Systems and methods for energy storage and recovery using compressed gas

Information

  • Patent Grant
  • 8209974
  • Patent Number
    8,209,974
  • Date Filed
    Monday, January 24, 2011
    13 years ago
  • Date Issued
    Tuesday, July 3, 2012
    12 years ago
Abstract
The invention relates to methods and systems for the storage and recovery of energy using open-air hydraulic-pneumatic accumulator and intensifier arrangements that combine at least one accumulator and at least one intensifier in communication with a high-pressure gas storage reservoir on a gas-side of the circuits and a combination fluid motor/pump, coupled to a combination electric generator/motor on the fluid side of the circuits.
Description
FIELD OF THE INVENTION

The invention relates to energy storage, and more particularly, to systems that store and recover electrical energy using compressed fluids.


BACKGROUND OF THE INVENTION

As the world's demand for electric energy increases, the existing power grid is being taxed beyond its ability to serve this demand continuously. In certain parts of the United States, inability to meet peak demand has led to inadvertent brownouts and blackouts due to system overload and deliberate “rolling blackouts” of non-essential customers to shunt the excess demand. For the most part, peak demand occurs during the daytime hours (and during certain seasons, such as summer) when business and industry employ large quantities of power for running equipment, heating, air conditioning, lighting, etc. During the nighttime hours, thus, demand for electricity is often reduced significantly, and the existing power grid in most areas can usually handle this load without problem.


To address the lack of power at peak demand, users are asked to conserve where possible. Power companies often employ rapidly deployable gas turbines to supplement production to meet demand. However, these units burn expensive fuel sources, such as natural gas, and have high generation costs when compared with coal-fired systems, and other large-scale generators. Accordingly, supplemental sources have economic drawbacks and, in any case, can provide only a partial solution in a growing region and economy. The most obvious solution involves construction of new power plants, which is expensive and has environmental side effects. In addition, because most power plants operate most efficiently when generating a relatively continuous output, the difference between peak and off-peak demand often leads to wasteful practices during off-peak periods, such as over-lighting of outdoor areas, as power is sold at a lower rate off peak. Thus, it is desirable to address the fluctuation in power demand in a manner that does not require construction of new plants and can be implemented either at a power-generating facility to provide excess capacity during peak, or on a smaller scale on-site at the facility of an electric customer (allowing that customer to provide additional power to itself during peak demand, when the grid is over-taxed).


Another scenario in which the ability to balance the delivery of generated power is highly desirable is in a self-contained generation system with an intermittent generation cycle. One example is a solar panel array located remotely from a power connection. The array may generate well for a few hours during the day, but is nonfunctional during the remaining hours of low light or darkness.


In each case, the balancing of power production or provision of further capacity rapidly and on-demand can be satisfied by a local back-up generator. However, such generators are often costly, use expensive fuels, such as natural gas or diesel fuel, and are environmentally damaging due to their inherent noise and emissions. Thus, a technique that allows storage of energy when not needed (such as during off-peak hours), and can rapidly deliver the power back to the user is highly desirable.


A variety of techniques is available to store excess power for later delivery. One renewable technique involves the use of driven flywheels that are spun up by a motor drawing excess power. When the power is needed, the flywheels' inertia is tapped by the motor or another coupled generator to deliver power back to the grid and/or customer. The flywheel units are expensive to manufacture and install, however, and require a degree of costly maintenance on a regular basis.


Another approach to power storage is the use of batteries. Many large-scale batteries use a lead electrode and acid electrolyte, however, and these components are environmentally hazardous. Batteries must often be arrayed to store substantial power, and the individual batteries may have a relatively short life (3-7 years is typical). Thus, to maintain a battery storage system, a large number of heavy, hazardous battery units must be replaced on a regular basis and these old batteries must be recycled or otherwise properly disposed of.


Energy can also be stored in ultracapacitors. A capacitor is charged by line current so that it stores charge, which can be discharged rapidly when needed. Appropriate power-conditioning circuits are used to convert the power into the appropriate phase and frequency of AC. However, a large array of such capacitors is needed to store substantial electric power. Ultracapacitors, while more environmentally friendly and longer lived than batteries, are substantially more expensive, and still require periodic replacement due to the breakdown of internal dielectrics, etc.


Another approach to storage of energy for later distribution involves the use of a large reservoir of compressed air. By way of background, a so-called compressed-air energy storage (CAES) system is shown and described in the published thesis entitled “Investigation and Optimization of Hybrid Electricity Storage Systems Based Upon Air and Supercapacitors,” by Sylvain Lemofouet-Gatsi, Ecole Polytechnique Federale de Lausanne (20 Oct. 2006), Section 2.2.1, incorporated herein by reference in its entirety. As stated by Lemofouet-Gatsi, “the principle of CAES derives from the splitting of the normal gas turbine cycle—where roughly 66% of the produced power is used to compress air—into two separated phases: The compression phase where lower-cost energy from off-peak base-load facilities is used to compress air into underground salt caverns and the generation phase where the pre-compressed air from the storage cavern is preheated through a heat recuperator, then mixed with oil or gas and burned to feed a multistage expander turbine to produce electricity during peak demand. This functional separation of the compression cycle from the combustion cycle allows a CAES plant to generate three times more energy with the same quantity of fuel compared to a simple cycle natural gas power plant.


“CAES has the advantages that it doesn't involve huge, costly installations and can be used to store energy for a long time (more than one year). It also has a fast start-up time (9 to 12 minutes), which makes it suitable for grid operation, and the emissions of greenhouse gases are lower than that of a normal gas power plant, due to the reduced fuel consumption. The main drawback of CAES is probably the geological structure reliance, which substantially limits the usability of this storage method. In addition, CAES power plants are not emission-free, as the pre-compressed air is heated up with a fossil fuel burner before expansion. Moreover, [CAES plants] are limited with respect to their effectiveness because of the loss of the compression heat through the inter-coolers, which must be compensated during expansion by fuel burning. The fact that conventional CAES still rely on fossil fuel consumption makes it difficult to evaluate its energy round-trip efficiency and to compare it to conventional fuel-free storage technologies.”


A number of variations on the above-described compressed air energy storage approach have been proposed, some of which attempt to heat the expanded air with electricity, rather than fuel. Others employ heat exchange with thermal storage to extract and recover as much of the thermal energy as possible, therefore attempting to increase efficiencies. Still other approaches employ compressed gas-driven piston motors that act both as compressors and generator drives in opposing parts of the cycle. In general, the use of highly compressed gas as a working fluid for the motor poses a number of challenges due to the tendency for leakage around seals at higher pressures, as well as the thermal losses encountered in rapid expansion. While heat exchange solutions can deal with some of these problems, efficiencies are still compromised by the need to heat compressed gas prior to expansion from high pressure to atmospheric pressure.


It has been recognized that gas is a highly effective medium for storage of energy. Liquids are incompressible and flow efficiently across an impeller or other moving component to rotate a generator shaft. One energy storage technique that uses compressed gas to store energy, but which uses a liquid, for example, hydraulic fluid, rather than compressed gas to drive a generator is a so-called closed-air hydraulic-pneumatic system. Such a system employs one or more high-pressure tanks (accumulators) having a charge of compressed gas, which is separated by a movable wall or flexible bladder membrane from a charge of hydraulic fluid. The hydraulic fluid is coupled to a bi-directional impeller (or other hydraulic motor/pump), which is itself coupled to a combined electric motor/generator. The other side of the impeller is connected to a low-pressure reservoir of hydraulic fluid. During a storage phase, the electric motor and impeller force hydraulic fluid from the low-pressure hydraulic fluid reservoir into the high-pressure tank(s), against the pressure of the compressed air. As the incompressible liquid fills the tank, it forces the air into a smaller space, thereby compressing it to an even higher pressure. During a generation phase, the fluid circuit is run in reverse and the impeller is driven by fluid escaping from the high-pressure tank(s) under the pressure of the compressed gas.


This closed-air approach has an advantage in that the gas is never expanded to or compressed from atmospheric pressure, as it is sealed within the tank. An example of a closed-air system is shown and described in U.S. Pat. No. 5,579,640, which is hereby incorporated herein by reference in its entirety, in which this principle is used to hydraulically store braking energy in a vehicle. This system has limitations in that its energy density is low. That is, the amount of compression possible is limited by the size of the tank space. In addition, since the gas does not completely decompress when the fluid is removed, there is still additional energy in the system that cannot be tapped. To make a closed air system desirable for large-scale energy storage, many large accumulator tanks would be needed, increasing the overall cost to implement the system and requiring more land to do so.


Another approach to hybrid hydraulic-pneumatic energy storage is the open-air system. In this system, compressed air is stored in a large, separate high-pressure tank (or plurality of tanks) A pair of accumulators is provided, each having a fluid side separated from a gas side by a movable piston wall. The fluid sides of a pair (or more) of accumulators are coupled together through an impeller/generator/motor combination. The air side of each of the accumulators is coupled to the high pressure air tanks, and also to a valve-driven atmospheric vent. Under expansion of the air chamber side, fluid in one accumulator is driven through the impeller to generate power, and the spent fluid then flows into the second accumulator, whose air side is now vented to atmospheric, thereby allowing the fluid to collect in the second accumulator. During the storage phase, electrical energy can used to directly recharge the pressure tanks via a compressor, or the accumulators can be run in reverse to pressurize the pressure tanks. A version of this open-air concept is shown and described in U.S. Pat. No. 6,145,311, which is hereby incorporated herein by reference in its entirety. This patent provides a pair of two-stage accumulator arranged in an opposed coaxial relation. In the '311 patent, the seals of its moving parts separate the working gas chambers. Thus, large pressure differentials can exist between these working gas chambers, resulting in a pressure differential across the seals of the moving parts up to the maximum pressure of the system. This can result in problematic gas leakage, as it is quite difficult to completely seal a moving, high-pressure piston against gas leakage. In addition, the '311 patent proposes a complex, difficult to manufacture and maintain accumulator structure that may be impractical for a field implementation. Likewise, recognizing that isothermal compression and expansion is critical to maintaining high round-trip system efficiency, especially if the compressed gas is stored for long periods of time, the '311 patent proposes a complex heat-exchange structure within the internal cavities of the accumulators. This complex structure adds expense and potentially compromises the gas and fluid seals of the system.


