The present invention relates to decoding of image files and more specifically to the decoding of light field image files.
The ISO/IEC 10918-1 standard, more commonly referred to as the JPEG standard after the Joint Photographic Experts Group that developed the standard, establishes a standard process for digital compression and coding of still images. The JPEG standard specifies a codec for compressing an image into a bitstream and for decompressing the bitstream back into an image.
A variety of container file formats including the JPEG File Interchange Format (JFIF) specified in ISO/IEC 10918-5 and the Exchangeable Image File Format (Exit) and can be used to store a JPEG bitstream. JFIF can be considered a minimal file format that enables JPEG bitstreams to be exchanged between a wide variety of platforms and applications. The color space used in JFIF files is YCbCr as defined by CCIR Recommendation 601, involving 256 levels. The Y, Cb, and Cr components of the image file are converted from R, G, and B, but are normalized so as to occupy the full 256 levels of an 8-bit binary encoding. YCbCr is one of the compression formats used by JPEG. Another popular option is to perform compression directly on the R, G and B color planes. Direct RGB color plane compression is also popular when lossless compression is being applied.
A JPEG bitstream stores 16-bit word values in big-endian format. JPEG data in general is stored as a stream of blocks, and each block is identified by a marker value. The first two bytes of every JPEG bitstream are the Start Of Image (SOI) marker values FFh D8h. In a JFIF-compliant file there is a JFIF APP0 (Application) marker, immediately following the SOI, which consists of the marker code values FFh E0h and the characters JFIF in the marker data, as described in the next section. In addition to the JFIF marker segment, there may be one or more optional JFIF extension marker segments, followed by the actual image data.
Overall, the JFIF format supports sixteen “Application markers” to store metadata. Using application markers makes it is possible for a decoder to parse a JFIF file and decode only required segments of image data. Application markers are limited to 64K bytes each but it is possible to use the same maker ID multiple times and refer to different memory segments.
An APP0 marker after the SOI marker is used to identify a JFIF file. Additional APP0 marker segments can optionally be used to specify JFIF extensions. When a decoder does not support decoding a specific JFIF application marker, the decoder can skip the segment and continue decoding.
One of the most popular file formats used by digital cameras is Exif. When Exif is employed with JPEG bitstreams, an APP1 Application marker is used to store the Exif data. The Exif tag structure is borrowed from the Tagged Image File Format (TIFF) maintained by Adobe Systems Incorporated of San Jose, California.
Systems and methods in accordance with embodiments of the invention are configured to render images using light field image files containing an image synthesized from light field image data and metadata describing the image that includes a depth map. One embodiment of the invention includes a processor and memory containing a rendering application and a light field image file including an encoded image and metadata describing the encoded image, where the metadata comprises a depth map that specifies depths from the reference viewpoint for pixels in the encoded image. In addition, the rendering application configures the processor to: locate the encoded image within the light field image file; decode the encoded image; locate the metadata within the light field image file; and post process the decoded image by modifying the pixels based on the depths indicated within the depth map to create a rendered image.
In a further embodiment the rendering application configuring the processor to post process the decoded image by modifying the pixels based on the depths indicated within the depth map to create the rendered image comprises applying a depth based effect to the pixels of the decoded image.
In another embodiment, the depth based effect comprises at least one effect selected from the group consisting of: modifying the focal plane of the decoded image; modifying the depth of field of the decoded image; modifying the blur in out-of-focus regions of the decoded image; locally varying the depth of field of the decoded image; creating multiple focus areas at different depths within the decoded image; and applying a depth related blur.
In a still further embodiment, the encoded image is an image of a scene synthesized from a reference viewpoint using a plurality of lower resolution images that capture the scene from different viewpoints, the metadata in the light field image file further comprises pixels from the lower resolution images that are occluded in the reference viewpoint, and the rendering application configuring the processor to post process the decoded image by modifying the pixels based on the depths indicated within the depth map to create the rendered image comprises rendering an image from a different viewpoint using the depth map and the pixels from the lower resolution images that are occluded in the reference viewpoint.
In still another embodiment, the metadata hi the light field image file includes descriptions of the pixels from the lower resolution images that are occluded in the reference viewpoint including the color, location, and depth of the occluded pixels, and rendering an image from a different viewpoint using the depth map and the pixels from the lower resolution images that are occluded in the reference viewpoint further includes: shifting pixels from the decoded image and the occluded pixels in the metadata to the different viewpoint based upon the depths of the pixels; determining pixel occlusions; and generating an image from the different viewpoint using the shifted pixels that are not occluded and by interpolating to fill in missing pixels using adjacent pixels that are not occluded.
In a yet further embodiment, the image rendered from the different viewpoint is part of a stereo pair of images.
In yet another embodiment, the metadata in the light field image file further comprises a confidence map for the depth map, where the confidence map indicates the reliability of the depth values provided for pixels by the depth map, and rendering an image from a different viewpoint using the depth map and the pixels from the lower resolution images that are occluded in the reference viewpoint further comprises applying at least one filter based upon the confidence map.
In a further embodiment again, the metadata in the light field image file further comprises an edge map that indicates pixels in the decoded image that lie on a discontinuity, and rendering an image from a different viewpoint using the depth map and the pixels from the lower resolution images that are occluded in the reference viewpoint further comprises applying at least one filter based upon the edge map.
In another embodiment again, the edge map identifies whether a pixel lies on an intensity discontinuity.
In a further additional embodiment, the edge map identifies whether a pixel lies on an intensity and depth discontinuity.
In another additional embodiment, the metadata in the light field image file further comprises a missing pixel map that indicates pixels in the decoded image that do not correspond to a pixel from the plurality of low resolution images of the scene and that are generated by interpolating pixel values from adjacent pixels in the synthesized image, and rendering an image from a different viewpoint using the depth map and the pixels from the lower resolution images that are occluded in the reference viewpoint further comprises ignoring pixels based upon the missing pixel map.
In a still further embodiment again, the light field image file conforms to the JFIF standard and the encoded image is encoded in accordance with the JPEG standard, the memory comprises a JPEG decoder application, and the rendering application configures the processor to: locate the encoded image by locating a Start of Image marker within the light field image file; and decode the encoded image using the JPEG decoder.
In still another embodiment again, the metadata is located within an Application marker segment within the light field image file.
In a still further additional embodiment, the Application marker segment is identified using the APPS marker.
In still another additional embodiment, the depth map is encoded in accordance with the JPEG standard using lossless compression, and the rendering application configures the processor to: locate at least one Application marker segment containing the metadata comprising the depth map; and decode the depth map using the JPEG decoder.
In a yet further embodiment again, the encoded image is an image of a scene synthesized from a reference viewpoint using a plurality of lower resolution images that capture the scene from different viewpoints, the metadata in the light field image file further comprises pixels from the lower resolution images that are occluded in the reference viewpoint, the rendering application configures the processor to locate at least one Application marker segment containing the metadata comprising the pixels from the lower resolution images that are occluded in the reference viewpoint, and the rendering application configuring the processor to post process the decoded image by modifying the pixels based on the depth of the pixel indicated within the depth map to create the rendered image comprises rendering an image from a different viewpoint using the depth map and the pixels from the lower resolution images that are occluded in the reference viewpoint.
In yet another embodiment again, the metadata in the light field image file includes descriptions of the pixels from the lower resolution images that are occluded hi the reference viewpoint including the color, location, and depth of the occluded pixels, and rendering an image from a different viewpoint using the depth map and the pixels from the lower resolution images that are occluded in the reference viewpoint further includes: shifting pixels from the decoded image and the occluded pixels in the metadata to the different viewpoint based upon the depths of the pixels; determining pixel occlusions; and generating an image from the different viewpoint using the shifted pixels that are not occluded and by interpolating to fill in missing pixels using adjacent pixels that are not occluded.
In a yet further additional embodiment, the image rendered from the different viewpoint is part of a stereo pair of images.
In yet another additional embodiment, the metadata in the light field image file further comprises a confidence map for the depth map, where the confidence map indicates the reliability of the depth values provided for pixels by the depth map, and rendering an image from a different viewpoint using the depth map and the pixels from the lower resolution images that are occluded in the reference viewpoint further comprises applying at least one filter based upon the confidence map.
In a further additional embodiment again, the metadata in the light field image file further comprises an edge map that indicates pixels in the decoded image that lie on a discontinuity, and rendering an image from a different viewpoint using the depth map and the pixels from the lower resolution images that are occluded in the reference viewpoint further comprises applying at least one filter based upon the edge map.
In another additional embodiment again, the edge map identifies whether a pixel lies on an intensity discontinuity.
In a still yet further embodiment again, the edge map identifies whether a pixel lies on an intensity and depth discontinuity.
In still yet another embodiment again, the edge map is encoded in accordance with the JPEG standard using lossless compression, and the rendering application configures the processor to: locate at least one Application marker segment containing the metadata comprising the edge map; and decode the edge map using the JPEG decoder.
In a still yet further additional embodiment, the metadata in the light field image file further comprises a missing pixel map that indicates pixels in the decoded image that do not correspond to a pixel from the plurality of low resolution images of the scene and that are generated by interpolating pixel values from adjacent pixels in the synthesized image, and rendering an image from a different viewpoint using the depth map and the pixels from the lower resolution images that are occluded in the reference viewpoint further comprises ignoring pixels based upon the missing pixel map.
In still yet another additional embodiment, the missing pixel map is encoded in accordance with the JPEG standard using lossless compression, and the rendering application configures the processor to: locate at least one Application marker segment containing the metadata comprising the missing pixel; and decode the missing pixel map using the JPEG decoder.
An embodiment of the method of the invention includes locating an encoded image within an light field image file using a rendering device, decoding the encoded image using the rendering device, locating the metadata within the light field image file using the rendering device, and post processing the decoded image by modifying the pixels based on the depths indicated within the depth map to create a rendered image using the rendering device.
In a further embodiment of the method of the invention, post processing the decoded image by modifying the pixels based on the depths indicated within the depth map to create the rendered image comprises applying a depth based effect to the pixels of the decoded image using the rending device.
In another embodiment of the method of the invention, the depth based effect comprises at least one effect selected from the group consisting of: modifying the focal plane of the decoded image using the rendering device; modifying the depth of field of the decoded image using the rendering device; modifying the blur in out-of-focus regions of the decoded image using the rendering device; locally varying the depth of field of the decoded image using the rendering device; creating multiple focus areas at different depths within the decoded image using the rendering device; and applying a depth related blur using the rendering device.
In a still further embodiment of the method of the invention, the encoded image is an image of a scene synthesized from a reference viewpoint using a plurality of lower resolution images that capture the scene from different viewpoints, the metadata in the light field image file further comprises pixels from the lower resolution images that are occluded in the reference viewpoint, and post processing the decoded image by modifying the pixels based on the depths indicated within the depth map to create the rendered image comprises using the depth map and the pixels from the lower resolution images that are occluded in the reference viewpoint to render an image from a different viewpoint using the rendering device.
Another further embodiment of the invention includes a machine readable medium containing processor instructions, where execution of the instructions by a processor causes the processor to perform a process involving: locating an encoded image within a light field image file, where the light field image file includes an encoded image and metadata describing the encoded image comprising a depth map that specifies depths from the reference viewpoint for pixels in the encoded image; decoding the encoded image; locating the metadata within the light field image file; and post processing the decoded image by modifying the pixels based on the depths indicated within the depth map to create a rendered image.
Turning now to the drawings, systems and methods for storing images synthesized from light field image data and metadata describing the images in electronic files and for rendering images using the stored image and the metadata in accordance with embodiments of the invention are illustrated. A file containing an image synthesized from light field image data and metadata derived from the light field image data can be referred to as a light field image file. As is discussed further below, the encoded image in a light field image file is typically synthesized using a super resolution process from a number of lower resolution images. The light field image file can also include metadata describing the synthesized image derived from the light field image data that enables post processing of the synthesized image. In many embodiments, a light field image file is created by encoding an image synthesized from light field image data and combining the encoded image with a depth map derived from the light field image data. In several embodiments, the encoded image is synthesized from a reference viewpoint and the metadata includes information concerning pixels in the light field image that are occluded from the reference viewpoint. In a number of embodiments, the metadata can also include additional information including (but not limited to) auxiliary maps such as confidence maps, edge maps, and missing pixel maps that can be utilized during post processing of the encoded image to improve the quality of an image rendered using the light field image data file.
In many embodiments, the light field image file is compatible with the JPEG File Interchange Format (JFIF). The synthesized image is encoded as a JPEG bitstream and stored within the file. The accompanying depth map, occluded pixels and/or any appropriate additional information including (but not limited to) auxiliary maps are then stored within the JFIF file as metadata using an Application marker to identify the metadata. A legacy rendering device can simply display the synthesized image by decoding the JPEG bitstream. Rendering devices in accordance with embodiments of the invention can perform additional post-processing on the decoded JPEG bitstream using the depth map and/or any available auxiliary maps. In many embodiments, the maps included hi the metadata can also be compressed using lossless JPEG encoding and decoded using a JPEG decoder. Although much of the discussion that follows references the JFIF and JPEG standards, these standards are simply discussed as examples and it should be appreciated that similar techniques can be utilized to embed metadata derived from light field image data used to synthesize the encoded image within a variety of standard file formats, where the synthesized image and/or maps are encoded using any of a variety of standards based image encoding processes.
By transmitting a light field image file including an encoded image, and metadata describing the encoded image, a rendering device (i.e. a device configured to generate an image rendered using the information within the light field image file) can render new images using the information within the file without the need to perform super resolution processing on the original light field image data. In this way, the amount of data transmitted to the rendering device and the computational complexity of rendering an image is reduced. In several embodiments, rendering devices are configured to perform processes including (but not limited to) refocusing the encoded image based upon a focal plane specified by the user, synthesizing an image from a different viewpoint, and generating a stereo pair of images. The capturing of light field image data and the encoding and decoding of light field image files in accordance with embodiments of the invention are discussed further below.
Capturing Light Field Image Data
A light field, which is often defined as a 4D function characterizing the light from all direction at all points in a scene, can be interpreted as a two-dimensional (2D) collection of 2D images of a scene. Array cameras, such as those described in U.S. patent application Ser. No. 12/935,504 entitled “Capturing and Processing of Images using Monolithic Camera Array with Heterogeneous Imagers” to Venkataraman et al., can be utilized to capture light field images. In a number of embodiments, super resolution processes such as those described in U.S. patent application Ser. No. 12/967,807 entitled “Systems and Methods for Synthesizing High Resolution Images Using Super-Resolution Processes” to Lelescu et al., are utilized to synthesize a higher resolution 2D image or a stereo pair of higher resolution 2D images from the lower resolution images in the light field captured by an array camera. The terms high or higher resolution and low or lower resolution are used here in a relative sense and not to indicate the specific resolutions of the images captured by the array camera. The disclosures of U.S. patent application Ser. No. 12/935,504 and U.S. patent application Ser. No. 12/967,807 are hereby incorporated by reference in their entirety.
Each two-dimensional (2D) image in a captured light field is from the viewpoint of one of the cameras in the array camera. A high resolution image synthesized using super resolution processing is synthesized from a specific viewpoint that can be referred to as a reference viewpoint. The reference viewpoint can be from the viewpoint of one of the cameras in a camera array. Alternatively, the reference viewpoint can be an arbitrary virtual viewpoint.
Due to the different viewpoint of each of the cameras, parallax results in variations in the position of foreground objects within the images of the scene. Processes for performing parallax detection are discussed in U.S. Provisional patent application Ser. No. 61/691,666 entitled “Systems and Methods for Parallax Detection and Correction in images Captured Using Array Cameras” to Venkataraman et al., the disclosure of which is incorporated by reference herein hi its entirety. As is disclosed in U.S. Provisional patent application Ser. No. 61/691,666, a depth map from a reference viewpoint can be generated by determining the disparity between the pixels in the images within a light field due to parallax. A depth map indicates the distance of the surfaces of scene objects from a reference viewpoint. In a number of embodiments, the computational complexity of generating depth maps is reduced by generating an initial low resolution depth map and then increasing the resolution of the depth map in regions where additional depth information is desirable such as (but not limited to) regions involving depth transitions and/or regions containing pixels that are occluded in one or more images within the light field.
During super resolution processing, a depth map can be utilized in a variety of ways. U.S. patent application Ser. No. 12/967,807 describes how a depth map can be utilized during super resolution processing to dynamically refocus a synthesized image to blur the synthesized image to make portions of the scene that do not lie on the focal plane to appear out of focus. U.S. patent application Ser. No. 12/967,807 also describes how a depth map can be utilized during super resolution processing to generate a stereo pair of higher resolution images for use in 3D applications. A depth map can also be utilized to synthesize a high resolution image from one or more virtual viewpoints. In this way, a rendering device can simulate motion parallax and a dolly zoom (i.e. virtual viewpoints in front or behind the reference viewpoint). In addition to utilizing a depth map during super-resolution processing, a depth map can be utilized in a variety of post processing processes to achieve effects including (but not limited to) dynamic refocusing, generation of stereo pairs, and generation of virtual viewpoints without performing super-resolution processing. Light field image data captured by array cameras, storage of the light field image data in a light field image file, and the rendering of images using the light field image file in accordance with embodiments of the invention are discussed further below.
Array Camera Architecture
Array cameras in accordance with embodiments of the invention are configured so that the array camera software can control the capture of light field image data and can capture the light field image data into a file that can be used to render one or more images on any of a variety of appropriately configured rendering devices. An array camera including an imager array in accordance with an embodiment of the invention is illustrated in
In the illustrated embodiment, the processor receives image data generated by the sensor and reconstructs the light field captured by the sensor from the image data. The processor can manipulate the light field in any of a variety of different ways including (but not limited to) determining the depth and visibility of the pixels in the light field and synthesizing higher resolution 2D images from the image data of the light field. Sensors including multiple focal planes are discussed in U.S. patent application Ser. No. 13/106,797 entitled “Architectures for System on Chip Array Cameras”, to Pain et al., the disclosure of which is incorporated herein by reference in its entirety.
In the illustrated embodiment, the focal planes are configured in a 5×5 array. Each focal plane 104 on the sensor is capable of capturing an image of the scene. The sensor elements utilized in the focal planes can be individual light sensing elements such as, but not limited to, traditional CIS (CMOS Image Sensor) pixels, CCD (charge-coupled device) pixels, high dynamic range sensor elements, multispectral sensor elements and/or any other structure configured to generate an electrical signal indicative of light incident on the structure. In many embodiments, the sensor elements of each focal plane have similar physical properties and receive light via the same optical channel and color filter (where present). In other embodiments, the sensor elements have different characteristics and, in many instances, the characteristics of the sensor elements are related to the color filter applied to each sensor element.
In many embodiments, an array of images (i.e. a light field) is created using the image data captured by the focal planes in the sensor. As noted above, processors 108 in accordance with many embodiments of the invention are configured using appropriate software to take the image data within the light field and synthesize one or more high resolution images. In several embodiments, the high resolution image is synthesized from a reference viewpoint, typically that of a reference focal plane 104 within the sensor 102. In many embodiments, the processor is able to synthesize an image from a virtual viewpoint, which does not correspond to the viewpoints of any of the focal planes 104 in the sensor 102. Unless all of the objects within a captured scene are a significant distance from the array camera, the images in the light field will include disparity due to the different fields of view of the focal planes used to capture the images. Processes for detecting and correcting for disparity when performing super-resolution processing in accordance with embodiments of the invention are discussed in U.S. Provisional patent application Ser. No. 61/691,666 (incorporated by reference above), The detected disparity can be utilized to generate a depth map. The high resolution image and depth map can be encoded and stored in memory 110 in a light field image file. The processor 108 can use the light field image file to render one or more high resolution images. The processor 108 can also coordinate the sharing of the light field image file with other devices (e.g. via a network connection), which can use the fight field image file to render one or more high resolution images.
Although a specific array camera architecture is illustrated in
Capturing and Storing Light Field Image Data
Processes for capturing and storing light field image data in accordance with many embodiments of the invention involve capturing fight field image data, generating a depth map from a reference viewpoint, and using the light field image data and the depth map to synthesize an image from the reference viewpoint. The synthesized image can then be compressed for storage. The depth map and additional data that can be utilized in the post processing can also be encoded as metadata that can be stored in the same container file with the encoded image.
A process for capturing and storing light field image data in accordance with an embodiment of the invention is illustrated in
The light field image data and the depth map can be utilized to synthesize (206) an image from a specific viewpoint. In many embodiments, the light field image data includes a number of low resolution images that are used to synthesize a higher resolution image using a super resolution process. In a number of embodiments, a super resolution process such as (but not limited to) any of the super resolution processes disclosed in U.S. patent application Ser. No. 12/967,807 can be utilized to synthesize a higher resolution image from the reference viewpoint.
In order to be able to perform post processing to modify the synthesized image without the original light field image data, metadata can be generated (208) from the light field image data, the synthesized image, and/or the depth map. The metadata data can be included in a light field image file and utilized during post processing of the synthesized image to perform processing including (but not limited to) refocusing the encoded image based upon a focal plane specified by the user, and synthesizing one or more images from a different viewpoint. In a number of embodiments, the auxiliary data includes (but is not limited to) pixels in the light field image data occluded from the reference viewpoint used to synthesize the image from the light field image data, one or more auxiliary maps including (but not limited to) a confidence map, an edge map, and/or a missing pixel map. Auxiliary data that is formatted as maps or layers provide information corresponding to pixel locations within the synthesized image. A confidence map is produced during the generation of a depth map and reflects the reliability of the depth value for a particular pixel. This information may be used to apply different filters in areas of the image and improve image quality of the rendered image. An edge map defines which pixels are edge pixels, which enables application of filters that refine edges (e.g. post sharpening). A missing pixel map represents pixels computed by interpolation of neighboring pixels and enables selection of post-processing filters to improve image quality. As can be readily appreciated, the specific metadata generated depends upon the post processing supported by the image data file, hi a number of embodiments, no auxiliary data is included in the image data file.
