The present invention relates to the delivery of multimedia content and more specifically streaming video content encoded at a variety of recommended maximum bitrates optimized for a variety of scaled display resolutions and network connection maximum data rates of playback devices receiving the streams.
The term streaming media describes the playback of media on a playback device, where the media is stored on a server and continuously sent to the playback device over a network during playback. Typically, the playback device stores a sufficient quantity of media in a buffer at any given time during playback to prevent disruption of playback due to the playback device completing playback of all the buffered media prior to receipt of the next portion of media. Adaptive bit rate streaming or adaptive streaming involves detecting the present streaming conditions (e.g. the user's network bandwidth and CPU capacity) in real time and adjusting the quality of the streamed media accordingly.
In adaptive streaming systems, the source media is typically stored on a media server as a top level index file pointing to a number of alternate streams that contain the actual video and audio data. Each stream is typically stored in one or more container files. Different adaptive streaming solutions typically utilize different index and media containers. The Matroska container is a media container developed as an open standard project by the Matroska non-profit organization of Aussonne, France. The Matroska container is based upon Extensible Binary Meta Language (EBML), which is a binary derivative of the Extensible Markup Language (XML). Decoding of the Matroska container is supported by many consumer electronics (CE) devices. The DivX Plus file format developed by DivX, LLC of San Diego, Calif. utilizes an extension of the Matroska container format, including elements that are not specified within the Matroska format.
Systems and methods for adaptive bitrate streaming of alternative streams of video encoded at resolution and sample aspect ratio combinations and maximum bitrates corresponding to the display aspect ratios and network connection maximum data rates of playback devices receiving the streams in accordance with embodiments of the invention are disclosed. In one embodiment of the invention, a source encoder configured to encode a source video stream as a plurality of alternative streams of video for playback on a playback device includes a processor configured by an encoding application to receive multimedia content, where the multimedia content includes source video data having a primary resolution, a primary sample aspect ratio, and a primary frame rate and to encode the source video data as a set of alternative streams of video, where the resolution and sample aspect ratio of at least one of the alternative streams of video are selected to have an aspect ratio that is the same as a predetermined display aspect ratio and at least one of the alternative streams is encoded at a maximum bitrate corresponding to a predetermined network connection maximum data rate.
In another embodiment of the invention, the encoding application further configures the processor to select a resolution, sample aspect ratio, and frame rate for one of the alternative streams, determine a maximum bitrate threshold beyond which higher video quality can be achieved using a higher resolution than the selected resolution at the selected frame rate, and encode the source video stream at the predetermined network connection maximum data rate, when the predetermined network connection maximum data rate is less than the maximum bitrate threshold.
In an additional embodiment of the invention, the source encoder includes an encoding profile, where the encoding profile specifies a plurality of maximum bitrates including a maximum bitrate corresponding to the predetermined network connection maximum data rate, wherein the encoding application further configures the processor to select a resolution, sample aspect ratio and frame rate for each alternative stream, determine a maximum bitrate threshold beyond which higher video quality can be achieved using a higher resolution than the selected resolution at the selected frame rate of each alternative stream, select a maximum bitrate from the profile for each alternative stream, where the selected maximum bitrate is the highest maximum bitrate specified in the profile that is less than the maximum bitrate threshold determined for the alternative stream, and generate each alternative stream by encoding the source video stream at the selected maximum bitrate, selected resolution, sample aspect ratio and frame rate.
In yet another additional embodiment of the invention, the encoding application further configures the processor to determine a maximum bitrate threshold beyond which higher video quality can be achieved using a higher resolution than the selected resolution at the selected frame rate by configuring the processor to determine the maximum bitrate threshold using an adjusted number of macroblocks per second determined based upon the selected resolution, and frame rate.
In still another embodiment of the invention, the encoding application configures the microprocessor to determine the adjusted number of macroblocks per second (AMBPS) as follows:
AMBPS=((width*height*FPS)/256)*AdjustmentFactor(FPS),
where width and height are the width and height of the encoding resolution, FPS is the frame rate per second for the video data, and AdjustmentFactor(FPS) is a predetermined value based on the FPS of the video data.
In yet still another additional embodiment of the invention, the adjustment factor is selected from the group including:
In yet another embodiment of the invention, the encoding application configures the processor to determine the adjustment factor is determined as follows:
AdjustmentFactor(FPS)=1+((MaxFPS−FPS)/(MaxFPS*1.25))
where MaxFPS is Ceiling (FPS/30)*30.
Still another embodiment of the invention includes encoding a source video stream as a plurality of alternative streams of video for playback on a playback device, including receiving multimedia content using a source encoder, where the multimedia content comprises source video data having a primary resolution, a primary sample aspect ratio, and a primary frame rate and encoding the source video data using the source encoder as a set of alternative streams of video, where encoding the source video includes selecting the resolution and sample aspect ratio of at least one of the alternative streams of video to have an aspect ratio that is the same as the predetermined display aspect ratio and encoding at least one of the alternative streams at a maximum bitrate corresponding to the predetermined network connection maximum data rate.
In yet another additional embodiment of the invention, encoding a source video stream as a plurality of alternative streams of video for playback on a playback device further includes selecting a resolution, sample aspect ratio, and frame rate for one of the alternative streams, determining a maximum bitrate threshold beyond which higher video quality can be achieved using a higher resolution than the selected resolution at the selected frame rate using the source encoder, and encoding the source video stream at the predetermined network connection maximum data rate using the source encoder, when the predetermined network connection maximum data rate is less than the maximum bitrate threshold.
In still another additional embodiment of the invention, encoding a source video stream as a plurality of alternative streams of video for playback on a playback device further includes retrieving an encoding profile using the source encoder, where the encoding profile specifies a plurality of maximum bitrates including a maximum bitrate corresponding to the predetermined network connection maximum data rate, selecting a resolution, sample aspect ratio and frame rate for each alternative stream, determining a maximum bitrate threshold beyond which higher video quality can be achieved using a higher resolution than the selected resolution at the selected frame rate of each alternative stream using the source encoder, selecting a maximum bitrate from the profile for each alternative stream using the source encoder, where the selected maximum bitrate is the highest maximum bitrate specified in the profile that is less than the maximum bitrate threshold determined for the alternative stream, and generating each alternative stream using the source encoder by encoding the source video stream at the selected maximum bitrate, selected resolution, sample aspect ratio and frame rate.
In still yet another additional embodiment of the invention, determining the maximum bitrate threshold using an adjusted number of macroblocks per second determined based upon the selected resolution and frame rate.
In still another embodiment of the invention, determining the adjusted number of macroblocks per second (AMBPS) as follows:
AMBPS=((width*height*FPS)/256)*AdjustmentFactor(FPS),
where width and height are the width and height of the encoding resolution, FPS is the frame rate per second for the video data, and AdjustmentFactor(FPS) is a predetermined value based on the FPS of the video data.
In yet another additional embodiment of the invention, the adjustment factor is selected from the group comprising:
In still yet another embodiment of the invention, the encoding application configures the processor to determine the adjustment factor is determined as follows:
AdjustmentFactor(FPS)=1+((MaxFPS−FPS)/(MaxFPS*1.25))
where MaxFPS is Ceiling (FPS/30)*30.
Still another embodiment of the invention includes a playback device configured to playback content on a display having a display aspect ratio, including a processor configured to communicate with a memory, where the memory contains a client application, wherein the client application configures the processor to connect to a content distribution system via a network connection, where the network connection has a predetermined maximum likely data rate, obtain an index file from the content distribution system, where the index file describes a plurality of alternative video streams, where at least one of the alternative video streams has the same aspect ratio as the display aspect ratio and is encoded at a maximum bitrate corresponding to the predetermined maximum likely data rate, and request a portion of at least one of the alternative streams using the index file.
Still another embodiment of the invention includes playing back content, including connecting to a content distribution system using a playback device via a network connection, where the network connection has a predetermined maximum likely data rate, obtaining an index file from the content distribution system using the playback device, where the index file describes a plurality of alternative video streams, where at least one of the alternative video streams has the same aspect ratio as the display aspect ratio and is encoded at a maximum bitrate corresponding to the predetermined maximum likely data rate, requesting a portion of at least one of the alternative streams using the playback device and the index file, and playing back the requested portions of the at least one alternative streams using the playback device.
