive multimedia content, where the multimedia content comprises source video data having a primary resolution, a primary display aspect ratio, and a primary frame rate;determine a plurality of encoding combinations, wherein each encoding combination comprises one of a plurality of resolutions and one of a plurality of sample aspect ratios, wherein the resolution and the sample aspect ratio of each encoding combination results in a common display aspect ratio corresponding to the primary display aspect ratio of the original source video;determine a recommended encoding combination for each maximum bitrate of a plurality of maximum bitrates by: determining an estimated bitrate for each encoding combination based on the resolution of the encoding combination, wherein the estimated bitrate for at least one encoding combination is less than the determined maximum bitrate for the at least one encoding combination; andselecting an encoding combination with an estimated bitrate less than the maximum bitrate as the determined encoding combination; andencode the source video data as alternative streams of video for each maximum bitrate of the plurality of maximum bitrates, wherein each alternative stream of video is encoded with the recommended encoding combination for each maximum bitrate, wherein each pixel of encoded video is scaled to an integer number of pixels on a display of the playback device.
  • 2. The adaptive bitrate streaming system of claim 1, wherein each encoding combination further comprises a frame rate, wherein the maximum bitrate for each encoding combination is a maximum bitrate threshold beyond which higher video quality can be achieved using a higher resolution than the resolution at the frame rate of the encoding combination and the recommended bitrate is a maximum predetermined bitrate of a plurality of predetermined bitrates that is not greater than the maximum bitrate threshold.
  • 3. The adaptive bitrate streaming system of claim 2, wherein the encoding applications further direct the processors of the encoding servers to determine the maximum bitrate threshold for each encoding combination using an adjusted number of macroblocks per second determined based upon the resolution and frame rate for the encoding combination.
  • 4. The adaptive bitrate streaming system of claim 1, wherein the playback device can transition between the alternative streams without the need to resample the alternative streams or add padding rows and columns to the decoded video to fit to a display resolution of the display of the playback device.
  • 5. The adaptive bitrate streaming system of claim 2, wherein the the plurality of predetermined bitrates corresponds to maximum effective data rates of network connections of playback devices.
  • 6. The adaptive bitrate streaming system of claim 1, wherein different alternative streams encode the source video data at different frame rates.
  • 7. The adaptive bitrate streaming system of claim 2, wherein the plurality of predetermined bitrates correspond to a predetermined network connection maximum data rate typically experienced by a set of playback devices that use a particular technology and Internet Service Provider to connect to the Internet.
  • 8. The adaptive bitrate streaming system of claim 3, wherein the adjusted number of macroblocks per second is adjusted based on an adjustment factor computed for each frame rate of a plurality of frame rates.
  • 9. The adaptive bitrate streaming system of claim 2, wherein the maximum bitrate threshold for each encoding combination is determined irrespective of the content of the video.
  • 10. A non-transitory machine readable medium containing processor instructions, where execution of the instructions by a processor causes the processor to perform a process comprising: receive multimedia content, where the multimedia content comprises source video data having a primary resolution, a primary display aspect ratio, and a primary frame rate;determine a plurality of encoding combinations, wherein each encoding combination comprises one of a plurality of resolutions and one of a plurality of sample aspect ratios, wherein the resolution and the sample aspect ratio of each encoding combination results in a common display aspect ratio corresponding to the primary display aspect ratio of the original source video;determine a recommended encoding combination for each maximum bitrate of a plurality of maximum bitrates by: determining an estimated bitrate for each encoding combination based on the resolution of the encoding combination, wherein the estimated bitrate for at least one encoding combination is less than the determined maximum bitrate for the at least one encoding combination; andselecting an encoding combination with an estimated bitrate less than the maximum bitrate as the determined encoding combination; andencode the source video data as alternative streams of video for each maximum bitrate of the plurality of maximum bitrates, wherein each alternative stream of video is encoded with the recommended encoding combination for each maximum bitrate, wherein each pixel of encoded video is scaled based on the resolution and the sample aspect ratio of the encoding combination of each alternative stream to an integer number of pixels on a display of the playback device.
  • 11. The non-transitory machine readable medium of claim 10, wherein each encoding combination further comprises a frame rate, wherein the maximum bitrate for each encoding combination is a maximum bitrate threshold beyond which higher video quality can be achieved using a higher resolution than the resolution at the frame rate of the encoding combination and the recommended bitrate is a maximum predetermined bitrate of a plurality of predetermined bitrates that is not greater than the maximum bitrate threshold.
  • 12. The non-transitory machine readable medium of claim 11, wherein execution of the instructions by a processor further causes the processor to determine the maximum bitrate threshold for each encoding combination using an adjusted number of macroblocks per second determined based upon the resolution and frame rate for the encoding combination.
  • 13. The non-transitory machine readable medium of claim 10, wherein the playback device can transition between the alternative streams without the need to resample the alternative streams or add padding rows and columns to the decoded video to fit to a display resolution of the display of the playback device.
  • 14. The non-transitory machine readable medium of claim 11, wherein the plurality of predetermined bitrates corresponds to maximum effective data rates of network connections of playback devices.
  • 15. The non-transitory machine readable medium of claim 10, wherein different alternative streams encode the source video data at different frame rates.
  • 16. The non-transitory machine readable medium of claim 10, wherein the plurality of predetermined bitrates correspond to a predetermined network connection maximum data rate typically experienced by a set of playback devices that use a particular technology and Internet Service Provider to connect to the Internet.
  • 17. The non-transitory machine readable medium of claim 12, wherein the adjusted number of macroblocks per second is adjusted based on an adjustment factor computed for each frame rate of a plurality of frame rates.
  • 18. The non-transitory machine readable medium of claim 11, wherein the maximum bitrate threshold for each encoding combination is determined irrespective of the content of the video.