In order to generate an image data file, the synthesized image is encoded (210). The encoding typically involves compressing the synthesized image and can involve lossless or lossy compression of the synthesized image. In many embodiments, the depth map and any auxiliary data are written (212) to a file with the encoded image as metadata to generate a light field image data file. In a number of embodiments, the depth map and/or the auxiliary maps are encoded. In many embodiments, the encoding involves lossless compression.
Although specific processes for encoding light field image data for storage in a light field image file are discussed above, any of a variety of techniques can be utilized to process light field image data and store the results in an image file including but not limited to processes that encode low resolution images captured by an array camera and calibration information concerning the array camera that can be utilized in super resolution processing. Storage of light field image data in JFIF files in accordance with embodiments of the invention is discussed further below.
Image Data Formats
In several embodiments, the encoding of a synthesized image and the container file format utilized to create the light field image file are based upon standards including but not limited to the JPEG standard (ISO/IEC 10918-1) for encoding a still image as a bitstream and the JFIF standard (ISO/IEC 10918-5). By utilizing these standards, the synthesized image can be rendered by any rendering device configured to support rendering of JPEG images contained within JFIF files. In many embodiments, additional data concerning the synthesized image such as (but not limited to) a depth map and auxiliary data that can be utilized in the post processing of the synthesized image can be stored as metadata associated with an Application marker within the JFIF file. Conventional rendering devices can simply skip Application markers containing this metadata. Rendering device in accordance with many embodiments of the invention can decode the metadata and utilize the metadata in any of a variety of post processing processes.
A process for encoding an image synthesized using light field image data in accordance with the JPEG specification and for including the encoded image and metadata that can be utilized in the post processing of the image in a JFIF file in accordance with an embodiment of the invention is illustrated in
Although specific processes are discussed above for storing light field image data in JFIF files, any of a variety of processes can be utilized to encode synthesized images and additional metadata derived from the light field image data used to synthesize the encoded images in a JFIF file as appropriate to the requirements of a specific application in accordance with embodiments of the invention. The encoding of synthesized images and metadata for insertion into JFIF files in accordance with embodiments of the invention are discussed further below. Although much of the discussion that follows relates to JFIF files, synthesized images and metadata can be encoded for inclusion in a light field image file using any of a variety of proprietary or standards based encoding techniques and/or utilizing any of a variety of proprietary or standards based file formats.
Encoding Images Synthesized from Light Field Image Data
An image synthesized from light field image data using super resolution processing can be encoded in accordance with the JPEG standard for inclusion in a light field image file in accordance with embodiments of the invention. The JPEG standard is a lossy compression standard. However, the information losses typically do not impact edges of objects. Therefore, the loss of information during the encoding of the image typically does not impact the accuracy of maps generated based upon the synthesized image (as opposed to the encoded synthesized image). The pixels within images contained within files that comply with the JFIF standard are typically encoded as YCbCr values. Many array cameras synthesize images, where each pixel is expressed in terms of a Red, Green and Blue intensity value. In several embodiments, the process of encoding the synthesized image involves mapping the pixels of the image from the RGB domain to the YCbCr domain prior to encoding. In other embodiments, mechanisms are used within the file to encode the image in the RGB domain. Typically, encoding in the YCbCr domain provides better compression ratios and encoding in the RGB domain provides higher decoded image quality.
Storing Additional Metadata Derived from Light Field Image Data
The JFIF standard does not specify a format for storing depth maps or auxiliary data generated by an array camera. The JFIF standard does, however, provide sixteen application markers that can be utilized to store metadata concerning the encoded image contained within the file. In a number of embodiments, one or more of the application markers of a JFIF file is utilized to store an encoded depth map and/or one or more auxiliary maps that can be utilized in the post processing of the encoded image contained within the file.
A JFIF Application marker segment that can be utilized to store a depth map, individual camera occlusion data and auxiliary map data in accordance with an embodiment of the invention is illustrated in
The Application marker segment includes a header 404 indicated as “DZ Header” that provides a description of the metadata contained within the Application marker segment. In the illustrated embodiment, the “DZ Header” 404 includes a DZ Endian field that indicates whether the data in the “DZ Header” is big endian or little endian. The “DZ Header” 404 also includes a “DZ Selection Descriptor”.
An embodiment of a “DZ Selection Descriptor” is illustrated in
Depth Map
Referring back to
A “Depth Map Attributes” table in accordance with an embodiment of the invention is illustrated in
A “Depth Map Descriptor” in accordance with an embodiment of the invention is illustrated in
A JFIF Application marker segment is restricted to 65,533 bytes. However, an Application marker can be utilized multiple times within a JFIF file. Therefore, depth maps in accordance with many embodiments of the invention can span multiple APPS Application marker segments. The manner in which depth map data is stored within an Application marker segment in a JFIF file in accordance with an embodiment of the invention is illustrated in
Although specific implementations of a depth map and header describing a depth map within an Application marker segment of a JFIF file are illustrated in
Occlusion Data
Referring back to
A “Camera Array General Attributes” table in accordance with an embodiment of the invention is illustrated in
A “Camera Array Descriptor” in accordance with an embodiment of the invention is illustrated in
In many embodiments, occlusion data is provided on a camera by camera basis. In several embodiments, the occlusion data is included within a JFIF file using an individual camera descriptor and an associated set of occlusion data. An individual camera descriptor that identifies a camera and identifies the number of occluded pixels related to the identified camera described within the JFIF file in accordance with an embodiment of the invention is illustrated in
A table describing an occluded pixel that can be inserted within a JFIF file in accordance with an embodiment of the invention is illustrated in
Although specific implementations for storing information describing occluded pixel depth within an Application marker segment of a JFIF file are illustrated in
Auxiliary Maps
Referring back to
An “Auxiliary Map Descriptor” that describes an auxiliary map contained within a light field image file in accordance with an embodiment of the invention is illustrated in
“Auxiliary Map Data” stored hi a JFIF file in accordance with an embodiment of the invention is conceptually illustrated in
Although specific implementations for storing auxiliary maps within an Application marker segment of a JFIF file are illustrated in
Confidence Maps
A confidence map can be utilized to provide information concerning the relative reliability of the information at a specific pixel location. In several embodiments, a confidence map is represented as a complimentary one bit per pixel map representing pixels within the encoded image that were visible hi only a subset of the images used to synthesize the encoded image. In other embodiments, a confidence map can utilize additional bits of information to express confidence using any of a variety of metrics including (but not limited to) a confidence measure determined during super resolution processing, or the number of images in which the pixel is visible.
Edge Maps
A variety of edge maps can be provided included (but not limited to) a regular edge map and a silhouette map. A regular edge map is a map that identifies pixels that are on an edge in the image, where the edge is an intensity discontinuity. A silhouette edge maps is a map that identifies pixels that are on an edge, where the edge involves an intensity discontinuity and a depth discontinuity. In several embodiments, each can be expressed as a separate one bit map or the two maps can be combined as a map including two pixels per map. The bits simply signal the presence of a particular type of edge at a specific location to post processing processes that apply filters including (but not limited to) various edge preserving and/or edge sharpening filters.
Missing Pixel Maps
A missing pixel map indicates pixel locations in a synthesized image that do not include a pixel from the light field image data, but instead include an interpolated pixel value. In several embodiments, a missing pixel map can be represented using a complimentary one bit per pixel map. The missing pixel map enables selection of post-processing filters to improve image quality. In many embodiments, a simple interpolation algorithm can be used during the synthesis of a higher resolution from light field image data and the missing pixels map can be utilized to apply a more computationally expensive interpolation process as a post processing process. In other embodiments, missing pixel maps can be utilized in any of a variety of different post processing process as appropriate to the requirements of a specific application in accordance with embodiments of the invention.
Rendering Images Using Light Held Imaging Files
When light field image data is encoded in a light field image file, the light field image file can be shared with a variety of rendering devices including but not limited to cameras, mobile devices, personal computers, tablet computers, network connected televisions, network connected game consoles, network connected media players, and any other device that is connected to the Internet and can be configured to display images. A system for sharing light field image files in accordance with an embodiment of the invention is illustrated in
Rendering Devices
A rendering device in accordance with embodiments of the invention typically includes a processor and a rendering application that enables the rendering of an image based upon a light field image data file. The simplest rendering is for the rendering device to decode the encoded image contained within the light field image data file. More complex renderings involve applying post processing to the encoded image using the metadata contained within the light field image file to perform manipulations including (but not limited to) modifying the viewpoint of the image and/or modifying the focal plane of the image.
A rendering device in accordance with an embodiment of the invention is illustrated in
Processes for Rendering Images Using Light Field Image Files
As noted above, rendering a light field image file can be as simple as decoding an encoded image contained within the light field image file or can involve more complex post processing of the encoded image using metadata derived from the same light field image data used to synthesize the encoded image. A process for rendering a light field image in accordance with an embodiment of the invention is illustrated in
Although specific processes for rendering an image from a light field image file are discussed with reference to
Rendering Images Using JFIF Light Field Image Files
The ability to leverage deployed JPEG decoders can greatly simplify the process of rendering light field images. When a light field image file conforms to the JFIF standard and the image and/or metadata encoded within the light field image file is encoded in accordance with the JPEG standard, a rendering application can leverage an existing implementation of a JPEG decoder to render an image using the light field image file. Similar efficiencies can be obtained where the light field image file includes an image and/or metadata encoded in accordance with another popular standard for image encoding.
A rendering device configured by a rendering application to render an image using a light field image file in accordance with an embodiment of the invention is illustrated in
Although specific rendering devices including JPEG decoders are discussed above with reference to
Processes for Rendering Images from JFIF Light Field Image Files
Processes for rending images using light field image files that conform to the JFIF standard can utilize markers within the light field image file to identify encoded images and metadata. Headers within the metadata provide information concerning the metadata present in the file and can provide offset information or pointers to the location of additional metadata and/or markers within the file to assist with parsing the file. Once appropriate information is located a standard JPEG decoder implementation can be utilized to decode encoded images and/or maps within the file.
A process for displaying an image rendered using a light field image file that conforms to the JFIF standard using a JPEG decoder in accordance with an embodiment of the invention is illustrated in
Although specific processes for displaying images rendered using light field image files are discussed above with respect to
Post Processing of Images Using Metadata Derived from Light Held Image Data
Images can be synthesized from light field image data in a variety of ways. Metadata included in light field image files in accordance with embodiments of the invention can enable images to be rendered from a single image synthesized from the light field image data without the need to perform super resolution processing. Advantages of rendering images hi this way can include that the process of obtaining the final image is less processor intensive and less data is used to obtain the final image. However, the light field image data provides rich information concerning a captured scene from multiple viewpoints. In many embodiments, a depth map and occluded pixels from the light field image data (i.e. pixels that are not visible from the reference viewpoint of the synthesized image) can be included in a light field image file to provide some of the additional information typically contained within light field image data. The depth map can be utilized to modify the focal plane when rendering an image and/or to apply depth dependent effects to the rendered image. The depth map and the occluded pixels can be utilized to synthesize images from different viewpoints. In several embodiments, additional maps are provided (such as, but not limited to, confidence maps, edge maps, and missing pixel maps) that can be utilized when rendering alternative viewpoints to improve the resulting rendered image. The ability to render images from different viewpoints can be utilized to simply render an image from a different viewpoint. In many embodiments, the ability to render images from different viewpoints can be utilized to generate a stereo pair for 3D viewing. In several embodiments, processes similar to those described in U.S. Provisional patent application Ser. No. 61/707,691, entitled “Synthesizing Images From Light Fields Utilizing Virtual Viewpoints” to Jain (the disclosure of which is incorporated herein by reference in its entirety) can be utilized to modify the viewpoint based upon motion of a rendering device to create a motion parallax effect. Processes for rendering images using depth based effects and for rendering images using different viewpoints are discussed further below.
Rendering Images Using Depth Based Effects
A variety of depth based effects can be applied to an image synthesized from light field image data in accordance with embodiments of the invention including (but not limited to) applying dynamic refocusing of an image, locally varying the depth of field within an image, selecting multiple in focus areas at different depths, and/or applying one or more depth related blur model. A process for applying depth based effects to an image synthesized from light field image data and contained within a light field image file that includes a depth map in accordance with an embodiment of the invention is illustrated in
Although specific processes for applying depth dependent effects to an image synthesized from light field image data using a depth map obtained using the light field image data are discussed above with respect to
Rendering Images Using Different Viewpoints
One of the compelling aspects of computational imaging is the ability to use light field image data to synthesize images from different viewpoints. The ability to synthesize images from different viewpoints creates interesting possibilities including the creation of stereo pairs for 3D applications and the simulation of motion parallax as a user interacts with an image. Light field image files in accordance with many embodiments of the invention can include an image synthesized from light field image data from a reference viewpoint, a depth map for the synthesized image and information concerning pixels from the light field image data that are occluded in the reference viewpoint. A rendering device can use the information concerning the depths of the pixels in the synthesized image and the depths of the occluded images to determine the appropriate shifts to apply to the pixels to shift them to the locations in which they would appear from a different viewpoint. Occluded pixels from the different viewpoint can be identified and locations on the grid of the different viewpoint that are missing pixels can be identified and hole filling can be performed using interpolation of adjacent non-occluded pixels. In many embodiments, the quality of an image rendered from a different viewpoint can be increased by providing additional information in the form of auxiliary maps that can be used to refine the rendering process. In a number of embodiments, auxiliary maps can include confidence maps, edge maps, and missing pixel maps. Each of these maps can provide a rendering process with information concerning how to render an image based on customized preferences provided by a user. In other embodiments, any of a variety of auxiliary information including additional auxiliary maps can be provided as appropriate to the requirements of a specific rendering process.