Still another embodiment of the invention includes a machine readable medium containing processor instructions, where execution of the instructions by a processor causes the processor to perform a process including retrieving an encoding profile, where the encoding profile specifies a plurality of maximum bitrates including a maximum bitrate corresponding to the predetermined network connection maximum data rate, and a set of predetermined minimum adjusted macroblocks per second (MAMBPS) corresponding to each one of the maximum bitrates, selecting an encoding bitrate according to the corresponding value of the MAMBPS, selecting a resolution, sample aspect ratio and frame rate for each alternative stream, determining a maximum bitrate threshold beyond which higher video quality can be achieved using a higher resolution than the selected resolution at the selected frame rate of each alternative stream, selecting a maximum bitrate from the profile for each alternative stream, where the selected maximum bitrate corresponds to the MAMBPS that generates the highest positive difference between the AMBPS and the MAMBPS for the alternative stream, and generating each alternative stream by encoding the source video stream at the selected maximum bitrate, selected resolution, sample aspect ratio and frame rate.
In yet another additional embodiment of the invention, if the highest positive number that corresponds to the difference between the AMBPS and MAMBPS is zero, the resolution corresponding to the AMBPS is not allowed by the encoding profile.
Still another embodiment of the invention includes a machine readable medium containing processor instructions, where execution of the instructions by a processor causes the processor to perform a process including connecting to a content distribution system via a network connection, where the network connection has a predetermined maximum likely data rate, obtaining an index file from the content distribution system, where the index file describes a plurality of alternative video streams, where at least one of the alternative video streams has the same aspect ratio as the display aspect ratio and is encoded at a maximum bitrate corresponding to the predetermined maximum likely data rate, requesting a portion of at least one of the alternative streams using the index file, and playing back the requested portions of the at least one alternative streams.
Turning now to the drawings, systems and methods for adaptive bitrate streaming of alternative streams of video encoded at resolution and sample aspect ratio combinations and maximum bitrates corresponding to the display aspect ratios and network connection maximum data rates of playback devices receiving the streams in accordance with embodiments of the invention are illustrated. Adaptive bitrate streaming systems can stream alternative streams of video data encoded at maximum bitrates. In order to provide the highest quality video experience independent of the network data rate, the adaptive bitrate streaming systems switch between the available streams of video data throughout the delivery of the video data according to a variety of factors, including, but not limited to, the available network data rate and video decoder performance. Systems and methods for switching between video streams during playback are disclosed in U.S. patent application Ser. No. 13/221,682 entitled “Systems and Methods for Adaptive Bitrate Streaming of Media Stored in Matroska Container Files Using Hypertext Transfer Protocol” to Braness et al., filed Aug. 30, 2011, the disclosure of which is incorporated by reference herein in its entirety.
The data rate experienced by a playback device during adaptive bitrate streaming typically depends upon the technologies that the playback device utilizes to connect to the Internet and the Internet Service Provider that provides the Internet connection. Playback devices that utilize the same Internet Service Provider often experience similar maximum data rates that can deteriorate from time to time based upon network congestion and/or the processing load of the playback device. In adaptive bitrate streaming systems, the highest quality video that a playback device can receive is typically video encoded at a maximum bitrate equal to the maximum data rate of the network connection of a playback device. Where the video stream is transmitted in conjunction with other streams such as (but not limited to) an audio stream, a subtitle stream and/or a metadata stream, then the effective maximum data rate available for the video stream is equal to the maximum data rate, less the maximum data rates of each of the other streams along with a reserved data rate value that is greater than or equal to zero. An adaptive bitrate streaming system designed to deliver a video stream via the Internet to a variety of playback devices utilizing different Internet Service Providers can identify a set of effective maximum data rates corresponding to the effective maximum data rates likely to be experienced by each of the playback devices. For each effective maximum data rate in the set, the adaptive bitrate streaming system can then encode an alternative video stream having a maximum bitrate corresponding to the effective maximum data rate. In this way, a playback device is likely to be able to stream video encoded at the highest quality that can be supported by the playback device's network connection. In the event that streaming conditions deteriorate, the adaptive bitrate streaming system can stream video encoded at a lower maximum bitrate. Under normal streaming conditions, however, a video stream is available that is encoded to fully utilize the available network connection.
Due to standardization, video sources typically have a display aspect ratio selected from one of a number of common display aspect ratios. As is described in U.S. patent application Ser. No. 13/430,032, the performance of an adaptive bitrate streaming system can be enhanced by encoding each of the alternative streams using resolutions and sample aspect ratios that result in a common aspect ratio across the alternative streams corresponding to the display aspect ratio of the original video source. When a set of alternative video streams is encoded with resolutions and sample aspect ratios that result in an aspect ratio corresponding to the display aspect ratio of the original source, then each pixel of encoded video can be scaled to an integer number of pixels on the display and the playback device can smoothly transition between the streams without the need to resample the streams or add padding rows and/or columns to the decoded video to fit it to the display resolution.
U.S. patent application Ser. No. 13/430,032 also notes that the video quality of a stream encoded with a specific resolution and sample aspect ratio typically does not improve appreciably beyond a specific maximum bitrate threshold. Beyond that threshold, increasing the resolution of the encoded video can increase video quality.
Adaptive bitrate steaming systems in accordance with embodiments of the invention select a set of resolutions and sample aspect ratio combinations that have an aspect ratio corresponding to a specific display aspect ratio and encode an alternative stream at each resolution and sampling aspect ratio combination. The maximum bitrate used to encode each alternative stream is selected based upon a set of predetermined maximum bitrates corresponding to the maximum effective data rates of the network connections of the playback devices within the adaptive bitrate streaming system. The specific maximum bitrate selected for a specific resolution and sample aspect ratio combination may be determined based upon estimating the maximum bitrate threshold for the specific resolution and sample aspect ratio combination beyond which video quality does not appreciably improve and then identifying a maximum bitrate from the set of predetermined maximum bitrates that is the closest maximum bitrate that is less than the threshold. As is discussed further below, the maximum bitrate threshold for a specific resolution and sample aspect ratio combination typically depends upon the frame rate of the video.
By encoding at least one of the alternative streams of video provided by an adaptive bitrate streaming system in accordance with embodiments of the invention using a resolution and sample aspect ratio combination and maximum bitrates corresponding to the aspect ratio of the source content and maximum effective data rate of a playback device, the playback device can stream video encoded to provide the highest quality of video playback capable of being supported by the playback device given its network connection. By encoding lower maximum bitrate streams using resolution and sample aspect ratio combinations having the same aspect ratio as the source content's aspect ratio, the adaptive bitrate streaming system can smoothly transition to streams encoded at lower maximum bitrates when streaming conditions deteriorate. Adaptive bitrate streaming systems configured to stream alternative streams of video encoded at resolution and sample aspect ratio combinations and maximum bitrates corresponding to the display aspect ratios of the source content and network connection maximum effective data rates of the playback devices within the adaptive bitrate streaming system in accordance with embodiments of the invention are discussed further below.
System Overview
An adaptive bitrate streaming system in accordance with an embodiment of the invention is illustrated in
In the illustrated embodiment, playback devices include personal computers 110, CE players 108, and mobile phones 112. In other embodiments, playback devices can include consumer electronics devices such as DVD players, Blu-ray players, televisions, set top boxes, video game consoles, tablets, and other devices that are capable of connecting to a server via HTTP and playing back encoded media. In the illustrated embodiment, a variety of playback devices use HTTP or another appropriate stateless protocol to request portions of a top level index file and the container files via a network 102 such as the Internet. Prior to a playback device performing adaptive bitrate streaming using portions of media from alternative streams contained within the container files, a bandwidth probe can be performed by the playback device to determine available bandwidth. Once the bandwidth probe has been completed, the playback device can utilize data within the top level index including (but not limited to) the maximum bitrate of each of the available streams to determine the initial streams from which to commence requesting portions of encoded media as part of an adaptive streaming process.
Once playback of content from the initial set of streams commences, the playback device utilizes the top level index to perform adaptive bitrate streaming of the content in response to changes in streaming conditions. In many adaptive bitrate streaming systems, the playback device can progress through a series of operational phases in which the playback device responds differently in each phase to changes in the streaming conditions. In a number of embodiments, stability in streaming conditions or improving streaming conditions can result in a transition to a phase in which the playback device assumes stable operating conditions, buffers more content, and is less responsive to fluctuations in streaming conditions. In many embodiments, a deterioration in streaming conditions results in a stream switch to a set of streams utilizing less bandwidth and resulting in the playback device transitioning to a phase in which the playback device assumes unstable operating conditions, buffers less content, and responds rapidly to variations in streaming conditions.