SUMMARY OF THE INVENTION

In various embodiments, the invention provides an energy storage system, based upon an open-air hydraulic-pneumatic arrangement, using high-pressure gas in tanks that is expanded in small batches from a high pressure of several hundred atmospheres to atmospheric pressure. The systems may be sized and operated at a rate that allows for near isothermal expansion and compression of the gas. The systems may also be scalable through coupling of additional accumulator circuits and storage tanks as needed. Systems and methods in accordance with the invention may allow for efficient near-isothermal high compression and expansion to/from high pressure of several hundred atmospheres down to atmospheric pressure to provide a much higher energy density.


Embodiments of the invention overcome the disadvantages of the prior art by providing a system for storage and recovery of energy using an open-air hydraulic-pneumatic accumulator and intensifier arrangement implemented in at least one circuit that combines an accumulator and an intensifier in communication with a high-pressure gas storage reservoir on the gas-side of the circuit, and a combination fluid motor/pump coupled to a combination electric generator/motor on the fluid side of the circuit. In a representative embodiment, an expansion/energy recovery mode, the accumulator of a first circuit is first filled with high-pressure gas from the reservoir, and the reservoir is then cut off from the air chamber of the accumulator. This gas causes fluid in the accumulator to be driven through the motor/pump to generate electricity. Exhausted fluid is driven into either an opposing intensifier or an accumulator in an opposing second circuit, whose air chamber is vented to atmosphere. As the gas in the accumulator expands to mid-pressure, and fluid is drained, the mid-pressure gas in the accumulator is then connected to an intensifier with a larger-area air piston acting on a smaller area fluid piston. Fluid in the intensifier is then driven through the motor/pump at still-high fluid pressure, despite the mid-pressure gas in the intensifier air chamber. Fluid from the motor/pump is exhausted into either the opposing first accumulator or an intensifier of the second circuit, whose air chamber may be vented to atmosphere as the corresponding fluid chamber fills with exhausted fluid. In a compression/energy storage stage, the process is reversed and the fluid motor/pump is driven by the electric component to force fluid into the intensifier and the accumulator to compress gas and deliver it to the tank reservoir under high pressure.


In one aspect, the invention relates to a compressed gas-based energy storage system that includes a staged hydraulic-pneumatic energy conversion system. The staged hydraulic-pneumatic system may include a compressed gas storage system and an accumulator having a hydraulic side and a pneumatic side separated by an accumulator boundary mechanism. The accumulator is desirably configured to transfer mechanical energy from the pneumatic side to the hydraulic side at a first pressure ratio. An intensifier having a hydraulic side and a pneumatic side is separated by an intensifier boundary mechanism, and the intensifier is configured to transfer mechanical energy from the pneumatic side to the hydraulic side at a second pressure ratio greater than the first pressure ratio. A control system operates the compressed gas storage system, the accumulator, and the intensifier in a staged manner to provide a predetermined pressure profile at at least one outlet.


In various embodiments, the system further includes a control valve arrangement responsive to the control system. The control valve arrangement interconnects the compressed gas storage system, the accumulator, the intensifier, and the outlet(s). The control valve arrangement can include a first arrangement providing controllable fluid communication between the accumulator pneumatic side and the compressed gas storage system, a second arrangement providing controllable fluid communication between the accumulator pneumatic side and the intensifier pneumatic side, a third arrangement providing controllable fluid communication between the accumulator hydraulic side and outlet(s), and a fourth arrangement providing controllable fluid communication between the intensifier hydraulic side and outlet(s). The compressed gas storage system can include one or more pressurized gas vessels.


Furthermore, the staged hydraulic-pneumatic energy conversion system can also include a second intensifier having a hydraulic side and a pneumatic side separated by a second intensifier boundary mechanism. The second intensifier may be configured to transfer mechanical energy from the pneumatic side to the hydraulic side at a third pressure ratio greater than the second pressure ratio. The system can also include a second accumulator having a hydraulic side and a pneumatic side separated by a second accumulator boundary mechanism. The second accumulator may be configured to transfer mechanical energy from the pneumatic side to the hydraulic side at the first pressure ratio, and can be connected in parallel with the first accumulator.


In additional embodiments, the system includes a hydraulic motor/pump having an input side in fluid communication with outlet(s) and having an output side in fluid communication with at least one inlet that is itself in fluid communication with the control valve arrangement. The system can also include an electric generator/motor mechanically coupled to the hydraulic motor/pump. The control system can include a sensor system that monitors at least one of (a) a fluid state related to the accumulator pneumatic side, the intensifier pneumatic side, the accumulator hydraulic side and the intensifier hydraulic side (b) a flow in hydraulic fluid, or (c) a position of the accumulator boundary mechanism and intensifier boundary mechanism.


During operation of the system, the control valve arrangement may be operated in a staged manner to allow gas from the compressed gas storage system to expand first within the accumulator pneumatic side and then from the accumulator pneumatic side into the intensifier pneumatic side. The gas expansion may occur substantially isothermally. The substantially isothermal gas expansion can be free of the application of any external heating source other than thermal exchange with the system's surroundings. In one embodiment, the substantially isothermal gas expansion is achieved via heat transfer from outside the accumulator and the intensifier therethrough, and to the gas within the accumulator pneumatic side and the intensifier pneumatic side.


In addition, the control system can open and close each of the control valve arrangements so that, when gas expands in the accumulator pneumatic side, the intensifier pneumatic side is vented by the gas vent to low pressure. In this way, fluid is driven from the accumulator hydraulic side by the expanding gas through the motor/pump and into the intensifier hydraulic side. In addition, the control system can open and close each of the control valve arrangements so that, when gas expands in the intensifier pneumatic side, fluid is driven from the intensifier hydraulic side by the expanding gas through the motor/pump, and into the accumulator hydraulic side; the accumulator pneumatic side is in fluid communication with the intensifier pneumatic side.


In another aspect, the invention relates to a compressed gas-based energy storage system including a staged hydraulic-pneumatic energy conversion system. In various embodiments, the staged hydraulic-pneumatic system includes a compressed gas storage system and at least one accumulator having an accumulator pneumatic side and an accumulator hydraulic side. The accumulator pneumatic side may be in fluid communication with the compressed gas storage system via a first control valve arrangement. The system may further include at least one intensifier having an intensifier pneumatic side and an intensifier hydraulic side, where the intensifier pneumatic side is in fluid communication with the accumulator pneumatic side and a gas vent via a second control valve arrangement. The accumulator pneumatic side and the accumulator hydraulic side may be separated by an accumulator boundary mechanism that transfers mechanical energy therebetween. The intensifier pneumatic side and the intensifier hydraulic side may be separated by an intensifier boundary mechanism that transfers mechanical energy therebetween. Embodiments in accordance with this aspect of the invention may include a hydraulic motor/pump having (i) an input side in fluid communication via a third control valve arrangement with the accumulator hydraulic side and the intensifier hydraulic side, and (ii) an output side in fluid communication via a fourth control valve arrangement with the accumulator hydraulic side and the intensifier hydraulic side. In various embodiments, the system includes an electric generator/motor mechanically coupled to the hydraulic motor/pump, and a control system for actuating the control valve arrangements in a staged manner to provide a predetermined pressure profile to the hydraulic motor input side.


In various embodiments of the foregoing aspect, the control system includes a sensor system that monitors at least one of (a) a fluid state related to the accumulator pneumatic side, the intensifier pneumatic side, the accumulator hydraulic side and the intensifier hydraulic side (b) a flow in hydraulic fluid, or (c) a position of the accumulator boundary mechanism and intensifier boundary mechanism. The system can use the sensed parameters to control, for example, the various control valve arrangements, the motor/pump, and the generator/motor. The accumulator(s) can transfer mechanical energy at a first pressure ratio and the intensifier(s) can transfer mechanical energy at a second pressure ratio greater than the first pressure ratio. The compressed gas storage system can include one or more pressurized gas vessels.


In one embodiment, the system includes a second accumulator having a second accumulator pneumatic side and a second accumulator hydraulic side. The second accumulator pneumatic side and the second accumulator hydraulic side are separated by a second accumulator boundary mechanism that transfers mechanical energy therebetween. Each of the accumulator pneumatic sides is in fluid communication with the compressed gas storage system via the first control valve arrangement, and each accumulator hydraulic side is in fluid communication with the third control valve arrangement. The system can also include a second intensifier having a second intensifier pneumatic side and a second intensifier hydraulic side. The second intensifier pneumatic side and the second intensifier hydraulic side are separated by a second intensifier boundary mechanism that transfers mechanical energy therebetween. Each of the intensifier pneumatic sides is in fluid communication with each accumulator pneumatic side and with the gas vent via the second control valve arrangement, and each intensifier hydraulic side is in fluid communication with the fourth control valve arrangement. Additionally, the gas from the compressed gas storage system can be expanded first within each accumulator pneumatic side and then from each accumulator pneumatic side into each intensifier pneumatic side in a staged manner.