A process for rendering an image from a different viewpoint using a light field image file containing an image synthesized using light field image data from a reference viewpoint, a depth map describing the depth of the pixels of the synthesized image, and information concerning occluded pixels in accordance with an embodiment of the invention is illustrated in
Although specific processes for rendering an image from a different viewpoint using an image synthesized from a reference view point using light field image data, a depth map obtained using the light field image data, and information concerning pixels in the light field image data that are occluded in the reference viewpoint are discussed above with respect to
While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as an example of one embodiment thereof. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.
The present invention is a continuation of U.S. patent application Ser. No. 17/233,553 filed Apr. 19, 2021, which is a continuation of U.S. patent application Ser. No. 16/586,827 filed Sep. 27, 2019 and issued as U.S. Pat. No. 10,984,276 on Apr. 20, 2021 which is a continuation of U.S. patent application Ser. No. 16/030,597 filed Jul. 9, 2018 and issued as U.S. Pat. No. 10,430,682 on Oct. 1, 2019, which is a continuation of U.S. patent application Ser. No. 15/396,024 filed Dec. 30, 2016 and issued as U.S. Pat. No. 10,019,816 on Jul. 10, 2018, which is a continuation of U.S. patent application Ser. No. 14/667,492 filed Mar. 24, 2015 and issued as U.S. Pat. No. 9,536,166 on Jan. 3, 2017, which is a continuation of U.S. patent application Ser. No. 14/504,687, filed Oct. 2, 2014 and issued as U.S. Pat. No. 9,042,667 on May 26, 2015, which is a continuation of U.S. patent Application Ser. No. 14/477,374, filed Sep. 4, 2014, and issued as U.S. Pat. No. 9,036,931 on May 19, 2015, which is a continuation of U.S. patent application Ser. No. 13/955,411, filed Jul. 31, 2013 and issued as U.S. Pat. No. 8,831,367 on Sep. 9, 2014, which is a continuation of U.S. patent application No. 13/631,736, filed Sep. 28, 2012 and issued as U.S. Pat. No. 8,542,933 on Sep. 24, 2013, which claims priority to U.S. Provisional Application No. 61/540,188 entitled “JPEG-DX: A Backwards-compatible, Dynamic Focus Extension to JPEG”, to Venkataraman et al., filed Sep. 28, 2011, the disclosures of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4124798 | Thompson | Nov 1978 | A |
4198646 | Alexander et al. | Apr 1980 | A |
4323925 | Abell et al. | Apr 1982 | A |
4460449 | Montalbano | Jul 1984 | A |
4467365 | Murayama et al. | Aug 1984 | A |
4652909 | Glenn | Mar 1987 | A |
4888645 | Mitchell et al. | Dec 1989 | A |
4899060 | Lischke | Feb 1990 | A |
4962425 | Rea | Oct 1990 | A |
5005083 | Grage et al. | Apr 1991 | A |
5070414 | Tsutsumi | Dec 1991 | A |
5144448 | Hornbaker et al. | Sep 1992 | A |
5157499 | Oguma et al. | Oct 1992 | A |
5325449 | Burt et al. | Jun 1994 | A |
5327125 | Iwase et al. | Jul 1994 | A |
5463464 | Ladewski | Oct 1995 | A |
5488674 | Burt et al. | Jan 1996 | A |
5629524 | Stettner et al. | May 1997 | A |
5638461 | Fridge | Jun 1997 | A |
5757425 | Barton et al. | May 1998 | A |
5793900 | Nourbakhsh et al. | Aug 1998 | A |
5801919 | Griencewic | Sep 1998 | A |
5808350 | Jack et al. | Sep 1998 | A |
5832312 | Rieger et al. | Nov 1998 | A |
5833507 | Woodgate et al. | Nov 1998 | A |
5880691 | Fossum et al. | Mar 1999 | A |
5911008 | Niikura et al. | Jun 1999 | A |
5933190 | Dierickx et al. | Aug 1999 | A |
5963664 | Kumar et al. | Oct 1999 | A |
5973844 | Burger | Oct 1999 | A |
6002743 | Telymonde | Dec 1999 | A |
6005607 | Uomori et al. | Dec 1999 | A |
6034690 | Gallery et al. | Mar 2000 | A |
6069351 | Mack | May 2000 | A |
6069365 | Chow et al. | May 2000 | A |
6095989 | Hay et al. | Aug 2000 | A |
6097394 | Levoy et al. | Aug 2000 | A |
6124974 | Burger | Sep 2000 | A |
6130786 | Osawa et al. | Oct 2000 | A |
6137100 | Fossum et al. | Oct 2000 | A |
6137535 | Meyers | Oct 2000 | A |
6141048 | Meyers | Oct 2000 | A |
6160909 | Melen | Dec 2000 | A |
6163414 | Kikuchi et al. | Dec 2000 | A |
6172352 | Liu | Jan 2001 | B1 |
6175379 | Uomori et al. | Jan 2001 | B1 |
6205241 | Melen | Mar 2001 | B1 |
6239909 | Hayashi et al. | May 2001 | B1 |
6292713 | Jouppi et al. | Sep 2001 | B1 |
6340994 | Margulis et al. | Jan 2002 | B1 |
6358862 | Ireland et al. | Mar 2002 | B1 |
6373518 | Sogawa | Apr 2002 | B1 |
6419638 | Hay et al. | Jul 2002 | B1 |
6443579 | Myers | Sep 2002 | B1 |
6445815 | Sato | Sep 2002 | B1 |
6476805 | Shume et al. | Nov 2002 | B1 |
6477260 | Shimomura | Nov 2002 | B1 |
6483949 | Yokoyama et al. | Nov 2002 | B1 |
6502097 | Chan et al. | Dec 2002 | B1 |
6525302 | Dowski, Jr. et al. | Feb 2003 | B2 |
6552742 | Seta | Apr 2003 | B1 |
6563537 | Kawamura et al. | May 2003 | B1 |
6571466 | Glenn et al. | Jun 2003 | B1 |
6603513 | Berezin | Aug 2003 | B1 |
6611289 | Yu et al. | Aug 2003 | B1 |
6627896 | Hashimoto et al. | Sep 2003 | B1 |
6628330 | Lin | Sep 2003 | B1 |
6628845 | Stone et al. | Sep 2003 | B1 |
6635941 | Suda | Oct 2003 | B2 |
6639596 | Shum et al. | Oct 2003 | B1 |
6647142 | Beardsley | Nov 2003 | B1 |
6657218 | Noda | Dec 2003 | B2 |
6671399 | Berestov | Dec 2003 | B1 |
6674892 | Melen | Jan 2004 | B1 |
6750904 | Lambert | Jun 2004 | B1 |
6765617 | Tangen et al. | Jul 2004 | B1 |
6771833 | Edgar | Aug 2004 | B1 |
6774941 | Boisvert et al. | Aug 2004 | B1 |
6788338 | Dinev et al. | Sep 2004 | B1 |
6795253 | Shinohara | Sep 2004 | B2 |
6801653 | Wu et al. | Oct 2004 | B1 |
6819328 | Moriwaki et al. | Nov 2004 | B1 |
6819358 | Kagle et al. | Nov 2004 | B1 |
6833863 | Clemens | Dec 2004 | B1 |
6879735 | Portniaguine et al. | Apr 2005 | B1 |
6897454 | Sasaki et al. | May 2005 | B2 |
6903770 | Kobayashi et al. | Jun 2005 | B1 |
6909121 | Nishikawa | Jun 2005 | B2 |
6917702 | Beardsley | Jul 2005 | B2 |
6927922 | George et al. | Aug 2005 | B2 |
6958862 | Joseph | Oct 2005 | B1 |
6985175 | Iwai et al. | Jan 2006 | B2 |
7015954 | Foote et al. | Mar 2006 | B1 |
7085409 | Sawhney et al. | Aug 2006 | B2 |
7161614 | Yamashita et al. | Jan 2007 | B1 |
7199348 | Olsen et al. | Apr 2007 | B2 |
7206449 | Raskar et al. | Apr 2007 | B2 |
7215364 | Wachtel et al. | May 2007 | B2 |
7235785 | Hornback et al. | Jun 2007 | B2 |
7245761 | Swaminathan et al. | Jul 2007 | B2 |
7262799 | Suda | Aug 2007 | B2 |
7292735 | Blake et al. | Nov 2007 | B2 |
7295697 | Satoh | Nov 2007 | B1 |
7333651 | Kim et al. | Feb 2008 | B1 |
7369165 | Bosco et al. | May 2008 | B2 |
7391572 | Jacobowitz et al. | Jun 2008 | B2 |
7408725 | Sato | Aug 2008 | B2 |
7425984 | Chen et al. | Sep 2008 | B2 |
7430312 | Gu | Sep 2008 | B2 |
7471765 | Jaffray et al. | Dec 2008 | B2 |
7496293 | Shamir et al. | Feb 2009 | B2 |
7564019 | Olsen et al. | Jul 2009 | B2 |
7599547 | Sun et al. | Oct 2009 | B2 |
7606484 | Richards et al. | Oct 2009 | B1 |
7620265 | Wolff et al. | Nov 2009 | B1 |
7633511 | Shum et al. | Dec 2009 | B2 |
7639435 | Chiang | Dec 2009 | B2 |
7639838 | Nims | Dec 2009 | B2 |
7646549 | Zalevsky et al. | Jan 2010 | B2 |
7657090 | Omatsu et al. | Feb 2010 | B2 |
7667824 | Moran | Feb 2010 | B1 |
7675080 | Boettiger | Mar 2010 | B2 |
7675681 | Tomikawa et al. | Mar 2010 | B2 |
7706634 | Schmitt et al. | Apr 2010 | B2 |
7723662 | Levoy et al. | May 2010 | B2 |
7738013 | Galambos et al. | Jun 2010 | B2 |
7741620 | Doering et al. | Jun 2010 | B2 |
7782364 | Smith | Aug 2010 | B2 |
7826153 | Hong | Nov 2010 | B2 |
7840067 | Shen et al. | Nov 2010 | B2 |
7912673 | Hébert et al. | Mar 2011 | B2 |
7924321 | Nayar et al. | Apr 2011 | B2 |
7956871 | Fainstain et al. | Jun 2011 | B2 |
7965314 | Miller et al. | Jun 2011 | B1 |
7973834 | Yang | Jul 2011 | B2 |
7986018 | Rennie | Jul 2011 | B2 |
7990447 | Honda et al. | Aug 2011 | B2 |
8000498 | Shih et al. | Aug 2011 | B2 |
8013904 | Tan et al. | Sep 2011 | B2 |
8027531 | Wilburn et al. | Sep 2011 | B2 |
8044994 | Vetro et al. | Oct 2011 | B2 |
8055466 | Bryll | Nov 2011 | B2 |
8077245 | Adamo et al. | Dec 2011 | B2 |
8089515 | Chebil et al. | Jan 2012 | B2 |
8098297 | Crisan et al. | Jan 2012 | B2 |
8098304 | Pinto et al. | Jan 2012 | B2 |
8106949 | Tan et al. | Jan 2012 | B2 |
8111910 | Tanaka | Feb 2012 | B2 |
8126279 | Marcellin et al. | Feb 2012 | B2 |
8130120 | Kawabata et al. | Mar 2012 | B2 |
8131097 | Lelescu et al. | Mar 2012 | B2 |
8149323 | Li et al. | Apr 2012 | B2 |
8164629 | Zhang | Apr 2012 | B1 |
8169486 | Corcoran et al. | May 2012 | B2 |
8180145 | Wu et al. | May 2012 | B2 |
8189065 | Georgiev et al. | May 2012 | B2 |
8189089 | Georgiev et al. | May 2012 | B1 |
8194296 | Compton et al. | Jun 2012 | B2 |
8212914 | Chiu | Jul 2012 | B2 |
8213711 | Tam | Jul 2012 | B2 |
8231814 | Duparre | Jul 2012 | B2 |
8242426 | Ward et al. | Aug 2012 | B2 |
8244027 | Takahashi | Aug 2012 | B2 |
8244058 | Intwala et al. | Aug 2012 | B1 |
8254668 | Mashitani et al. | Aug 2012 | B2 |
8279325 | Pitts et al. | Oct 2012 | B2 |
8280194 | Wong et al. | Oct 2012 | B2 |
8284240 | Saint-Pierre et al. | Oct 2012 | B2 |
8289409 | Chang | Oct 2012 | B2 |
8289440 | Pitts et al. | Oct 2012 | B2 |
8290358 | Georgiev | Oct 2012 | B1 |
8294099 | Blackwell, Jr. | Oct 2012 | B2 |
8294754 | Jung et al. | Oct 2012 | B2 |
8300085 | Yang et al. | Oct 2012 | B2 |
8305456 | McMahon | Nov 2012 | B1 |
8315476 | Georgiev et al. | Nov 2012 | B1 |
8345144 | Georgiev et al. | Jan 2013 | B1 |
8360574 | Ishak et al. | Jan 2013 | B2 |
8400555 | Georgiev et al. | Mar 2013 | B1 |
8406562 | Bassi et al. | Mar 2013 | B2 |
8411146 | Twede | Apr 2013 | B2 |
8416282 | Lablans | Apr 2013 | B2 |
8421846 | Nelson et al. | Apr 2013 | B2 |
8446492 | Nakano et al. | May 2013 | B2 |
8456517 | Spektor et al. | Jun 2013 | B2 |
8493496 | Freedman et al. | Jul 2013 | B2 |
8514291 | Chang | Aug 2013 | B2 |
8514491 | Duparre | Aug 2013 | B2 |
8541730 | Inuiya | Sep 2013 | B2 |
8542933 | Venkataraman et al. | Sep 2013 | B2 |
8553093 | Wong et al. | Oct 2013 | B2 |
8559705 | Ng | Oct 2013 | B2 |
8559756 | Georgiev et al. | Oct 2013 | B2 |
8565547 | Strandemar | Oct 2013 | B2 |
8576302 | Yoshikawa | Nov 2013 | B2 |
8577183 | Robinson | Nov 2013 | B2 |
8581995 | Lin et al. | Nov 2013 | B2 |
8587679 | Knee | Nov 2013 | B2 |
8619082 | Ciurea et al. | Dec 2013 | B1 |
8648918 | Kauker et al. | Feb 2014 | B2 |
8648919 | Mantzel et al. | Feb 2014 | B2 |
8655052 | Spooner et al. | Feb 2014 | B2 |
8682107 | Yoon et al. | Mar 2014 | B2 |
8687087 | Pertsel et al. | Apr 2014 | B2 |
8692893 | McMahon | Apr 2014 | B2 |
8749620 | Knight | Jun 2014 | B1 |
8754941 | Sarwari et al. | Jun 2014 | B1 |
8773536 | Zhang | Jul 2014 | B1 |
8780113 | Ciurea et al. | Jul 2014 | B1 |
8804255 | Duparre | Aug 2014 | B2 |
8823813 | Mantzel et al. | Sep 2014 | B2 |
8830375 | Ludwig | Sep 2014 | B2 |
8831367 | Venkataraman et al. | Sep 2014 | B2 |
8831377 | Pitts et al. | Sep 2014 | B2 |
8836793 | Kriesel et al. | Sep 2014 | B1 |
8842201 | Tajiri | Sep 2014 | B2 |
8854462 | Herbin et al. | Oct 2014 | B2 |
8861089 | Duparre | Oct 2014 | B2 |
8866912 | Mullis | Oct 2014 | B2 |
8866920 | Venkataraman et al. | Oct 2014 | B2 |
8866951 | Keelan | Oct 2014 | B2 |
8878950 | Lelescu et al. | Nov 2014 | B2 |
8885059 | Venkataraman et al. | Nov 2014 | B1 |
8885922 | Ito et al. | Nov 2014 | B2 |
8896594 | Xiong et al. | Nov 2014 | B2 |
8896719 | Venkataraman et al. | Nov 2014 | B1 |
8902321 | Venkataraman et al. | Dec 2014 | B2 |
8928793 | McMahon | Jan 2015 | B2 |
8977038 | Tian et al. | Mar 2015 | B2 |
9001226 | Ng et al. | Apr 2015 | B1 |
9019426 | Han et al. | Apr 2015 | B2 |
9025894 | Venkataraman et al. | May 2015 | B2 |
9025895 | Venkataraman et al. | May 2015 | B2 |
9030528 | Pesach et al. | May 2015 | B2 |
9031335 | Venkataraman et al. | May 2015 | B2 |
9031342 | Venkataraman | May 2015 | B2 |
9031343 | Venkataraman | May 2015 | B2 |
9036928 | Venkataraman | May 2015 | B2 |
9036931 | Venkataraman et al. | May 2015 | B2 |
9041823 | Venkataraman et al. | May 2015 | B2 |
9041824 | Lelescu et al. | May 2015 | B2 |
9041829 | Venkataraman et al. | May 2015 | B2 |
9042667 | Venkataraman et al. | May 2015 | B2 |
9047684 | Lelescu et al. | Jun 2015 | B2 |
9049367 | Venkataraman et al. | Jun 2015 | B2 |
9055233 | Venkataraman et al. | Jun 2015 | B2 |
9060120 | Venkataraman et al. | Jun 2015 | B2 |
9060124 | Venkataraman et al. | Jun 2015 | B2 |
9077893 | Venkataraman et al. | Jul 2015 | B2 |
9094661 | Venkataraman et al. | Jul 2015 | B2 |
9100586 | McMahon et al. | Aug 2015 | B2 |
9100635 | Duparre et al. | Aug 2015 | B2 |
9123117 | Ciurea et al. | Sep 2015 | B2 |
9123118 | Ciurea et al. | Sep 2015 | B2 |
9124815 | Venkataraman et al. | Sep 2015 | B2 |
9124831 | Mullis | Sep 2015 | B2 |
9124864 | Mullis | Sep 2015 | B2 |
9128228 | Duparre | Sep 2015 | B2 |
9129183 | Venkataraman et al. | Sep 2015 | B2 |
9129377 | Ciurea et al. | Sep 2015 | B2 |
9143711 | McMahon | Sep 2015 | B2 |
9147254 | Florian et al. | Sep 2015 | B2 |
9185276 | Rodda et al. | Nov 2015 | B2 |
9188765 | Venkataraman et al. | Nov 2015 | B2 |
9191580 | Venkataraman et al. | Nov 2015 | B2 |
9197821 | McMahon | Nov 2015 | B2 |
9210392 | Nisenzon et al. | Dec 2015 | B2 |
9214013 | Venkataraman et al. | Dec 2015 | B2 |
9235898 | Venkataraman et al. | Jan 2016 | B2 |
9235900 | Ciurea et al. | Jan 2016 | B2 |
9240049 | Ciurea et al. | Jan 2016 | B2 |
9253380 | Venkataraman et al. | Feb 2016 | B2 |
9253397 | Lee et al. | Feb 2016 | B2 |
9256974 | Hines | Feb 2016 | B1 |
9264592 | Rodda et al. | Feb 2016 | B2 |
9264610 | Duparre | Feb 2016 | B2 |
9361662 | Lelescu et al. | Jun 2016 | B2 |
9374512 | Venkataraman et al. | Jun 2016 | B2 |
9412206 | McMahon et al. | Aug 2016 | B2 |
9413953 | Maeda | Aug 2016 | B2 |
9426343 | Rodda et al. | Aug 2016 | B2 |
9426361 | Venkataraman et al. | Aug 2016 | B2 |
9438888 | Venkataraman et al. | Sep 2016 | B2 |
9445003 | Lelescu et al. | Sep 2016 | B1 |
9456134 | Venkataraman et al. | Sep 2016 | B2 |
9456196 | Kim et al. | Sep 2016 | B2 |
9462164 | Venkataraman et al. | Oct 2016 | B2 |
9485496 | Venkataraman et al. | Nov 2016 | B2 |
9497370 | Venkataraman et al. | Nov 2016 | B2 |
9497429 | Mullis et al. | Nov 2016 | B2 |
9516222 | Duparre et al. | Dec 2016 | B2 |
9519972 | Venkataraman et al. | Dec 2016 | B2 |
9521319 | Rodda et al. | Dec 2016 | B2 |
9521416 | McMahon et al. | Dec 2016 | B1 |
9536166 | Venkataraman et al. | Jan 2017 | B2 |
9576369 | Venkataraman et al. | Feb 2017 | B2 |
9578237 | Duparre et al. | Feb 2017 | B2 |
9578259 | Molina | Feb 2017 | B2 |
9602805 | Venkataraman et al. | Mar 2017 | B2 |
9633442 | Venkataraman et al. | Apr 2017 | B2 |
9635274 | Lin et al. | Apr 2017 | B2 |
9638883 | Duparre | May 2017 | B1 |
9661310 | Deng et al. | May 2017 | B2 |
9706132 | Nisenzon et al. | Jul 2017 | B2 |
9712759 | Venkataraman et al. | Jul 2017 | B2 |
9733486 | Lelescu et al. | Aug 2017 | B2 |
9741118 | Mullis | Aug 2017 | B2 |
9743051 | Venkataraman et al. | Aug 2017 | B2 |
9749547 | Venkataraman et al. | Aug 2017 | B2 |
9749568 | McMahon | Aug 2017 | B2 |
9754422 | McMahon et al. | Sep 2017 | B2 |
9766380 | Duparre et al. | Sep 2017 | B2 |
9769365 | Jannard | Sep 2017 | B1 |
9774789 | Ciurea et al. | Sep 2017 | B2 |
9774831 | Venkataraman et al. | Sep 2017 | B2 |
9787911 | McMahon et al. | Oct 2017 | B2 |
9794476 | Nayar et al. | Oct 2017 | B2 |
9800856 | Venkataraman et al. | Oct 2017 | B2 |
9800859 | Venkataraman et al. | Oct 2017 | B2 |
9807382 | Duparre et al. | Oct 2017 | B2 |
9811753 | Venkataraman et al. | Nov 2017 | B2 |
9813616 | Lelescu et al. | Nov 2017 | B2 |
9813617 | Venkataraman et al. | Nov 2017 | B2 |
9826212 | Newton et al. | Nov 2017 | B2 |
9858673 | Ciurea et al. | Jan 2018 | B2 |
9864921 | Venkataraman et al. | Jan 2018 | B2 |
9888194 | Duparre | Feb 2018 | B2 |
9898856 | Yang et al. | Feb 2018 | B2 |
9917998 | Venkataraman et al. | Mar 2018 | B2 |
9924092 | Rodda et al. | Mar 2018 | B2 |
9936148 | McMahon | Apr 2018 | B2 |
9955070 | Lelescu et al. | Apr 2018 | B2 |
9986224 | Mullis | May 2018 | B2 |
10009538 | Venkataraman et al. | Jun 2018 | B2 |
10019816 | Venkataraman et al. | Jul 2018 | B2 |
10027901 | Venkataraman et al. | Jul 2018 | B2 |
10089740 | Srikanth et al. | Oct 2018 | B2 |
10091405 | Molina | Oct 2018 | B2 |
10119808 | Venkataraman et al. | Nov 2018 | B2 |
10122993 | Venkataraman et al. | Nov 2018 | B2 |
10127682 | Mullis | Nov 2018 | B2 |
10142560 | Venkataraman et al. | Nov 2018 | B2 |
10182216 | Mullis et al. | Jan 2019 | B2 |
10187560 | Chen et al. | Jan 2019 | B2 |
10225543 | Mullis | Mar 2019 | B2 |
10250871 | Ciurea et al. | Apr 2019 | B2 |
10261219 | Duparre et al. | Apr 2019 | B2 |
10275676 | Venkataraman et al. | Apr 2019 | B2 |
10306120 | Duparre | May 2019 | B2 |
10311649 | McMohan et al. | Jun 2019 | B2 |
10334241 | Duparre et al. | Jun 2019 | B2 |
10366472 | Lelescu et al. | Jul 2019 | B2 |
10375302 | Nayar et al. | Aug 2019 | B2 |
10375319 | Venkataraman et al. | Aug 2019 | B2 |
10380752 | Ciurea et al. | Aug 2019 | B2 |
10382665 | Sa et al. | Aug 2019 | B2 |
10390005 | Nisenzon et al. | Aug 2019 | B2 |
10412314 | McMahon et al. | Sep 2019 | B2 |
10430682 | Venkataraman et al. | Oct 2019 | B2 |
10432944 | Hamilton | Oct 2019 | B2 |
10455168 | McMahon | Oct 2019 | B2 |
10455218 | Venkataraman et al. | Oct 2019 | B2 |
10462362 | Lelescu et al. | Oct 2019 | B2 |
10475163 | Boisson | Nov 2019 | B2 |
10540806 | Yang et al. | Jan 2020 | B2 |
10542208 | Lelescu et al. | Jan 2020 | B2 |
10547772 | Molina | Jan 2020 | B2 |
10560684 | Mullis | Feb 2020 | B2 |
10574905 | Srikanth et al. | Feb 2020 | B2 |
10638099 | Mullis et al. | Apr 2020 | B2 |
10674138 | Venkataraman et al. | Jun 2020 | B2 |