In the illustrated embodiment, the adaptive bitrate streaming system includes one or more source encoders capable of encoding a stream of video content into alternative streams of video content encoded at resolution and sample aspect ratio combinations and maximum bitrates corresponding to the display aspect ratios of the source content and network connection maximum effective data rates of the playback devices within the adaptive bitrate streaming system. In many embodiments, the source encoder can be implemented using any device capable of encoding streams of multimedia, where the streams are encoded at different resolutions, sampling rates and/or maximum bitrates. The basic architecture of an adaptive streaming system source encoder in accordance with an embodiment of the invention is illustrated in
Determining Maximum Bitrates
Adaptive bitrate streaming systems in accordance with embodiments of the invention select the maximum bitrate at which to encode a video stream having a given resolution and sample aspect ratio based upon the bitrate threshold beyond which video quality no longer appreciably improves and the maximum effective bitrates likely to be experienced by different classes of playback device within the adaptive bitrate streaming system. The set of maximum data rates for different classes of playback devices typically depends upon the requirements of a specific application. Once the set of maximum data rates is determined, the maximum bitrate at which to encode a video stream having a specific resolution, sample aspect ratio and frame rate can be determined by determining the bitrate threshold beyond which video quality no longer appreciably improves and then selecting the maximum data rate that is closest to and less than the bitrate threshold. As noted above, video quality at a given maximum bitrate can be higher at a lower resolution. Beyond a maximum bitrate threshold, however, improvements in video quality at a specific resolution diminish with increases in maximum bitrate. Typically, increasing resolution is the best way to achieve significant improvements in video quality beyond the threshold. The bitrate threshold is largely qualitative and can be defined in any of a variety of ways. Bitrate thresholds can be defined that generally apply to all video streams encoded at a given resolution, sample aspect ratio and frame rate irrespective of the content of the video. In many embodiments, maximum bitrate thresholds are in terms of a maximum number of macroblocks per second or as a maximum bitrate.
A generalized process for selecting maximum bitrates at which to encode a plurality of alternative streams using a profile of maximum bitrates corresponding to typical network connection data rates within an adaptive bitrate streaming system in accordance with an embodiment of the invention is illustrated in
AMBPS=((width*height*FPS)/256)*AdjustmentFactor(FPS),
where width and height are the width and height of the encoding resolution,
In several embodiments, the following adjustment factors are used for the following common frame rates:
In many embodiments, the following general formula may be applied to determine the adjustment factor for any variety of frame rates, including when the frame rate of the video data is greater than 30 FPS:
AdjustmentFactor(FPS)=1+((MaxFPS−FPS)/(MaxFPS*1.25)),
where FPS is the FPS of the video data and MaxFPS=Ceiling (FPS/30)*30.
Once the AMBPS is calculated, it is compared to the set of minimum adjusted macroblocks per second (MAMBPS) that are associated with maximum bitrates determined based upon the effective maximum data rates that are likely to be experienced by playback devices within the adaptive bitrate streaming system to determine the differences (214) between the calculated AMBPS and the recommended MAMBPS. An example 600 of a set of MAMBPS in accordance with an embodiment of the invention is illustrated in
In the event that the set of maximum bitrates changes in response to changes in the maximum data rates experienced by the playback device during the streaming of the video data, the maximum bitrates at which the alternative streams are encoded will change accordingly. An example of a set of video encoding bitrates and minimum adjusted macroblocks per second which could be utilized for adaptive bitrate streaming of alternative streams of video encoded at resolution and sample aspect ratio combinations and maximum bitrates corresponding to the display aspect ratios and network connection maximum data rates of playback devices receiving the streams in accordance with embodiments of the invention is illustrated in
Although a specific process is described above, there are a variety of methods to determine the resolution and sample aspect ratios of alternative streams of video and the maximum bitrates at which to encode each of the alternative streams of video in accordance with embodiments of the invention. Systems and methods for determining adjustment factors for calculating the bitrate threshold beyond which the video quality of an alternative stream encoded at specific frame rate no longer appreciably improves in accordance with embodiments of the invention are discussed below.
The Adjustment Process
Given video data at a particular frame rate, adjustments factors can be utilized when determining bitrate thresholds for video streams at lower frame-rates due to a quality normalization process between lower and higher frame rates. Frames of video data for content with lower frame rates experience a larger time gap between frames; as a result they may experience larger motion between objects between frames than those of a higher frame-rate video sequence. Additionally, due to the non-linear nature of motion, objects may experience a higher degree of prediction error due to the larger potential time gap between frames in the motion estimation process that is common to many video compression standards which may be utilized to encode video data in accordance with embodiments of the invention. In many video compression standards, the larger motion between objects may ultimately necessitate the allocation of more bits to the encoding of inter-frames in a lower frame rate sequence. Besides the inter-frames, it is also possible that a larger percentage of intra-frames are present in lower frame rate content. Other factors may also involve an adjustment to the linear calculation of AMBPS. A generalized process for determining an adjustment factor in accordance with embodiments of the invention is illustrated in
In many embodiments of the invention, the process 300 may be performed for a variety of types of source content, where the adjustment factor is calculated as an average of all the encoding of the source content. In addition, alternative processes can be utilized to calculate adjustment factors for the purpose of determining the maximum bitrates at which to encode specific pieces of content based upon the resolution, and frame rate of the encoded content.