In additional embodiments, the control system can open and close each of the control valve arrangements so that, when gas expands in either one of the first accumulator pneumatic side or the second accumulator pneumatic side, the second accumulator pneumatic side or the first accumulator pneumatic side is vented by the gas vent to low pressure. In this way, fluid is driven from either one of the first accumulator hydraulic side or the second accumulator hydraulic side by the expanding gas through the motor/pump, and into the second accumulator hydraulic side and the first accumulator hydraulic side. The control system can also open and close each of the control valve arrangements so that, when gas expands in either one of the first intensifier pneumatic side or the second intensifier pneumatic side, that intensifier pneumatic side is vented by the gas vent to low pressure. In this way, fluid is driven either from the first intensifier hydraulic side into the second intensifier hydraulic side, or from the second intensifier hydraulic side into the first intensifier hydraulic side, by the expanding gas through the motor/pump. The gas expansion can occur substantially isothermally. The substantially isothermal gas expansion can be free of the application of any external heating source other than thermal exchange with the system's surroundings. In one embodiment, the substantially isothermal gas expansion is achieved via heat transfer from outside the accumulator and the intensifier therethrough, and to the gas within the accumulator pneumatic side and the intensifier pneumatic side.


In another aspect, the invention relates to a method of energy storage in a compressed gas storage system that includes an accumulator and an intensifier. The method includes the steps of transferring mechanical energy from a pneumatic side of the accumulator to a hydraulic side of the accumulator at a first pressure ratio, transferring mechanical energy from a pneumatic side of the intensifier to a hydraulic side of the intensifier at a second pressure ratio greater than the first pressure ratio, and operating the compressed gas storage system, the accumulator, and the intensifier in a staged manner to provide a predetermined pressure profile at at least one outlet.


In various embodiments of the foregoing aspect, the method includes the step of operating a control valve arrangement for interconnecting the compressed gas storage system, the accumulator, the intensifier, and outlet(s). In one embodiment, the step of operating the control valve arrangement includes opening and closing the valve arrangements in response to at least one signal from a control system.


In yet another aspect, the invention relates to a compressed gas-based energy storage system including a staged hydraulic-pneumatic energy conversion system that includes a compressed gas storage system, at least four hydraulic-pneumatic devices, and a control system that operates the compressed gas storage system and the hydraulic-pneumatic devices in a staged manner, such that at least two of the hydraulic-pneumatic devices are always in an expansion phase. In various embodiments, the hydraulic-pneumatic devices include a first accumulator, a second accumulator, a third accumulator, and at least one intensifier. The accumulators each have an accumulator pneumatic side and an accumulator hydraulic side separated by an accumulator boundary mechanism that transfers mechanical energy therebetween. The intensifier(s) may have an intensifier pneumatic side and an intensifier hydraulic side separated by an intensifier boundary mechanism that transfers mechanical energy therebetween.


In various embodiments of the foregoing aspect, the system includes a first hydraulic motor/pump having an input side and an output side and a second hydraulic motor/pump having an input side and an output side. In one embodiment, at least one of the hydraulic motors/pumps is always being driven by at least one of the at least two hydraulic-pneumatic devices in the expansion phase. In another embodiment, both hydraulic motors/pumps are being driven by the at least two hydraulic-pneumatic devices during the expansion phase, and each hydraulic motor/pump is driven at a different point during the expansion phase, such that the overall power remains relatively constant. The system can also include an electric generator/motor mechanically coupled to the first hydraulic motor/pump and the second hydraulic motor/pump on a single shaft. The generator/motor is driven by the hydraulic motors/pumps to generate electricity. In an alternative embodiment, the system includes a first electric generator/motor mechanically coupled to the first hydraulic motor/pump and a second electric generator/motor mechanically coupled to the second hydraulic motor/pump. Each generator/motor is driven by its respective hydraulic motor/pump to generate electricity


In addition, the system can include a control valve arrangement responsive to the control system for variably interconnecting the compressed gas storage system, the hydraulic-pneumatic devices, and the hydraulic motors/pumps. For example, in one configuration of the control valve arrangement, the first accumulator can be put in fluid communication with the compressed gas storage system and the input side of the first motor/pump, the second accumulator can be put in fluid communication with the output side of the first motor/pump and its air chamber vented to atmosphere, the third accumulator can be put in fluid communication with the input side of the second motor/pump, and the intensifier can be put in fluid communication with the output side of the second motor/pump and its air chamber vented to atmosphere. The control valve arrangement can vary the interconnections between components, such that essentially any of the hydraulic-pneumatic components and the hydraulic motors/pumps can be in fluid communication with each other.


In another embodiment, the system can include a fifth hydraulic-pneumatic device. The fifth device can be at least one of a fourth accumulator or a second intensifier. The fifth accumulator has an accumulator pneumatic side and an accumulator hydraulic side separated by an accumulator boundary mechanism that transfers mechanical energy therebetween. The second intensifier has an intensifier pneumatic side and an intensifier hydraulic side separated by an intensifier boundary mechanism that transfers mechanical energy therebetween. In this embodiment, the control system operates the compressed gas storage system, the accumulators, and the intensifiers in a staged manner such that at least three of the hydraulic-pneumatic devices are always in the expansion phase.


In still another aspect, the invention relates to a compressed-gas based energy storage system having a staged hydraulic-pneumatic energy conversion system. The energy conversion system can include a compressed gas storage system that can be constructed from one or more pressure vessels, a first accumulator and a second accumulator, each having an accumulator pneumatic side and an accumulator hydraulic side; and a first intensifier and a second intensifier, each having an intensifier pneumatic side and an intensifier hydraulic side. The accumulator pneumatic side and the accumulator hydraulic side may be separated by an accumulator boundary mechanism that can be a piston of predetermined diameter, which transfers mechanical energy therebetween. Each accumulator pneumatic side may be in fluid communication with the compressed gas storage system via a first gas valve assembly. Each intensifier pneumatic side and intensifier hydraulic side may be separated by an intensifier boundary mechanism that transfers mechanical energy therebetween. This boundary can be a piston with a larger area on the pneumatic side than on the hydraulic side. Each intensifier pneumatic side may be in fluid communication with each accumulator pneumatic side and with a gas vent via a second gas valve assembly. Additional intensifiers (such as third and fourth intensifiers) can also be provided in additional stages, in communication with the first and second intensifiers, respectively. A hydraulic motor/pump may also be provided; the motor/pump has an input side in fluid communication via a first fluid valve assembly with each accumulator hydraulic side and each intensifier hydraulic side, and an output side in fluid communication via a second fluid valve assembly with each accumulator hydraulic side and each intensifier hydraulic side. An electric generator/motor is mechanically coupled to the hydraulic motor/pump so that rotation of the motor/pump generates electricity during discharge (i.e., gas expansion-energy recovery) and electricity drives the motor/pump during recharge (i.e., gas compression-energy storage). A sensor system can be provided to monitor at least one of (a) a fluid state related to each accumulator pneumatic side, each intensifier pneumatic side, each accumulator hydraulic side, and each intensifier hydraulic side (b) a flow in hydraulic fluid, or (c) a position of each accumulator boundary mechanism and intensifier boundary mechanism. In addition, a controller, responsive to the sensor system, can control the opening and closing of the first gas valve assembly, the second gas valve assembly, the first fluid valve assembly and the second fluid valve assembly.


In one embodiment, gas from the compressed gas storage system expands first within each accumulator pneumatic side and then from each accumulator pneumatic side into each intensifier pneumatic side in a staged manner. The controller is constructed and arranged to open and close each of the first gas valve assembly, the second gas valve assembly, the first fluid valve assembly and the second fluid valve assembly so that, when gas expands in the first accumulator pneumatic side, the second accumulator pneumatic side is vented by the gas vent to low pressure; and when gas expands in the second accumulator pneumatic side, the first accumulator pneumatic side is vented by the gas vent to low pressure. In this manner, fluid is driven by the expanding gas through the motor/pump either from first accumulator fluid side into the second accumulator hydraulic side, or from the second accumulator fluid side and into the first accumulator hydraulic side.


In addition, the controller can open and close each of the valve assemblies so that, when gas expands in the first intensifier pneumatic side, the second intensifier pneumatic side is vented by the gas vent to low pressure so that fluid is driven by the expanding gas through the motor/pump from the first intensifier fluid side into the second intensifier hydraulic side, and when gas expands in the second intensifier pneumatic side, the first intensifier pneumatic side is vented by the gas vent to low pressure so that fluid is driven by the expanding gas through the motor/pump from the second intensifier fluid side into the first intensifier hydraulic side.


In another embodiment, the controller can open and close the valve assemblies to expand gas in a final stage in the pneumatic side of each of the first intensifier and the second intensifier to near atmospheric pressure. The pressure of the hydraulic fluid exiting the hydraulic side of each of the first intensifier and the second intensifier during gas expansion is of a similar pressure range as the hydraulic fluid exiting the hydraulic side of the first accumulator and the hydraulic side of the second accumulator during gas expansion.


The expansion and compression of gas desirably occurs isothermally or nearly isothermally, and this substantially isothermal gas expansion or compression is free of any external heating source other than thermal exchange with the surroundings. The controller can monitor sensor data to ensure isothermal or near-isothermal expansion and compression. The substantially isothermal gas expansion is achieved via heat transfer from outside the first accumulator, the second accumulator, the first intensifier, and the second intensifier therethrough, and to the gas within each accumulator pneumatic side and intensifier pneumatic side. Staged expansion and compression, using accumulators and one or more intensifiers in a circuit to expand/compress the gas more evenly, at varied pressures also helps to ensure that a fluid pressure range at which the motor/pump operates efficiently and most optimally is continuously provided to or from the motor/pump.