10687068 | Barros Da Silva | Jun 2020 | B1 |
10694114 | Venkataraman et al. | Jun 2020 | B2 |
10708492 | Venkataraman et al. | Jul 2020 | B2 |
10735635 | Duparre | Aug 2020 | B2 |
10767981 | Venkataraman et al. | Sep 2020 | B2 |
10839485 | Lelescu et al. | Nov 2020 | B2 |
10909707 | Ciurea et al. | Feb 2021 | B2 |
10911735 | Hamilton | Feb 2021 | B2 |
10958892 | Mullis | Mar 2021 | B2 |
10984276 | Venkataraman et al. | Apr 2021 | B2 |
11022725 | Duparre et al. | Jun 2021 | B2 |
11064154 | Cutler | Jul 2021 | B2 |
11082659 | Cutler | Aug 2021 | B2 |
11120260 | Guglielmo | Sep 2021 | B2 |
11270464 | Cutler | Mar 2022 | B2 |
11272161 | Mullis | Mar 2022 | B2 |
11315321 | Lucas et al. | Apr 2022 | B2 |
11412158 | Venkataraman et al. | Aug 2022 | B2 |
11423513 | Lelescu et al. | Aug 2022 | B2 |
11486698 | Venkataraman et al. | Nov 2022 | B2 |
11503274 | Smithwick | Nov 2022 | B2 |
11525906 | Kadambi et al. | Dec 2022 | B2 |
11553123 | Cutler | Jan 2023 | B2 |
11562530 | Hamilton | Jan 2023 | B2 |
11570423 | Mullis | Jan 2023 | B2 |
11729365 | Venkataraman et al. | Aug 2023 | B2 |
11792538 | Venkataraman et al. | Oct 2023 | B2 |
11875475 | Lelescu et al. | Jan 2024 | B2 |
20010005225 | Clark et al. | Jun 2001 | A1 |
20010019621 | Hanna et al. | Sep 2001 | A1 |
20010028038 | Hamaguchi et al. | Oct 2001 | A1 |
20010038387 | Tomooka et al. | Nov 2001 | A1 |
20020012056 | Trevino et al. | Jan 2002 | A1 |
20020015536 | Warren et al. | Feb 2002 | A1 |
20020027608 | Johnson et al. | Mar 2002 | A1 |
20020028014 | Ono | Mar 2002 | A1 |
20020039438 | Mori et al. | Apr 2002 | A1 |
20020057845 | Fossum et al. | May 2002 | A1 |
20020061131 | Sawhney et al. | May 2002 | A1 |
20020063807 | Margulis | May 2002 | A1 |
20020075450 | Aratani et al. | Jun 2002 | A1 |
20020087403 | Meyers et al. | Jul 2002 | A1 |
20020089596 | Yasuo | Jul 2002 | A1 |
20020094027 | Sato et al. | Jul 2002 | A1 |
20020101528 | Lee et al. | Aug 2002 | A1 |
20020113867 | Takigawa et al. | Aug 2002 | A1 |
20020113888 | Sonoda et al. | Aug 2002 | A1 |
20020118113 | Oku et al. | Aug 2002 | A1 |
20020120634 | Min et al. | Aug 2002 | A1 |
20020122113 | Foote | Sep 2002 | A1 |
20020163054 | Suda | Nov 2002 | A1 |
20020167537 | Trajkovic | Nov 2002 | A1 |
20020171666 | Endo et al. | Nov 2002 | A1 |
20020177054 | Saitoh et al. | Nov 2002 | A1 |
20020190991 | Efran et al. | Dec 2002 | A1 |
20020195548 | Dowski, Jr. et al. | Dec 2002 | A1 |
20030025227 | Daniell | Feb 2003 | A1 |
20030026474 | Yano | Feb 2003 | A1 |
20030086079 | Barth et al. | May 2003 | A1 |
20030124763 | Fan et al. | Jul 2003 | A1 |
20030140347 | Varsa | Jul 2003 | A1 |
20030156189 | Utsumi et al. | Aug 2003 | A1 |
20030179418 | Wengender et al. | Sep 2003 | A1 |
20030188659 | Merry et al. | Oct 2003 | A1 |
20030190072 | Adkins et al. | Oct 2003 | A1 |
20030198377 | Ng | Oct 2003 | A1 |
20030211405 | Venkataraman | Nov 2003 | A1 |
20030231179 | Suzuki | Dec 2003 | A1 |
20040003409 | Berstis | Jan 2004 | A1 |
20040008271 | Hagimori et al. | Jan 2004 | A1 |
20040012689 | Tinnerino et al. | Jan 2004 | A1 |
20040027358 | Nakao | Feb 2004 | A1 |
20040047274 | Amanai | Mar 2004 | A1 |
20040050104 | Ghosh et al. | Mar 2004 | A1 |
20040056966 | Schechner et al. | Mar 2004 | A1 |
20040061787 | Liu et al. | Apr 2004 | A1 |
20040066454 | Otani et al. | Apr 2004 | A1 |
20040071367 | Irani et al. | Apr 2004 | A1 |
20040075654 | Hsiao et al. | Apr 2004 | A1 |
20040096119 | Williams et al. | May 2004 | A1 |
20040100570 | Shizukuishi | May 2004 | A1 |
20040105021 | Hu | Jun 2004 | A1 |
20040114807 | Lelescu et al. | Jun 2004 | A1 |
20040141659 | Zhang | Jul 2004 | A1 |
20040151401 | Sawhney et al. | Aug 2004 | A1 |
20040165090 | Ning | Aug 2004 | A1 |
20040169617 | Yelton et al. | Sep 2004 | A1 |
20040170340 | Tipping et al. | Sep 2004 | A1 |
20040174439 | Upton | Sep 2004 | A1 |
20040179008 | Gordon et al. | Sep 2004 | A1 |
20040179834 | Szajewski et al. | Sep 2004 | A1 |
20040196379 | Chen et al. | Oct 2004 | A1 |
20040207600 | Zhang et al. | Oct 2004 | A1 |
20040207836 | Chhibber et al. | Oct 2004 | A1 |
20040212734 | Macinnis et al. | Oct 2004 | A1 |
20040213449 | Safaee-Rad et al. | Oct 2004 | A1 |
20040218809 | Blake et al. | Nov 2004 | A1 |
20040223051 | Peleg et al. | Nov 2004 | A1 |
20040234873 | Venkataraman | Nov 2004 | A1 |
20040239782 | Equitz et al. | Dec 2004 | A1 |
20040239885 | Jaynes et al. | Dec 2004 | A1 |
20040240052 | Minefuji et al. | Dec 2004 | A1 |
20040251509 | Choi | Dec 2004 | A1 |
20040264806 | Herley | Dec 2004 | A1 |
20050006477 | Patel | Jan 2005 | A1 |
20050007461 | Chou et al. | Jan 2005 | A1 |
20050009313 | Suzuki et al. | Jan 2005 | A1 |
20050010621 | Pinto et al. | Jan 2005 | A1 |
20050012035 | Miller | Jan 2005 | A1 |
20050036778 | DeMonte | Feb 2005 | A1 |
20050047678 | Jones et al. | Mar 2005 | A1 |
20050048690 | Yamamoto | Mar 2005 | A1 |
20050068436 | Fraenkel et al. | Mar 2005 | A1 |
20050083531 | Millerd et al. | Apr 2005 | A1 |
20050084179 | Hanna et al. | Apr 2005 | A1 |
20050128509 | Tokkonen et al. | Jun 2005 | A1 |
20050128595 | Shimizu | Jun 2005 | A1 |
20050132098 | Sonoda et al. | Jun 2005 | A1 |
20050134698 | Schroeder et al. | Jun 2005 | A1 |
20050134699 | Nagashima | Jun 2005 | A1 |
20050134712 | Gruhlke et al. | Jun 2005 | A1 |
20050147277 | Higaki et al. | Jul 2005 | A1 |
20050151759 | Gonzalez-Banos et al. | Jul 2005 | A1 |
20050168924 | Wu et al. | Aug 2005 | A1 |
20050175257 | Kuroki | Aug 2005 | A1 |
20050185711 | Pfister et al. | Aug 2005 | A1 |
20050205785 | Hornback et al. | Sep 2005 | A1 |
20050219264 | Shum et al. | Oct 2005 | A1 |
20050219363 | Kohler et al. | Oct 2005 | A1 |
20050224843 | Boemler | Oct 2005 | A1 |
20050225654 | Feldman et al. | Oct 2005 | A1 |
20050265633 | Piacentino et al. | Dec 2005 | A1 |
20050275946 | Choo et al. | Dec 2005 | A1 |
20050286612 | Takanashi | Dec 2005 | A1 |
20050286756 | Hong et al. | Dec 2005 | A1 |
20060002635 | Nestares et al. | Jan 2006 | A1 |
20060007331 | Izumi et al. | Jan 2006 | A1 |
20060013318 | Webb et al. | Jan 2006 | A1 |
20060018509 | Miyoshi | Jan 2006 | A1 |
20060023197 | Joel | Feb 2006 | A1 |
20060023314 | Boettiger et al. | Feb 2006 | A1 |
20060028476 | Sobel et al. | Feb 2006 | A1 |
20060029270 | Berestov et al. | Feb 2006 | A1 |
20060029271 | Miyoshi et al. | Feb 2006 | A1 |
20060033005 | Jerdev et al. | Feb 2006 | A1 |
20060034003 | Zalevsky | Feb 2006 | A1 |
20060034531 | Poon et al. | Feb 2006 | A1 |
20060035415 | Wood | Feb 2006 | A1 |
20060038879 | Kremen | Feb 2006 | A1 |
20060038891 | Okutomi et al. | Feb 2006 | A1 |
20060039611 | Rother et al. | Feb 2006 | A1 |
20060046204 | Ono et al. | Mar 2006 | A1 |
20060049930 | Zruya et al. | Mar 2006 | A1 |
20060050980 | Kohashi et al. | Mar 2006 | A1 |
20060054780 | Garrood et al. | Mar 2006 | A1 |
20060054782 | Olsen et al. | Mar 2006 | A1 |
20060055811 | Frtiz et al. | Mar 2006 | A1 |
20060069478 | Iwama | Mar 2006 | A1 |
20060072029 | Miyatake et al. | Apr 2006 | A1 |
20060087747 | Ohzawa et al. | Apr 2006 | A1 |
20060098888 | Morishita | May 2006 | A1 |
20060103754 | Wenstrand et al. | May 2006 | A1 |
20060119597 | Oshino | Jun 2006 | A1 |
20060125936 | Gruhike et al. | Jun 2006 | A1 |
20060138322 | Costello et al. | Jun 2006 | A1 |
20060139475 | Esch et al. | Jun 2006 | A1 |
20060152803 | Provitola | Jul 2006 | A1 |
20060157640 | Perlman et al. | Jul 2006 | A1 |
20060159369 | Young | Jul 2006 | A1 |
20060176566 | Boettiger et al. | Aug 2006 | A1 |
20060187322 | Janson, Jr. et al. | Aug 2006 | A1 |
20060187338 | May et al. | Aug 2006 | A1 |
20060197937 | Bamji et al. | Sep 2006 | A1 |
20060203100 | Ajito et al. | Sep 2006 | A1 |
20060203113 | Wada et al. | Sep 2006 | A1 |
20060210146 | Gu | Sep 2006 | A1 |
20060210186 | Berkner | Sep 2006 | A1 |
20060214085 | Olsen et al. | Sep 2006 | A1 |
20060221250 | Rossbach et al. | Oct 2006 | A1 |
20060239549 | Kelly et al. | Oct 2006 | A1 |
20060243889 | Farnworth et al. | Nov 2006 | A1 |
20060251410 | Trutna | Nov 2006 | A1 |
20060274174 | Tewinkle | Dec 2006 | A1 |
20060278948 | Yamaguchi et al. | Dec 2006 | A1 |
20060279648 | Senba et al. | Dec 2006 | A1 |
20060289772 | Johnson et al. | Dec 2006 | A1 |
20070002159 | Olsen et al. | Jan 2007 | A1 |
20070008575 | Yu et al. | Jan 2007 | A1 |
20070009150 | Suwa | Jan 2007 | A1 |
20070024614 | Tam et al. | Feb 2007 | A1 |
20070030356 | Yea et al. | Feb 2007 | A1 |
20070035707 | Margulis | Feb 2007 | A1 |
20070036427 | Nakamura et al. | Feb 2007 | A1 |
20070040828 | Zalevsky et al. | Feb 2007 | A1 |
20070040922 | McKee et al. | Feb 2007 | A1 |
20070041391 | Lin et al. | Feb 2007 | A1 |
20070052825 | Cho | Mar 2007 | A1 |
20070083114 | Yang et al. | Apr 2007 | A1 |
20070085917 | Kobayashi | Apr 2007 | A1 |
20070092245 | Bazakos et al. | Apr 2007 | A1 |
20070102622 | Olsen et al. | May 2007 | A1 |
20070116447 | Ye | May 2007 | A1 |
20070126898 | Feldman et al. | Jun 2007 | A1 |
20070127831 | Venkataraman | Jun 2007 | A1 |
20070139333 | Sato et al. | Jun 2007 | A1 |
20070140685 | Wu | Jun 2007 | A1 |
20070146503 | Shiraki | Jun 2007 | A1 |
20070146511 | Kinoshita et al. | Jun 2007 | A1 |
20070153335 | Hosaka | Jul 2007 | A1 |
20070158427 | Zhu et al. | Jul 2007 | A1 |
20070159541 | Sparks et al. | Jul 2007 | A1 |
20070160310 | Tanida et al. | Jul 2007 | A1 |
20070165931 | Higaki | Jul 2007 | A1 |
20070166447 | Ur-Rehman et al. | Jul 2007 | A1 |
20070171290 | Kroger | Jul 2007 | A1 |
20070177004 | Kolehmainen et al. | Aug 2007 | A1 |
20070182843 | Shimamura et al. | Aug 2007 | A1 |
20070201859 | Sarrat | Aug 2007 | A1 |
20070206241 | Smith et al. | Sep 2007 | A1 |
20070211164 | Olsen et al. | Sep 2007 | A1 |
20070216765 | Wong et al. | Sep 2007 | A1 |
20070225600 | Weibrecht et al. | Sep 2007 | A1 |
20070228256 | Mentzer et al. | Oct 2007 | A1 |
20070236595 | Pan et al. | Oct 2007 | A1 |
20070242141 | Ciurea | Oct 2007 | A1 |
20070247517 | Zhang et al. | Oct 2007 | A1 |
20070257184 | Olsen et al. | Nov 2007 | A1 |
20070258006 | Olsen et al. | Nov 2007 | A1 |
20070258706 | Raskar et al. | Nov 2007 | A1 |
20070263113 | Baek et al. | Nov 2007 | A1 |
20070263114 | Gurevich et al. | Nov 2007 | A1 |
20070268374 | Robinson | Nov 2007 | A1 |
20070296721 | Chang et al. | Dec 2007 | A1 |
20070296832 | Ota et al. | Dec 2007 | A1 |
20070296835 | Olsen et al. | Dec 2007 | A1 |
20070296847 | Chang et al. | Dec 2007 | A1 |
20070297696 | Hamza et al. | Dec 2007 | A1 |
20080006859 | Mionetto | Jan 2008 | A1 |
20080019611 | Larkin et al. | Jan 2008 | A1 |
20080024683 | Damera-Venkata et al. | Jan 2008 | A1 |
20080025649 | Liu et al. | Jan 2008 | A1 |
20080029714 | Olsen et al. | Feb 2008 | A1 |
20080030592 | Border et al. | Feb 2008 | A1 |
20080030597 | Olsen et al. | Feb 2008 | A1 |
20080043095 | Vetro et al. | Feb 2008 | A1 |
20080043096 | Vetro et al. | Feb 2008 | A1 |
20080054518 | Ra et al. | Mar 2008 | A1 |
20080056302 | Erdal et al. | Mar 2008 | A1 |
20080062164 | Bassi et al. | Mar 2008 | A1 |
20080079805 | Takagi et al. | Apr 2008 | A1 |
20080080028 | Bakin et al. | Apr 2008 | A1 |
20080084486 | Enge et al. | Apr 2008 | A1 |
20080088793 | Sverdrup et al. | Apr 2008 | A1 |
20080095523 | Schilling-Benz et al. | Apr 2008 | A1 |
20080099804 | Venezia et al. | May 2008 | A1 |
20080106620 | Sawachi | May 2008 | A1 |
20080112059 | Choi et al. | May 2008 | A1 |
20080112635 | Kondo et al. | May 2008 | A1 |
20080117289 | Schowengerdt et al. | May 2008 | A1 |
20080118241 | TeKolste et al. | May 2008 | A1 |
20080131019 | Ng | Jun 2008 | A1 |
20080131107 | Ueno | Jun 2008 | A1 |
20080151097 | Chen et al. | Jun 2008 | A1 |
20080152215 | Horie et al. | Jun 2008 | A1 |
20080152296 | Oh et al. | Jun 2008 | A1 |
20080156991 | Hu et al. | Jul 2008 | A1 |
20080158259 | Kempf et al. | Jul 2008 | A1 |
20080158375 | Kakkori et al. | Jul 2008 | A1 |
20080158698 | Chang et al. | Jul 2008 | A1 |
20080165257 | Boettiger | Jul 2008 | A1 |
20080174670 | Olsen et al. | Jul 2008 | A1 |
20080187305 | Raskar et al. | Aug 2008 | A1 |
20080193026 | Horie et al. | Aug 2008 | A1 |
20080208506 | Kuwata | Aug 2008 | A1 |
20080211737 | Kim et al. | Sep 2008 | A1 |
20080218610 | Chapman et al. | Sep 2008 | A1 |
20080218611 | Parulski et al. | Sep 2008 | A1 |
20080218612 | Border et al. | Sep 2008 | A1 |
20080218613 | Janson et al. | Sep 2008 | A1 |
20080219654 | Border et al. | Sep 2008 | A1 |
20080239116 | Smith | Oct 2008 | A1 |
20080240598 | Hasegawa | Oct 2008 | A1 |
20080247638 | Tanida et al. | Oct 2008 | A1 |
20080247653 | Moussavi et al. | Oct 2008 | A1 |
20080272416 | Yun | Nov 2008 | A1 |
20080273751 | Yuan et al. | Nov 2008 | A1 |
20080278591 | Barna et al. | Nov 2008 | A1 |
20080278610 | Boettiger | Nov 2008 | A1 |
20080284880 | Numata | Nov 2008 | A1 |
20080291295 | Kato et al. | Nov 2008 | A1 |
20080298674 | Baker et al. | Dec 2008 | A1 |
20080310501 | Ward et al. | Dec 2008 | A1 |
20090027543 | Kanehiro | Jan 2009 | A1 |
20090050946 | Duparre et al. | Feb 2009 | A1 |
20090052743 | Techmer | Feb 2009 | A1 |
20090060281 | Tanida et al. | Mar 2009 | A1 |
20090066693 | Carson | Mar 2009 | A1 |
20090079862 | Subbotin | Mar 2009 | A1 |
20090086074 | Li et al. | Apr 2009 | A1 |
20090091645 | Trimeche et al. | Apr 2009 | A1 |
20090091806 | Inuiya | Apr 2009 | A1 |
20090092363 | Daum et al. | Apr 2009 | A1 |
20090096050 | Park | Apr 2009 | A1 |
20090102956 | Georgiev | Apr 2009 | A1 |
20090103792 | Rahn et al. | Apr 2009 | A1 |
20090109306 | Shan et al. | Apr 2009 | A1 |
20090127430 | Hirasawa et al. | May 2009 | A1 |
20090128644 | Camp, Jr. et al. | May 2009 | A1 |
20090128833 | Yahav | May 2009 | A1 |
20090129667 | Ho et al. | May 2009 | A1 |
20090140131 | Utagawa | Jun 2009 | A1 |
20090141933 | Wagg | Jun 2009 | A1 |
20090147919 | Goto et al. | Jun 2009 | A1 |
20090152664 | Klem et al. | Jun 2009 | A1 |
20090167922 | Perlman et al. | Jul 2009 | A1 |
20090167923 | Safaee-Rad et al. | Jul 2009 | A1 |
20090167934 | Gupta | Jul 2009 | A1 |
20090175349 | Ye et al. | Jul 2009 | A1 |
20090179142 | Duparre et al. | Jul 2009 | A1 |
20090180021 | Kikuchi et al. | Jul 2009 | A1 |
20090200622 | Tai et al. | Aug 2009 | A1 |
20090201371 | Matsuda et al. | Aug 2009 | A1 |
20090207235 | Francini et al. | Aug 2009 | A1 |
20090219435 | Yuan | Sep 2009 | A1 |
20090225203 | Tanida et al. | Sep 2009 | A1 |
20090237520 | Kaneko et al. | Sep 2009 | A1 |
20090245573 | Saptharishi et al. | Oct 2009 | A1 |
20090256947 | Ciurea et al. | Oct 2009 | A1 |
20090263017 | Tanbakuchi | Oct 2009 | A1 |
20090268192 | Koenck et al. | Oct 2009 | A1 |
20090268970 | Babacan et al. | Oct 2009 | A1 |
20090268983 | Stone et al. | Oct 2009 | A1 |
20090273663 | Yoshida | Nov 2009 | A1 |
20090274387 | Jin | Nov 2009 | A1 |
20090279800 | Uetani et al. | Nov 2009 | A1 |
20090284651 | Srinivasan | Nov 2009 | A1 |
20090290811 | Imai | Nov 2009 | A1 |
20090297056 | Lelescu et al. | Dec 2009 | A1 |
20090302205 | Olsen et al. | Dec 2009 | A9 |
20090315982 | Schmidt et al. | Dec 2009 | A1 |
20090317061 | Jung et al. | Dec 2009 | A1 |
20090322876 | Lee et al. | Dec 2009 | A1 |
20090323195 | Hembree et al. | Dec 2009 | A1 |
20090323206 | Oliver et al. | Dec 2009 | A1 |
20090324118 | Maslov et al. | Dec 2009 | A1 |
20100002126 | Wenstrand et al. | Jan 2010 | A1 |
20100002313 | Duparre et al. | Jan 2010 | A1 |
20100002314 | Duparre | Jan 2010 | A1 |
20100007714 | Kim et al. | Jan 2010 | A1 |
20100013927 | Nixon | Jan 2010 | A1 |
20100044815 | Chang | Feb 2010 | A1 |
20100045809 | Packard | Feb 2010 | A1 |
20100053342 | Hwang et al. | Mar 2010 | A1 |
20100053347 | Agarwala et al. | Mar 2010 | A1 |
20100053415 | Yun | Mar 2010 | A1 |
20100053600 | Tanida et al. | Mar 2010 | A1 |
20100060746 | Olsen et al. | Mar 2010 | A9 |
20100073463 | Momonoi et al. | Mar 2010 | A1 |
20100074532 | Gordon et al. | Mar 2010 | A1 |
20100085351 | Deb et al. | Apr 2010 | A1 |
20100085425 | Tan | Apr 2010 | A1 |
20100086227 | Sun et al. | Apr 2010 | A1 |
20100091389 | Henriksen et al. | Apr 2010 | A1 |
20100097491 | Farina et al. | Apr 2010 | A1 |
20100103175 | Okutomi et al. | Apr 2010 | A1 |
20100103259 | Tanida et al. | Apr 2010 | A1 |
20100103308 | Butterfield et al. | Apr 2010 | A1 |
20100111444 | Coffman | May 2010 | A1 |
20100118127 | Nam et al. | May 2010 | A1 |
20100128145 | Pitts et al. | May 2010 | A1 |
20100129048 | Pitts et al. | May 2010 | A1 |
20100133230 | Henriksen et al. | Jun 2010 | A1 |
20100133418 | Sargent et al. | Jun 2010 | A1 |
20100141802 | Knight et al. | Jun 2010 | A1 |
20100142828 | Chang et al. | Jun 2010 | A1 |
20100142839 | Lakus-Becker | Jun 2010 | A1 |
20100157073 | Kondo et al. | Jun 2010 | A1 |
20100165152 | Lim | Jul 2010 | A1 |
20100166410 | Chang | Jul 2010 | A1 |
20100171866 | Brady et al. | Jul 2010 | A1 |
20100177411 | Hegde et al. | Jul 2010 | A1 |
20100182406 | Benitez | Jul 2010 | A1 |
20100194860 | Mentz et al. | Aug 2010 | A1 |
20100194901 | van et al. | Aug 2010 | A1 |
20100195716 | Klein et al. | Aug 2010 | A1 |
20100201809 | Oyama et al. | Aug 2010 | A1 |
20100201834 | Maruyama et al. | Aug 2010 | A1 |
20100202054 | Niederer | Aug 2010 | A1 |
20100202683 | Robinson | Aug 2010 | A1 |
20100208100 | Olsen et al. | Aug 2010 | A9 |
20100214423 | Ogawa | Aug 2010 | A1 |
20100220212 | Perlman et al. | Sep 2010 | A1 |
20100223237 | Mishra et al. | Sep 2010 | A1 |
20100225740 | Jung et al. | Sep 2010 | A1 |
20100231285 | Boomer et al. | Sep 2010 | A1 |
20100238327 | Griffith et al. | Sep 2010 | A1 |
20100244165 | Lake et al. | Sep 2010 | A1 |
20100245684 | Xiao et al. | Sep 2010 | A1 |
20100254627 | Panahpour et al. | Oct 2010 | A1 |
20100259610 | Petersen | Oct 2010 | A1 |
20100265346 | Iizuka | Oct 2010 | A1 |
20100265381 | Yamamoto et al. | Oct 2010 | A1 |
20100265385 | Knight et al. | Oct 2010 | A1 |
20100277629 | Tanaka | Nov 2010 | A1 |
20100281070 | Chan et al. | Nov 2010 | A1 |
20100289941 | Ito et al. | Nov 2010 | A1 |
20100290483 | Park et al. | Nov 2010 | A1 |
20100302423 | Adams, Jr. et al. | Dec 2010 | A1 |
20100309292 | Ho et al. | Dec 2010 | A1 |
20100309368 | Choi et al. | Dec 2010 | A1 |
20100321595 | Chiu | Dec 2010 | A1 |
20100321640 | Yeh et al. | Dec 2010 | A1 |
20100328456 | Alakarhu | Dec 2010 | A1 |
20100329556 | Mitarai et al. | Dec 2010 | A1 |
20100329582 | Albu et al. | Dec 2010 | A1 |
20110001037 | Tewinkle | Jan 2011 | A1 |
20110018973 | Takayama | Jan 2011 | A1 |
20110019048 | Raynor et al. | Jan 2011 | A1 |
20110019243 | Constant, Jr. et al. | Jan 2011 | A1 |
20110031381 | Tay et al. | Feb 2011 | A1 |