CROSS-REFERENCE TO RELATED APPLICATIONS

The current application is a continuation of U.S. patent application Ser. No. 14/464,146 filed Aug. 20, 2014 which is a continuation of U.S. patent application Ser. No. 13/432,521 filed Mar. 28, 2012 which issued on Aug. 26, 2014 as U.S. Pat. No. 8,818,171 which claimed priority to U.S. Provisional Patent Application No. 61/529,204, filed Aug. 30, 2011, the disclosures of which are incorporated herein by reference.

US Referenced Citations (341)
Number Name Date Kind
3919474 Benson Nov 1975 A
4009331 Goldmark et al. Feb 1977 A
4694357 Rahman et al. Sep 1987 A
4802170 Trottier Jan 1989 A
4964069 Ely Oct 1990 A
4974260 Rudak Nov 1990 A
5119474 Beitel et al. Jun 1992 A
5274758 Beitel et al. Dec 1993 A
5361332 Yoshida et al. Nov 1994 A
5396497 Veltman Mar 1995 A
5404436 Hamilton Apr 1995 A
5420801 Dockter et al. May 1995 A
5420974 Morris et al. May 1995 A
5471576 Yee Nov 1995 A
5487167 Dinallo et al. Jan 1996 A
5533021 Branstad et al. Jul 1996 A
5537408 Branstad et al. Jul 1996 A
5539908 Chen et al. Jul 1996 A
5541662 Adams et al. Jul 1996 A
5583652 Ware Dec 1996 A
5627936 Prasad May 1997 A
5633472 DeWitt et al. May 1997 A
5642171 Baumgartner et al. Jun 1997 A
5655117 Goldberg et al. Aug 1997 A
5664044 Ware Sep 1997 A
5675382 Bauchspies Oct 1997 A
5675511 Prasad et al. Oct 1997 A
5684542 Tsukagoshi Nov 1997 A
5719786 Nelson et al. Feb 1998 A
5745643 Mishina Apr 1998 A
5751280 Abbott May 1998 A
5763800 Rossum et al. Jun 1998 A
5765164 Prasad et al. Jun 1998 A
5794018 Vrvilo et al. Aug 1998 A
5822524 Chen et al. Oct 1998 A
5828370 Moeller et al. Oct 1998 A
5844575 Reid Dec 1998 A
5848217 Tsukagoshi et al. Dec 1998 A
5903261 Walsh et al. May 1999 A
5907597 Mark May 1999 A
5912710 Fujimoto Jun 1999 A
5956729 Goetz et al. Sep 1999 A
5959690 Toebes, VIII et al. Sep 1999 A
6005621 Linzer et al. Dec 1999 A
6031622 Ristow et al. Feb 2000 A
6046778 Nonomura et al. Apr 2000 A
6065050 DeMoney May 2000 A
6079566 Eleftheriadis et al. Jun 2000 A
6157410 Izumi et al. Dec 2000 A
6169242 Fay et al. Jan 2001 B1
6195388 Choi et al. Feb 2001 B1
6204883 Tsukagoshi Mar 2001 B1
6246803 Gauch et al. Jun 2001 B1
6308005 Ando et al. Oct 2001 B1
6330286 Lyons et al. Dec 2001 B1
6374144 Viviani et al. Apr 2002 B1
6395969 Fuhrer May 2002 B1
6430354 Watanabe Aug 2002 B1
6481012 Gordon et al. Nov 2002 B1
6658056 Duruöz et al. Dec 2003 B1
6665835 Gutfreund et al. Dec 2003 B1
6671408 Kaku Dec 2003 B1
6697568 Kaku Feb 2004 B1
6725281 Zintel et al. Apr 2004 B1
6807306 Girgensohn et al. Oct 2004 B1
6819394 Nomura et al. Nov 2004 B1
6856997 Lee et al. Feb 2005 B2
6859496 Boroczky et al. Feb 2005 B1
6917652 Lyu Jul 2005 B2
6920179 Anand et al. Jul 2005 B1
6944621 Collart Sep 2005 B1
6944629 Shioi et al. Sep 2005 B1
6956901 Boroczky et al. Oct 2005 B2
6985588 Glick et al. Jan 2006 B1
6988144 Luken et al. Jan 2006 B1
7127155 Ando et al. Oct 2006 B2
7209892 Galuten et al. Apr 2007 B1
7237061 Boic Jun 2007 B1
7242772 Tehranchi Jul 2007 B1
7330875 Parasnis et al. Feb 2008 B1
7340528 Noblecourt et al. Mar 2008 B2
7356245 Belknap et al. Apr 2008 B2
7366788 Jones et al. Apr 2008 B2
7457359 Mabey et al. Nov 2008 B2
7478325 Foehr Jan 2009 B2
7493018 Kim Feb 2009 B2
7499938 Collart Mar 2009 B2
7728878 Yea et al. Jun 2010 B2
7869691 Kelly et al. Jan 2011 B2
8023562 Zheludkov et al. Sep 2011 B2
8046453 Olaiya Oct 2011 B2
8054880 Yu et al. Nov 2011 B2
8225061 Greenebaum Jul 2012 B2
8233768 Soroushian et al. Jul 2012 B2
8249168 Graves Aug 2012 B2
8270473 Chen et al. Sep 2012 B2
8270819 Vannier Sep 2012 B2
8289338 Priyadarshi et al. Oct 2012 B2
8311115 Gu et al. Nov 2012 B2
8321556 Chatterjee et al. Nov 2012 B1
8386621 Park Feb 2013 B2
8456380 Pagan Jun 2013 B2
8472792 Butt et al. Jun 2013 B2
RE45052 Li Jul 2014 E
8768984 Priddle et al. Jul 2014 B2
8818171 Soroushian et al. Aug 2014 B2
8832297 Soroushian et al. Sep 2014 B2
8914534 Braness et al. Dec 2014 B2
9021119 Van Der Schaar et al. Apr 2015 B2
9025659 Soroushian et al. May 2015 B2
9197944 Reisner Nov 2015 B2
9350990 Orton-Jay et al. May 2016 B2
9357210 Orton-Jay et al. May 2016 B2
9467708 Soroushian et al. Oct 2016 B2
9510031 Soroushian et al. Nov 2016 B2
9571827 Su et al. Feb 2017 B2