Generally, during the gas expansion cycle of one embodiment of the staged hydraulic/pneumatic system, the gas is first expanded in one or more accumulators from a high pressure to a mid-pressure, thereby driving a hydraulic motor, and at the same time, filling either other accumulators or intensifiers with hydraulic fluid. If only a single accumulator is used, following the expansion in the single accumulator to mid-pressure, the gas is then further expanded from mid-pressure to low pressure in a single intensifier connected to the accumulator. The intensifier boosts the pressure (to the original high to mid-pressure range), drives the hydraulic motor, and refills either another intensifier or the accumulator with fluid. This method of system cycling provides one means of system expansion, but many other combinations of accumulators and intensifiers may be employed, changing the characteristics of the expansion. Likewise, the compression process is the expansion process in reverse and any change in system cycling for the expansion can be employed for compression.


Many other system staging schemes are within the scope of the invention, each with similar trade-offs (e.g., increased power density, but decreased energy density). For example, a four accumulator-two intensifier system may also be cycled to provide a substantially higher and smoother power output than the described two accumulator-two intensifier system, while maintaining the ability to compress and expand below the mid system pressure. Likewise, a single accumulator-single intensifier system may be cycled in such a way as to provide a similar power output to the two accumulator-two intensifier system for system pressures above the mid pressure.


By way of background, it should be noted that the intensifier in the staged hydraulic/pneumatic system described above essentially has two cycles (analogous to the two cycles or four cycles of an internal combustion engine) and the accumulator has three cycles. The two cycles in the intensifier during expansion are essentially (i) intensifier driving: expansion from mid to low pressure (driving the motor from high to mid pressure, and, (ii) intensifier refilling: refilling with hydraulic fluid (while the air in the intensifier is at atmospheric pressure). The three cycles in the accumulator during expansion are (i) accumulator driving: expansion from high to mid pressure (driving the motor from high to mid pressure; (ii) accumulator to intensifier: expansion from mid to low pressure while connected to the intensifier; and, (iii) accumulator refilling: refilling with hydraulic fluid (while the air in the accumulator is at atmospheric pressure).


These and other objects, along with the advantages and features of the present invention herein disclosed, will become apparent through reference to the following description, the accompanying drawings, and the claims. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and can exist in various combinations and permutations.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like reference characters generally refer to the same parts throughout the different views. In addition, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:



FIG. 1 is a schematic diagram of an open-air hydraulic-pneumatic energy storage and recovery system in accordance with one embodiment of the invention;



FIGS. 1A and 1B are enlarged schematic views of the accumulator and intensifier components of the system of FIG. 1;



FIGS. 2A-2Q are simplified graphical representations of the system of FIG. 1 illustrating the various operational stages of the system during compression;



FIGS. 3A-3M are simplified graphical representations of the system of FIG. 1 illustrating the various operational stages of the system during expansion;



FIG. 4 is a schematic diagram of an open-air hydraulic-pneumatic energy storage and recovery system in accordance with an alternative embodiment of the invention;



FIGS. 5A-5N are schematic diagrams of the system of FIG. 5 illustrating the cycling of the various components during an expansion phase of the system;



FIG. 6 is a generalized diagram of the various operational states of an open-air hydraulic-pneumatic energy storage and recovery system in accordance with one embodiment of the invention in both an expansion/energy recovery cycle and a compression/energy storage cycle;



FIGS. 7A-7F are partial schematic diagrams of an open-air hydraulic-pneumatic energy storage and recovery system in accordance with another alternative embodiment of the invention, illustrating the various operational stages of the system during an expansion phase;



FIG. 8 is a table illustrating the expansion phase for the system of FIGS. 7A-7F;



FIG. 9 is a graph illustrating the power versus time profile for the expansion phase of the system of FIGS. 7A-7F;



FIG. 10 is a table illustrating an expansion phase for a variation of the system of FIGS. 7A-7F using four accumulators and two intensifiers;



FIG. 11 is a schematic diagram of an open-air hydraulic-pneumatic energy storage and recovery system in accordance with an alternative embodiment of the invention;



FIG. 12 is a pictorial representation of an exemplary embodiment of an open-air hydraulic-pneumatic energy storage and recovery system as shown in FIG. 11;



FIG. 13A is a graphical representation of the gas pressures of various components of the system of FIG. 11 during energy storage;



FIG. 13B is a graphical representation of the gas pressures of various components of the system of FIG. 11 during energy recovery;



FIG. 14A is another graphical representation of the gas pressures of various components of the system of FIG. 11 during an expansion phase;



FIG. 14B is a graphical representation of the corresponding hydraulic pressures of various components of the system of FIG. 11 during the expansion phase; and



FIGS. 15A-15W are graphical representations of the effects of isothermal versus adiabatic compression and expansion and the advantages of the inventive concepts described in the present application.





DETAILED DESCRIPTION

In the following, various embodiments of the present invention are generally described with reference to a single accumulator and a single intensifier or an arrangement with two accumulators and two intensifiers and simplified valve arrangements. It is, however, to be understood that the present invention can include any number and combination of accumulators, intensifiers, and valve arrangements. In addition, any dimensional values given are exemplary only, as the systems according to the invention are scalable and customizable to suit a particular application. Furthermore, the terms pneumatic, gas, and air are used interchangeably and the terms hydraulic and fluid are also used interchangeably.



FIG. 1 depicts one embodiment of an open-air hydraulic-pneumatic energy storage and recovery system 100 in accordance with the invention in a neutral state (i.e., all of the valves are closed and energy is neither being stored nor recovered. The system 100 includes one or more high-pressure gas/air storage tanks 102a, 102b, . . . 102n. Each tank 102 is joined in parallel via a manual valve(s) 104a, 104b, . . . 104n, respectively, to a main air line 108. The valves 104 are not limited to manual operation, as the valves can be electrically, hydraulically, or pneumatically actuated, as can all of the valves described herein. The tanks 102 are each provided with a pressure sensor 112a, 112b . . . 112n and a temperature sensor 114a, 114b . . . 114n. These sensors 112, 114 can output electrical signals that can be monitored by a control system 120 via appropriate wired and wireless connections/communications. Additionally, the sensors 112, 114 could include visual indicators.


The control system 120, which is described in greater detail with respect to FIG. 4, can be any acceptable control device with a human-machine interface. For example, the control system 120 could include a computer (for example a PC-type) that executes a stored control application in the form of a computer-readable software medium. The control application receives telemetry from the various sensors to be described below, and provides appropriate feedback to control valve actuators, motors, and other needed electromechanical/electronic devices.


The system 100 further includes pneumatic valves 106a, 106b, 106c, . . . 106n that control the communication of the main air line 108 with an accumulator 116 and an intensifier 118. As previously stated, the system 100 can include any number and combination of accumulators 116 and intensifiers 118 to suit a particular application. The pneumatic valves 106 are also connected to a vent 110 for exhausting air/gas from the accumulator 116, the intensifier 118, and/or the main air line 108.


As shown in FIG. 1A, the accumulator 116 includes an air chamber 140 and a fluid chamber 138 divided by a movable piston 136 having an appropriate sealing system using sealing rings and other components (not shown) that are known to those of ordinary skill in the art. Alternatively, a bladder type barrier could be used to divide the air and fluid chambers 140, 138 of the accumulator 116. The piston 136 moves along the accumulator housing in response to pressure differentials between the air chamber 140 and the opposing fluid chamber 138. In this example, hydraulic fluid (or another liquid, such as water) is indicated by a shaded volume in the fluid chamber 138. The accumulator 116 can also include optional shut-off valves 134 that can be used to isolate the accumulator 116 from the system 100. The valves 134 can be manually or automatically operated.


As shown in FIG. 1B, the intensifier 118 includes an air chamber 144 and a fluid chamber 146 divided by a movable piston assembly 142 having an appropriate sealing system using sealing rings and other components that are known to those of ordinary skill in the art. Similar to the accumulator piston 136, the intensifier piston 142 moves along the intensifier housing in response to pressure differentials between the air chamber 144 and the opposing fluid chamber 146.


However, the intensifier piston assembly 142 is actually two pistons: an air piston 142a connected by a shaft, rod, or other coupling means 143 to a respective fluid piston 142b. The fluid piston 142b moves in conjunction with the air piston 142a, but acts directly upon the associated intensifier fluid chamber 146. Notably, the internal diameter (and/or volume) (DAI) of the air chamber for the intensifier 118 is greater than the diameter (DAA) of the air chamber for the accumulator 116. In particular, the surface of the intensifier piston 142a is greater than the surface area of the accumulator piston 136. The diameter of the intensifier fluid piston (DFI) is approximately the same as the diameter of the accumulator piston 136 (DFA). Thus in this manner, a lower air pressure acting upon the intensifier piston 142a generates a similar pressure on the associated fluid chamber 146 as a higher air pressure acting on the accumulator piston 136. As such, the ratio of the pressures of the intensifier air chamber 144 and the intensifier fluid chamber 146 is greater than the ratio of the pressures of the accumulator air chamber 140 and the accumulator fluid chamber 138. In one example, the ratio of the pressures in the accumulator could be 1:1, while the ratio of pressures in the intensifier could be 10:1. These ratios will vary depending on the number of accumulators and intensifiers used and the particular application. In this manner, and as described further below, the system 100 allows for at least two stages of air pressure to be employed to generate similar levels of fluid pressure. Again, a shaded volume in the fluid chamber 146 indicates the hydraulic fluid and the intensifier 118 can also include the optional shut-off valves 134 to isolate the intensifier 118 from the system 100.