Although the present invention has been described in certain specific aspects, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention may be practiced otherwise than specifically described, including playback devices where the set of streaming switching conditions utilized by the playback device are continuously changing, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.
The current application is a continuation of U.S. patent application Ser. No. 14/464,146 filed Aug. 20, 2014 which is a continuation of U.S. patent application Ser. No. 13/432,521 filed Mar. 28, 2012 which issued on Aug. 26, 2014 as U.S. Pat. No. 8,818,171 which claimed priority to U.S. Provisional Patent Application No. 61/529,204, filed Aug. 30, 2011, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3919474 | Benson | Nov 1975 | A |
4009331 | Goldmark et al. | Feb 1977 | A |
4694357 | Rahman et al. | Sep 1987 | A |
4802170 | Trottier | Jan 1989 | A |
4964069 | Ely | Oct 1990 | A |
4974260 | Rudak | Nov 1990 | A |
5119474 | Beitel et al. | Jun 1992 | A |
5274758 | Beitel et al. | Dec 1993 | A |
5361332 | Yoshida et al. | Nov 1994 | A |
5396497 | Veltman | Mar 1995 | A |
5404436 | Hamilton | Apr 1995 | A |
5420801 | Dockter et al. | May 1995 | A |
5420974 | Morris et al. | May 1995 | A |
5471576 | Yee | Nov 1995 | A |
5487167 | Dinallo et al. | Jan 1996 | A |
5533021 | Branstad et al. | Jul 1996 | A |
5537408 | Branstad et al. | Jul 1996 | A |
5539908 | Chen et al. | Jul 1996 | A |
5541662 | Adams et al. | Jul 1996 | A |
5583652 | Ware | Dec 1996 | A |
5627936 | Prasad | May 1997 | A |
5633472 | DeWitt et al. | May 1997 | A |
5642171 | Baumgartner et al. | Jun 1997 | A |
5655117 | Goldberg et al. | Aug 1997 | A |
5664044 | Ware | Sep 1997 | A |
5675382 | Bauchspies | Oct 1997 | A |
5675511 | Prasad et al. | Oct 1997 | A |
5684542 | Tsukagoshi | Nov 1997 | A |
5719786 | Nelson et al. | Feb 1998 | A |
5745643 | Mishina | Apr 1998 | A |
5751280 | Abbott | May 1998 | A |
5763800 | Rossum et al. | Jun 1998 | A |
5765164 | Prasad et al. | Jun 1998 | A |
5794018 | Vrvilo et al. | Aug 1998 | A |
5822524 | Chen et al. | Oct 1998 | A |
5828370 | Moeller et al. | Oct 1998 | A |
5844575 | Reid | Dec 1998 | A |
5848217 | Tsukagoshi et al. | Dec 1998 | A |
5903261 | Walsh et al. | May 1999 | A |
5907597 | Mark | May 1999 | A |
5912710 | Fujimoto | Jun 1999 | A |
5956729 | Goetz et al. | Sep 1999 | A |
5959690 | Toebes, VIII et al. | Sep 1999 | A |
6005621 | Linzer et al. | Dec 1999 | A |
6031622 | Ristow et al. | Feb 2000 | A |
6046778 | Nonomura et al. | Apr 2000 | A |
6065050 | DeMoney | May 2000 | A |
6079566 | Eleftheriadis et al. | Jun 2000 | A |
6157410 | Izumi et al. | Dec 2000 | A |
6169242 | Fay et al. | Jan 2001 | B1 |
6195388 | Choi et al. | Feb 2001 | B1 |
6204883 | Tsukagoshi | Mar 2001 | B1 |
6246803 | Gauch et al. | Jun 2001 | B1 |
6308005 | Ando et al. | Oct 2001 | B1 |
6330286 | Lyons et al. | Dec 2001 | B1 |
6374144 | Viviani et al. | Apr 2002 | B1 |
6395969 | Fuhrer | May 2002 | B1 |
6430354 | Watanabe | Aug 2002 | B1 |
6481012 | Gordon et al. | Nov 2002 | B1 |
6658056 | Duruöz et al. | Dec 2003 | B1 |
6665835 | Gutfreund et al. | Dec 2003 | B1 |
6671408 | Kaku | Dec 2003 | B1 |
6697568 | Kaku | Feb 2004 | B1 |
6725281 | Zintel et al. | Apr 2004 | B1 |
6807306 | Girgensohn et al. | Oct 2004 | B1 |
6819394 | Nomura et al. | Nov 2004 | B1 |
6856997 | Lee et al. | Feb 2005 | B2 |
6859496 | Boroczky et al. | Feb 2005 | B1 |
6917652 | Lyu | Jul 2005 | B2 |
6920179 | Anand et al. | Jul 2005 | B1 |
6944621 | Collart | Sep 2005 | B1 |
6944629 | Shioi et al. | Sep 2005 | B1 |
6956901 | Boroczky et al. | Oct 2005 | B2 |
6985588 | Glick et al. | Jan 2006 | B1 |
6988144 | Luken et al. | Jan 2006 | B1 |
7127155 | Ando et al. | Oct 2006 | B2 |
7209892 | Galuten et al. | Apr 2007 | B1 |
7237061 | Boic | Jun 2007 | B1 |
7242772 | Tehranchi | Jul 2007 | B1 |
7330875 | Parasnis et al. | Feb 2008 | B1 |
7340528 | Noblecourt et al. | Mar 2008 | B2 |
7356245 | Belknap et al. | Apr 2008 | B2 |
7366788 | Jones et al. | Apr 2008 | B2 |
7457359 | Mabey et al. | Nov 2008 | B2 |
7478325 | Foehr | Jan 2009 | B2 |
7493018 | Kim | Feb 2009 | B2 |
7499938 | Collart | Mar 2009 | B2 |
7728878 | Yea et al. | Jun 2010 | B2 |
7869691 | Kelly et al. | Jan 2011 | B2 |
8023562 | Zheludkov et al. | Sep 2011 | B2 |
8046453 | Olaiya | Oct 2011 | B2 |
8054880 | Yu et al. | Nov 2011 | B2 |
8225061 | Greenebaum | Jul 2012 | B2 |
8233768 | Soroushian et al. | Jul 2012 | B2 |
8249168 | Graves | Aug 2012 | B2 |
8270473 | Chen et al. | Sep 2012 | B2 |
8270819 | Vannier | Sep 2012 | B2 |
8289338 | Priyadarshi et al. | Oct 2012 | B2 |
8311115 | Gu et al. | Nov 2012 | B2 |
8321556 | Chatterjee et al. | Nov 2012 | B1 |
8386621 | Park | Feb 2013 | B2 |
8456380 | Pagan | Jun 2013 | B2 |
8472792 | Butt et al. | Jun 2013 | B2 |
RE45052 | Li | Jul 2014 | E |
8768984 | Priddle et al. | Jul 2014 | B2 |
8818171 | Soroushian et al. | Aug 2014 | B2 |
8832297 | Soroushian et al. | Sep 2014 | B2 |
8914534 | Braness et al. | Dec 2014 | B2 |
9021119 | Van Der Schaar et al. | Apr 2015 | B2 |
9025659 | Soroushian et al. | May 2015 | B2 |
9197944 | Reisner | Nov 2015 | B2 |
9350990 | Orton-Jay et al. | May 2016 | B2 |
9357210 | Orton-Jay et al. | May 2016 | B2 |
9467708 | Soroushian et al. | Oct 2016 | B2 |
9510031 | Soroushian et al. | Nov 2016 | B2 |
9571827 | Su et al. | Feb 2017 | B2 |
9661049 | Gordon | May 2017 | B2 |
9712890 | Shivadas et al. | Jul 2017 | B2 |
9955195 | Soroushian | Apr 2018 | B2 |
10148989 | Amidei et al. | Dec 2018 | B2 |
10595070 | Amidei et al. | Mar 2020 | B2 |
10645429 | Soroushian | May 2020 | B2 |
20010030710 | Werner | Oct 2001 | A1 |
20020034252 | Owen et al. | Mar 2002 | A1 |
20020051494 | Yamaguchi et al. | May 2002 | A1 |
20020062313 | Lee et al. | May 2002 | A1 |
20020076112 | Devara | Jun 2002 | A1 |
20020087569 | Fischer et al. | Jul 2002 | A1 |
20020091665 | Beek et al. | Jul 2002 | A1 |
20020093571 | Hyodo | Jul 2002 | A1 |
20020094031 | Ngai et al. | Jul 2002 | A1 |
20020110193 | Yoo et al. | Aug 2002 | A1 |
20020118953 | Kim | Aug 2002 | A1 |
20020120498 | Gordon et al. | Aug 2002 | A1 |
20020143413 | Fay et al. | Oct 2002 | A1 |
20020143547 | Fay et al. | Oct 2002 | A1 |
20020147980 | Satoda | Oct 2002 | A1 |
20020161462 | Fay | Oct 2002 | A1 |
20020180929 | Tseng et al. | Dec 2002 | A1 |
20020184159 | Tadayon et al. | Dec 2002 | A1 |
20020191112 | Akiyoshi et al. | Dec 2002 | A1 |
20020191960 | Fujinami et al. | Dec 2002 | A1 |
20030001964 | Masukura et al. | Jan 2003 | A1 |
20030002578 | Tsukagoshi et al. | Jan 2003 | A1 |
20030005442 | Brodersen et al. | Jan 2003 | A1 |
20030035488 | Barrau | Feb 2003 | A1 |
20030078930 | Surcouf et al. | Apr 2003 | A1 |
20030093799 | Kauffman et al. | May 2003 | A1 |
20030123855 | Okada et al. | Jul 2003 | A1 |