20110032341 | Ignatov et al. | Feb 2011 | A1 |
20110032370 | Ludwig | Feb 2011 | A1 |
20110033129 | Robinson | Feb 2011 | A1 |
20110038536 | Gong | Feb 2011 | A1 |
20110043604 | Peleg et al. | Feb 2011 | A1 |
20110043613 | Rohaly et al. | Feb 2011 | A1 |
20110043661 | Podoleanu | Feb 2011 | A1 |
20110043665 | Ogasahara | Feb 2011 | A1 |
20110043668 | McKinnon et al. | Feb 2011 | A1 |
20110044502 | Liu et al. | Feb 2011 | A1 |
20110051255 | Lee et al. | Mar 2011 | A1 |
20110055729 | Mason et al. | Mar 2011 | A1 |
20110064327 | Dagher et al. | Mar 2011 | A1 |
20110069189 | Venkataraman et al. | Mar 2011 | A1 |
20110080487 | Venkataraman et al. | Apr 2011 | A1 |
20110085028 | Samadani et al. | Apr 2011 | A1 |
20110090217 | Mashitani et al. | Apr 2011 | A1 |
20110108708 | Olsen et al. | May 2011 | A1 |
20110115886 | Nguyen et al. | May 2011 | A1 |
20110121421 | Charbon et al. | May 2011 | A1 |
20110122308 | Duparre | May 2011 | A1 |
20110128393 | Tavi et al. | Jun 2011 | A1 |
20110128412 | Milnes et al. | Jun 2011 | A1 |
20110129165 | Lim et al. | Jun 2011 | A1 |
20110141309 | Nagashima et al. | Jun 2011 | A1 |
20110142138 | Tian et al. | Jun 2011 | A1 |
20110149408 | Hahgholt et al. | Jun 2011 | A1 |
20110149409 | Haugholt et al. | Jun 2011 | A1 |
20110150321 | Cheong et al. | Jun 2011 | A1 |
20110153248 | Gu et al. | Jun 2011 | A1 |
20110157321 | Nakajima et al. | Jun 2011 | A1 |
20110157451 | Chang | Jun 2011 | A1 |
20110169921 | Lee et al. | Jul 2011 | A1 |
20110169994 | DiFrancesco et al. | Jul 2011 | A1 |
20110176020 | Chang | Jul 2011 | A1 |
20110181797 | Galstian et al. | Jul 2011 | A1 |
20110193944 | Lian et al. | Aug 2011 | A1 |
20110199458 | Hayasaka et al. | Aug 2011 | A1 |
20110200319 | Kravitz et al. | Aug 2011 | A1 |
20110206291 | Kashani et al. | Aug 2011 | A1 |
20110207074 | Hall-Holt et al. | Aug 2011 | A1 |
20110211068 | Yokota | Sep 2011 | A1 |
20110211077 | Nayar et al. | Sep 2011 | A1 |
20110211824 | Georgiev et al. | Sep 2011 | A1 |
20110221599 | Högasten | Sep 2011 | A1 |
20110221658 | Haddick et al. | Sep 2011 | A1 |
20110221939 | Jerdev | Sep 2011 | A1 |
20110221950 | Oostra et al. | Sep 2011 | A1 |
20110222757 | Yeatman, Jr. et al. | Sep 2011 | A1 |
20110228142 | Brueckner et al. | Sep 2011 | A1 |
20110228144 | Tian et al. | Sep 2011 | A1 |
20110234825 | Liu et al. | Sep 2011 | A1 |
20110234841 | Akeley et al. | Sep 2011 | A1 |
20110241234 | Duparre | Oct 2011 | A1 |
20110242342 | Goma et al. | Oct 2011 | A1 |
20110242355 | Goma et al. | Oct 2011 | A1 |
20110242356 | Aleksic et al. | Oct 2011 | A1 |
20110243428 | Das Gupta et al. | Oct 2011 | A1 |
20110255592 | Sung et al. | Oct 2011 | A1 |
20110255745 | Hodder et al. | Oct 2011 | A1 |
20110261993 | Weiming et al. | Oct 2011 | A1 |
20110267264 | Mccarthy et al. | Nov 2011 | A1 |
20110267348 | Lin et al. | Nov 2011 | A1 |
20110267531 | Imai | Nov 2011 | A1 |
20110273531 | Ito et al. | Nov 2011 | A1 |
20110274175 | Sumitomo | Nov 2011 | A1 |
20110274366 | Tardif | Nov 2011 | A1 |
20110279705 | Kuang et al. | Nov 2011 | A1 |
20110279721 | McMahon | Nov 2011 | A1 |
20110285701 | Chen et al. | Nov 2011 | A1 |
20110285866 | Bhrugumalla et al. | Nov 2011 | A1 |
20110285910 | Bamji et al. | Nov 2011 | A1 |
20110292216 | Fergus et al. | Dec 2011 | A1 |
20110298898 | Jung | Dec 2011 | A1 |
20110298917 | Yanagita | Dec 2011 | A1 |
20110300929 | Tardif et al. | Dec 2011 | A1 |
20110310980 | Mathew | Dec 2011 | A1 |
20110316968 | Taguchi et al. | Dec 2011 | A1 |
20110317766 | Lim et al. | Dec 2011 | A1 |
20120012748 | Pain et al. | Jan 2012 | A1 |
20120013748 | Stanwood et al. | Jan 2012 | A1 |
20120014456 | Martinez et al. | Jan 2012 | A1 |
20120019530 | Baker | Jan 2012 | A1 |
20120019700 | Gaber | Jan 2012 | A1 |
20120023456 | Sun et al. | Jan 2012 | A1 |
20120026297 | Sato | Feb 2012 | A1 |
20120026342 | Yu et al. | Feb 2012 | A1 |
20120026366 | Golan et al. | Feb 2012 | A1 |
20120026451 | Nystrom | Feb 2012 | A1 |
20120026478 | Chen et al. | Feb 2012 | A1 |
20120038745 | Yu et al. | Feb 2012 | A1 |
20120039525 | Tian et al. | Feb 2012 | A1 |
20120044249 | Mashitani et al. | Feb 2012 | A1 |
20120044372 | Côté et al. | Feb 2012 | A1 |
20120051624 | Ando | Mar 2012 | A1 |
20120056982 | Katz et al. | Mar 2012 | A1 |
20120057040 | Park et al. | Mar 2012 | A1 |
20120062697 | Treado et al. | Mar 2012 | A1 |
20120062702 | Jiang et al. | Mar 2012 | A1 |
20120062756 | Tian et al. | Mar 2012 | A1 |
20120069235 | Imai | Mar 2012 | A1 |
20120081519 | Goma et al. | Apr 2012 | A1 |
20120086803 | Malzbender et al. | Apr 2012 | A1 |
20120105590 | Fukumoto et al. | May 2012 | A1 |
20120105654 | Kwatra et al. | May 2012 | A1 |
20120105691 | Waqas et al. | May 2012 | A1 |
20120113232 | Joblove | May 2012 | A1 |
20120113318 | Galstian et al. | May 2012 | A1 |
20120113413 | Miahczylowicz-Wolski et al. | May 2012 | A1 |
20120114224 | Xu et al. | May 2012 | A1 |
20120120264 | Lee et al. | May 2012 | A1 |
20120127275 | Von et al. | May 2012 | A1 |
20120147139 | Li et al. | Jun 2012 | A1 |
20120147205 | Lelescu et al. | Jun 2012 | A1 |
20120153153 | Chang et al. | Jun 2012 | A1 |
20120154551 | Inoue | Jun 2012 | A1 |
20120155830 | Sasaki et al. | Jun 2012 | A1 |
20120163672 | McKinnon | Jun 2012 | A1 |
20120163725 | Fukuhara | Jun 2012 | A1 |
20120169433 | Mullins et al. | Jul 2012 | A1 |
20120170134 | Bolis et al. | Jul 2012 | A1 |
20120176479 | Mayhew et al. | Jul 2012 | A1 |
20120176481 | Lukk et al. | Jul 2012 | A1 |
20120188235 | Wu et al. | Jul 2012 | A1 |
20120188341 | Klein et al. | Jul 2012 | A1 |
20120188389 | Lin et al. | Jul 2012 | A1 |
20120188420 | Black et al. | Jul 2012 | A1 |
20120188634 | Kubala et al. | Jul 2012 | A1 |
20120198677 | Duparre | Aug 2012 | A1 |
20120200669 | Lai et al. | Aug 2012 | A1 |
20120200726 | Bugnariu | Aug 2012 | A1 |
20120200734 | Tang | Aug 2012 | A1 |
20120206582 | DiCarlo et al. | Aug 2012 | A1 |
20120219236 | Ali et al. | Aug 2012 | A1 |
20120224083 | Jovanovski et al. | Sep 2012 | A1 |
20120229602 | Chen et al. | Sep 2012 | A1 |
20120229628 | Ishiyama et al. | Sep 2012 | A1 |
20120237114 | Park et al. | Sep 2012 | A1 |
20120249550 | Akeley et al. | Oct 2012 | A1 |
20120249750 | Izzat et al. | Oct 2012 | A1 |
20120249836 | Ali et al. | Oct 2012 | A1 |
20120249853 | Krolczyk et al. | Oct 2012 | A1 |
20120250990 | Bocirnea | Oct 2012 | A1 |
20120262601 | Choi et al. | Oct 2012 | A1 |
20120262607 | Shimura et al. | Oct 2012 | A1 |
20120268574 | Gidon et al. | Oct 2012 | A1 |
20120274626 | Hsieh | Nov 2012 | A1 |
20120287291 | McMahon | Nov 2012 | A1 |
20120290257 | Hodge et al. | Nov 2012 | A1 |
20120293489 | Chen et al. | Nov 2012 | A1 |
20120293624 | Chen et al. | Nov 2012 | A1 |
20120293695 | Tanaka | Nov 2012 | A1 |
20120307093 | Miyoshi | Dec 2012 | A1 |
20120307099 | Yahata | Dec 2012 | A1 |
20120314033 | Lee et al. | Dec 2012 | A1 |
20120314937 | Kim et al. | Dec 2012 | A1 |
20120327222 | Ng et al. | Dec 2012 | A1 |
20130002828 | Ding et al. | Jan 2013 | A1 |
20130003184 | Duparre | Jan 2013 | A1 |
20130010073 | Do et al. | Jan 2013 | A1 |
20130016245 | Yuba | Jan 2013 | A1 |
20130016885 | Tsujimoto | Jan 2013 | A1 |
20130022111 | Chen et al. | Jan 2013 | A1 |
20130027580 | Olsen et al. | Jan 2013 | A1 |
20130033579 | Wajs | Feb 2013 | A1 |
20130033585 | Li et al. | Feb 2013 | A1 |
20130038696 | Ding et al. | Feb 2013 | A1 |
20130047396 | Au et al. | Feb 2013 | A1 |
20130050504 | Safaee-Rad et al. | Feb 2013 | A1 |
20130050526 | Keelan | Feb 2013 | A1 |
20130057710 | McMahon | Mar 2013 | A1 |
20130070060 | Chatterjee et al. | Mar 2013 | A1 |
20130076967 | Brunner et al. | Mar 2013 | A1 |
20130077859 | Stauder et al. | Mar 2013 | A1 |
20130077880 | Venkataraman et al. | Mar 2013 | A1 |
20130077882 | Venkataraman et al. | Mar 2013 | A1 |
20130083172 | Baba | Apr 2013 | A1 |
20130088489 | Schmeitz et al. | Apr 2013 | A1 |
20130088637 | Duparre | Apr 2013 | A1 |
20130093842 | Yahata | Apr 2013 | A1 |
20130100254 | Morioka et al. | Apr 2013 | A1 |
20130107061 | Kumar et al. | May 2013 | A1 |
20130113888 | Koguchi | May 2013 | A1 |
20130113899 | Morohoshi et al. | May 2013 | A1 |
20130113939 | Strandemar | May 2013 | A1 |
20130120536 | Song et al. | May 2013 | A1 |
20130120605 | Georgiev et al. | May 2013 | A1 |
20130121559 | Hu et al. | May 2013 | A1 |
20130127988 | Wang et al. | May 2013 | A1 |
20130128068 | Georgiev et al. | May 2013 | A1 |
20130128069 | Georgiev et al. | May 2013 | A1 |
20130128087 | Georgiev et al. | May 2013 | A1 |
20130128121 | Agarwala et al. | May 2013 | A1 |
20130135315 | Bares et al. | May 2013 | A1 |
20130135448 | Nagumo et al. | May 2013 | A1 |
20130147979 | McMahon et al. | Jun 2013 | A1 |
20130155050 | Rastogi et al. | Jun 2013 | A1 |
20130162641 | Zhang et al. | Jun 2013 | A1 |
20130169754 | Aronsson et al. | Jul 2013 | A1 |
20130176394 | Tian et al. | Jul 2013 | A1 |
20130208138 | Li et al. | Aug 2013 | A1 |
20130215108 | McMahon et al. | Aug 2013 | A1 |
20130215231 | Hiramoto et al. | Aug 2013 | A1 |
20130222556 | Shimada | Aug 2013 | A1 |
20130222656 | Kaneko | Aug 2013 | A1 |
20130223759 | Nishiyama | Aug 2013 | A1 |
20130229540 | Farina et al. | Sep 2013 | A1 |
20130230237 | Schlosser et al. | Sep 2013 | A1 |
20130250123 | Zhang et al. | Sep 2013 | A1 |
20130250150 | Malone et al. | Sep 2013 | A1 |
20130258067 | Zhang et al. | Oct 2013 | A1 |
20130259317 | Gaddy | Oct 2013 | A1 |
20130265459 | Duparre et al. | Oct 2013 | A1 |
20130274596 | Azizian et al. | Oct 2013 | A1 |
20130274923 | By | Oct 2013 | A1 |
20130286236 | Mankowski | Oct 2013 | A1 |
20130293760 | Nisenzon et al. | Nov 2013 | A1 |
20130308197 | Duparre | Nov 2013 | A1 |
20130321581 | El-ghoroury et al. | Dec 2013 | A1 |
20130321589 | Kirk et al. | Dec 2013 | A1 |
20130335598 | Gustavsson et al. | Dec 2013 | A1 |
20130342641 | Morioka et al. | Dec 2013 | A1 |
20140002674 | Duparre et al. | Jan 2014 | A1 |
20140002675 | Duparre et al. | Jan 2014 | A1 |
20140009586 | McNamer et al. | Jan 2014 | A1 |
20140013273 | Ng | Jan 2014 | A1 |
20140037137 | Broaddus et al. | Feb 2014 | A1 |
20140037140 | Benhimane et al. | Feb 2014 | A1 |
20140043507 | Wang et al. | Feb 2014 | A1 |
20140059462 | Wernersson | Feb 2014 | A1 |
20140076336 | Clayton et al. | Mar 2014 | A1 |
20140078333 | Miao | Mar 2014 | A1 |
20140079336 | Venkataraman et al. | Mar 2014 | A1 |
20140081454 | Nuyujukian et al. | Mar 2014 | A1 |
20140085502 | Lin et al. | Mar 2014 | A1 |
20140092281 | Nisenzon et al. | Apr 2014 | A1 |
20140098266 | Nayar et al. | Apr 2014 | A1 |
20140098267 | Tian et al. | Apr 2014 | A1 |
20140104490 | Hsieh et al. | Apr 2014 | A1 |
20140118493 | Sali et al. | May 2014 | A1 |
20140118584 | Lee et al. | May 2014 | A1 |
20140125771 | Grossmann et al. | May 2014 | A1 |
20140132734 | Zhuang et al. | May 2014 | A1 |
20140132810 | McMahon | May 2014 | A1 |
20140139642 | Ni et al. | May 2014 | A1 |
20140139643 | Hogasten et al. | May 2014 | A1 |
20140140626 | Cho et al. | May 2014 | A1 |
20140146132 | Bagnato et al. | May 2014 | A1 |
20140146201 | Knight et al. | May 2014 | A1 |
20140168424 | Attar et al. | Jun 2014 | A1 |
20140176592 | Wilburn et al. | Jun 2014 | A1 |
20140183334 | Wang et al. | Jul 2014 | A1 |
20140186045 | Poddar et al. | Jul 2014 | A1 |
20140192154 | Jeong et al. | Jul 2014 | A1 |
20140192253 | Laroia | Jul 2014 | A1 |
20140198188 | Izawa | Jul 2014 | A1 |
20140204183 | Lee et al. | Jul 2014 | A1 |
20140218546 | McMahon | Aug 2014 | A1 |
20140232822 | Venkataraman et al. | Aug 2014 | A1 |
20140240528 | Venkataraman et al. | Aug 2014 | A1 |
20140240529 | Venkataraman et al. | Aug 2014 | A1 |
20140253738 | Mullis | Sep 2014 | A1 |
20140267243 | Venkataraman et al. | Sep 2014 | A1 |
20140267286 | Duparre | Sep 2014 | A1 |
20140267633 | Venkataraman et al. | Sep 2014 | A1 |
20140267762 | Mullis et al. | Sep 2014 | A1 |
20140267829 | McMahon et al. | Sep 2014 | A1 |
20140267890 | Lelescu et al. | Sep 2014 | A1 |
20140285675 | Mullis | Sep 2014 | A1 |
20140300706 | Song | Oct 2014 | A1 |
20140313315 | Shoham et al. | Oct 2014 | A1 |
20140321712 | Ciurea et al. | Oct 2014 | A1 |
20140333731 | Venkataraman et al. | Nov 2014 | A1 |
20140333764 | Venkataraman et al. | Nov 2014 | A1 |
20140333787 | Venkataraman et al. | Nov 2014 | A1 |
20140340539 | Venkataraman et al. | Nov 2014 | A1 |
20140347509 | Venkataraman et al. | Nov 2014 | A1 |
20140347748 | Duparre | Nov 2014 | A1 |
20140354773 | Venkataraman et al. | Dec 2014 | A1 |
20140354843 | Venkataraman et al. | Dec 2014 | A1 |
20140354844 | Venkataraman et al. | Dec 2014 | A1 |
20140354853 | Venkataraman et al. | Dec 2014 | A1 |
20140354854 | Venkataraman et al. | Dec 2014 | A1 |
20140354855 | Venkataraman et al. | Dec 2014 | A1 |
20140355870 | Venkataraman et al. | Dec 2014 | A1 |
20140368662 | Venkataraman et al. | Dec 2014 | A1 |
20140368683 | Venkataraman et al. | Dec 2014 | A1 |
20140368684 | Venkataraman et al. | Dec 2014 | A1 |
20140368685 | Venkataraman et al. | Dec 2014 | A1 |
20140368686 | Duparre | Dec 2014 | A1 |
20140369612 | Venkataraman et al. | Dec 2014 | A1 |
20140369615 | Venkataraman et al. | Dec 2014 | A1 |
20140376825 | Venkataraman et al. | Dec 2014 | A1 |
20140376826 | Venkataraman et al. | Dec 2014 | A1 |
20150002734 | Lee | Jan 2015 | A1 |
20150003752 | Venkataraman et al. | Jan 2015 | A1 |
20150003753 | Venkataraman et al. | Jan 2015 | A1 |
20150009353 | Venkataraman et al. | Jan 2015 | A1 |
20150009354 | Venkataraman et al. | Jan 2015 | A1 |
20150009362 | Venkataraman et al. | Jan 2015 | A1 |
20150015669 | Venkataraman et al. | Jan 2015 | A1 |
20150035992 | Mullis | Feb 2015 | A1 |
20150036014 | Lelescu et al. | Feb 2015 | A1 |
20150036015 | Lelescu et al. | Feb 2015 | A1 |
20150042766 | Ciurea et al. | Feb 2015 | A1 |
20150042767 | Ciurea et al. | Feb 2015 | A1 |
20150042833 | Lelescu et al. | Feb 2015 | A1 |
20150049915 | Ciurea et al. | Feb 2015 | A1 |
20150049916 | Ciurea et al. | Feb 2015 | A1 |
20150049917 | Ciurea et al. | Feb 2015 | A1 |
20150055884 | Venkataraman et al. | Feb 2015 | A1 |
20150085073 | Bruls et al. | Mar 2015 | A1 |
20150085174 | Shabtay et al. | Mar 2015 | A1 |
20150091900 | Yang et al. | Apr 2015 | A1 |
20150098079 | Montgomery et al. | Apr 2015 | A1 |
20150104076 | Hayasaka | Apr 2015 | A1 |
20150104101 | Bryant et al. | Apr 2015 | A1 |
20150122411 | Rodda et al. | May 2015 | A1 |
20150124059 | Georgiev et al. | May 2015 | A1 |
20150124113 | Rodda et al. | May 2015 | A1 |
20150124151 | Rodda et al. | May 2015 | A1 |
20150138346 | Venkataraman et al. | May 2015 | A1 |
20150146029 | Venkataraman et al. | May 2015 | A1 |
20150146030 | Venkataraman et al. | May 2015 | A1 |
20150161798 | Venkataraman et al. | Jun 2015 | A1 |
20150199793 | Venkataraman et al. | Jul 2015 | A1 |
20150199841 | Venkataraman et al. | Jul 2015 | A1 |
20150235476 | McMahon et al. | Aug 2015 | A1 |
20150237329 | Venkataraman et al. | Aug 2015 | A1 |
20150243480 | Yamada | Aug 2015 | A1 |
20150244927 | Laroia et al. | Aug 2015 | A1 |
20150245013 | Venkataraman et al. | Aug 2015 | A1 |
20150248744 | Hayasaka et al. | Sep 2015 | A1 |
20150254868 | Srikanth et al. | Sep 2015 | A1 |
20150264337 | Venkataraman et al. | Sep 2015 | A1 |
20150296137 | Duparre et al. | Oct 2015 | A1 |
20150312455 | Venkataraman et al. | Oct 2015 | A1 |
20150326852 | Duparre et al. | Nov 2015 | A1 |
20150332468 | Hayasaka et al. | Nov 2015 | A1 |
20150373261 | Rodda et al. | Dec 2015 | A1 |
20160037097 | Duparre | Feb 2016 | A1 |
20160044252 | Molina | Feb 2016 | A1 |
20160044257 | Venkataraman et al. | Feb 2016 | A1 |
20160057332 | Ciurea et al. | Feb 2016 | A1 |
20160065934 | Kaza et al. | Mar 2016 | A1 |
20160163051 | Mullis | Jun 2016 | A1 |
20160165106 | Duparre | Jun 2016 | A1 |
20160165134 | Lelescu et al. | Jun 2016 | A1 |
20160165147 | Nisenzon et al. | Jun 2016 | A1 |
20160165212 | Mullis | Jun 2016 | A1 |
20160191768 | Shin et al. | Jun 2016 | A1 |
20160195733 | Lelescu et al. | Jul 2016 | A1 |
20160198096 | McMahon et al. | Jul 2016 | A1 |
20160227195 | Venkataraman et al. | Aug 2016 | A1 |
20160249001 | McMahon | Aug 2016 | A1 |
20160255333 | Nisenzon et al. | Sep 2016 | A1 |
20160266284 | Duparre et al. | Sep 2016 | A1 |
20160267665 | Venkataraman et al. | Sep 2016 | A1 |
20160267672 | Ciurea et al. | Sep 2016 | A1 |
20160269626 | McMahon | Sep 2016 | A1 |
20160269627 | McMahon | Sep 2016 | A1 |
20160269650 | Venkataraman et al. | Sep 2016 | A1 |
20160269651 | Venkataraman et al. | Sep 2016 | A1 |
20160269664 | Duparre | Sep 2016 | A1 |
20160316140 | Nayar et al. | Oct 2016 | A1 |
20170006233 | Venkataraman et al. | Jan 2017 | A1 |
20170048468 | Pain et al. | Feb 2017 | A1 |
20170053382 | Lelescu et al. | Feb 2017 | A1 |
20170054901 | Venkataraman et al. | Feb 2017 | A1 |
20170070672 | Rodda et al. | Mar 2017 | A1 |
20170070673 | Lelescu et al. | Mar 2017 | A1 |
20170078568 | Venkataraman et al. | Mar 2017 | A1 |
20170085845 | Venkataraman et al. | Mar 2017 | A1 |
20170094243 | Venkataraman et al. | Mar 2017 | A1 |
20170099465 | Mullis et al. | Apr 2017 | A1 |
20170163862 | Molina | Jun 2017 | A1 |
20170178363 | Venkataraman et al. | Jun 2017 | A1 |
20170187933 | Duparre | Jun 2017 | A1 |
20170188011 | Panescu et al. | Jun 2017 | A1 |
20170244960 | Ciurea et al. | Aug 2017 | A1 |
20170257562 | Venkataraman et al. | Sep 2017 | A1 |
20170365104 | McMahon et al. | Dec 2017 | A1 |
20180007284 | Venkataraman et al. | Jan 2018 | A1 |
20180013945 | Ciurea et al. | Jan 2018 | A1 |
20180024330 | Laroia | Jan 2018 | A1 |
20180035057 | McMahon et al. | Feb 2018 | A1 |
20180040135 | Mullis | Feb 2018 | A1 |
20180048830 | Venkataraman et al. | Feb 2018 | A1 |
20180048879 | Venkataraman et al. | Feb 2018 | A1 |
20180081090 | Duparre et al. | Mar 2018 | A1 |
20180097993 | Nayar et al. | Apr 2018 | A1 |
20180109782 | Duparre et al. | Apr 2018 | A1 |
20180124311 | Lelescu et al. | May 2018 | A1 |
20180139382 | Venkataraman et al. | May 2018 | A1 |
20180197035 | Venkataraman et al. | Jul 2018 | A1 |
20180211402 | Ciurea et al. | Jul 2018 | A1 |
20180227511 | McMahon | Aug 2018 | A1 |
20180240265 | Yang et al. | Aug 2018 | A1 |
20180270473 | Mullis | Sep 2018 | A1 |
20180302554 | Lelescu et al. | Oct 2018 | A1 |
20180330182 | Venkataraman et al. | Nov 2018 | A1 |
20190037116 | Molina | Jan 2019 | A1 |
20190037150 | Srikanth et al. | Jan 2019 | A1 |
20190043253 | Lucas et al. | Feb 2019 | A1 |
20190063905 | Venkataraman et al. | Feb 2019 | A1 |
20190089947 | Venkataraman et al. | Mar 2019 | A1 |
20190098209 | Venkataraman et al. | Mar 2019 | A1 |