9661049 Gordon May 2017 B2
9712890 Shivadas et al. Jul 2017 B2
9955195 Soroushian Apr 2018 B2
10148989 Amidei et al. Dec 2018 B2
10595070 Amidei et al. Mar 2020 B2
10645429 Soroushian May 2020 B2
20010030710 Werner Oct 2001 A1
20020034252 Owen et al. Mar 2002 A1
20020051494 Yamaguchi et al. May 2002 A1
20020062313 Lee et al. May 2002 A1
20020076112 Devara Jun 2002 A1
20020087569 Fischer et al. Jul 2002 A1
20020091665 Beek et al. Jul 2002 A1
20020093571 Hyodo Jul 2002 A1
20020094031 Ngai et al. Jul 2002 A1
20020110193 Yoo et al. Aug 2002 A1
20020118953 Kim Aug 2002 A1
20020120498 Gordon et al. Aug 2002 A1
20020143413 Fay et al. Oct 2002 A1
20020143547 Fay et al. Oct 2002 A1
20020147980 Satoda Oct 2002 A1
20020161462 Fay Oct 2002 A1
20020180929 Tseng et al. Dec 2002 A1
20020184159 Tadayon et al. Dec 2002 A1
20020191112 Akiyoshi et al. Dec 2002 A1
20020191960 Fujinami et al. Dec 2002 A1
20030001964 Masukura et al. Jan 2003 A1
20030002578 Tsukagoshi et al. Jan 2003 A1
20030005442 Brodersen et al. Jan 2003 A1
20030035488 Barrau Feb 2003 A1
20030078930 Surcouf et al. Apr 2003 A1
20030093799 Kauffman et al. May 2003 A1
20030123855 Okada et al. Jul 2003 A1
20030128296 Lee Jul 2003 A1
20030133506 Haneda Jul 2003 A1
20030142872 Koyanagi Jul 2003 A1
20030152370 Otomo et al. Aug 2003 A1
20030165328 Grecia Sep 2003 A1
20030185302 Abrams Oct 2003 A1
20030185542 McVeigh et al. Oct 2003 A1
20030206558 Parkkinen et al. Nov 2003 A1
20030216922 Gonzales et al. Nov 2003 A1
20030231863 Eerenberg et al. Dec 2003 A1
20030231867 Gates et al. Dec 2003 A1
20030236836 Borthwick Dec 2003 A1
20040006701 Kresina Jan 2004 A1
20040021684 Millner Feb 2004 A1
20040025180 Begeja et al. Feb 2004 A1
20040047614 Green Mar 2004 A1
20040052501 Tam Mar 2004 A1
20040071453 Valderas Apr 2004 A1
20040081434 Jung et al. Apr 2004 A1
20040114687 Ferris et al. Jun 2004 A1
20040117347 Seo et al. Jun 2004 A1
20040136698 Mock Jul 2004 A1
20040143760 Alkove et al. Jul 2004 A1
20040146276 Ogawa Jul 2004 A1
20040150747 Sita Aug 2004 A1
20040208245 Macinnis et al. Oct 2004 A1
20040217971 Kim Nov 2004 A1
20040255236 Collart Dec 2004 A1
20050015797 Noblecourt et al. Jan 2005 A1
20050038826 Bae et al. Feb 2005 A1
20050055399 Savchuk Mar 2005 A1
20050089091 Kim et al. Apr 2005 A1
20050157948 Lee Jul 2005 A1
20050180641 Clark Aug 2005 A1
20050193070 Brown et al. Sep 2005 A1
20050193322 Lamkin et al. Sep 2005 A1
20050196147 Seo et al. Sep 2005 A1
20050207442 van Zoest et al. Sep 2005 A1
20050207578 Matsuyama et al. Sep 2005 A1
20050210145 Kim Sep 2005 A1
20050273695 Schnurr Dec 2005 A1
20050275656 Corbin et al. Dec 2005 A1
20060015813 Chung et al. Jan 2006 A1
20060039481 Shen Feb 2006 A1
20060072672 Holcomb et al. Apr 2006 A1
20060078301 Ikeda et al. Apr 2006 A1
20060093320 Hallberg et al. May 2006 A1
20060126717 Boyce et al. Jun 2006 A1
20060129909 Butt et al. Jun 2006 A1
20060168639 Gan et al. Jul 2006 A1
20060173887 Breitfeld et al. Aug 2006 A1
20060181965 Collart Aug 2006 A1
20060182139 Bugajski et al. Aug 2006 A1
20060235880 Qian Oct 2006 A1
20060245727 Nakano et al. Nov 2006 A1
20060259588 Lerman et al. Nov 2006 A1
20060263056 Lin et al. Nov 2006 A1
20060267986 Bae Nov 2006 A1
20060274835 Hamilton et al. Dec 2006 A1
20070005333 Setiohardjo et al. Jan 2007 A1
20070024706 Brannon, Jr. Feb 2007 A1
20070031110 Rijckaert Feb 2007 A1
20070047901 Ando et al. Mar 2007 A1
20070053293 Mcdonald et al. Mar 2007 A1
20070083617 Chakrabarti et al. Apr 2007 A1
20070086528 Mauchly et al. Apr 2007 A1
20070140647 Kusunoki et al. Jun 2007 A1
20070154165 Hemmeryckz-Deleersnijder et al. Jul 2007 A1
20070168541 Gupta et al. Jul 2007 A1
20070168542 Gupta et al. Jul 2007 A1
20070177812 Yang et al. Aug 2007 A1
20070180125 Knowles et al. Aug 2007 A1
20070239839 Buday et al. Oct 2007 A1
20070292107 Yahata et al. Dec 2007 A1
20080030614 Schwab Feb 2008 A1
20080052306 Wang et al. Feb 2008 A1
20080101466 Swenson et al. May 2008 A1
20080104633 Noblecourt et al. May 2008 A1
20080120330 Reed et al. May 2008 A1
20080120342 Reed et al. May 2008 A1
20080126248 Lee et al. May 2008 A1
20080137736 Richardson et al. Jun 2008 A1
20080137848 Kocher et al. Jun 2008 A1
20080192818 DiPietro et al. Aug 2008 A1
20080196076 Shatz et al. Aug 2008 A1