20030128296 | Lee | Jul 2003 | A1 |
20030133506 | Haneda | Jul 2003 | A1 |
20030142872 | Koyanagi | Jul 2003 | A1 |
20030152370 | Otomo et al. | Aug 2003 | A1 |
20030165328 | Grecia | Sep 2003 | A1 |
20030185302 | Abrams | Oct 2003 | A1 |
20030185542 | McVeigh et al. | Oct 2003 | A1 |
20030206558 | Parkkinen et al. | Nov 2003 | A1 |
20030216922 | Gonzales et al. | Nov 2003 | A1 |
20030231863 | Eerenberg et al. | Dec 2003 | A1 |
20030231867 | Gates et al. | Dec 2003 | A1 |
20030236836 | Borthwick | Dec 2003 | A1 |
20040006701 | Kresina | Jan 2004 | A1 |
20040021684 | Millner | Feb 2004 | A1 |
20040025180 | Begeja et al. | Feb 2004 | A1 |
20040047614 | Green | Mar 2004 | A1 |
20040052501 | Tam | Mar 2004 | A1 |
20040071453 | Valderas | Apr 2004 | A1 |
20040081434 | Jung et al. | Apr 2004 | A1 |
20040114687 | Ferris et al. | Jun 2004 | A1 |
20040117347 | Seo et al. | Jun 2004 | A1 |
20040136698 | Mock | Jul 2004 | A1 |
20040143760 | Alkove et al. | Jul 2004 | A1 |
20040146276 | Ogawa | Jul 2004 | A1 |
20040150747 | Sita | Aug 2004 | A1 |
20040208245 | Macinnis et al. | Oct 2004 | A1 |
20040217971 | Kim | Nov 2004 | A1 |
20040255236 | Collart | Dec 2004 | A1 |
20050015797 | Noblecourt et al. | Jan 2005 | A1 |
20050038826 | Bae et al. | Feb 2005 | A1 |
20050055399 | Savchuk | Mar 2005 | A1 |
20050089091 | Kim et al. | Apr 2005 | A1 |
20050157948 | Lee | Jul 2005 | A1 |
20050180641 | Clark | Aug 2005 | A1 |
20050193070 | Brown et al. | Sep 2005 | A1 |
20050193322 | Lamkin et al. | Sep 2005 | A1 |
20050196147 | Seo et al. | Sep 2005 | A1 |
20050207442 | van Zoest et al. | Sep 2005 | A1 |
20050207578 | Matsuyama et al. | Sep 2005 | A1 |
20050210145 | Kim | Sep 2005 | A1 |
20050273695 | Schnurr | Dec 2005 | A1 |
20050275656 | Corbin et al. | Dec 2005 | A1 |
20060015813 | Chung et al. | Jan 2006 | A1 |
20060039481 | Shen | Feb 2006 | A1 |
20060072672 | Holcomb et al. | Apr 2006 | A1 |
20060078301 | Ikeda et al. | Apr 2006 | A1 |
20060093320 | Hallberg et al. | May 2006 | A1 |
20060126717 | Boyce et al. | Jun 2006 | A1 |
20060129909 | Butt et al. | Jun 2006 | A1 |
20060168639 | Gan et al. | Jul 2006 | A1 |
20060173887 | Breitfeld et al. | Aug 2006 | A1 |
20060181965 | Collart | Aug 2006 | A1 |
20060182139 | Bugajski et al. | Aug 2006 | A1 |
20060235880 | Qian | Oct 2006 | A1 |
20060245727 | Nakano et al. | Nov 2006 | A1 |
20060259588 | Lerman et al. | Nov 2006 | A1 |
20060263056 | Lin et al. | Nov 2006 | A1 |
20060267986 | Bae | Nov 2006 | A1 |
20060274835 | Hamilton et al. | Dec 2006 | A1 |
20070005333 | Setiohardjo et al. | Jan 2007 | A1 |
20070024706 | Brannon, Jr. | Feb 2007 | A1 |
20070031110 | Rijckaert | Feb 2007 | A1 |
20070047901 | Ando et al. | Mar 2007 | A1 |
20070053293 | Mcdonald et al. | Mar 2007 | A1 |
20070083617 | Chakrabarti et al. | Apr 2007 | A1 |
20070086528 | Mauchly et al. | Apr 2007 | A1 |
20070140647 | Kusunoki et al. | Jun 2007 | A1 |
20070154165 | Hemmeryckz-Deleersnijder et al. | Jul 2007 | A1 |
20070168541 | Gupta et al. | Jul 2007 | A1 |
20070168542 | Gupta et al. | Jul 2007 | A1 |
20070177812 | Yang et al. | Aug 2007 | A1 |
20070180125 | Knowles et al. | Aug 2007 | A1 |
20070239839 | Buday et al. | Oct 2007 | A1 |
20070292107 | Yahata et al. | Dec 2007 | A1 |
20080030614 | Schwab | Feb 2008 | A1 |
20080052306 | Wang et al. | Feb 2008 | A1 |
20080101466 | Swenson et al. | May 2008 | A1 |
20080104633 | Noblecourt et al. | May 2008 | A1 |
20080120330 | Reed et al. | May 2008 | A1 |
20080120342 | Reed et al. | May 2008 | A1 |
20080126248 | Lee et al. | May 2008 | A1 |
20080137736 | Richardson et al. | Jun 2008 | A1 |
20080137848 | Kocher et al. | Jun 2008 | A1 |
20080192818 | DiPietro et al. | Aug 2008 | A1 |
20080196076 | Shatz et al. | Aug 2008 | A1 |
20080232456 | Terashima et al. | Sep 2008 | A1 |
20080253454 | Imamura | Oct 2008 | A1 |
20080256105 | Nogawa et al. | Oct 2008 | A1 |
20080263354 | Beuque et al. | Oct 2008 | A1 |
20080266522 | Weisgerber | Oct 2008 | A1 |
20080279535 | Haque et al. | Nov 2008 | A1 |
20080310496 | Fang | Dec 2008 | A1 |
20090031220 | Tranchant et al. | Jan 2009 | A1 |
20090037959 | Suh et al. | Feb 2009 | A1 |
20090060452 | Chaudhri | Mar 2009 | A1 |
20090066839 | Jung et al. | Mar 2009 | A1 |
20090116821 | Shibamiya et al. | May 2009 | A1 |
20090132599 | Soroushian et al. | May 2009 | A1 |
20090132721 | Soroushian et al. | May 2009 | A1 |
20090150557 | Wormley et al. | Jun 2009 | A1 |
20090169181 | Priyadarshi et al. | Jul 2009 | A1 |
20090201988 | Gazier et al. | Aug 2009 | A1 |
20090226148 | Nesvadba et al. | Sep 2009 | A1 |
20090293116 | DeMello | Nov 2009 | A1 |
20090300204 | Zhang et al. | Dec 2009 | A1 |
20090303241 | Priyadarshi et al. | Dec 2009 | A1 |
20090307258 | Priyadarshi et al. | Dec 2009 | A1 |
20090307267 | Chen et al. | Dec 2009 | A1 |
20090313544 | Wood et al. | Dec 2009 | A1 |
20090313564 | Rottler et al. | Dec 2009 | A1 |
20090328124 | Khouzam et al. | Dec 2009 | A1 |
20100002069 | Eleftheriadis et al. | Jan 2010 | A1 |
20100040351 | Toma et al. | Feb 2010 | A1 |
20100094969 | Zuckerman et al. | Apr 2010 | A1 |
20100095121 | Shetty et al. | Apr 2010 | A1 |
20100111192 | Graves | May 2010 | A1 |
20100146055 | Hannuksela et al. | Jun 2010 | A1 |
20100158109 | Dahlby et al. | Jun 2010 | A1 |
20100189183 | Gu et al. | Jul 2010 | A1 |
20100226582 | Luo et al. | Sep 2010 | A1 |
20100228795 | Hahn | Sep 2010 | A1 |
20100259690 | Wang et al. | Oct 2010 | A1 |
20100278271 | MacInnis | Nov 2010 | A1 |
20110022432 | Ishida et al. | Jan 2011 | A1 |
20110055585 | Lee | Mar 2011 | A1 |
20110080940 | Bocharov | Apr 2011 | A1 |
20110082924 | Gopalakrishnan | Apr 2011 | A1 |
20110099594 | Chen et al. | Apr 2011 | A1 |
20110126104 | Woods et al. | May 2011 | A1 |
20110126191 | Hughes et al. | May 2011 | A1 |
20110129011 | Cilli et al. | Jun 2011 | A1 |
20110142415 | Rhyu | Jun 2011 | A1 |
20110150100 | Abadir | Jun 2011 | A1 |
20110153785 | Minborg et al. | Jun 2011 | A1 |
20110164679 | Satou et al. | Jul 2011 | A1 |
20110170408 | Furbeck et al. | Jul 2011 | A1 |
20110239078 | Luby et al. | Sep 2011 | A1 |
20110246659 | Bouazizi | Oct 2011 | A1 |
20110268178 | Park et al. | Nov 2011 | A1 |
20110280307 | MacInnis | Nov 2011 | A1 |
20110302319 | Ha et al. | Dec 2011 | A1 |
20110305273 | He et al. | Dec 2011 | A1 |
20110310982 | Yang et al. | Dec 2011 | A1 |
20110314176 | Frojdh et al. | Dec 2011 | A1 |
20110314500 | Gordon | Dec 2011 | A1 |
20120023251 | Pyle et al. | Jan 2012 | A1 |
20120072493 | Muriello et al. | Mar 2012 | A1 |
20120093214 | Urbach | Apr 2012 | A1 |
20120105279 | Brown et al. | May 2012 | A1 |
20120170642 | Braness et al. | Jul 2012 | A1 |
20120170643 | Soroushian et al. | Jul 2012 | A1 |
20120170906 | Soroushian et al. | Jul 2012 | A1 |
20120170915 | Braness et al. | Jul 2012 | A1 |
20120173751 | Braness et al. | Jul 2012 | A1 |
20120177101 | van der Schaar | Jul 2012 | A1 |
20120179834 | van der Schaar | Jul 2012 | A1 |