As also shown in FIGS. 1A and 1B, the accumulator 116 and the intensifier 118 each include a temperature sensor 122 and a pressure sensor 124 in communication with each air chamber 140, 144 and each fluid chamber 138, 146. These sensors are similar to sensors 112, 114 and deliver sensor telemetry to the control system 120, which in turn can send signals to control the valve arrangements. In addition, the pistons 136, 142 can include position sensors 148 that report the present position of the pistons 136, 142 to the control system 120. The position and/or rate of movement of the pistons 136, 142 can be used to determine relative pressure and flow of both the gas and the fluid.


Referring back to FIG. 1, the system 100 further includes hydraulic valves 128a, 128b, 128c, 128d . . . 128n that control the communication of the fluid connections of the accumulator 116 and the intensifier 118 with a hydraulic motor 130. The specific number, type, and arrangement of the hydraulic valves 128 and the pneumatic valves 106 are collectively referred to as the control valve arrangements. In addition, the valves are generally depicted as simple two way valves (i.e., shut-off valves); however, the valves could essentially be any configuration as needed to control the flow of air and/or fluid in a particular manner. The hydraulic line between the accumulator 116 and valves 128a, 128b and the hydraulic line between the intensifier 118 and valves 128c, 128d can include flow sensors 126 that relay information to the control system 120.


The motor/pump 130 can be a piston-type assembly having a shaft 131 (or other mechanical coupling) that drives, and is driven by, a combination electrical motor and generator assembly 132. The motor/pump 130 could also be, for example, an impeller, vane, or gear type assembly. The motor/generator assembly 132 is interconnected with a power distribution system and can be monitored for status and output/input level by the control system 120.


One advantage of the system depicted in FIG. 1, as opposed, for example, to the system of FIGS. 4 and 5, is that it achieves approximately double the power output in, for example, a 3000-300 psig range without additional components. Shuffling the hydraulic fluid back and forth between the intensifier 118 and the accumulator 116 allows for the same power output as a system with twice the number of intensifiers and accumulators while expanding or compressing in the 250-3000 psig pressure range. In addition, this system arrangement can eliminate potential issues with self-priming for certain the hydraulic motors/pumps when in the pumping mode (i.e., compression phase).



FIGS. 2A-2Q represent, in a simplified graphical manner, the various operational stages of the system 100 during a compression phase, where the storage tanks 102 are charged with high pressure air/gas (i.e., energy is stored). In addition, only one storage tank 102 is shown and some of the valves and sensors are omitted for clarity. Furthermore, the pressures shown are for reference only and will vary depending on the specific operating parameters of the system 100.


As shown in FIG. 2A, the system 100 is in a neutral state, where the pneumatic valves 106 and the hydraulic valves 128 are closed. Shut-off valves 134 are open in every operational stage to maintain the accumulator 116 and intensifier 118 in communication with the system 100. The accumulator fluid chamber 138 is substantially filled, while the intensifier fluid chamber is substantially empty. The storage tank 102 is typically at a low pressure (approximately 0 psig) prior to charging and the hydraulic motor/pump 130 is stationary.


As shown in FIGS. 2B and 2C, as the compression phase begins, pneumatic valve 106b is open, thereby allowing fluid communication between the accumulator air chamber 140 and the intensifier air chamber 144, and hydraulic valves 128a, 128d are open, thereby allowing fluid communication between the accumulator fluid chamber 138 and the intensifier fluid chamber 146 via the hydraulic motor/pump 130. The motor/generator 132 (see FIG. 1) begins to drive the motor/pump 130, and the air pressure between the intensifier 118 and the accumulator 116 begins to increase, as fluid is driven to the intensifier fluid chamber 144 under pressure. The pressure or mechanical energy is transferred to the air chamber 146 via the piston 142. This increase of air pressure in the accumulator air chamber 140 pressurizes the fluid chamber 138 of the accumulator 116, thereby providing pressurized fluid to the motor/pump 130 inlet, which can eliminate self-priming concerns.


As shown in FIGS. 2D, 2E, and 2F, the motor/generator 132 continues to drive the motor/pump 130, thereby transferring the hydraulic fluid from the accumulator 116 to the intensifier 118, which in turn continues to pressurize the air between the accumulator and intensifier air chamber 140, 146. FIG. 2F depicts the completion of the first stage of the compression phase. The pneumatic and hydraulic valves 106, 128 are all closed. The fluid chamber 144 of the intensifier 118 is substantially filled with fluid at a high pressure (for example, about 3000 psig) and the accumulator fluid chamber 138 is substantially empty and maintained at a mid-range pressure (for example, about 250 psig). The pressures in the accumulator and intensifier air chambers 140, 146 are maintained at the mid-range pressure.


The beginning of the second stage of the compression phase is shown in FIG. 2G, where hydraulic valves 128b, 128c are open and the pneumatic valves 106 are all closed, thereby putting the intensifier fluid chamber 144 at high pressure in communication with the motor/pump 130. The pressure of any gas remaining in the intensifier air chamber 146 will assist in driving the motor/pump 130. Once the hydraulic pressure equalizes between the accumulator and intensifier fluid chambers 138, 144 (as shown in FIG. 2H) the motor/generator will draw electricity to drive the motor/pump 130 and further pressurize the accumulator fluid chamber 138.


As shown in FIGS. 2I and 2J, the motor/pump 130 continues to pressurize the accumulator fluid chamber 138, which in turn pressurizes the accumulator air chamber 140. The intensifier fluid chamber 146 is at a low pressure and the intensifier air chamber 144 is at substantially atmospheric pressure. Once the intensifier air chamber 144 reaches substantially atmospheric pressure, pneumatic vent valve 106c is opened. For a vertical orientation of the intensifier, the weight of the intensifier piston 142 can provide the necessary back-pressure to the motor/pump 130, which would overcome potential self-priming issues for certain motors/pumps.


As shown in FIG. 2K, the motor/pump 130 continues to pressurize the accumulator fluid chamber 138 and the accumulator air chamber 140, until the accumulator air and fluid chambers are at the high pressure for the system 100. The intensifier fluid chamber 146 is at a low pressure and is substantially empty. The intensifier air chamber 144 is at substantially atmospheric pressure. FIG. 2K also depicts the change-over in the control valve arrangement when the accumulator air chamber 140 reaches the predetermined high pressure for the system 100. Pneumatic valve 106a is opened to allow the high pressure gas to enter the storage tanks 102.



FIG. 2L depicts the end of the second stage of one compression cycle, where all of the hydraulic and the pneumatic valves 128, 106 are closed. The system 100 will now begin another compression cycle, where the system 100 shuttles the hydraulic fluid back to the intensifier 118 from the accumulator 116.



FIG. 2M depicts the beginning of the next compression cycle. The pneumatic valves 106 are closed and hydraulic valves 128a, 128d are open. The residual pressure of any gas remaining in the accumulator fluid chamber 138 drives the motor/pump 130 initially, thereby eliminating the need to draw electricity. As shown in FIG. 2N, and described with respect to FIG. 2G, once the hydraulic pressure equalizes between the accumulator and intensifier fluid chambers 138, 144 the motor/generator 132 will draw electricity to drive the motor/pump 130 and further pressurize the intensifier fluid chamber 144. During this stage, the accumulator air chamber 140 pressure decreases and the intensifier air chamber 146 pressure increases.


As shown in FIG. 2O, when the gas pressures at the accumulator air chamber 140 and the intensifier air chamber 146 are equal, pneumatic valve 106b is opened, thereby putting the accumulator air chamber 140 and the intensifier air chamber 146 in fluid communication. As shown in FIGS. 2P and 2Q, the motor/pump 130 continues to transfer fluid from the accumulator fluid chamber 138 to the intensifier fluid chamber 146 and pressurize the intensifier fluid chamber 146. As described above with respect to FIGS. 2D-2F, the process continues until substantially all of the fluid has been transferred to the intensifier 118 and the intensifier fluid chamber 146 is at the high pressure and the intensifier air chamber 144 is at the mid-range pressure. The system 100 continues the process as shown and described in FIGS. 2G-2K to continue storing high pressure air in the storage tanks 102. The system 100 will perform as many compression cycles (i.e., the shuttling of hydraulic fluid between the accumulator 116 and the intensifier 118) as necessary to reach a desired pressure of the air in the storage tanks 102 (i.e., a full compression phase).



FIGS. 3A-3M represent, in a simplified graphical manner, the various operational stages of the system 100 during an expansion phase, where energy (i.e., the stored compressed gas) is recovered. FIGS. 3A-3M use the same designations, symbols, and exemplary numbers as shown in FIGS. 2A-2Q. It should be noted that while the system 100 is described as being used to compress the air in the storage tanks 102, alternatively, the tanks 102 could be charged (for example, an initial charge) by a separate compressor unit.


As shown in FIG. 3A, the system 100 is in a neutral state, where the pneumatic valves 106 and the hydraulic valves 128 are all closed. The same as during the compression phase, the shut-off valves 134 are open to maintain the accumulator 116 and intensifier 118 in communication with the system 100. The accumulator fluid chamber 138 is substantially filled, while the intensifier fluid chamber 146 is substantially empty. The storage tank 102 is at a high pressure (for example, 3000 psig) and the hydraulic motor/pump 130 is stationary.