20080232456 Terashima et al. Sep 2008 A1
20080253454 Imamura Oct 2008 A1
20080256105 Nogawa et al. Oct 2008 A1
20080263354 Beuque et al. Oct 2008 A1
20080266522 Weisgerber Oct 2008 A1
20080279535 Haque et al. Nov 2008 A1
20080310496 Fang Dec 2008 A1
20090031220 Tranchant et al. Jan 2009 A1
20090037959 Suh et al. Feb 2009 A1
20090060452 Chaudhri Mar 2009 A1
20090066839 Jung et al. Mar 2009 A1
20090116821 Shibamiya et al. May 2009 A1
20090132599 Soroushian et al. May 2009 A1
20090132721 Soroushian et al. May 2009 A1
20090150557 Wormley et al. Jun 2009 A1
20090169181 Priyadarshi et al. Jul 2009 A1
20090201988 Gazier et al. Aug 2009 A1
20090226148 Nesvadba et al. Sep 2009 A1
20090293116 DeMello Nov 2009 A1
20090300204 Zhang et al. Dec 2009 A1
20090303241 Priyadarshi et al. Dec 2009 A1
20090307258 Priyadarshi et al. Dec 2009 A1
20090307267 Chen et al. Dec 2009 A1
20090313544 Wood et al. Dec 2009 A1
20090313564 Rottler et al. Dec 2009 A1
20090328124 Khouzam et al. Dec 2009 A1
20100002069 Eleftheriadis et al. Jan 2010 A1
20100040351 Toma et al. Feb 2010 A1
20100094969 Zuckerman et al. Apr 2010 A1
20100095121 Shetty et al. Apr 2010 A1
20100111192 Graves May 2010 A1
20100146055 Hannuksela et al. Jun 2010 A1
20100158109 Dahlby et al. Jun 2010 A1
20100189183 Gu et al. Jul 2010 A1
20100226582 Luo et al. Sep 2010 A1
20100228795 Hahn Sep 2010 A1
20100259690 Wang et al. Oct 2010 A1
20100278271 MacInnis Nov 2010 A1
20110022432 Ishida et al. Jan 2011 A1
20110055585 Lee Mar 2011 A1
20110080940 Bocharov Apr 2011 A1
20110082924 Gopalakrishnan Apr 2011 A1
20110099594 Chen et al. Apr 2011 A1
20110126104 Woods et al. May 2011 A1
20110126191 Hughes et al. May 2011 A1
20110129011 Cilli et al. Jun 2011 A1
20110142415 Rhyu Jun 2011 A1
20110150100 Abadir Jun 2011 A1
20110153785 Minborg et al. Jun 2011 A1
20110164679 Satou et al. Jul 2011 A1
20110170408 Furbeck et al. Jul 2011 A1
20110239078 Luby et al. Sep 2011 A1
20110246659 Bouazizi Oct 2011 A1
20110268178 Park et al. Nov 2011 A1
20110280307 MacInnis Nov 2011 A1
20110302319 Ha et al. Dec 2011 A1
20110305273 He et al. Dec 2011 A1
20110310982 Yang et al. Dec 2011 A1
20110314176 Frojdh et al. Dec 2011 A1
20110314500 Gordon Dec 2011 A1
20120023251 Pyle et al. Jan 2012 A1
20120072493 Muriello et al. Mar 2012 A1
20120093214 Urbach Apr 2012 A1
20120105279 Brown et al. May 2012 A1
20120170642 Braness et al. Jul 2012 A1
20120170643 Soroushian et al. Jul 2012 A1
20120170906 Soroushian et al. Jul 2012 A1
20120170915 Braness et al. Jul 2012 A1
20120173751 Braness et al. Jul 2012 A1
20120177101 van der Schaar Jul 2012 A1
20120179834 van der Schaar Jul 2012 A1
20120203766 Hörnkvist et al. Aug 2012 A1
20120269275 Hannuksela Oct 2012 A1
20120278496 Hsu Nov 2012 A1
20120281767 Duenas Nov 2012 A1
20120307883 Graves Dec 2012 A1
20130007200 van der Schaar et al. Jan 2013 A1
20130044821 Braness et al. Feb 2013 A1
20130046902 Villegas Nuñez et al. Feb 2013 A1
20130051767 Soroushian et al. Feb 2013 A1
20130051768 Soroushian et al. Feb 2013 A1
20130054958 Braness et al. Feb 2013 A1
20130055084 Soroushian et al. Feb 2013 A1
20130058393 Soroushian Mar 2013 A1
20130061045 Kiefer et al. Mar 2013 A1
20130091249 McHugh et al. Apr 2013 A1
20130095855 Bort Apr 2013 A1
20130169863 Smith Jul 2013 A1
20130191754 Rose Jul 2013 A1
20130196292 Brennen et al. Aug 2013 A1
20140003501 Soroushian et al. Jan 2014 A1
20140003523 Soroushian et al. Jan 2014 A1
20140059243 Reisner Feb 2014 A1
20140211840 Butt et al. Jul 2014 A1
20140241421 Orton-jay et al. Aug 2014 A1
20140250473 Braness et al. Sep 2014 A1
20140355958 Soroushian et al. Dec 2014 A1
20140359680 Shivadas et al. Dec 2014 A1
20150104153 Braness et al. Apr 2015 A1
20150229695 Kim Aug 2015 A1
20160073176 Phillips et al. Mar 2016 A1
20160127440 Gordon May 2016 A1
20160134881 Wang et al. May 2016 A1
20170026445 Soroushian et al. Jan 2017 A1
20170366833 Amidei et al. Dec 2017 A1
20180278975 Soroushian Sep 2018 A1
20190182524 Amidei et al. Jun 2019 A1
Foreign Referenced Citations (65)
Number Date Country
2010202963 Feb 2012 AU
1221284 Jun 1999 CN
1662952 Aug 2005 CN
1723696 Jan 2006 CN
102138327 Jul 2011 CN
103858419 Jun 2014 CN
103875248 Jun 2014 CN
103875248 Sep 2018 CN
108989847 Dec 2018 CN