20120203766 | Hörnkvist et al. | Aug 2012 | A1 |
20120269275 | Hannuksela | Oct 2012 | A1 |
20120278496 | Hsu | Nov 2012 | A1 |
20120281767 | Duenas | Nov 2012 | A1 |
20120307883 | Graves | Dec 2012 | A1 |
20130007200 | van der Schaar et al. | Jan 2013 | A1 |
20130044821 | Braness et al. | Feb 2013 | A1 |
20130046902 | Villegas Nuñez et al. | Feb 2013 | A1 |
20130051767 | Soroushian et al. | Feb 2013 | A1 |
20130051768 | Soroushian et al. | Feb 2013 | A1 |
20130054958 | Braness et al. | Feb 2013 | A1 |
20130055084 | Soroushian et al. | Feb 2013 | A1 |
20130058393 | Soroushian | Mar 2013 | A1 |
20130061045 | Kiefer et al. | Mar 2013 | A1 |
20130091249 | McHugh et al. | Apr 2013 | A1 |
20130095855 | Bort | Apr 2013 | A1 |
20130169863 | Smith | Jul 2013 | A1 |
20130191754 | Rose | Jul 2013 | A1 |
20130196292 | Brennen et al. | Aug 2013 | A1 |
20140003501 | Soroushian et al. | Jan 2014 | A1 |
20140003523 | Soroushian et al. | Jan 2014 | A1 |
20140059243 | Reisner | Feb 2014 | A1 |
20140211840 | Butt et al. | Jul 2014 | A1 |
20140241421 | Orton-jay et al. | Aug 2014 | A1 |
20140250473 | Braness et al. | Sep 2014 | A1 |
20140355958 | Soroushian et al. | Dec 2014 | A1 |
20140359680 | Shivadas et al. | Dec 2014 | A1 |
20150104153 | Braness et al. | Apr 2015 | A1 |
20150229695 | Kim | Aug 2015 | A1 |
20160073176 | Phillips et al. | Mar 2016 | A1 |
20160127440 | Gordon | May 2016 | A1 |
20160134881 | Wang et al. | May 2016 | A1 |
20170026445 | Soroushian et al. | Jan 2017 | A1 |
20170366833 | Amidei et al. | Dec 2017 | A1 |
20180278975 | Soroushian | Sep 2018 | A1 |
20190182524 | Amidei et al. | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
2010202963 | Feb 2012 | AU |
1221284 | Jun 1999 | CN |
1662952 | Aug 2005 | CN |
1723696 | Jan 2006 | CN |
102138327 | Jul 2011 | CN |
103858419 | Jun 2014 | CN |
103875248 | Jun 2014 | CN |
103875248 | Sep 2018 | CN |
108989847 | Dec 2018 | CN |
109314784 | Feb 2019 | CN |
757484 | Feb 1997 | EP |
813167 | Dec 1997 | EP |
1335603 | Aug 2003 | EP |
1420580 | May 2004 | EP |
1718074 | Nov 2006 | EP |
2661895 | Nov 2013 | EP |
3473005 | Apr 2019 | EP |
1195183 | Feb 2018 | HK |
08163488 | Jun 1996 | JP |
08287613 | Nov 1996 | JP |
11328929 | Nov 1999 | JP |
02001043668 | Feb 2001 | JP |
2002170363 | Jun 2002 | JP |
2002218384 | Aug 2002 | JP |
2003250113 | Sep 2003 | JP |
2005027153 | Jan 2005 | JP |
2009508452 | Feb 2009 | JP |
2014506430 | Mar 2014 | JP |
20165043 | Jan 2016 | JP |
2019-526188 | Sep 2019 | JP |
100221423 | Sep 1999 | KR |
2002013664 | Feb 2002 | KR |
1020020064888 | Aug 2002 | KR |
20110051104 | May 2011 | KR |
20140056317 | May 2014 | KR |
101928910 | Dec 2018 | KR |
10-1936142 | Jan 2019 | KR |
10-1981923 | May 2019 | KR |
10-2020764 | Sep 2019 | KR |
10-2074148 | Jan 2020 | KR |
10-2086995 | Mar 2020 | KR |
1995015660 | Jun 1995 | WO |
2001031497 | May 2001 | WO |
2001050732 | Jul 2001 | WO |
2002001880 | Jan 2002 | WO |
2004054247 | Jun 2004 | WO |
2004097811 | Nov 2004 | WO |
2004102571 | Nov 2004 | WO |
2009065137 | May 2009 | WO |
2010060106 | May 2010 | WO |
2010122447 | Oct 2010 | WO |
2010150470 | Dec 2010 | WO |
2011053658 | May 2011 | WO |
2011059291 | May 2011 | WO |
2011087449 | Jul 2011 | WO |
2011093835 | Aug 2011 | WO |
2011102791 | Aug 2011 | WO |
2012094171 | Jul 2012 | WO |
2012094181 | Jul 2012 | WO |
2012094189 | Jul 2012 | WO |
2013033334 | Mar 2013 | WO |
2013033335 | Mar 2013 | WO |
2013033458 | Mar 2013 | WO |
2013033458 | May 2013 | WO |
2017218095 | Dec 2017 | WO |
Entry |
---|
International Preliminary Report on Patentability for International Application No. PCT/US2012/053223, Report dated Mar. 4, 2014, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2012/053052, Report Completed Oct. 25, 2012, dated Nov. 16, 2012, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2012/053223, Report Completed Dec. 7, 2012, dated Mar. 7, 2013, 10 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/053053, search completed Oct. 23, 2012, dated Nov. 13, 2012, 11 pgs. |
International Search Report for International Application No. PCT/SE2011/050166, Search completed Mar. 30, 2011, dated Mar. 30, 2011, 5 Pgs. |
Extended European Search Report for European Application EP12828956.8, Report Completed Feb. 18, 2015, dated Mar. 2, 2015, 13 Pages. |
“Transparent end-to-end packet switched streaming service (PSS); 3GPP file format (3GP) (Release 9)”, 3GPP TS 26.244 V9.0.0, Dec. 2009,sections 7.1-7.4, 52 pages. |
Fecheyr-Lippens, A., “A Review of HTTP Live Streaming”, Jan. 25, 2010, X P002638990, Retrieved from the Internet: URL:http://issuu.com/andruby/docs/http_live_streaming Retrieved on May 24, 2011, 38 Pages. |
Watson, Mark, “Input for Dash EE#1 (CMP): Pixel Aspect Ratio”, 94. MPEG Meeting, Oct. 11-15, 2010, Guangzhou, Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11, No. M18498, Oct. 28, 2010, XP030047088, 4 Pages. |
“Supported Media Formats”, Supported Media Formats, Android Developers, Printed on Nov. 27, 2013 from developer.android.com/guide/appendix/media-formats.html, 3 pgs. |
“Text of ISO/IEC 14496-18/COR1, Font compression and streaming”, ITU Study Group 16—Video Coding Experts Group—ISO/IEC MPEG & ITU-T VCEG(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 06), No. N8664, Oct. 27, 2006, 8 pgs. |
“Text of ISO/IEC 14496-18/FDIS, Coding of Moving Pictures and Audio”, ITU Study Group 16—Videocoding Experts Group—ISO/IEC MPEG & ITU-T VCEG(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 06), No. N6215, Dec. 2003, 26 pgs. |
“Thread: SSME (Smooth Streaming Medial Element) config.xml review (Smooth Streaming Client configuration file)”, Printed on Mar. 26, 2014, 3 pgs. |
“Transcoding Best Practices”, From movideo, Printed on Nov. 27, 2013 from code.movideo.com/Transcoding_Best_Practices, 5 pgs. |
“Using HTTP Live Streaming”, iOS Developer Library, http://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/streamingmediaguide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html#//apple_ref/doc/uid/TP40008332-CH102-SW1, Feb. 11, 2014, 10 pgs. |
“Video Manager and Video Title Set IFO file headers”, printed Aug. 22, 2009 from http://dvd.sourceforge.net/dvdinfo/ifo.htm, 6 pgs. |
“What is a DVD?”, printed Aug. 22, 2009 from http://www.videohelp.com/dvd, 8 pgs. |
“What is a VOB file”, http://www.mpucoder.com/DVD/vobov.html, printed on Jul. 2, 2009, 2 pgs. |
“What's on a DVD?”, printed Aug. 22, 2009 from http://www.doom9.org/dvd-structure.htm, 5 pgs. |
U.S. Appl. No. 13/224,298, “Final Office Action Received”, dated May 19, 2014, 26 pgs. |
Akhshabi et al., “An Experimental Evaluation of Rate-Adaptation Algorithms in Adaptive Streaming over HTTP”, MMSys'11, Feb. 23-25, 2011, 12 pgs. |
Anonymous, “Method for the encoding of a compressed video sequence derived from the same video sequence compressed at a different bit rate without loss of data”, ip.com, ip.com No. IPCOM000008165D, May 22, 2002, pp. 1-9. |