20190109998 | Venkataraman et al. | Apr 2019 | A1 |
20190215496 | Mullis et al. | Jul 2019 | A1 |
20190230348 | Ciurea et al. | Jul 2019 | A1 |
20190235138 | Duparre et al. | Aug 2019 | A1 |
20190268586 | Mullis | Aug 2019 | A1 |
20190289176 | Duparre | Sep 2019 | A1 |
20190347768 | Lelescu et al. | Nov 2019 | A1 |
20190356863 | Venkataraman et al. | Nov 2019 | A1 |
20190362515 | Ciurea et al. | Nov 2019 | A1 |
20190364263 | Jannard et al. | Nov 2019 | A1 |
20200026948 | Venkataraman et al. | Jan 2020 | A1 |
20200252597 | Mullis | Aug 2020 | A1 |
20200389604 | Venkataraman et al. | Dec 2020 | A1 |
20210063141 | Venkataraman et al. | Mar 2021 | A1 |
20210133927 | Lelescu et al. | May 2021 | A1 |
20210150748 | Ciurea et al. | May 2021 | A1 |
20210281816 | Mullis | Sep 2021 | A1 |
20210312207 | Venkataraman et al. | Oct 2021 | A1 |
20220239890 | Mullis | Jul 2022 | A1 |
20220385848 | Venkataraman et al. | Dec 2022 | A1 |
20220414829 | Lelescu et al. | Dec 2022 | A1 |
20230152087 | Venkataraman et al. | May 2023 | A1 |
20240031690 | Venkataraman et al. | Jan 2024 | A1 |
20240040270 | Venkataraman et al. | Feb 2024 | A1 |
Number | Date | Country |
---|---|---|
1619358 | May 2005 | CN |
1669332 | Sep 2005 | CN |
1839394 | Sep 2006 | CN |
1985524 | Jun 2007 | CN |
101010619 | Aug 2007 | CN |
101046882 | Oct 2007 | CN |
101064780 | Oct 2007 | CN |
101102388 | Jan 2008 | CN |
101147392 | Mar 2008 | CN |
201043890 | Apr 2008 | CN |
101212566 | Jul 2008 | CN |
101312540 | Nov 2008 | CN |
101427372 | May 2009 | CN |
101593350 | Dec 2009 | CN |
101606086 | Dec 2009 | CN |
101883291 | Nov 2010 | CN |
102037717 | Apr 2011 | CN |
102184720 | Sep 2011 | CN |
102375199 | Mar 2012 | CN |
103004180 | Mar 2013 | CN |
104081414 | Oct 2014 | CN |
104508681 | Apr 2015 | CN |
104662589 | May 2015 | CN |
104685513 | Jun 2015 | CN |
104685860 | Jun 2015 | CN |
104081414 | Aug 2017 | CN |
104662589 | Aug 2017 | CN |
107077743 | Aug 2017 | CN |
107230236 | Oct 2017 | CN |
107346061 | Nov 2017 | CN |
104685513 | Apr 2018 | CN |
104335246 | Sep 2018 | CN |
107346061 | Apr 2020 | CN |
107230236 | Dec 2020 | CN |
602011041799.1 | Sep 2017 | DE |
0677821 | Oct 1995 | EP |
0840502 | May 1998 | EP |
1201407 | May 2002 | EP |
1355274 | Oct 2003 | EP |
1418766 | May 2004 | EP |
1734766 | Dec 2006 | EP |
1243945 | Jan 2009 | EP |
2026563 | Feb 2009 | EP |
2104334 | Sep 2009 | EP |
2244484 | Oct 2010 | EP |
0957642 | Apr 2011 | EP |
2336816 | Jun 2011 | EP |
2339532 | Jun 2011 | EP |
2381418 | Oct 2011 | EP |
2502115 | Sep 2012 | EP |
2569935 | Mar 2013 | EP |
2652678 | Oct 2013 | EP |
2761534 | Aug 2014 | EP |
2777245 | Sep 2014 | EP |
2867718 | May 2015 | EP |
2873028 | May 2015 | EP |
2888698 | Jul 2015 | EP |
2888720 | Jul 2015 | EP |
2901671 | Aug 2015 | EP |
2973476 | Jan 2016 | EP |
3066690 | Sep 2016 | EP |
2569935 | Dec 2016 | EP |
3201877 | Aug 2017 | EP |
2652678 | Sep 2017 | EP |
3201877 | Mar 2018 | EP |
2817955 | Apr 2018 | EP |
3328048 | May 2018 | EP |
3075140 | Jun 2018 | EP |
3201877 | Dec 2018 | EP |
3467776 | Apr 2019 | EP |
2761534 | Nov 2020 | EP |
2888720 | Mar 2021 | EP |
3328048 | Apr 2021 | EP |
3869797 | Aug 2021 | EP |
3876510 | Sep 2021 | EP |
3869797 | Jul 2023 | EP |
4296963 | Dec 2023 | EP |
4307659 | Jan 2024 | EP |
4336447 | Mar 2024 | EP |
2482022 | Jan 2012 | GB |
2708CHENP2014 | Aug 2015 | IN |
361194 | Mar 2021 | IN |
59-025483 | Feb 1984 | JP |
64-037177 | Feb 1989 | JP |
02-285772 | Nov 1990 | JP |
06129851 | May 1994 | JP |
07-015457 | Jan 1995 | JP |
H0756112 | Mar 1995 | JP |
09171075 | Jun 1997 | JP |
09181913 | Jul 1997 | JP |
10253351 | Sep 1998 | JP |
11142609 | May 1999 | JP |
11223708 | Aug 1999 | JP |
11325889 | Nov 1999 | JP |
2000209503 | Jul 2000 | JP |
2001008235 | Jan 2001 | JP |
2001194114 | Jul 2001 | JP |
2001264033 | Sep 2001 | JP |
2001277260 | Oct 2001 | JP |
2001337263 | Dec 2001 | JP |
2002195910 | Jul 2002 | JP |
2002205310 | Jul 2002 | JP |
2002209226 | Jul 2002 | JP |
2002250607 | Sep 2002 | JP |
2002252338 | Sep 2002 | JP |
2003094445 | Apr 2003 | JP |
2003139910 | May 2003 | JP |
2003163938 | Jun 2003 | JP |
2003298920 | Oct 2003 | JP |
2004221585 | Aug 2004 | JP |
2005116022 | Apr 2005 | JP |
2005181460 | Jul 2005 | JP |
2005295381 | Oct 2005 | JP |
2005303694 | Oct 2005 | JP |
2005341569 | Dec 2005 | JP |
2005354124 | Dec 2005 | JP |
2006033228 | Feb 2006 | JP |
2006033493 | Feb 2006 | JP |
2006047944 | Feb 2006 | JP |
2006258930 | Sep 2006 | JP |
2007520107 | Jul 2007 | JP |
2007259136 | Oct 2007 | JP |
2008039852 | Feb 2008 | JP |
2008055908 | Mar 2008 | JP |
2008507874 | Mar 2008 | JP |
2008172735 | Jul 2008 | JP |
2008258885 | Oct 2008 | JP |
2009064421 | Mar 2009 | JP |
2009132010 | Jun 2009 | JP |
2009300268 | Dec 2009 | JP |
2010139288 | Jun 2010 | JP |
2011017764 | Jan 2011 | JP |
2011030184 | Feb 2011 | JP |
2011109484 | Jun 2011 | JP |
2011523538 | Aug 2011 | JP |
2011203238 | Oct 2011 | JP |
2012504805 | Feb 2012 | JP |
2013509022 | Mar 2013 | JP |
2013526801 | Jun 2013 | JP |
2014521117 | Aug 2014 | JP |
2014535191 | Dec 2014 | JP |
2015522178 | Aug 2015 | JP |
2015534734 | Dec 2015 | JP |
5848754 | Jan 2016 | JP |
2016524125 | Aug 2016 | JP |
6140709 | May 2017 | JP |
2017163550 | Sep 2017 | JP |
2017163587 | Sep 2017 | JP |
2017531976 | Oct 2017 | JP |
6546613 | Jul 2019 | JP |
2019-220957 | Dec 2019 | JP |
6630891 | Dec 2019 | JP |
2020017999 | Jan 2020 | JP |
6767543 | Sep 2020 | JP |
6767558 | Sep 2020 | JP |
1020110097647 | Aug 2011 | KR |
20170063827 | Jun 2017 | KR |
101824672 | Feb 2018 | KR |
101843994 | Mar 2018 | KR |
10-2002165 | Jul 2019 | KR |
10-2111181 | May 2020 | KR |
191151 | Jul 2013 | SG |
11201500910R | Oct 2015 | SG |
200828994 | Jul 2008 | TW |
200939739 | Sep 2009 | TW |
201228382 | Jul 2012 | TW |
I535292 | May 2016 | TW |
1994020875 | Sep 1994 | WO |
2005057922 | Jun 2005 | WO |
2006039906 | Apr 2006 | WO |
2006039906 | Apr 2006 | WO |
2007013250 | Feb 2007 | WO |
2007052191 | May 2007 | WO |
2007083579 | Jul 2007 | WO |
2007134137 | Nov 2007 | WO |
2008045198 | Apr 2008 | WO |
2008050904 | May 2008 | WO |
2008108271 | Sep 2008 | WO |
2008108926 | Sep 2008 | WO |
2008150817 | Dec 2008 | WO |
2009073950 | Jun 2009 | WO |
2009151903 | Dec 2009 | WO |
2009157273 | Dec 2009 | WO |
2010037512 | Apr 2010 | WO |
2011008443 | Jan 2011 | WO |
2011026527 | Mar 2011 | WO |
2011046607 | Apr 2011 | WO |
2011055655 | May 2011 | WO |
2011063347 | May 2011 | WO |
2011105814 | Sep 2011 | WO |
2011116203 | Sep 2011 | WO |
2011063347 | Oct 2011 | WO |
2011143501 | Nov 2011 | WO |
2012057619 | May 2012 | WO |
2012057620 | May 2012 | WO |
2012057621 | May 2012 | WO |
2012057622 | May 2012 | WO |
2012057623 | May 2012 | WO |
2012057620 | Jun 2012 | WO |
2012074361 | Jun 2012 | WO |
2012078126 | Jun 2012 | WO |
2012082904 | Jun 2012 | WO |
2012155119 | Nov 2012 | WO |
2013003276 | Jan 2013 | WO |
2013043751 | Mar 2013 | WO |
2013043761 | Mar 2013 | WO |
WO2011052064 | Mar 2013 | WO |
2013049699 | Apr 2013 | WO |
2013055960 | Apr 2013 | WO |
2013068759 | May 2013 | WO |
2013119706 | Aug 2013 | WO |
2013126578 | Aug 2013 | WO |
2013166215 | Nov 2013 | WO |
2014004134 | Jan 2014 | WO |
2014005123 | Jan 2014 | WO |
2014031795 | Feb 2014 | WO |
2014052974 | Apr 2014 | WO |
2014032020 | May 2014 | WO |
2014078443 | May 2014 | WO |
2014130849 | Aug 2014 | WO |
2014133974 | Sep 2014 | WO |
2014138695 | Sep 2014 | WO |
2014138697 | Sep 2014 | WO |
2014144157 | Sep 2014 | WO |
2014145856 | Sep 2014 | WO |
2014149403 | Sep 2014 | WO |
2014149902 | Sep 2014 | WO |
2014150856 | Sep 2014 | WO |
2014153098 | Sep 2014 | WO |
2014159721 | Oct 2014 | WO |
2014159779 | Oct 2014 | WO |
2014160142 | Oct 2014 | WO |
2014164550 | Oct 2014 | WO |
2014164909 | Oct 2014 | WO |
2014165244 | Oct 2014 | WO |
2014133974 | Apr 2015 | WO |
2015048694 | Apr 2015 | WO |
2015070105 | May 2015 | WO |
2015074078 | May 2015 | WO |
2015081279 | Jun 2015 | WO |
2015134996 | Sep 2015 | WO |
2015183824 | Dec 2015 | WO |
2016054089 | Apr 2016 | WO |
Entry |
---|
US 11,978,226 B2, 05/2024, Ciurea et al. (withdrawn) |
Hasinoff et al., “Burst photography for high dynamic range and low-light imaging on mobile cameras”, ACM Transactions on Graphics, vol. 35, No. 6, Article No. 192, 2016, pp. 1-12, https://doi.org/10.1145/2980179.2980254. |
Takeda et al., “Robust Kernel Regression for Restoration and Reconstruction of Images from Sparse Noisy Data”, 2006 International Conference on Image Processing, Atlanta, GA, USA, 2006, pp. 1257-1260, doi: 10.1109/ICIP.2006.312573. |
Extended European Search Report for EP Application No. 11781313.9, Completed Oct. 1, 2013, Mailed Oct. 8, 2013, 6 pgs. |
Extended European Search Report for EP Application No. 13810429.4, Completed Jan. 7, 2016, Mailed Jan. 15, 2016, 6 Pgs. |
Extended European Search Report for European Application EP12782935.6, completed Aug. 28, 2014, mailed Sep. 4, 2014, 7 Pgs. |
Extended European Search Report for European Application EP12804266.0, Report Completed Jan. 27, 2015, Mailed Feb. 3, 2015, 7 Pgs. |
Extended European Search Report for European Application EP12835041.0, Report Completed Jan. 28, 2015, Mailed Feb. 4, 2015, 6 Pgs. |
Extended European Search Report for European Application EP13751714.0, completed Aug. 5, 2015, mailed Aug. 18, 2015, 8 Pgs. |
Extended European Search Report for European Application EP13810229.8, Report Completed Apr. 14, 2016, Mailed Apr. 21, 2016, 7 pgs. |
Extended European Search Report for European Application No. 10832330.4, completed Sep. 26, 2013, Mailed Oct. 4, 2013, 7 pgs. |
Extended European Search Report for European Application No. 11848308.0, Search completed Jan. 13, 2016, Mailed Jan. 22, 2016, 10 Pgs. |
Extended European Search Report for European Application No. 13830945.5, Search completed Jun. 28, 2016, Mailed Jul. 7, 2016, 14 Pgs. |
Extended European Search Report for European Application No. 13841613.6, Search completed Jul. 18, 2016, Mailed Jul. 26, 2016, 8 Pgs. |
Extended European Search Report for European Application No. 14763087.5, Search completed Dec. 7, 2016, Mailed Dec. 19, 2016, 9 pgs. |
Extended European Search Report for European Application No. 14860103.2, Search completed Feb. 23, 2017, Mailed Mar. 3, 2017, 7 Pgs. |
Extended European Search Report for European Application No. 14865463.5, Search completed May 30, 2017, Mailed Jun. 8, 2017, 6 Pgs. |
Extended European Search Report for European Application No. 15847754.7, Search completed Jan. 25, 2018, Mailed Feb. 9, 2018, 8 Pgs. |
Extended European Search Report for European Application No. 18151530.5, Completed Mar. 28, 2018, Mailed Apr. 20, 2018,11 pgs. |
Extended European Search Report for European Application No. 18205326.4, Search completed Jan. 08, 2019Mailed Jan. 18, 2019, 9 Pgs. |
Extended European Search Report for European Application No. 21169308.0, Search completed Aug. 2, 2021, Mailed Aug. 9, 2021, 9 Pgs. |
Extended Search Report for European Application No. 21155002.5, Search completed Jun. 07, 2021Mailed Jun. 11, 2021, 14 Pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2009/044687, Completed Jul. 30, 2010, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/056151, Report Issued Mar. 25, 2014, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/056166, Report Issued Mar. 25, 2014, Report Mailed Apr. 3, 2014, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/058093, Report Issued Sep. 18, 2013, Mailed Oct. 22, 2013, 40 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/059813, Search Completed Apr. 15, 2014, 7 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2013/059991, Issued Mar. 17, 2015, Mailed Mar. 26, 2015, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2015/032467, Report issued Nov. 29, 2016, Mailed Dec. 8, 2016, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US10/057661, issued May 22, 2012, mailed May 31, 2012, 10 pgs. |
International Preliminary Report on Patentability for International Application PCT/US11/036349, Report Issued Nov. 13, 2012, Mailed Nov. 22, 2012, 9 pgs. |
International Preliminary Report on Patentability for International Application PCT/US13/56065, Issued Feb. 24, 2015, Mailed Mar. 5, 2015, 4 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2011/064921, issued Jun. 18, 2013, mailed Jun. 27, 2013, 14 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/024987, Mailed Aug. 12, 2014, 13 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/027146, completed Aug. 26, 2014, Mailed Sep. 4, 2014, 10 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/039155, completed Nov. 4, 2014, Mailed Nov. 13, 2014, 10 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/046002, issued Dec. 31, 2014, Mailed Jan. 8, 2015, 6 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/048772, issued Dec. 31, 2014, Mailed Jan. 8, 2015, 8 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/056502, Issued Feb. 24, 2015, Mailed Mar. 5, 2015, 7 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/069932, issued May 19, 2015, Mailed May 28, 2015, 12 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/017766, issued Aug. 25, 2015, Mailed Sep. 3, 2015, 8 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/018084, issued Aug. 25, 2015, Mailed Sep. 3, 2015, 11 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/018116, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 12 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/021439, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/022118, issued Sep. 8, 2015, Mailed Sep. 17, 2015, 4 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/022123, issued Sep. 8, 2015, Mailed Sep. 17, 2015, 4 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/022774, issued Sep. 22, 2015, Mailed Oct. 1, 2015, 5 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/023762, issued Mar. 2, 2015, Mailed Mar. 9, 2015, 10 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/024407, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 8 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/024903, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 12 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/024947, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 7 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/025100, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 4 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/025904, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 5 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/028447, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 7 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/029052, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/030692, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 6 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/064693, issued May 10, 2016, Mailed May 19, 2016, 14 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/066229, issued May 24, 2016, Mailed Jun. 2, 2016, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/067740, issued May 31, 2016, Mailed Jun. 9, 2016, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2015/019529, issued Sep. 13, 2016, Mailed Sep. 22, 2016, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2015/053013, issued Apr. 4, 2017, Mailed Apr. 13, 2017, 8 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US13/62720, Issued Mar. 31, 2015, Mailed Apr. 9, 2015, 8 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US13/46002, completed Nov. 13, 2013, Mailed Nov. 29, 2013, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US13/56065, Completed Nov. 25, 2013, Mailed Nov. 26, 2013, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US13/59991, Completed Feb. 6, 2014, Mailed Feb. 26, 2014, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2012/056166, Report Completed Nov. 10, 2012, Mailed Nov. 20, 2012, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/024987, Completed Mar. 27, 2013, Mailed Apr. 15, 2013, 14 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/027146, completed Apr. 2, 2013, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/039155, completed Jul. 1, 2013, Mailed Jul. 11, 2013, 11 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/048772, Completed Oct. 21, 2013, Mailed Nov. 8, 2013, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/056502, Completed Feb. 18, 2014, Mailed Mar. 19, 2014, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/069932, Completed Mar. 14, 2014, Mailed Apr. 14, 2014, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2015/019529, completed May 5, 2015, Mailed Jun. 8, 2015, 11 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2015/032467, Search completed Jul. 27, 2015, Mailed Aug. 19, 2015, 10 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2015/053013, completed Dec. 1, 2015, Mailed Dec. 30, 2015, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US11/36349, mailed Aug. 22, 2011, 11 pgs. |
International Search Report and Written Opinion for International Application PCT/US13/62720, completed Mar. 25, 2014, Mailed Apr. 21, 2014, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US14/17766, completed May 28, 2014, Mailed Jun. 18, 2014, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US14/18084, completed May 23, 2014, Mailed Jun. 10, 2014, 12 pgs. |
International Search Report and Written Opinion for International Application PCT/US14/18116, Report completed May 13, 2014, 12 pgs. |
International Search Report and Written Opinion for International Application PCT/US14/21439, completed Jun. 5, 2014, Mailed Jun. 20, 2014, 10 Pgs. |
International Search Report and Written Opinion for International Application PCT/US14/22118, completed Jun. 9, 2014, Mailed, Jun. 25, 2014, 5 pgs. |
International Search Report and Written Opinion for International Application PCT/US14/22774 report completed Jun. 9, 2014, Mailed Jul. 14, 2014, 6 Pgs. |
International Search Report and Written Opinion for International Application PCT/US14/24407, report completed Jun. 11, 2014, Mailed Jul. 8, 2014, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US14/25100, report completed Jul. 7, 2014, Mailed Aug. 7, 2014, 5 Pgs. |
International Search Report and Written Opinion for International Application PCT/US14/25904 report completed Jun. 10, 2014, Mailed Jul. 10, 2014, 6 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2009/044687, completed Jan. 5, 2010, mailed Jan. 13, 2010, 9 pgs. |