109314784 Feb 2019 CN
757484 Feb 1997 EP
813167 Dec 1997 EP
1335603 Aug 2003 EP
1420580 May 2004 EP
1718074 Nov 2006 EP
2661895 Nov 2013 EP
3473005 Apr 2019 EP
1195183 Feb 2018 HK
08163488 Jun 1996 JP
08287613 Nov 1996 JP
11328929 Nov 1999 JP
02001043668 Feb 2001 JP
2002170363 Jun 2002 JP
2002218384 Aug 2002 JP
2003250113 Sep 2003 JP
2005027153 Jan 2005 JP
2009508452 Feb 2009 JP
2014506430 Mar 2014 JP
20165043 Jan 2016 JP
2019-526188 Sep 2019 JP
100221423 Sep 1999 KR
2002013664 Feb 2002 KR
1020020064888 Aug 2002 KR
20110051104 May 2011 KR
20140056317 May 2014 KR
101928910 Dec 2018 KR
10-1936142 Jan 2019 KR
10-1981923 May 2019 KR
10-2020764 Sep 2019 KR
10-2074148 Jan 2020 KR
10-2086995 Mar 2020 KR
1995015660 Jun 1995 WO
2001031497 May 2001 WO
2001050732 Jul 2001 WO
2002001880 Jan 2002 WO
2004054247 Jun 2004 WO
2004097811 Nov 2004 WO
2004102571 Nov 2004 WO
2009065137 May 2009 WO
2010060106 May 2010 WO
2010122447 Oct 2010 WO
2010150470 Dec 2010 WO
2011053658 May 2011 WO
2011059291 May 2011 WO
2011087449 Jul 2011 WO
2011093835 Aug 2011 WO
2011102791 Aug 2011 WO
2012094171 Jul 2012 WO
2012094181 Jul 2012 WO
2012094189 Jul 2012 WO
2013033334 Mar 2013 WO
2013033335 Mar 2013 WO
2013033458 Mar 2013 WO
2013033458 May 2013 WO
2017218095 Dec 2017 WO
Non-Patent Literature Citations (121)
Entry
International Preliminary Report on Patentability for International Application No. PCT/US2012/053223, Report dated Mar. 4, 2014, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2012/053052, Report Completed Oct. 25, 2012, dated Nov. 16, 2012, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2012/053223, Report Completed Dec. 7, 2012, dated Mar. 7, 2013, 10 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/053053, search completed Oct. 23, 2012, dated Nov. 13, 2012, 11 pgs.
International Search Report for International Application No. PCT/SE2011/050166, Search completed Mar. 30, 2011, dated Mar. 30, 2011, 5 Pgs.
Extended European Search Report for European Application EP12828956.8, Report Completed Feb. 18, 2015, dated Mar. 2, 2015, 13 Pages.
“Transparent end-to-end packet switched streaming service (PSS); 3GPP file format (3GP) (Release 9)”, 3GPP TS 26.244 V9.0.0, Dec. 2009,sections 7.1-7.4, 52 pages.
Fecheyr-Lippens, A., “A Review of HTTP Live Streaming”, Jan. 25, 2010, X P002638990, Retrieved from the Internet: URL:http://issuu.com/andruby/docs/http_live_streaming Retrieved on May 24, 2011, 38 Pages.
Watson, Mark, “Input for Dash EE#1 (CMP): Pixel Aspect Ratio”, 94. MPEG Meeting, Oct. 11-15, 2010, Guangzhou, Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11, No. M18498, Oct. 28, 2010, XP030047088, 4 Pages.
“Supported Media Formats”, Supported Media Formats, Android Developers, Printed on Nov. 27, 2013 from developer.android.com/guide/appendix/media-formats.html, 3 pgs.
“Text of ISO/IEC 14496-18/COR1, Font compression and streaming”, ITU Study Group 16—Video Coding Experts Group—ISO/IEC MPEG & ITU-T VCEG(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 06), No. N8664, Oct. 27, 2006, 8 pgs.
“Text of ISO/IEC 14496-18/FDIS, Coding of Moving Pictures and Audio”, ITU Study Group 16—Videocoding Experts Group—ISO/IEC MPEG & ITU-T VCEG(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 06), No. N6215, Dec. 2003, 26 pgs.
“Thread: SSME (Smooth Streaming Medial Element) config.xml review (Smooth Streaming Client configuration file)”, Printed on Mar. 26, 2014, 3 pgs.
“Transcoding Best Practices”, From movideo, Printed on Nov. 27, 2013 from code.movideo.com/Transcoding_Best_Practices, 5 pgs.
“Using HTTP Live Streaming”, iOS Developer Library, http://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/streamingmediaguide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html#//apple_ref/doc/uid/TP40008332-CH102-SW1, Feb. 11, 2014, 10 pgs.
“Video Manager and Video Title Set IFO file headers”, printed Aug. 22, 2009 from http://dvd.sourceforge.net/dvdinfo/ifo.htm, 6 pgs.
“What is a DVD?”, printed Aug. 22, 2009 from http://www.videohelp.com/dvd, 8 pgs.
“What is a VOB file”, http://www.mpucoder.com/DVD/vobov.html, printed on Jul. 2, 2009, 2 pgs.
“What's on a DVD?”, printed Aug. 22, 2009 from http://www.doom9.org/dvd-structure.htm, 5 pgs.