Blasiak, “Video Transrating and Transcoding: Overview of Video Transrating and Transcoding Technologies”, Ingenient Technologies, TI Developer Conference, Aug. 6-8, 2002, 22 pgs. |
Casares et al., “Simplifying Video Editing Using Metadata”, DIS2002, 2002, pp. 157-166. |
Deutscher, “IIS Transform Manager Beta—Using the MP4 to Smooth Task”, Retrieved from: https://web.archive.org/web/20130328111303/http://blog.johndeutscher.com/category/smooth-streaming, Blog post of Apr. 29, 2011, 14 pgs. |
Ding, Li-Fu et al., “Content-Aware Prediction Algorithm Wth Inter-View Mode Decision for Multiview Video Coding”, IEEE Transactions on Multimedia, vol. 10, No. 8, Dec. 2008., Dec. 8, 2008, 12 Pages. |
Fielding et al., “Hypertext Transfer Protocol—HTTP1.1”, Network Working Group, RFC 2616, Jun. 1999, 114 pgs. |
Gannes, “The Lowdown on Apple's HTTP Adaptive Bitrate Streaming”, GigaOM, Jun. 10, 2009, 12 pgs. |
Ghosh, “Enhancing Silverlight Video Experiences with Contextual Data”, Retrieved from: http://msdn.microsoft.com/en-us/magazine/ee336025.aspx, 2010, 15 pgs. |
Griffith, Eric “The Wireless Digital Picture Frame Arrives”, Wi-Fi Planet, printed May 4, 2007 from http://www.wi-fiplanet.com/news/article.php/3093141, Oct. 16, 2003, 3 pgs. |
Inlet Technologies, “Adaptive Delivery to iDevices”, 2010, 2 pages. |
Inlet Technologies, “Adaptive delivery to iPhone 3.0”, 2009, 2 pgs. |
Inlet Technologies, “HTTP versus RTMP”, 2009, 3 pages. |
Inlet Technologies, “The World's First Live Smooth Streaming Event: The French Open”, 2009, 2 pages. |
I-O Data, “Innovation of technology arrived”, Retrieved from http://www.iodata.com/catalogs/AVLP2DVDLA_Flyer200505.pdf, on May 30, 2013, 2 pgs. |
Jeannin, Sylvie et al., “Video Motion Representation for Improved Content Access”, IEEE Transactions on Consumer Electronics, vol. 46, No. 3., Aug. 2004, 11 Pages. |
Karouia et al., “Video Similarity Measurement Based on Attributed Relational Graph Matching”, N.T. Nguyen, R. Katarzyniak (Eds.): New Challenges in Applied Intelligence Technologies, SCI 134, pp. 173-182, 2008., 2008, 10 Pages. |
Kim, Seon H. et al., “Design and implementation of geo-tagged video search framework”, Journal of Visual Communication and Image Representation, 2010, vol. 21 (2010), pp. 773-786. |
Kurzke et al., “Get Your Content Onto Google TV”, Google, Retrieved from: http://commondatastorage.googleapis.com/io2012/presentations/live%20to%20website/1300.pdf, 2012, 58 pgs. |
Lang, “Expression Encoder, Best Practices for live smooth streaming broadcasting”, Microsoft Corporation, 2010, retrieved from http://www.streamingmedia.com/conferences/west2010/presentations/SMWest-12010-Expression-Encoder.pdf, 20 pgs. |
Levkov, “Mobile Encoding Guidelines for Android Powered Devices”, Adobe Systems Inc., Addendum B, Dec. 22, 2010, 42 pgs. |
Lewis, “H.264/MPEG-4 AVC CABAC overview”, printed Jun. 24, 2013 from http://www.web.archive.org/web/20121025003926/www.theonlineoasis.co.uk/notes.html, 3 pgs. |
Long et al., “Silver: Simplifying Video Editing with Metadata”, Demonstrations, CHI 2003: New Horizons, Apr. 5-10, pp. 628-629. |
Morrison, “EA IFF 85 Standard for Interchange Format Files”, Jan. 14, 1985, printed from http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/IFF.txt on Mar. 6, 2006, 24 pgs. |
MSDN, “Adaptive streaming, Expression Studio 2.0”, Apr. 23, 2009, 2 pgs. |
Nelson, “Arithmetic Coding + Statistical Modeling = Data Compression: Part 1—Arithmetic Coding”, Doctor Dobb's Journal, Feb. 1991, USA, pp. 1-12. |
Nelson, “Smooth Streaming Deployment Guide”, Microsoft Expression Encoder, Aug. 2010, 66 pgs. |
Noboru, “Play Fast and Fine Video on Web! codec”, Co.9 No. 12, Dec. 1, 2003, pp. 178-179. |
Noe, A. “Matroska File Format (under construction!)”, Retrieved from the Internet: URL:http://web.archive.orgweb/20070821155146/www.matroska.org/technical/specs/matroska.pdf [retrieved on Jan. 19, 2011], Jun. 24, 2007, 1-51. |
Noe, Alexander “AVI File Format”, http://www.alexander-noe.com/video/documentation/avi.pdf, Dec. 14, 2006, pp. 1-26. |
Noe, Alexander “Definitions”, Apr. 11, 2006, retrieved from http://www.alexander-noe.com/video/amg/definitions.html on Oct. 16, 2013, 2 pages. |
Ozer, “The 2012 Encoding and Transcoding Buyers' Guide”, Streamingmedia.com, Retrieved from: http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/The-2012-Encoding-and-Transcoding-Buyers-Guide-84210.aspx, 2012, 8 pgs. |
Pantos, “HTTP Live Streaming, draft-pantos-http-live-streaming-10”, IETF Tools, Oct. 15, 2012, Retrieved from: http://tools.ietf.org/html/draft-pantos-http-live-streaming-10, 37 pgs. |
Phamdo, “Theory of Data Compression”, printed on Oct. 10, 2003, 12 pgs. |
RGB Networks, “Comparing Adaptive HTTP Streaming Technologies”, Nov. 2011, Retrieved from: http://btreport.net/wp-content/uploads/2012/02/RGB-Adaptive-HTTP-Streaming-Comparison-1211-01.pdf, 20 pgs. |
Schulzrinne et al., “Real Time Streaming Protocol (RTSP)”, Internet Engineering Task Force, RFC 2326, Apr. 1998, 80 pgs. |
Siglin, “HTTP Streaming: What You Need to Know”, streamingmedia.com, 2010, 15 pages. |
Siglin, “Unifying Global Video Strategies, MP4 File Fragmentation for Broadcast, Mobile and Web Delivery”, Nov. 16, 2011, 16 pgs. |
Taxan, “AVel LinkPlayer2 for Consumer”, I-O Data USA—Products—Home Entertainment, printed May 4, 2007 from http://www.iodata.com/usa/products/products.php?cat=HNP&sc=AVEL&pld=AVLP2/DVDLA&ts=2&tsc, 1 pg. |
Unknown, “AVI RIFF File Reference (Direct X 8.1 C++ Archive)”, printed from http://msdn.microsoft.com/archive/en- us/dx81_c/directx_cpp/htm/avirifffilereference.asp?fr . . . on Mar. 6, 2006, 7 pgs. |
Unknown, “Entropy and Source Coding (Compression)”, TCOM 570, Sep. 1999, pp. 1-22. |
Unknown, “MPEG-4 Video Encoder: Based on International Standard ISO/IEC 14496-2”, Patni Computer Systems, Ltd., Jan. 24, 2007, 15 pgs. |
Zambelli, “IIS Smooth Streaming Technical Overview”, Microsoft Corporation, Mar. 2009. |
Broadq—The Ultimate Home Entertainment Software, printed May 11, 2009 from ittp://web.srchive.org/web/20030401122010/www.broadq.com/qcasttuner/, 1 pg. |
European Search Report for Application 11855103.5, search completed Jun. 26, 2014, 9 pgs. |
European Search Report for Application 11855237.1, search completed Jun. 12, 2014, 9 pgs. |
European Supplementary Search Report for Application EP09759600, completed Jan. 25, 2011, 11 pgs. |
Supplementary European Search Report for Application No. EP 04813918, Search Completed Dec. 19, 2012, 3 pgs. |
Federal Computer Week, “Tool Speeds Info to Vehicles”, Jul. 25, 1999, 5 pgs. |
HTTP Live Streaming Overview, Networking & Internet, Apple, Inc., Apr. 1, 2011, 38 pages. |
IBM Corporation and Microsoft Corporation, “Multimedia Programming Interface and Data Specifications 1.0”, Aug. 1991, printed from http://www.kk.iij4u.or.jp/˜kondo/wave/mpidata.txt on Mar. 6, 2006, 100 pgs. |