FIG. 3B depicts a first stage of the expansion phase, where pneumatic valves 106a, 106c are open. Open pneumatic valve 106a connects the high pressure storage tanks 102 in fluid communication with the accumulator air chamber 140, which in turn pressurizes the accumulator fluid chamber 138. Open pneumatic valve 106c vents the intensifier air chamber 146 to atmosphere. Hydraulic valves 128a, 128d are open to allow fluid to flow from the accumulator fluid chamber 138 to drive the motor/pump 130, which in turn drives the motor/generator 132, thereby generating electricity. The generated electricity can be delivered directly to a power grid or stored for later use, for example, during peak usage times.


As shown in FIG. 3C, once the predetermined volume of pressurized air is admitted to the accumulator air chamber 140 (for example, 3000 psig), pneumatic valve 106a is closed to isolate the storage tanks 102 from the accumulator air chamber 140. As shown in FIGS. 3C-3F, the high pressure in the accumulator air chamber 140 continues to drive the hydraulic fluid from the accumulator fluid chamber 138 through the motor/pump 130 and to the intensifier fluid chamber 146, thereby continuing to drive the motor/generator 132 and generate electricity. As the hydraulic fluid is transferred from the accumulator 116 to the intensifier 118, the pressure in the accumulator air chamber 140 decreases and the air in the intensifier air chamber 144 is vented through pneumatic valve 106C.



FIG. 3G depicts the end of the first stage of the expansion phase. Once the accumulator air chamber 140 reaches a second predetermined mid-pressure (for example, about 300 psig), all of the hydraulic and pneumatic valves 128, 106 are closed. The pressure in the accumulator fluid chamber 138, the intensifier fluid chamber 146, and the intensifier air chamber 144 are at approximately atmospheric pressure. The pressure in the accumulator air chamber 140 is maintained at the predetermined mid-pressure.



FIG. 3H depicts the beginning of the second stage of the expansion phase. Pneumatic valve 106b is opened to allow fluid communication between the accumulator air chamber 140 and the intensifier air chamber 144. The predetermined pressure will decrease slightly when the valve 106b is opened and the accumulator air chamber 140 and the intensifier air chamber 144 are connected. Hydraulic valves 128b, 128d are opened, thereby allowing the hydraulic fluid stored in the intensifier to transfer to the accumulator fluid chamber 138 through the motor/pump 130, which in turn drives the motor/generator 132 and generates electricity. The air transferred from the accumulator air chamber 140 to the intensifier air chamber 144 to drive the fluid from the intensifier fluid chamber 146 to the accumulator fluid chamber 138 is at a lower pressure than the air that drove the fluid from the accumulator fluid chamber 138 to the intensifier fluid chamber 146. The area differential between the air piston 142a and the fluid piston 142b (for example, 10:1) allows the lower pressure air to transfer the fluid from the intensifier fluid chamber 146 at a high pressure.


As shown in FIGS. 3I-3K, the pressure in the intensifier air chamber 144 continues to drive the hydraulic fluid from the intensifier fluid chamber 146 through the motor/pump 130 and to the accumulator fluid chamber 138, thereby continuing to drive the motor/generator 132 and generate electricity. As the hydraulic fluid is transferred from the intensifier 118 to the accumulator 116, the pressures in the intensifier air chamber 144, the intensifier fluid chamber 146, the accumulator air chamber 140, and the accumulator fluid chamber 138 decrease.



FIG. 3L depicts the end of the second stage of the expansion cycle, where substantially all of the hydraulic fluid has been transferred to the accumulator 116 and all of the valves 106, 128 are closed. In addition, the accumulator air chamber 140, the accumulator fluid chamber 138, the intensifier air chamber 144, and the intensifier fluid chamber 146 are all at low pressure. In an alternative embodiment, the hydraulic fluid can be shuffled back and forth between two intensifiers for compressing and expanding in the low pressure (for example, about 0-250 psig) range. Using a second intensifier and appropriate valving to utilize the energy stored at the lower pressures can produce additional electricity.



FIG. 3M depicts the start of another expansion phase, as described with respect to FIG. 3B. The system 100 can continue to cycle through expansion phases as necessary for the production of electricity, or until all of the compressed air in the storage tanks 102 has been exhausted.



FIG. 4 is a schematic diagram of an energy storage system 300, employing open-air hydraulic-pneumatic principles according to one embodiment of this invention. The system 300 consists of one or more high-pressure gas/air storage tanks 302a, 302b, . . . 302n (the number being highly variable to suit a particular application). Each tank 302a, 302b is joined in parallel via a manual valve(s) 304a, 304b, . . . 304n respectively to a main air line 308. The tanks 302a, 302b are each provided with a pressure sensor 312a, 312b . . . 312n and a temperature sensor 314a, 314b . . . 314n that can be monitored by a system controller 350 via appropriate connections (shown generally herein as arrows indicating “TO CONTROL”). The controller 350, the operation of which is described in further detail below, can be any acceptable control device with a human-machine interface. In an one embodiment, the controller 350 includes a computer 351 (for example a PC-type) that executes a stored control application 353 in the form of a computer-readable software medium. The control application 353 receives telemetry from the various sensors and provides appropriate feedback to control valve actuators, motors, and other needed electromechanical/electronic devices. An appropriate interface can be used to convert data from sensors into a form readable by the computer controller 351 (such as RS-232 or network-based interconnects). Likewise, the interface converts the computer's control signals into a form usable by valves and other actuators to perform an operation. The provision of such interfaces should be clear to those of ordinary skill in the art.


The main air line 308 from the tanks 302a, 302b is coupled to a pair of multi-stage (two stages in this example) accumulator/intensifier circuits (or hydraulic-pneumatic cylinder circuits) (dashed boxes 360, 362) via automatically controlled (via controller 350), two-position valves 307a, 307b, 307c and 306a, 306b and 306c. These valves are coupled to respective accumulators 316 and 317 and intensifiers 318 and 319 according to one embodiment of the system. Pneumatic valves 306a and 307a are also coupled to a respective atmospheric air vent 310b and 310a. In particular, valves 306c and 307c connect along a common air line 390, 391 between the main air line 308 and the accumulators 316 and 317, respectively. Pneumatic valves 306b and 307b connect between the respective accumulators 316 and 317, and intensifiers 318 and 319. Pneumatic valves 306a, 307a connect along the common lines 390, 391 between the intensifiers 318 and 319, and the atmospheric vents 310b and 310a.


The air from the tanks 302, thus, selectively communicates with the air chamber side of each accumulator and intensifier (referenced in the drawings as air chamber 340 for accumulator 316, air chamber 341 for accumulator 317, air chamber 344 for intensifier 318, and air chamber 345 for intensifier 319). An air temperature sensor 322 and a pressure sensor 324 communicate with each air chamber 341, 344, 345, 322, and deliver sensor telemetry to the controller 350.


The air chamber 340, 341 of each accumulator 316, 317 is enclosed by a movable piston 336, 337 having an appropriate sealing system using sealing rings and other components that are known to those of ordinary skill in the art. The piston 336, 337 moves along the accumulator housing in response to pressure differentials between the air chamber 340, 341 and an opposing fluid chamber 338, 339, respectively, on the opposite side of the accumulator housing. In this example, hydraulic fluid (or another liquid, such as water) is indicated by a shaded volume in the fluid chamber. Likewise, the air chambers 344, 345 of the respective intensifiers 318, 319 are enclosed by a moving piston assembly 342, 343. However, the intensifier air piston 342a, 343a is connected by a shaft, rod, or other coupling to a respective fluid piston, 342b, 343b. This fluid piston 342b, 343b moves in conjunction with the air piston 342a, 343a, but acts directly upon the associated intensifier fluid chamber 346, 347. Notably, the internal diameter (and/or volume) of the air chamber (DAI) for the intensifier 318, 319 is greater than the diameter of the air chamber (DAA) for the accumulator 316, 317 in the same circuit 360, 362. In particular, the surface area of the intensifier pistons 342a, 343a is greater than the surface area of the accumulator pistons 336, 337. The diameter of each intensifier fluid piston (DFI) is approximately the same as the diameter of each accumulator (DFA). Thus in this manner, a lower air pressure acting upon the intensifier piston generates a similar pressure on the associated fluid chamber as a higher air pressure acting on the accumulator piston. In this manner, and as described further below, the system allows for at least two stages of pressure to be employed to generate similar levels of fluid pressure.


In one example, assuming that the initial gas pressure in the accumulator is at 200 atmospheres (ATM) (high-pressure), with a final mid-pressure of 20 ATM upon full expansion, and that the initial gas pressure in the intensifier is then 20 ATM (with a final pressure of 1.5-2 ATM), then the area of the gas piston in the intensifier would be approximately 10 times the area of the piston in the accumulator (or 3.16 times the radius). However, the precise values for initial high-pressure, mid-pressure and final low-pressure are highly variable, depending in part upon the operating specifications of the system components, scale of the system and output requirements. Thus, the relative sizing of the accumulators and the intensifiers is variable to suit a particular application.