U.S. Appl. No. 13/224,298, “Final Office Action Received”, dated May 19, 2014, 26 pgs.
Akhshabi et al., “An Experimental Evaluation of Rate-Adaptation Algorithms in Adaptive Streaming over HTTP”, MMSys'11, Feb. 23-25, 2011, 12 pgs.
Anonymous, “Method for the encoding of a compressed video sequence derived from the same video sequence compressed at a different bit rate without loss of data”, ip.com, ip.com No. IPCOM000008165D, May 22, 2002, pp. 1-9.
Blasiak, “Video Transrating and Transcoding: Overview of Video Transrating and Transcoding Technologies”, Ingenient Technologies, TI Developer Conference, Aug. 6-8, 2002, 22 pgs.
Casares et al., “Simplifying Video Editing Using Metadata”, DIS2002, 2002, pp. 157-166.
Deutscher, “IIS Transform Manager Beta—Using the MP4 to Smooth Task”, Retrieved from: https://web.archive.org/web/20130328111303/http://blog.johndeutscher.com/category/smooth-streaming, Blog post of Apr. 29, 2011, 14 pgs.
Ding, Li-Fu et al., “Content-Aware Prediction Algorithm Wth Inter-View Mode Decision for Multiview Video Coding”, IEEE Transactions on Multimedia, vol. 10, No. 8, Dec. 2008., Dec. 8, 2008, 12 Pages.
Fielding et al., “Hypertext Transfer Protocol—HTTP1.1”, Network Working Group, RFC 2616, Jun. 1999, 114 pgs.
Gannes, “The Lowdown on Apple's HTTP Adaptive Bitrate Streaming”, GigaOM, Jun. 10, 2009, 12 pgs.
Ghosh, “Enhancing Silverlight Video Experiences with Contextual Data”, Retrieved from: http://msdn.microsoft.com/en-us/magazine/ee336025.aspx, 2010, 15 pgs.
Griffith, Eric “The Wireless Digital Picture Frame Arrives”, Wi-Fi Planet, printed May 4, 2007 from http://www.wi-fiplanet.com/news/article.php/3093141, Oct. 16, 2003, 3 pgs.
Inlet Technologies, “Adaptive Delivery to iDevices”, 2010, 2 pages.
Inlet Technologies, “Adaptive delivery to iPhone 3.0”, 2009, 2 pgs.
Inlet Technologies, “HTTP versus RTMP”, 2009, 3 pages.
Inlet Technologies, “The World's First Live Smooth Streaming Event: The French Open”, 2009, 2 pages.
I-O Data, “Innovation of technology arrived”, Retrieved from http://www.iodata.com/catalogs/AVLP2DVDLA_Flyer200505.pdf, on May 30, 2013, 2 pgs.
Jeannin, Sylvie et al., “Video Motion Representation for Improved Content Access”, IEEE Transactions on Consumer Electronics, vol. 46, No. 3., Aug. 2004, 11 Pages.
Karouia et al., “Video Similarity Measurement Based on Attributed Relational Graph Matching”, N.T. Nguyen, R. Katarzyniak (Eds.): New Challenges in Applied Intelligence Technologies, SCI 134, pp. 173-182, 2008., 2008, 10 Pages.
Kim, Seon H. et al., “Design and implementation of geo-tagged video search framework”, Journal of Visual Communication and Image Representation, 2010, vol. 21 (2010), pp. 773-786.
Kurzke et al., “Get Your Content Onto Google TV”, Google, Retrieved from: http://commondatastorage.googleapis.com/io2012/presentations/live%20to%20website/1300.pdf, 2012, 58 pgs.
Lang, “Expression Encoder, Best Practices for live smooth streaming broadcasting”, Microsoft Corporation, 2010, retrieved from http://www.streamingmedia.com/conferences/west2010/presentations/SMWest-12010-Expression-Encoder.pdf, 20 pgs.
Levkov, “Mobile Encoding Guidelines for Android Powered Devices”, Adobe Systems Inc., Addendum B, Dec. 22, 2010, 42 pgs.
Lewis, “H.264/MPEG-4 AVC CABAC overview”, printed Jun. 24, 2013 from http://www.web.archive.org/web/20121025003926/www.theonlineoasis.co.uk/notes.html, 3 pgs.
Long et al., “Silver: Simplifying Video Editing with Metadata”, Demonstrations, CHI 2003: New Horizons, Apr. 5-10, pp. 628-629.
Morrison, “EA IFF 85 Standard for Interchange Format Files”, Jan. 14, 1985, printed from http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/IFF.txt on Mar. 6, 2006, 24 pgs.
MSDN, “Adaptive streaming, Expression Studio 2.0”, Apr. 23, 2009, 2 pgs.
Nelson, “Arithmetic Coding + Statistical Modeling = Data Compression: Part 1—Arithmetic Coding”, Doctor Dobb's Journal, Feb. 1991, USA, pp. 1-12.
Nelson, “Smooth Streaming Deployment Guide”, Microsoft Expression Encoder, Aug. 2010, 66 pgs.
Noboru, “Play Fast and Fine Video on Web! codec”, Co.9 No. 12, Dec. 1, 2003, pp. 178-179.
Noe, A. “Matroska File Format (under construction!)”, Retrieved from the Internet: URL:http://web.archive.orgweb/20070821155146/www.matroska.org/technical/specs/matroska.pdf [retrieved on Jan. 19, 2011], Jun. 24, 2007, 1-51.
Noe, Alexander “AVI File Format”, http://www.alexander-noe.com/video/documentation/avi.pdf, Dec. 14, 2006, pp. 1-26.
Noe, Alexander “Definitions”, Apr. 11, 2006, retrieved from http://www.alexander-noe.com/video/amg/definitions.html on Oct. 16, 2013, 2 pages.