InformationWeek, “Internet on Wheels”, InformationWeek: Front End: Daily Dose, Jul. 20, 1999, Printed on Mar. 26, 2014, 3 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/083816, dated May 18, 2010, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/053052, Completed Mar. 4, 2014, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2011/067167, dated Feb. 25, 2014, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US09/46588, completed Jul. 13, 2009, dated Jul. 23, 2009, 7 pgs. |
International Search Report and Written Opinion for International Application PCT/US2004/041667, completed May 24, 2007, dated Jun. 20, 2007, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2008/083816, completed Jan. 10, 2009, dated Jan. 22, 2009, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2017/031114, Search completed Jun. 29, 2017, dated Jul. 19, 2017, 11 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/066927, completed Apr. 3, 2012, dated Apr. 20, 2012, 14 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/067167, completed Jun. 19, 2012, dated Jul. 2, 2012, 11 pgs. |
ITS International, “Fleet System Opts for Mobile Server”, Aug. 26, 1999, Printed on Oct. 21, 2011 from http://www.itsinternational.com/News/article.cfm?recordID=547, 2 pgs. |
Linksys Wireless-B Media Adapter Reviews, printed May 4, 2007 from http://reviews.cnet.com/Linksys_Wireless_B_Media_Adapter/4505-6739_7-30421900.html?tag=box, 5 pgs. |
Linksys, KISS DP-500, printed May 4, 2007 from http://www.kiss-technology.com/?p=dp500, 2 pgs. |
Linksys®: “Enjoy your digital music and pictures on your home entertainment center, without stringing wires!”, Model No. WMA 11B, printed May 9, 2007 from http://www.linksys.com/servlet/Satellite?c=L_Product_C2&childpagename=US/Layout&cid=1115416830950&p. |
Microsoft Corporation, “Chapter 8, Multimedia File Formats” 1991, Microsoft Windows Multimedia Programmer's Reference, 3 cover pgs., pp. 8-1 to 8-20. |
Microsoft Media Platform: Player Framework, “Microsoft Media Platform: Player Framework v2.5 (formerly Silverlight Media Framework)”, May 3, 2011, 2 pages. |
Microsoft Media Platform: Player Framework, “Silverlight Media Framework v1.1”, Jan. 2010, 2 pages. |
Microsoft Windows® XP Media Center Edition 2005, Frequently asked Questions, printed May 4, 2007 from http://www.microsoft.com/windowsxp/mediacenter/evaluation/faq.mspx. |
Microsoft Windows® XP Media Center Edition 2005: Features, printed May 9, 2007, from http://www.microsoft.com/windowsxp/mediacenter/evaluation/features.mspx, 4 pgs. |
Multiview Video Coding (MVC), ISO/IEC 14496-10, 2008 Amendment, 2 pgs. |
Open DML AVI-M-JPEG File Format Subcommittee, “Open DML AVI File Format Extensions”, Version 1.02, Feb. 28, 1996, 29 pgs. |
PC world.com, Future Gear: PC on the HiFi, and the TV, from http://www.pcworld.com/article/id,108818-page,1/article.html, printed May 4, 2007, from IDG Networks, 2 pgs. |
Qtv—About BroadQ, printed May 11, 2009 from http://www.broadq.com/en/about.php, 1 pg. |
Windows Media Center Extender for Xbox, printed May 9, 2007 from http://www.xbox.com/en-US/support/systemuse/xbox/console/mediacenterextender.htm, 2 pgs. |
Windows® XP Media Center Edition 2005, “Experience more entertainment”, retrieved from http://download.microsoft.com/download/c/9/a/c9a7000a-66b3-455b-860b-1c16f2eecfec/MCE.pdf on May 9, 2007, 2 pgs. |
“Adaptive HTTP Streaming in PSS-Client Behaviour”, S4-AH1129, 3GPP TSG-SA4 Ad-Hoc Meeting, Dec. 14-16, 2009, Paris, France; section 12.6.1. |
“Adaptive HTTP Streaming in PSS-Data Formats for HTTP-Streaming excluding MPD”, S4-AHI128, 3GPP TSGSA4 Ad-Hoc Meeting, Dec. 14-16, 2009, Paris, France; sections 12.2.1 and 12.2.4.2.1. |
“Adaptive HTTP Streaming in PSS-Discussion on Options”, S4-AHI130, 3GPP TSG-SA4 Ad-Hoc Meeting, Dec. 14-16, 2009, Paris, France; sections 1, 2.7-2.8, and 2.16-2.19. |
“Adaptive Streaming Comparison”, Jan. 28, 2010, 5 pgs. |
“Best Practices for Multi-Device Transcoding”, Kaltura Open Source Video, Printed on Nov. 27, 2013 from knowledge.kaltura.com/best-practices-multi-device-transcoding, 13 pgs. |
“Container format (digital)”, printed Aug. 22, 2009 from http://en.wikipedia.org/wiki/Container_format_(digital), 4 pgs. |
“DVD-MPeg differences”, printed Jul. 2, 2009 from http://dvd.sourceforge.net/dvdinfo/dvdmpeg.html, 1 pg. |
“DVD subtitles”, sam.zoy.org/writings/dvd/subtitles, dated Jan. 9, 2001, printed Jul. 2, 2009, 4 pgs. |
“Final Committee Draft of MPEG-4 streaming text format”, International Organisation for Standardisation, Feb. 2004, 22 pgs. |
“Fragmented Time Indexing of Representations”, S4-AHI126, 3GPP TSG-SA4 Ad-Hoc Meeting, Dec. 14-16, 2009, Paris, France. |
“Information Technology—Coding of audio-visual objects—Part 17: Streaming text”, International Organisation for Standardisation, Feb. 2004, 22 pgs. |
“Information technology—Coding of audio-visual objects—Part 18: Font compression and streaming”, ISO/IEC 14496-18, First edition Jul. 1, 2004, 26 pgs. |
“Innovation of technology arrived”, I-O Data, Nov. 2004, Retrieved from http://www.iodata.com/catalogs/AVLP2DVDLA_Flyer200505.pdf on May 30, 2013, 2 pgs., I-O Data, 2 pgs. |
Kiss Players, “Kiss DP-500”, retrieved from http://www.kiss-technology.com/?p=dp500 on May 4, 2007, 1 pg. |
“MPEG ISO/IEC 13818-1”, Information Technology—Generic Coding of Moving Pictures and Associated Audio: Systems, Apr. 25, 1995, 151 pages. |
“MPEG-4, Part 14, ISO/IEC 14496-14”, Information technology—Coding of audio-visual objects, 18 pgs., Nov. 15, 2003. |
“Netflix turns on subtitles for PC, Mac streaming”, Yahoo! News, Apr. 21, 2010, Printed on Mar. 26, 2014, 3 pgs. |
“OpenDML AVI File Format Extensions”, OpenDML AVI M-JPEG File Format Subcommittee, retrieved from www.the-labs.com/Video/odmlff2-avidef.pdf, Sep. 1997, 42 pgs. |
“OpenDML AVI File Format Extensions Version 1.02”, OpenDMLAVI MJPEG File Format Subcommittee. Last revision: Feb. 28, 1996. Reformatting: Sep. 1997. |
“QCast Tuner for PS2”, printed May 11, 2009 from http://web.archive.org/web/20030210120605/www.divx.com/software/detail.php?ie=39, 2 pgs. |
“Smooth Streaming Client”, The Official Microsoft IIS Site, Sep. 24, 2010, 4 pages. |
International Preliminary Report on Patentability for International Application PCT/US2017/031114, Report dated Dec. 18, 2018, dated Dec. 27, 2018, 7 pgs. |
“DVD-Mpeg differences”, http://dvd.sourceforge.net/dvdinfo/dvdmpeg.html, printed on Jul. 2, 2009, 1 pg. |
European Extended Search Report for EP Application 17813738.6, Search completed Oct. 18, 2019, dated Oct. 24, 2019, 9 pgs. |
Chung-Yi Wu et al., “A hierarchical reliability-driven scheduling for cloud video transcoding”, International Conference on Machine Learning and Cybernetics Jul. 12, 2015 pp. 456-457. |
Number | Date | Country | |
---|---|---|---|
20170041604 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
61529204 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14464146 | Aug 2014 | US |
Child | 15334068 | US | |
Parent | 13432521 | Mar 2012 | US |
Child | 14464146 | US |