International Search Report and Written Opinion for International Application PCT/US2010/057661, completed Mar. 9, 2011, 14 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/064921, completed Feb. 25, 2011, mailed Mar. 6, 2012, 17 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/037670, Mailed Jul. 18, 2012, Completed Jul. 5, 2012, 9 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/044014, completed Oct. 12, 2012, 15 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/056151, completed Nov. 14, 2012, 10 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/058093, Report completed Nov. 15, 2012, 12 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/059813, completed Dec. 17, 2012, 8 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/022123, completed Jun. 9, 2014, Mailed Jun. 25, 2014, 5 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/023762, Completed May 30, 2014, Mailed Jul. 3, 2014, 6 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/024903, completed Jun. 12, 2014, Mailed, Jun. 27, 2014, 13 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/024947, Completed Jul. 8, 2014, Mailed Aug. 5, 2014, 8 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/028447, completed Jun. 30, 2014, Mailed Jul. 21, 2014, 8 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/029052, completed Jun. 30, 2014, Mailed Jul. 24, 2014, 10 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/030692, completed Jul. 28, 2014, Mailed Aug. 27, 2014, 7 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/064693, Completed Mar. 7, 2015, Mailed Apr. 2, 2015, 15 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/066229, Completed Mar. 6, 2015, Mailed Mar. 19, 2015, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/067740, Completed Jan. 29, 2015, mailed Mar. 3, 2015, 10 pgs. |
Office Action for U.S. Appl. No. 12/952,106, dated Aug. 16, 2012, 12 pgs. |
Supplementary European Search Report for EP Application No. 13831768.0, Search completed May 18, 2016, Mailed May 30, 2016, 13 Pgs. |
Supplementary European Search Report for European Application 09763194.9, completed Nov. 7, 2011, mailed Nov. 29, 2011, 9 pgs. |
“Exchangeable image file format for digital still cameras: Exif Version 2.2”, Japan Electronics and Information Technology Industries Association, Prepared by Technical Standardization Committee on AV & IT Storage Systems and Equipment, JEITA CP-3451, Apr. 2002, Retrieved from: http://www.exif.org/Exif2-2.PDF, 154 pgs. |
“File Formats Version 6”, Alias Systems, 2004, 40 pgs. |
“Light fields and computational photography”, Stanford Computer Graphics Laboratory, Retrieved from: http://graphics.stanford.edu/projects/lightfield/, Earliest publication online: Feb. 10, 1997, 3 pgs. |
Aufderheide et al., “A MEMS-based Smart Sensor System for Estimation of Camera Pose for Computer Vision Applications”, Research and Innovation Conference 2011, Jul. 29, 2011, pp. 1-10. |
Baker et al., “Limits on Super-Resolution and How to Break Them”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2002, vol. 24, No. 9, pp. 1167-1183. |
Barron et al., “Intrinsic Scene Properties from a Single RGB-D Image”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, OR, USA, pp. 17-24. |
Bennett et al., “Multispectral Bilateral Video Fusion”, 2007 IEEE Transactions on Image Processing, May 2007, published Apr. 16, 2007, vol. 16, No. 5, pp. 1185-1194. |
Bennett et al., “Multispectral Video Fusion”, Computer Graphics (ACM SIGGRAPH Proceedings), Jul. 25, 2006, published Jul. 30, 2006, 1 pg. |
Bertalmio et al., “Image Inpainting”, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000, ACM Pres/Addison-Wesley Publishing Co., pp. 417-424. |
Bertero et al., “Super-resolution in computational imaging”, Micron, Jan. 1, 2003, vol. 34, Issues 6-7, 17 pgs. |
Bishop et al., “Full-Resolution Depth Map Estimation from an Aliased Plenoptic Light Field”, ACCV Nov. 8, 2010, Part II, LNCS 6493, pp. 186-200. |
Bishop et al., “Light Field Superresolution”, Computational Photography (ICCP), 2009 IEEE International Conference, Conference Date Apr. 16-17, published Jan. 26, 2009, 9 pgs. |
Bishop et al., “The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution”, IEEE Transactions on Pattern Analysis and Machine Intelligence, May 2012, vol. 34, No. 5, published Aug. 18, 2011, pp. 972-986. |
Borman, “Topics in Multiframe Superresolution Restoration”, Thesis of Sean Borman, Apr. 2004, 282 pgs. |
Borman et al, “Image Sequence Processing”, Dekker Encyclopedia of Optical Engineering, Oct. 14, 2002, 81 pgs. |
Borman et al., “Block-Matching Sub-Pixel Motion Estimation from Noisy, Under-Sampled Frames—An Empirical Performance Evaluation”, Proc SPIE, Dec. 28, 1998, vol. 3653, 10 pgs. |
Borman et al., “Image Resampling and Constraint Formulation for Multi-Frame Super-Resolution Restoration”, Proc. SPIE, published Jul. 1, 2003, vol. 5016, 12 pgs. |
Borman et al., “Linear models for multi-frame super-resolution restoration under non-affine registration and spatially varying PSF”, Proc. SPIE, May 21, 2004, vol. 5299, 12 pgs. |
Borman et al., “Nonlinear Prediction Methods for Estimation of Clique Weighting Parameters in NonGaussian Image Models”, Proc. SPIE, Sep. 22, 1998, vol. 3459, 9 pgs. |
Borman et al., “Simultaneous Multi-Frame MAP Super-Resolution Video Enhancement Using Spatio-Temporal Priors”, Image Processing, 1999, ICIP 99 Proceedings, vol. 3, pp. 469-473. |
Borman et al., “Super-Resolution from Image Sequences—A Review”, Circuits & Systems, 1998, pp. 374-378. |
Bose et al., “Superresolution and Noise Filtering Using Moving Least Squares”, IEEE Transactions on Image Processing, Aug. 2006, vol. 15, Issue 8, published Jul. 17, 2006, pp. 2239-2248. |
Boye et al., “Comparison of Subpixel Image Registration Algorithms”, Proc. of SPIE—IS&T Electronic Imaging, Feb. 3, 2009, vol. 7246, pp. 72460X-1-72460X-9; doi: 10.1117/12.810369. |
Bruckner et al., “Artificial compound eye applying hyperacuity”, Optics Express, Dec. 11, 2006, vol. 14, No. 25, pp. 12076-12084. |
Bruckner et al., “Driving microoptical imaging systems towards miniature camera applications”, Proc. SPIE, Micro-Optics, May 13, 2010, 11 pgs. |
Bruckner et al., “Thin wafer-level camera lenses inspired by insect compound eyes”, Optics Express, Nov. 22, 2010, vol. 18, No. 24, pp. 24379-24394. |
Bryan et al., “Perspective Distortion from Interpersonal Distance Is an Implicit Visual Cue for Social Judgments of Faces”, PLOS One, vol. 7, Issue 9, Sep. 26, 2012, e45301, doi:10.1371/journal.pone.0045301, 9 pgs. |
Capel, “Image Mosaicing and Super-resolution”, Retrieved on Nov. 10, 2012, Retrieved from the Internet at URL:<http://citeseerx.ist.psu.edu/viewdoc/download?doi=1 0.1.1.226.2643&rep=rep1&type=pdf>, 2001, 269 pgs. |
Carroll et al., “Image Warps for Artistic Perspective Manipulation”, ACM Transactions on Graphics (TOG), vol. 29, No. 4, Jul. 26, 2010, Article No. 127, 9 pgs. |
Chan et al., “Extending the Depth of Field in a Compound-Eye Imaging System with Super-Resolution Reconstruction”, Proceedings—International Conference on Pattern Recognition, Jan. 1, 2006, vol. 3, pp. 623-626. |
Chan et al., “Investigation of Computational Compound-Eye Imaging System with Super-Resolution Reconstruction”, IEEE, ISASSP, Jun. 19, 2006, pp. 1177-1180. |
Chan et al., “Super-resolution reconstruction in a computational compound-eye imaging system”, Multidim Syst Sign Process, published online Feb. 23, 2007, vol. 18, pp. 83-101. |
Chen et al., “Image Matting with Local and Nonlocal Smooth Priors”, CVPR '13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23, 2013, pp. 1902-1907. |
Chen et al., “Interactive deformation of light fields”, Symposium on Interactive 3D Graphics, 2005, pp. 139-146. |
Chen et al., “KNN matting”, 2012 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 16-21, 2012, Providence, RI, USA, pp. 869-876. |
Chen et al., “KNN Matting”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2013, vol. 35, No. 9, pp. 2175-2188. |
Collins et al., “An Active Camera System for Acquiring Multi-View Video”, IEEE 2002 International Conference on Image Processing, Date of Conference: Sep. 22-25, 2002, Rochester, NY, 4 pgs. |
Cooper et al., “The perceptual basis of common photographic practice”, Journal of Vision, vol. 12, No. 5, Article 8, May 25, 2012, pp. 1-14. |
Crabb et al., “Real-time foreground segmentation via range and color imaging”, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, Jun. 23-28, 2008, pp. 1-5. |
Debevec et al., “Recovering High Dynamic Range Radiance Maps from Photographs”, Computer Graphics (ACM Siggraph Proceedings), Aug. 16, 1997, 10 pgs. |
Do, Minh N. “Immersive Visual Communication with Depth”, Presented at Microsoft Research, Jun. 15, 2011, Retrieved from: http://minhdo.ece.illinois.edu/talks/ImmersiveComm.pdf, 42 pgs. |
Do et al., “Immersive Visual Communication”, IEEE Signal Processing Magazine, vol. 28, Issue 1, Jan. 2011, DOI: 10.1109/MSP.2010.939075, Retrieved from: http://minhdo.ece.illinois.edu/publications/ImmerComm_SPM.pdf, pp. 58-66. |
Drouin et al., “Fast Multiple-Baseline Stereo with Occlusion”, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05), Ottawa, Ontario, Canada, Jun. 13-16, 2005, pp. 540-547. |
Drouin et al., “Geo-Consistency for Wide Multi-Camera Stereo”, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, Jun. 20-25, 2005, pp. 351-358. |
Drouin et al., “Improving Border Localization of Multi-Baseline Stereo Using Border-Cut”, International Journal of Computer Vision, Jul. 5, 2006, vol. 83, Issue 3, 8 pgs. |
Drulea et al., “Motion Estimation Using the Correlation Transform”, IEEE Transactions on Image Processing, Aug. 2013, vol. 22, No. 8, pp. 3260-3270, first published May 14, 2013. |
Duparre et al., “Artificial apposition compound eye fabricated by micro-optics technology”, Applied Optics, Aug. 1, 2004, vol. 43, No. 22, pp. 4303-4310. |
Duparre et al., “Artificial compound eye zoom camera”, Bioinspiration & Biomimetics, Nov. 21, 2008, vol. 3, pp. 1-6. |
Duparre et al., “Artificial compound eyes—different concepts and their application to ultra flat image acquisition sensors”, MOEMS and Miniaturized Systems IV, Proc. SPIE 5346, Jan. 24, 2004, pp. 89-100. |
Duparre et al., “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence”, Optics Express, Dec. 26, 2005, vol. 13, No. 26, pp. 10539-10551. |
Duparre et al., “Micro-optical artificial compound eyes”, Bioinspiration & Biomimetics, Apr. 6, 2006, vol. 1, pp. R1-R16. |
Duparre et al., “Microoptical artificial compound eyes—from design to experimental verification of two different concepts”, Proc. of SPIE, Optical Design and Engineering II, vol. 5962, Oct. 17, 2005, pp. 59622A-1-59622A-12. |
Duparre et al., “Microoptical Artificial Compound Eyes—Two Different Concepts for Compact Imaging Systems”, 11th Microoptics Conference, Oct. 30-Nov. 2, 2005, 2 pgs. |
Duparre et al., “Microoptical telescope compound eye”, Optics Express, Feb. 7, 2005, vol. 13, No. 3, pp. 889-903. |
Duparre et al., “Micro-optically fabricated artificial apposition compound eye”, Electronic Imaging—Science and Technology, Prod. SPIE 5301, Jan. 2004, pp. 25-33. |
Duparre et al., “Novel Optics/Micro-Optics for Miniature Imaging Systems”, Proc. of SPIE, Apr. 21, 2006, vol. 6196, pp. 619607-1-619607-15. |
Duparre et al., “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices”, Optical Systems Design, Proc. SPIE 5249, Sep. 2003, pp. 408-418. |
Duparre et al., “Thin compound-eye camera”, Applied Optics, May 20, 2005, vol. 44, No. 15, pp. 2949-2956. |
Duparre et al., “Ultra-Thin Camera Based on Artificial Apposition Compound Eyes”, 10th Microoptics Conference, Sep. 1-3, 2004, 2 pgs. |
Eng et al., “Gaze correction for 3D tele-immersive communication system”, IVMSP Workshop, 2013 IEEE 11th. IEEE, Jun. 10, 2013, 4 pgs. |
Fanaswala, “Regularized Super-Resolution of Multi-View Images”, Retrieved on Nov. 10, 2012 (Nov. 10, 2012). Retrieved from the Internet at URL:<http://www.site.uottawa.ca/-edubois/theses/Fanaswala_thesis.pdf>, 2009, 163 pgs. |
Fang et al., “Volume Morphing Methods for Landmark Based 3D Image Deformation”, SPIE vol. 2710, Proc. 1996 SPIE Intl Symposium on Medical Imaging, Newport Beach, CA, Feb. 10, 1996, pp. 404-415. |
Farrell et al., “Resolution and Light Sensitivity Tradeoff with Pixel Size”, Proceedings of the SPIE Electronic Imaging 2006 Conference, Feb. 2, 2006, vol. 6069, 8 pgs. |
Farsiu et al., “Advances and Challenges in Super-Resolution”, International Journal of Imaging Systems and Technology, Aug. 12, 2004, vol. 14, pp. 47-57. |
Farsiu et al., “Fast and Robust Multiframe Super Resolution”, IEEE Transactions on Image Processing, Oct. 2004, published Sep. 3, 2004, vol. 13, No. 10, pp. 1327-1344. |
Farsiu et al., “Multiframe Demosaicing and Super-Resolution of Color Images”, IEEE Transactions on Image Processing, Jan. 2006, vol. 15, No. 1, date of publication Dec. 12, 2005, pp. 141-159. |
Fecker et al., “Depth Map Compression for Unstructured Lumigraph Rendering”, Proc. SPIE 6077, Proceedings Visual Communications and Image Processing 2006, Jan. 18, 2006, pp. 60770B-1-60770B-8. |
Feris et al., “Multi-Flash Stereopsis: Depth Edge Preserving Stereo with Small Baseline Illumination”, IEEE Trans on PAMI, 2006, 31 pgs. |
Fife et al., “A 3D Multi-Aperture Image Sensor Architecture”, Custom Integrated Circuits Conference, 2006, CICC '06, IEEE, pp. 281-284. |
Fife et al., “A 3MPixel Multi-Aperture Image Sensor with 0.7Mu Pixels in 0.11Mu CMOS”, ISSCC 2008, Session 2, Image Sensors & Technology, 2008, pp. 48-50. |
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 191-198. |
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 49-58. |
Gastal et al., “Shared Sampling for Real-Time Alpha Matting”, Computer Graphics Forum, Eurographics 2010, vol. 29, Issue 2, May 2010, pp. 575-584. |
Georgeiv et al., “Light Field Camera Design for Integral View Photography”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs. |
Georgiev et al., “Light-Field Capture by Multiplexing in the Frequency Domain”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs. |
Goldman et al., “Video Object Annotation, Navigation, and Composition”, In Proceedings of UIST 2008, Oct. 19-22, 2008, Monterey CA, USA, pp. 3-12. |
Gortler et al., “The Lumigraph”, In Proceedings of Siggraph 1996, published Aug. 1, 1996, pp. 43-54. |
Gupta et al., “Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, OR, USA, pp. 564-571. |
Hacohen et al., “Non-Rigid Dense Correspondence with Applications for Image Enhancement”, ACM Transactions on Graphics, vol. 30, No. 4, Aug. 7, 2011, 9 pgs. |
Hamilton, “JPEG File Interchange Format, Version 1.02”, Sep. 1, 1992, 9 pgs. |
Hardie, “A Fast Image Super-Algorithm Using an Adaptive Wiener Filter”, IEEE Transactions on Image Processing, Dec. 2007, published Nov. 19, 2007, vol. 16, No. 12, pp. 2953-2964. |
Hasinoff et al., “Search-and-Replace Editing for Personal Photo Collections”, 2010 International Conference: Computational Photography (ICCP) Mar. 2010, pp. 1-8. |
Hernandez-Lopez et al., “Detecting objects using color and depth segmentation with Kinect sensor”, Procedia Technology, vol. 3, Jan. 1, 2012, pp. 196-204, XP055307680, ISSN: 2212-0173, DOI: 10.1016/j.protcy.2012.03.021. |
Holoeye Photonics AG, “LC 2012 Spatial Light Modulator (transmissive)”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918151716/http://holoeye.com/spatial-light-modulators/lc-2012-spatial-light-modulator/ on Oct. 20, 2017, 3 pgs. |
Holoeye Photonics AG, “Spatial Light Modulators”, Oct. 2, 2013, Brochure retrieved from https://web.archive.org/web/20131002061028/http://holoeye.com/wp-content/uploads/Spatial_Light_Modulators.pdf on Oct. 13, 2017, 4 pgs. |
Holoeye Photonics AG, “Spatial Light Modulators”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918113140/http://holoeye.com/spatial-light-modulators/ on Oct. 13, 2017, 4 pgs. |
Horisaki et al., “Irregular Lens Arrangement Design to Improve Imaging Performance of Compound-Eye Imaging Systems”, Applied Physics Express, Jan. 29, 2010, vol. 3, pp. 022501-1-022501-3. |
Horisaki et al., “Superposition Imaging for Three-Dimensionally Space-Invariant Point Spread Functions”, Applied Physics Express, Oct. 13, 2011, vol. 4, pp. 112501-1-112501-3. |
Horn et al., “LightShop: Interactive Light Field Manipulation and Rendering”, In Proceedings of I3D, Jan. 1, 2007, pp. 121-128. |
Isaksen et al., “Dynamically Reparameterized Light Fields”, In Proceedings of SIGGRAPH 2000, pp. 297-306. |
Izadi et al., “KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera”, UIST'11, Oct. 16-19, 2011, Santa Barbara, CA, pp. 559-568. |
Janoch et al., “A category-level 3-D object dataset: Putting the Kinect to work”, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Nov. 6-13, 2011, Barcelona, Spain, pp. 1168-1174. |
Jarabo et al., “Efficient Propagation of Light Field Edits”, In Proceedings of SIACG 2011, pp. 75-80. |
Jiang et al., “Panoramic 3D Reconstruction Using Rotational Stereo Camera with Simple Epipolar Constraints”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), Jun. 17-22, 2006, vol. 1, New York, NY, USA, pp. 371-378. |
Joshi, Neel S. “Color Calibration for Arrays of Inexpensive Image Sensors”, Master's with Distinction in Research Report, Stanford University, Department of Computer Science, Mar. 2004, 30 pgs. |
Joshi et al., “Synthetic Aperture Tracking: Tracking Through Occlusions”, I CCV IEEE 11th International Conference on Computer Vision; Publication [online]. Oct. 2007 [retrieved Jul. 28, 2014]. Retrieved from the Internet: <URL: http:l/ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4409032&isnumber=4408819>; pp. 1-8. |
Kang et al., “Handling Occlusions in Dense Multi-view Stereo”, Computer Vision and Pattern Recognition, 2001, vol. 1, pp. I-103-I-110. |
Kim, “Scene Reconstruction from a Light Field”, Master Thesis, Sep. 1, 2010 (Sep. 1, 2010), pp. 1-72. |
Kim et al., “Scene reconstruction from high spatio-angular resolution light fields”, ACM Transactions on Graphics (TOG)—Siggraph 2013 Conference Proceedings, vol. 32 Issue 4, Article 73, Jul. 21, 2013, 11 pgs. |
Kitamura et al., “Reconstruction of a high-resolution image on a compound-eye image-capturing system”, Applied Optics, Mar. 10, 2004, vol. 43, No. 8, pp. 1719-1727. |
Konolige, Kurt “Projected Texture Stereo”, 2010 IEEE International Conference on Robotics and Automation, May 3-7, 2010, p. 148-155. |
Krishnamurthy et al., “Compression and Transmission of Depth Maps for Image-Based Rendering”, Image Processing, 2001, pp. 828-831. |