Each fluid chamber 338, 339, 346, 347 is interconnected with an appropriate temperature sensor 322 and pressure sensor 324, each delivering telemetry to the controller 350. In addition, each fluid line interconnecting the fluid chambers can be fitted with a flow sensor 326, which directs data to the controller 350. The pistons 336, 337, 342 and 343 can include position sensors 348 that report their present position to the controller 350. The position of the piston can be used to determine relative pressure and flow of both gas and fluid. Each fluid connection from a fluid chamber 338, 339, 346, 347 is connected to a pair of parallel, automatically controlled valves. As shown, fluid chamber 338 (accumulator 316) is connected to valve pair 328c and 328d; fluid chamber 339 (accumulator 317) is connected to valve pair 329a and 329b; fluid chamber 346 (intensifier 318) is connected to valve pair 328a and 328b; and fluid chamber 347 (intensifier 319) is connected to valve pair 329c and 329d. One valve from each chamber 328b, 328d, 329a and 329c is connected to one connection side 372 of a hydraulic motor/pump 330. This motor/pump 330 can be piston-type (or other suitable type, including vane, impeller, and gear) assembly having a shaft 331 (or other mechanical coupling) that drives, and is driven by, a combination electrical motor/generator assembly 332. The motor/generator assembly 332 is interconnected with a power distribution system and can be monitored for status and output/input level by the controller 350. The other connection side 374 of the hydraulic motor/pump 330 is connected to the second valve in each valve pair 328a, 328c, 329b and 329d. By selectively toggling the valves in each pair, fluid is connected between either side 372, 374 of the hydraulic motor/pump 330. Alternatively, some or all of the valve pairs can be replaced with one or more three position, four way valves or other combinations of valves to suit a particular application.


The number of circuits 360, 362 can be increased as necessary. Additional circuits can be interconnected to the tanks 302 and each side 372, 374 of the hydraulic motor/pump 330 in the same manner as the components of the circuits 360, 362. Generally, the number of circuits should be even so that one circuit acts as a fluid driver while the other circuit acts as a reservoir for receiving the fluid from the driving circuit.


An optional accumulator 366 is connected to at least one side (e.g., inlet side 372) of the hydraulic motor/pump 330. The optional accumulator 366 can be, for example, a closed-air-type accumulator with a separate fluid side 368 and precharged air side 370. As will be described below, the accumulator 366 acts as a fluid capacitor to deal with transients in fluid flow through the motor/pump 330. In another embodiment, a second optional accumulator or other low-pressure reservoir 371 is placed in fluid communication with the outlet side 374 of the motor/pump 330 and can also include a fluid side 371 and a precharged air side 369. The foregoing optional accumulators can be used with any of the systems described herein.


Having described the general arrangement of one embodiment of an open-air hydraulic-pneumatic energy storage system 300 in FIG. 4, the exemplary functions of the system 300 during an energy recovery phase will now be described with reference to FIGS. 5A-5N. For the purposes of this operational description, the illustrations of the system 300 in FIGS. 5A-5N have been simplified, omitting the controller 350 and interconnections with valves, sensors, etc. It should be understood, that the steps described are under the control and monitoring of the controller 350 based upon the rules established by the application 353.



FIG. 5A is a schematic diagram of the energy storage and recovery system of FIG. 4 showing an initial physical state of the system 300 in which an accumulator 316 of a first circuit is filled with high-pressure gas from the high-pressure gas storage tanks 302. The tanks 302 have been filled to full pressure, either by the cycle of the system 300 under power input to the hydraulic motor/pump 330, or by a separate high-pressure air pump 376. This air pump 376 is optional, as the air tanks 302 can be filled by running the recovery cycle in reverse. The tanks 302 in this embodiment can be filled to a pressure of 200 ATM (3000 psi) or more. The overall, collective volume of the tanks 302 is highly variable and depends in part upon the amount of energy to be stored.


In FIG. 5A, the recovery of stored energy is initiated by the controller 350. To this end, pneumatic valve 307c is opened allowing a flow of high-pressure air- to pass into the air chamber 340 of the accumulator 316. Note that where a flow of compressed gas or fluid is depicted, the connection is indicated as a dashed line. The level of pressure is reported by the sensor 324 in communication with the chamber 340. The pressure is maintained at the desired level by valve 307c. This pressure causes the piston 336 to bias (arrow 800) toward the fluid chamber 338, thereby generating a comparable pressure in the incompressible fluid. The fluid is prevented from moving out of the fluid chamber 338 at this time by valves 329c and 329d).



FIG. 5B is a schematic diagram of the energy storage and recovery system of FIG. 4 showing a physical state of the system 300 following the state of FIG. 5A, in which valves are opened to allow fluid to flow from the accumulator 316 of the first circuit to the fluid motor/pump 330 to generate electricity therefrom. As shown in FIG. 5B, pneumatic valve 307c remains open. When a predetermined pressure is obtained in the air chamber 340, the fluid valve 329c is opened by the controller, causing a flow of fluid (arrow 801) to the inlet side 372 of the hydraulic motor/pump 330 (which operates in motor mode during the recovery phase). The motion of the motor 330 drives the electric motor/generator 332 in a generation mode, providing power to the facility or grid as shown by the term “POWER OUT.” To absorb the fluid flow (arrow 803) from the outlet side 374 of the hydraulic motor/pump 330, fluid valve 328c is opened to the fluid chamber 339 by the controller 350 to route fluid to the opposing accumulator 317. To allow the fluid to fill accumulator 317 after its energy has been transferred to the motor/pump 330, the air chamber 341 is vented by opening pneumatic vent valves 306a, 306b. This allows any air in the chamber 341, to escape to the atmosphere via the vent 310b as the piston 337 moves (arrow 805) in response to the entry of fluid.



FIG. 5C is a schematic diagram of the energy storage and recovery system of FIG. 4 showing a physical state of the system 300 following the state of FIG. 5B, in which the accumulator 316 of the first circuit directs fluid to the fluid motor/pump 330 while the accumulator 317 of the second circuit receives exhausted fluid from the motor/pump 330, as gas in its air chamber 341 is vented to atmosphere. As shown in FIG. 5C, a predetermined amount of gas has been allowed to flow from the high-pressure tanks 302 to the accumulator 316 and the controller 350 now closes pneumatic valve 307c. Other valves remain open so that fluid can continue to be driven by the accumulator 316 through the motor/pump 330.



FIG. 5D is a schematic diagram of the energy storage and recovery system of FIG. 4 showing a physical state of the system 300 following the state of FIG. 5C, in which the accumulator 316 of the first circuit continues to direct fluid to the fluid motor/pump 330 while the accumulator 317 of the second circuit continues to receive exhausted fluid from the motor/pump 330, as gas in its air chamber 341 is vented to atmosphere. As shown in FIG. 5D, the operation continues, where the accumulator piston 136 drives additional fluid (arrow 800) through the motor/pump 330 based upon the charge of gas pressure placed in the accumulator air chamber 340 by the tanks 302. The fluid causes the opposing accumulator's piston 337 to move (arrow 805), displacing air through the vent 310b.



FIG. 5E is a schematic diagram of the energy storage and recovery system of FIG. 4 showing a physical state of the system 300 following the state of FIG. 5D, in which the accumulator 316 of the first circuit has nearly exhausted the fluid in its fluid chamber 338 and the gas in its air chamber 340 has expanded to nearly mid-pressure from high-pressure. As shown in FIG. 5E, the charge of gas in the air chamber 340 of the accumulator 316 has continued to drive fluid (arrows 800, 801) through the motor/pump 330 while displacing air via the air vent 310b. The gas has expanded from high-pressure to mid-pressure during this portion of the energy recovery cycle. Consequently, the fluid has ranged from high to mid-pressure. By sizing the accumulators appropriately, the rate of expansion can be controlled.


This is part of the significant parameter of heat transfer. For maximum efficiency, the expansion should remain substantially isothermal. That is heat from the environment replaces the heat lost by the expansion. In general, isothermal compression and expansion is critical to maintaining high round-trip system efficiency, especially if the compressed gas is stored for long periods. In various embodiments of the systems described herein, heat transfer can occur through the walls of the accumulators and/or intensifiers, or heat-transfer mechanisms can act upon the expanding or compressing gas to absorb or radiate heat from or to an environmental or other source. The rate of this heat transfer is governed by the thermal properties and characteristics of the accumulators/intensifiers, which can be used to determine a thermal time constant. If the compression of the gas in the accumulators/intensifiers occurs slowly relative to the thermal time constant, then heat generated by compression of the gas will transfer through the accumulator/intensifier walls to the surroundings, and the gas will remain at approximately constant temperature. Similarly, if expansion of the gas in the accumulators/intensifiers occurs slowly relative to the thermal time constant, then the heat absorbed by the expansion of the gas will transfer from the surroundings through the accumulator/intensifier walls and to the gas, and the gas will remain at approximately constant temperature. If the gas remains at a relatively constant temperature during both compression and expansion, then the amount of heat energy transferred from the gas to the surroundings during compression will equal the amount of heat energy recovered during expansion via heat transfer from the surroundings to the gas. This property is represented by the Q and the arrow in FIG. 4. As noted, a variety of mechanisms can be employed to maintain an isothermal expansion/compression. In one example, the accumulators can be submerged in a water bath or water/fluid flow can be circulated around the accumulators and intensifiers. The accumulators can alternatively be surrounded with heating/cooling coils or a flow of warm air can be blown past the accumulators/intensifiers. However, any technique that allows for mass flow transfer of heat to and from the accumulators can be employed. For a general explanation of the effects of isothermal versus adiabatic compression and expansion and the advantages of systems and methods in accordance with the invention (ESS), see FIGS. 15A-15W.