Ozer, “The 2012 Encoding and Transcoding Buyers' Guide”, Streamingmedia.com, Retrieved from: http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/The-2012-Encoding-and-Transcoding-Buyers-Guide-84210.aspx, 2012, 8 pgs.
Pantos, “HTTP Live Streaming, draft-pantos-http-live-streaming-10”, IETF Tools, Oct. 15, 2012, Retrieved from: http://tools.ietf.org/html/draft-pantos-http-live-streaming-10, 37 pgs.
Phamdo, “Theory of Data Compression”, printed on Oct. 10, 2003, 12 pgs.
RGB Networks, “Comparing Adaptive HTTP Streaming Technologies”, Nov. 2011, Retrieved from: http://btreport.net/wp-content/uploads/2012/02/RGB-Adaptive-HTTP-Streaming-Comparison-1211-01.pdf, 20 pgs.
Schulzrinne et al., “Real Time Streaming Protocol (RTSP)”, Internet Engineering Task Force, RFC 2326, Apr. 1998, 80 pgs.
Siglin, “HTTP Streaming: What You Need to Know”, streamingmedia.com, 2010, 15 pages.
Siglin, “Unifying Global Video Strategies, MP4 File Fragmentation for Broadcast, Mobile and Web Delivery”, Nov. 16, 2011, 16 pgs.
Taxan, “AVel LinkPlayer2 for Consumer”, I-O Data USA—Products—Home Entertainment, printed May 4, 2007 from http://www.iodata.com/usa/products/products.php?cat=HNP&sc=AVEL&pld=AVLP2/DVDLA&ts=2&tsc, 1 pg.
Unknown, “AVI RIFF File Reference (Direct X 8.1 C++ Archive)”, printed from http://msdn.microsoft.com/archive/en- us/dx81_c/directx_cpp/htm/avirifffilereference.asp?fr . . . on Mar. 6, 2006, 7 pgs.
Unknown, “Entropy and Source Coding (Compression)”, TCOM 570, Sep. 1999, pp. 1-22.
Unknown, “MPEG-4 Video Encoder: Based on International Standard ISO/IEC 14496-2”, Patni Computer Systems, Ltd., Jan. 24, 2007, 15 pgs.
Zambelli, “IIS Smooth Streaming Technical Overview”, Microsoft Corporation, Mar. 2009.
Broadq—The Ultimate Home Entertainment Software, printed May 11, 2009 from ittp://web.srchive.org/web/20030401122010/www.broadq.com/qcasttuner/, 1 pg.
European Search Report for Application 11855103.5, search completed Jun. 26, 2014, 9 pgs.
European Search Report for Application 11855237.1, search completed Jun. 12, 2014, 9 pgs.
European Supplementary Search Report for Application EP09759600, completed Jan. 25, 2011, 11 pgs.
Supplementary European Search Report for Application No. EP 04813918, Search Completed Dec. 19, 2012, 3 pgs.
Federal Computer Week, “Tool Speeds Info to Vehicles”, Jul. 25, 1999, 5 pgs.
HTTP Live Streaming Overview, Networking & Internet, Apple, Inc., Apr. 1, 2011, 38 pages.
IBM Corporation and Microsoft Corporation, “Multimedia Programming Interface and Data Specifications 1.0”, Aug. 1991, printed from http://www.kk.iij4u.or.jp/˜kondo/wave/mpidata.txt on Mar. 6, 2006, 100 pgs.
InformationWeek, “Internet on Wheels”, InformationWeek: Front End: Daily Dose, Jul. 20, 1999, Printed on Mar. 26, 2014, 3 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2008/083816, dated May 18, 2010, 6 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/053052, Completed Mar. 4, 2014, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/US2011/067167, dated Feb. 25, 2014, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US09/46588, completed Jul. 13, 2009, dated Jul. 23, 2009, 7 pgs.
International Search Report and Written Opinion for International Application PCT/US2004/041667, completed May 24, 2007, dated Jun. 20, 2007, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2008/083816, completed Jan. 10, 2009, dated Jan. 22, 2009, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2017/031114, Search completed Jun. 29, 2017, dated Jul. 19, 2017, 11 Pgs.
International Search Report and Written Opinion for International Application PCT/US2011/066927, completed Apr. 3, 2012, dated Apr. 20, 2012, 14 pgs.
International Search Report and Written Opinion for International Application PCT/US2011/067167, completed Jun. 19, 2012, dated Jul. 2, 2012, 11 pgs.
ITS International, “Fleet System Opts for Mobile Server”, Aug. 26, 1999, Printed on Oct. 21, 2011 from http://www.itsinternational.com/News/article.cfm?recordID=547, 2 pgs.
Linksys Wireless-B Media Adapter Reviews, printed May 4, 2007 from http://reviews.cnet.com/Linksys_Wireless_B_Media_Adapter/4505-6739_7-30421900.html?tag=box, 5 pgs.
Linksys, KISS DP-500, printed May 4, 2007 from http://www.kiss-technology.com/?p=dp500, 2 pgs.
Linksys®: “Enjoy your digital music and pictures on your home entertainment center, without stringing wires!”, Model No. WMA 11B, printed May 9, 2007 from http://www.linksys.com/servlet/Satellite?c=L_Product_C2&childpagename=US/Layout&cid=1115416830950&p.
Microsoft Corporation, “Chapter 8, Multimedia File Formats” 1991, Microsoft Windows Multimedia Programmer's Reference, 3 cover pgs., pp. 8-1 to 8-20.
Microsoft Media Platform: Player Framework, “Microsoft Media Platform: Player Framework v2.5 (formerly Silverlight Media Framework)”, May 3, 2011, 2 pages.
Microsoft Media Platform: Player Framework, “Silverlight Media Framework v1.1”, Jan. 2010, 2 pages.
Microsoft Windows® XP Media Center Edition 2005, Frequently asked Questions, printed May 4, 2007 from http://www.microsoft.com/windowsxp/mediacenter/evaluation/faq.mspx.