Kubota et al., “Reconstructing Dense Light Field From Array of Multifocus Images for Novel View Synthesis”, IEEE Transactions on Image Processing, vol. 16, No. 1, Jan. 2007, pp. 269-279. |
Kutulakos et al., “Occluding Contour Detection Using Affine Invariants and Purposive Viewpoint Control”, Computer Vision and Pattern Recognition, Proceedings CVPR 94, Seattle, Washington, Jun. 21-23, 1994, 8 pgs. |
Lai et al., “A Large-Scale Hierarchical Multi-View RGB-D Object Dataset”, Proceedings—IEEE International Conference on Robotics and Automation, Conference Date May 9-13, 2011, 8 pgs., DOI:10.1109/ICRA.201135980382. |
Lane et al., “A Survey of Mobile Phone Sensing”, IEEE Communications Magazine, vol. 48, Issue 9, Sep. 2010, pp. 140-150. |
Lee et al., “Automatic Upright Adjustment of Photographs”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 877-884. |
Lee et al., “Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module”, ETRI Journal, vol. 31, No. 6, Dec. 2009, pp. 695-702. |
Lee et al., “Nonlocal matting”, CVPR 2011, Jun. 20-25, 2011, pp. 2193-2200. |
LensVector, “How LensVector Autofocus Works”, 2010, printed Nov. 2, 2012, from http://www.lensvector.com/overview.html, 1 pg. |
Levin et al., “A Closed Form Solution to Natural Image Matting”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006, vol. 1, pp. 61-68. |
Levin et al., “Spectral Matting”, 2007 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 17-22, 2007, Minneapolis, MN, USA, pp. 1-8. |
Levoy, “Light Fields and Computational Imaging”, IEEE Computer Society, Sep. 1, 2006, vol. 39, Issue No. 8, pp. 46-55. |
Levoy et al., “Light Field Rendering”, Proc. ADM Siggraph '96, pp. 1-12. |
Li et al., “A Hybrid Camera for Motion Deblurring and Depth Map Super-Resolution”, Jun. 23-28, 2008, IEEE Conference on Computer Vision and Pattern Recognition, 8 pgs. Retrieved from www.eecis.udel.edu/˜jye/lab_research/08/deblur-feng.pdf on Feb. 5, 2014. |
Li et al., “Fusing Images With Different Focuses Using Support Vector Machines”, IEEE Transactions on Neural Networks, vol. 15, No. 6, Nov. 8, 2004, pp. 1555-1561. |
Lim, Jongwoo “Optimized Projection Pattern Supplementing Stereo Systems”, 2009 IEEE International Conference on Robotics and Automation, May 12-17, 2009, pp. 2823-2829. |
Liu et al., “Virtual View Reconstruction Using Temporal Information”, 2012 IEEE International Conference on Multimedia and Expo, 2012, pp. 115-120. |
Lo et al., “Stereoscopic 3D Copy & Paste”, ACM Transactions on Graphics, vol. 29, No. 6, Article 147, Dec. 2010, pp. 147:1-147:10. |
Martinez et al., “Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis”, Analytical Chemistry (American Chemical Society), vol. 80, No. 10, May 15, 2008, pp. 3699-3707. |
McGuire et al., “Defocus video matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM Siggraph 2005, vol. 24, Issue 3, Jul. 2005, pp. 567-576. |
Merkle et al., “Adaptation and optimization of coding algorithms for mobile 3DTV”, Mobile3DTV Project No. 216503, Nov. 2008, 55 pgs. |
Mitra et al., “Light Field Denoising, Light Field Superresolution and Stereo Camera Based Refocussing using a GMM Light Field Patch Prior”, Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on Jun. 16-21, 2012, pp. 22-28. |
Moreno-Noguer et al., “Active Refocusing of Images and Videos”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Jul. 2007, 10 pgs. |
Muehlebach, “Camera Auto Exposure Control for VSLAM Applications”, Studies on Mechatronics, Swiss Federal Institute of Technology Zurich, Autumn Term 2010 course, 67 pgs. |
Nayar, “Computational Cameras: Redefining the Image”, IEEE Computer Society, Aug. 14, 2006, pp. 30-38. |
Ng, “Digital Light Field Photography”, Thesis, Jul. 2006, 203 pgs. |
Ng et al., “Light Field Photography with a Hand-held Plenoptic Camera”, Stanford Tech Report CTSR Feb. 2005, Apr. 20, 2005, pp. 1-11. |
Ng et al., “Super-Resolution Image Restoration from Blurred Low-Resolution Images”, Journal of Mathematical Imaging and Vision, 2005, vol. 23, pp. 367-378. |
Nguyen et al., “Error Analysis for Image-Based Rendering with Depth Information”, IEEE Transactions on Image Processing, vol. 18, Issue 4, Apr. 2009, pp. 703-716. |
Nguyen et al., “Image-Based Rendering with Depth Information Using the Propagation Algorithm”, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, vol. 5, Mar. 23-23, 2005, pp. II-589-II-592. |
Nishihara, H.K. “PRISM: A Practical Real-Time Imaging Stereo Matcher”, Massachusetts Institute of Technology, A.I. Memo 780, May 1984, 32 pgs. |
Nitta et al., “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method”, Applied Optics, May 1, 2006, vol. 45, No. 13, pp. 2893-2900. |
Nomura et al., “Scene Collages and Flexible Camera Arrays”, Proceedings of Eurographics Symposium on Rendering, Jun. 2007, 12 pgs. |
Park et al., “Multispectral Imaging Using Multiplexed Illumination”, 2007 IEEE 11th International Conference on Computer Vision, Oct. 14-21, 2007, Rio de Janeiro, Brazil, pp. 1-8. |
Park et al., “Super-Resolution Image Reconstruction”, IEEE Signal Processing Magazine, May 2003, pp. 21-36. |
Parkkinen et al., “Characteristic Spectra of Munsell Colors”, Journal of the Optical Society of America A, vol. 6, Issue 2, Feb. 1989, pp. 318-322. |
Perwass et al., “Single Lens 3D-Camera with Extended Depth-of-Field”, printed from www.raytrix.de, Jan. 22, 2012, 15 pgs. |
Pham et al., “Robust Super-Resolution without Regularization”, Journal of Physics: Conference Series 124, Jul. 2008, pp. 1-19. |
Philips 3D Solutions, “3D Interface Specifications, White Paper”, Feb. 15, 2008, 2005-2008 Philips Electronics Nederland B.V., Philips 3D Solutions retrieved from www.philips.com/3dsolutions, 29 pgs., Feb. 15, 2008. |
Polight, “Designing Imaging Products Using Reflowable Autofocus Lenses”, printed Nov. 2, 2012, from http://www.polight.no/tunable-polymer-autofocus-lens-html--11.html, 1 pg. |
Pouydebasque et al., “Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers”, Sensors and Actuators A: Physical, vol. 172, Issue 1, Dec. 2011, pp. 280-286. |
Protter et al., “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction”, IEEE Transactions on Image Processing, Dec. 2, 2008, vol. 18, No. 1, pp. 36-51. |
Radtke et al., “Laser lithographic fabrication and characterization of a spherical artificial compound eye”, Optics Express, Mar. 19, 2007, vol. 15, No. 6, pp. 3067-3077. |
Rajan et al., “Simultaneous Estimation of Super Resolved Scene and Depth Map from Low Resolution Defocused Observations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 9, Sep. 8, 2003, pp. 1-16. |
Rander et al., “Virtualized Reality: Constructing Time-Varying Virtual Worlds From Real World Events”, Proc. of IEEE Visualization '97, Phoenix, Arizona, Oct. 19-24, 1997, pp. 277-283. |
Rhemann et al, “Fast Cost-Volume Filtering for Visual Correspondence and Beyond”, IEEE Trans. Pattern Anal. Mach. Intell., 2013, vol. 35, No. 2, pp. 504-511. |
Rhemann et al., “A perceptually motivated online benchmark for image matting”, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 20-25, 2009, Miami, FL, USA, pp. 1826-1833. |
Robert et al., “Dense Depth Map Reconstruction :A Minimization and Regularization Approach which Preserves Discontinuities”, European Conference on Computer Vision (ECCV), pp. 439-451, (1996). |
Robertson et al., “Dynamic Range Improvement Through Multiple Exposures”, In Proc. of the Int. Conf. on Image Processing, 1999, 5 pgs. |
Robertson et al., “Estimation-theoretic approach to dynamic range enhancement using multiple exposures”, Journal of Electronic Imaging, Apr. 2003, vol. 12, No. 2, pp. 219-228. |
Roy et al., “Non-Uniform Hierarchical Pyramid Stereo for Large Images”, Computer and Robot Vision, 2002, pp. 208-215. |
Sauer et al., “Parallel Computation of Sequential Pixel Updates in Statistical Tomographic Reconstruction”, ICIP 1995 Proceedings of the 1995 International Conference on Image Processing, Date of Conference: Oct. 23-26, 1995, pp. 93-96. |
Scharstein et al., “High-Accuracy Stereo Depth Maps Using Structured Light”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), Jun. 2003, vol. 1, pp. 195-202. |
Seitz et al., “Plenoptic Image Editing”, International Journal of Computer Vision 48, Conference Date Jan. 7, 1998, 29 pgs, DOI: 10.1109/ICCV.1998.710696 ⋅ Source: DBLP Conference: Computer Vision, Sixth International Conference. |
Shotton et al., “Real-time human pose recognition in parts from single depth images”, CVPR 2011, Jun. 20-25, 2011, Colorado Springs, CO, USA, pp. 1297-1304. |
Shum et al., “A Review of Image-based Rendering Techniques”, in Visual Communications and Image Processing 2000, May 2000, vol. 4067, pp. 2-13. |
Shum et al., “Pop-Up Light Field: An Interactive Image-Based Modeling and Rendering System”, Apr. 2004, ACM Transactions on Graphics, vol. 23, No. 2, pp. 143-162. Retrieved from http://131.107.65.14/en-us/um/people/jiansun/papers/PopupLightField_TOG.pdf on Feb. 5, 2014. |
Silberman et al., “Indoor segmentation and support inference from RGBD images”, ECCV'12 Proceedings of the 12th European conference on Computer Vision, vol. Part V, Oct. 7-13, 2012, Florence, Italy, pp. 746-760. |
Stober, “Stanford researchers developing 3-D camera with 12,616 lenses”, Stanford Report, Mar. 19, 2008, Retrieved from: http://news.stanford.edu/news/2008/march19/camera-031908.html, 5 pgs. |
Stollberg et al., “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects”, Optics Express, Aug. 31, 2009, vol. 17, No. 18, pp. 15747-15759. |
Sun et al., “Image Super-Resolution Using Gradient Profile Prior”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, 8 pgs, DOI: 10.1109/CVPR.2008.4587659. |
Taguchi et al., “Rendering-Oriented Decoding for a Distributed Multiview Coding System Using a Coset Code”, Hindawi Publishing Corporation, EURASIP Journal on Image and Video Processing, vol. 2009, Article ID 251081, Online: Apr. 22, 2009, 12 pgs. |
Takeda et al., “Super-resolution Without Explicit Subpixel Motion Estimation”, IEEE Transaction on Image Processing, Sep. 2009, vol. 18, No. 9, pp. 1958-1975. |
Tallon et al., “Upsampling and Denoising of Depth Maps Via Joint-Segmentation”, 20th European Signal Processing Conference, Aug. 27-31, 2012, 5 pgs. |
Tanida et al., “Color imaging with an integrated compound imaging system”, Optics Express, Sep. 8, 2003, vol. 11, No. 18, pp. 2109-2117. |
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification”, Applied Optics, Apr. 10, 2001, vol. 40, No. 11, pp. 1806-1813. |
Tao et al., “Depth from Combining Defocus and Correspondence Using Light-Field Cameras”, ICCV '13 Proceedings of the 2013 IEEE International Conference on Computer Vision, Dec. 1, 2013, pp. 673-680. |
Taylor, “Virtual camera movement: The way of the future?”, American Cinematographer vol. 77, No. 9, Sep. 1996, 93-100. |
Tseng et al., “Automatic 3-D depth recovery from a single urban-scene image”, 2012 Visual Communications and Image Processing, Nov. 27-30, 2012, San Diego, CA, USA, pp. 1-6. |
Vaish et al., “Reconstructing Occluded Surfaces Using Synthetic Apertures: Stereo, Focus and Robust Measures”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 2, Jun. 17-22, 2006, pp. 2331-2338. |
Vaish et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform”, IEEE Workshop on A3DISS, CVPR, 2005, 8 pgs. |
Vaish et al., “Using Plane + Parallax for Calibrating Dense Camera Arrays”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004, 8 pgs. |
Van Der Wal et al., “The Acadia Vision Processor”, Proceedings Fifth IEEE International Workshop on Computer Architectures for Machine Perception, Sep. 13, 2000, Padova, Italy, pp. 31-40. |
Veilleux, “CCD Gain Lab: The Theory”, University of Maryland, College Park—Observational Astronomy (ASTR 310), Oct. 19, 2006, pp. 1-5 (online], [retrieved on May 13, 2014]. Retrieved from the Internet <URL: http://www.astro.umd.edu/˜veilleux/ASTR310/fall06/ccd_theory.pdf, 5 pgs. |
Venkataraman et al., “PiCam: An Ultra-Thin High Performance Monolithic Camera Array”, ACM Transactions on Graphics (TOG), ACM, US, vol. 32, No. 6, 1 Nov. 1, 2013, pp. 1-13. |
Vetro et al., “Coding Approaches for End-To-End 3D TV Systems”, Mitsubishi Electric Research Laboratories, Inc., TR2004-137, Dec. 2004, 6 pgs. |
Viola et al., “Robust Real-time Object Detection”, Cambridge Research Laboratory, Technical Report Series, Compaq, CRL Jan. 2001, Feb. 2001, Printed from: http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-2001-1.pdf, 30 pgs. |
Vuong et al., “A New Auto Exposure and Auto White-Balance Algorithm to Detect High Dynamic Range Conditions Using CMOS Technology”, Proceedings of the World Congress on Engineering and Computer Science 2008, WCECS 2008, Oct. 22-24, 2008, 5 pgs. |
Wang, “Calculation of Image Position, Size and Orientation Using First Order Properties”, Dec. 29, 2010, OPTI521 Tutorial, 10 pgs. |
Wang et al., “Automatic Natural Video Matting with Depth”, 15th Pacific Conference on Computer Graphics and Applications, PG '07, Oct. 29-Nov. 2, 2007, Maui, HI, USA, pp. 469-472. |
Wang et al., “Image and Video Matting: A Survey”, Foundations and Trends, Computer Graphics and Vision, vol. 3, No. 2, 2007, pp. 91-175. |
Wang et al., “Soft scissors: an interactive tool for realtime high quality matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Article 9, Jul. 2007, 6 pages, published Aug. 5, 2007. |
Wetzstein et al., “Computational Plenoptic Imaging”, Computer Graphics Forum, 2011, vol. 30, No. 8, pp. 2397-2426. |
Wheeler et al., “Super-Resolution Image Synthesis Using Projections Onto Convex Sets in the Frequency Domain”, Proc. SPIE, Mar. 11, 2005, vol. 5674, 12 pgs. |
Wieringa et al., “Remote Non-invasive Stereoscopic Imaging of Blood Vessels: First In-vivo Results of a New Multispectral Contrast Enhancement Technology”, Annals of Biomedical Engineering, vol. 34, No. 12, Dec. 2006, pp. 1870-1878, Published online Oct. 12, 2006. |
Wikipedia, “Polarizing Filter (Photography)”, retrieved from http://en.wikipedia.org/wiki/Polarizing_filter_(photography) on Dec. 12, 2012, last modified on Sep. 26, 2012, 5 pgs. |
Wilburn, “High Performance Imaging Using Arrays of Inexpensive Cameras”, Thesis of Bennett Wilburn, Dec. 2004, 128 pgs. |
Wilburn et al., “High Performance Imaging Using Large Camera Arrays”, ACM Transactions on Graphics, Jul. 2005, vol. 24, No. 3, pp. 1-12. |
Wilburn et al., “High-Speed Videography Using a Dense Camera Array”, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., vol. 2, Jun. 27-Jul. 2, 2004, pp. 294-301. |
Wilburn et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002, SPIE Electronic Imaging, 2002, 8 pgs. |
Wippermann et al., “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective”, Proceedings of SPIE, Optical Design and Engineering II, Oct. 15, 2005, 59622C-1-59622C-11. |
Wu et al., “A virtual view synthesis algorithm based on image inpainting”, 2012 Third International Conference on Networking and Distributed Computing, Hangzhou, China, Oct. 21-24, 2012, pp. 153-156. |
Xu, “Real-Time Realistic Rendering and High Dynamic Range Image Display and Compression”, Dissertation, School of Computer Science in the College of Engineering and Computer Science at the University of Central Florida, Orlando, Florida, Fall Term 2005, 192 pgs. |
Yang et al., “A Real-Time Distributed Light Field Camera”, Eurographics Workshop on Rendering (2002), published Jul. 26, 2002, pp. 1-10. |
Yang et al., “Superresolution Using Preconditioned Conjugate Gradient Method”, Proceedings of SPIE—The International Society for Optical Engineering, Jul. 2002, 8 pgs. |
Yokochi et al., “Extrinsic Camera Parameter Estimation Based-on Feature Tracking and GPS Data”, 2006, Nara Institute of Science and Technology, Graduate School of Information Science, LNCS 3851, pp. 369-378. |
Zhang et al., “A Self-Reconfigurable Camera Array”, Eurographics Symposium on Rendering, published Aug. 8, 2004, 12 pgs. |
Zhang et al., “Depth estimation, spatially variant image registration, and super-resolution using a multi-lenslet camera”, Proceedings of SPIE, vol. 7705, Apr. 23, 2010, pp. 770505-770505-8, XP055113797 ISSN: 0277-786X, DOI: 10.1117/12.852171. |
Zheng et al., “Balloon Motion Estimation Using Two Frames”, Proceedings of the Asilomar Conference on Signals, Systems and Computers, IEEE, Comp. Soc. Press, US, vol. 2 of 02, Nov. 4, 1991, pp. 1057-1061. |
Zhu et al., “Fusion of Time-of-Flight Depth and Stereo for High Accuracy Depth Maps”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, Anchorage, AK, USA, pp. 1-8. |
Zomet et al., “Robust Super-Resolution”, IEEE, 2001, pp. 1-6. |
Extended European Search Report for European Application No. 23177057.9, Search completed Dec. 4, 2023, Mailed Dec. 15, 2023, 14 Pgs. |
Extended European Search Report for European Application No. 23185907.5, Search completed Feb. 12, 2024, Mailed Feb. 23, 2024, 09 Pgs. |
Extended European Search Report for European Application No. 23206157.2, Search completed Jan. 26, 2024, Mailed Feb. 12, 2024, 10 Pgs. |
“Light Field—Wikipedia, the Free Encyclopedia”, The Wayback Machine—Aug. 15, 2012, https://web.archive.Org/web/20120815204221/http://en.wikipedia.org/wiki/Light_field, XP093106694, Retrieved from the Internet, https://web.archive.org/web/20120815204221/https://en.Wikipedia.org/wiki/Light_field#Ways-to_create-light-fields [retrieved on Nov. 28, 2023]. |
Debevec et al., “Modeling and Rendering Architecture from Photographs: a Hybrid Geometry- and Image-Based Approach”, Computer Graphics Proceedings. Siggraph '96, Jan. 19, 1996, pp. 11-20, XP093106889, New York, US DOI: 10.1145/237170.237191 ISBN: 978-0-89791-746-9 Retrieved from the Internet, URL: https ://www2.eecs.berkeley.edu/Pubs/TechRpts/1996/CSD-96-893.pdf> [retrieved on Nov. 28, 2023]. |
Number | Date | Country | |
---|---|---|---|
20230421742 A1 | Dec 2023 | US |
Number | Date | Country | |
---|---|---|---|
61540188 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17233553 | Apr 2021 | US |
Child | 18339775 | US | |
Parent | 16586827 | Sep 2019 | US |
Child | 17233553 | US | |
Parent | 16030597 | Jul 2018 | US |
Child | 16586827 | US | |
Parent | 15396024 | Dec 2016 | US |
Child | 16030597 | US | |
Parent | 14667492 | Mar 2015 | US |
Child | 15396024 | US | |
Parent | 14504687 | Oct 2014 | US |
Child | 14667492 | US | |
Parent | 14477374 | Sep 2014 | US |
Child | 14504687 | US | |
Parent | 13955411 | Jul 2013 | US |
Child | 14477374 | US | |
Parent | 13631736 | Sep 2012 | US |
Child | 13955411 | US |