Microsoft Windows® XP Media Center Edition 2005: Features, printed May 9, 2007, from http://www.microsoft.com/windowsxp/mediacenter/evaluation/features.mspx, 4 pgs.
Multiview Video Coding (MVC), ISO/IEC 14496-10, 2008 Amendment, 2 pgs.
Open DML AVI-M-JPEG File Format Subcommittee, “Open DML AVI File Format Extensions”, Version 1.02, Feb. 28, 1996, 29 pgs.
PC world.com, Future Gear: PC on the HiFi, and the TV, from http://www.pcworld.com/article/id,108818-page,1/article.html, printed May 4, 2007, from IDG Networks, 2 pgs.
Qtv—About BroadQ, printed May 11, 2009 from http://www.broadq.com/en/about.php, 1 pg.
Windows Media Center Extender for Xbox, printed May 9, 2007 from http://www.xbox.com/en-US/support/systemuse/xbox/console/mediacenterextender.htm, 2 pgs.
Windows® XP Media Center Edition 2005, “Experience more entertainment”, retrieved from http://download.microsoft.com/download/c/9/a/c9a7000a-66b3-455b-860b-1c16f2eecfec/MCE.pdf on May 9, 2007, 2 pgs.
“Adaptive HTTP Streaming in PSS-Client Behaviour”, S4-AH1129, 3GPP TSG-SA4 Ad-Hoc Meeting, Dec. 14-16, 2009, Paris, France; section 12.6.1.
“Adaptive HTTP Streaming in PSS-Data Formats for HTTP-Streaming excluding MPD”, S4-AHI128, 3GPP TSGSA4 Ad-Hoc Meeting, Dec. 14-16, 2009, Paris, France; sections 12.2.1 and 12.2.4.2.1.
“Adaptive HTTP Streaming in PSS-Discussion on Options”, S4-AHI130, 3GPP TSG-SA4 Ad-Hoc Meeting, Dec. 14-16, 2009, Paris, France; sections 1, 2.7-2.8, and 2.16-2.19.
“Adaptive Streaming Comparison”, Jan. 28, 2010, 5 pgs.
“Best Practices for Multi-Device Transcoding”, Kaltura Open Source Video, Printed on Nov. 27, 2013 from knowledge.kaltura.com/best-practices-multi-device-transcoding, 13 pgs.
“Container format (digital)”, printed Aug. 22, 2009 from http://en.wikipedia.org/wiki/Container_format_(digital), 4 pgs.
“DVD-MPeg differences”, printed Jul. 2, 2009 from http://dvd.sourceforge.net/dvdinfo/dvdmpeg.html, 1 pg.
“DVD subtitles”, sam.zoy.org/writings/dvd/subtitles, dated Jan. 9, 2001, printed Jul. 2, 2009, 4 pgs.
“Final Committee Draft of MPEG-4 streaming text format”, International Organisation for Standardisation, Feb. 2004, 22 pgs.
“Fragmented Time Indexing of Representations”, S4-AHI126, 3GPP TSG-SA4 Ad-Hoc Meeting, Dec. 14-16, 2009, Paris, France.
“Information Technology—Coding of audio-visual objects—Part 17: Streaming text”, International Organisation for Standardisation, Feb. 2004, 22 pgs.
“Information technology—Coding of audio-visual objects—Part 18: Font compression and streaming”, ISO/IEC 14496-18, First edition Jul. 1, 2004, 26 pgs.
“Innovation of technology arrived”, I-O Data, Nov. 2004, Retrieved from http://www.iodata.com/catalogs/AVLP2DVDLA_Flyer200505.pdf on May 30, 2013, 2 pgs., I-O Data, 2 pgs.
Kiss Players, “Kiss DP-500”, retrieved from http://www.kiss-technology.com/?p=dp500 on May 4, 2007, 1 pg.
“MPEG ISO/IEC 13818-1”, Information Technology—Generic Coding of Moving Pictures and Associated Audio: Systems, Apr. 25, 1995, 151 pages.
“MPEG-4, Part 14, ISO/IEC 14496-14”, Information technology—Coding of audio-visual objects, 18 pgs., Nov. 15, 2003.
“Netflix turns on subtitles for PC, Mac streaming”, Yahoo! News, Apr. 21, 2010, Printed on Mar. 26, 2014, 3 pgs.
“OpenDML AVI File Format Extensions”, OpenDML AVI M-JPEG File Format Subcommittee, retrieved from www.the-labs.com/Video/odmlff2-avidef.pdf, Sep. 1997, 42 pgs.
“OpenDML AVI File Format Extensions Version 1.02”, OpenDMLAVI MJPEG File Format Subcommittee. Last revision: Feb. 28, 1996. Reformatting: Sep. 1997.
“QCast Tuner for PS2”, printed May 11, 2009 from http://web.archive.org/web/20030210120605/www.divx.com/software/detail.php?ie=39, 2 pgs.
“Smooth Streaming Client”, The Official Microsoft IIS Site, Sep. 24, 2010, 4 pages.
International Preliminary Report on Patentability for International Application PCT/US2017/031114, Report dated Dec. 18, 2018, dated Dec. 27, 2018, 7 pgs.
“DVD-Mpeg differences”, http://dvd.sourceforge.net/dvdinfo/dvdmpeg.html, printed on Jul. 2, 2009, 1 pg.
European Extended Search Report for EP Application 17813738.6, Search completed Oct. 18, 2019, dated Oct. 24, 2019, 9 pgs.
Chung-Yi Wu et al., “A hierarchical reliability-driven scheduling for cloud video transcoding”, International Conference on Machine Learning and Cybernetics Jul. 12, 2015 pp. 456-457.
Related Publications (1)
Number Date Country
20170041604 A1 Feb 2017 US
Provisional Applications (1)
Number Date Country
61529204 Aug 2011 US
Continuations (2)
Number Date Country
Parent 14464146 Aug 2014 US
Child 15334068 US
Parent 13432521 Mar 2012 US
Child 14464146 US