FIG. 5F is a schematic diagram of the energy storage and recovery system of FIG. 4, showing a physical state of the system 300 following the state of FIG. 5E in which the accumulator 316 of the first circuit has exhausted the fluid in its fluid chamber 338 and the gas in its air chamber 340 has expanded to mid-pressure from high-pressure, and the valves have been momentarily closed on both the first circuit and the second circuit, while the optional accumulator 366 delivers fluid through the motor/pump 330 to maintain operation of the electric motor/generator 332 between cycles. As shown in FIG. 5F, the piston 336 of the accumulator 316 has driven all fluid out of the fluid chamber 338 as the gas in the air chamber 340 has fully expanded (to mid-pressure of 20 ATM, per the example). Fluid valves 329c and 328c are closed by the controller 350. In practice, the opening and closing of valves is carefully timed so that a flow through the motor/pump 330 is maintained. However, in an optional implementation, brief interruptions in fluid pressure can be accommodated by pressurized fluid flow 710 from the optional accumulator (366 in FIG. 4), which is directed through the motor/pump 330 to the second optional accumulator (367 in FIG. 4) at low-pressure as an exhaust fluid flow 720. In one embodiment, the exhaust flow can be directed to a simple low-pressure reservoir that is used to refill the first accumulator 366. Alternatively, the exhaust flow can be directed to the second optional accumulator (367 in FIG. 4) at low-pressure, which is subsequently pressurized by excess electricity (driving a compressor) or air pressure from the storage tanks 302 when it is filled with fluid. Alternatively, where a larger number of accumulator/intensifier circuits (e.g., three or more) are employed in parallel in the system 300, their expansion cycles can be staggered so that only one circuit is closed off at a time, allowing a substantially continuous flow from the other circuits.



FIG. 5G is a schematic diagram of the energy storage and recovery system of FIG. 4 showing a physical state of the system 300 following the state of FIG. 5F, in which pneumatic valves 307b, 306a are opened to allow mid-pressure gas from the air chamber 340 of the first circuit's accumulator 316 to flow into the air chamber 344 of the first circuit's intensifier 318, while fluid from the first circuit's intensifier 318 is directed through the motor/pump 330 and exhausted fluid fills the fluid chamber 347 of second circuit's intensifier 319, whose air chamber 345 is vented to atmosphere. As shown in FIG. 5G, pneumatic valve 307b is opened, while the tank outlet valve 307c remains closed. Thus, the volume of the air chamber 340 of accumulator 316 is coupled to the air chamber 344 of the intensifier 318. The accumulator's air pressure has been reduced to a mid-pressure level, well below the initial charge from the tanks 302. The air, thus, flows (arrow 810) through valve 307b to the air chamber 344 of the intensifier 318. This drives the air piston 342a (arrow 830). Since the area of the air-contacting piston 342a is larger than that of the piston 336 in the accumulator 316, the lower air pressure still generates a substantially equivalent higher fluid pressure on the smaller-area, coupled fluid piston 342b of the intensifier 318. The fluid in the fluid chamber 346 thereby flows under pressure through opened fluid valve 329a (arrow 840) and into the inlet side 372 of the motor/pump 330. The outlet fluid from the motor pump 330 is directed (arrow 850) through now-opened fluid valve 328a to the opposing intensifier 319. The fluid enters the fluid chamber 347 of the intensifier 319, biasing (arrow 860) the fluid piston 343b (and interconnected gas piston 343a). Any gas in the air chamber 345 of the intensifier 319 is vented through the now opened vent valve 306a to atmosphere via the vent 310b. The mid-level gas pressure in the accumulator 316 is directed (arrow 820) to the intensifier 318, the piston 342a of which drives fluid from the chamber 346 using the coupled, smaller-diameter fluid piston 342b. This portion of the recovery stage maintains a reasonably high fluid pressure, despite lower gas pressure, thereby ensuring that the motor/pump 330 continues to operate within a predetermined range of fluid pressures, which is desirable to maintain optimal operating efficiencies for the given motor. Notably, the multi-stage circuits of this embodiment effectively restrict the operating pressure range of the hydraulic fluid delivered to the motor/pump 330 above a predetermined level despite the wide range of pressures within the expanding gas charge provided by the high-pressure tank.



FIG. 5H is a schematic diagram of the energy storage and recovery system of FIG. 4 showing a physical state of the system following the state of FIG. 5G, in which the intensifier 318 of the first circuit directs fluid to the fluid motor/pump 330 based upon mid-pressure gas from the first circuit's accumulator 316 while the intensifier 319 of the second circuit receives exhausted fluid from the motor/pump 330, as gas in its air chamber 345 is vented to atmosphere. As shown in FIG. 5H, the gas in intensifier 318 continues to expand from mid-pressure to low-pressure. Conversely, the size differential between coupled air and fluid pistons 342a and 342b, respectively, causes the fluid pressure to vary between high and mid-pressure. In this manner, motor/pump operating efficiency is maintained.



FIG. 5I is a schematic diagram of the energy storage and recovery system of FIG. 4 showing a physical state of the system following the state of FIG. 5H, in which the intensifier 318 of the first circuit has almost exhausted the fluid in its fluid chamber 346 and the gas in its air chamber 344, delivered from the first circuit's accumulator 316, has expanded to nearly low-pressure from the mid-pressure. As discussed with respect to FIG. 5H, the gas in intensifier 318 continues to expand from mid-pressure to low-pressure. Again, the size differential between coupled air and fluid pistons 342a and 342b, respectively, causes the fluid pressure to vary between high and mid-pressure to maintain motor/pump operating efficiency.



FIG. 5J is a schematic diagram of the energy storage and recovery system of FIG. 4 showing a physical state of the system 300 following the state of FIG. 5I, in which the intensifier 318 of the first circuit has essentially exhausted the fluid in its fluid chamber 346 and the gas in its air chamber 344, delivered from the first circuit's accumulator 316, has expanded to low-pressure from the mid-pressure. As shown in FIG. 5J, the intensifier's piston 342 reaches full stroke, while the fluid is driven fully from high to mid-pressure in the fluid chamber 346. Likewise, the opposing intensifier's fluid chamber 347 has filled with fluid from the outlet side 374 of the motor/pump 330.



FIG. 5K is a schematic diagram of the energy storage and recovery system of FIG. 4 showing a physical state of the system following the state of FIG. 5J, in which the intensifier 318 of the first circuit has exhausted the fluid in its fluid chamber 346 and the gas in its air chamber 344 has expanded to low-pressure, and the valves have been momentarily closed on both the first circuit and the second circuit in preparation of switching-over to an expansion cycle in the second circuit, whose accumulator and intensifier fluid chambers 339, 347 are now filled with fluid. At this time, the optional accumulator 366 can deliver fluid through the motor/pump 330 to maintain operation of the motor/generator 332 between cycles. As shown in FIG. 5K, pneumatic valve 307b, located between the accumulator 316 and the intensifier 318 of the circuit 362, is closed. At this point in the above-described portion of the recovery stage, the gas charge initiated in FIG. 5A has been fully expanded through two stages with relatively gradual, isothermal expansion characteristics, while the motor/pump 330 has received fluid flow within a desirable operating pressure range. Along with pneumatic valve 307b, the fluid valves 329a and 328a (and outlet gas valve 307a) are momentarily closed. The above-described optional accumulator 366, and/or other interconnected pneumatic/hydraulic accumulator/intensifier circuits can maintain predetermined fluid flow through the motor/pump 330 while the valves of the subject circuits 360, 362 are momentarily closed. At this time, the optional accumulators and reservoirs 366, 367, as shown in FIG. 4, can provide a continuing flow 710 of pressure through the motor/pump 330, and into the reservoir or low-pressure accumulator (exhaust fluid flow 720). The full range of pressure in the previous gas charge being utilized by the system 300.



FIG. 5L is a schematic diagram of the energy storage and recovery system of FIG. 4 showing a physical state of the system following the state of FIG. 5K, in which the accumulator 317 of the second circuit is filled with high-pressure gas from the high-pressure tanks 302 as part of the switch-over to the second circuit as an expansion circuit, while the first circuit receives exhausted fluid and is vented to atmosphere while the optional accumulator 366 delivers fluid through the motor/pump 330 to maintain operation of the motor/generator between cycles. As shown in FIG. 5L, the cycle continues with a new charge of high-pressure (slightly lower) gas from the tanks 302 delivered to the opposing accumulator 317. As shown, pneumatic valve 306c is now opened by the controller 350, allowing a charge of relatively high-pressure gas to flow (arrow 1310) into the air chamber 341 of the accumulator 317, which builds a corresponding high-pressure charge in the air chamber 341.



FIG. 5M is a schematic diagram of the energy storage and recovery system of FIG. 4 showing a physical state of the system following the state of FIG. 5L, in which valves are opened to allow fluid to flow from the accumulator 317 of the second circuit to the fluid motor/pump 330 to generate electricity therefrom, while the first circuit's accumulator 316, whose air chamber 340 is vented to atmosphere, receives exhausted fluid from the motor/pump 330. As shown in FIG. 5M, the pneumatic valve 306c is closed and the fluid valves 328d and 329d are opened on the fluid side of the circuits 360, 362, thereby allowing the accumulator piston 337 to move (arrow 1410) under pressure of the charged air chamber 341. This directs fluid under high pressure through the inlet side 372 of the motor/pump 330 (arrow 1420), and then through the outlet 374. The exhausted fluid is directed (arrow 1430) now to the fluid chamber 338 of accumulator 316. Pneumatic valves 307a and 307b have been opened, allowing the low-pressure air in the air chamber 340 of the accumulator 316 to vent (arrow 1450) to atmosphere via vent 310a. In this manner, the piston 336 of the accumulator 316 can move (arrow 1460) without resistance to accommodate the fluid from the motor/pump outlet 374.



FIG. 5N is a schematic diagram of the energy storage and recovery system of FIG. 4 showing a physical state of the system following the state of FIG. 5M, in which the accumulator 317 of the second circuit 362 continues to direct fluid to the fluid motor/pump 330 while the accumulator 316 of the first circuit continues to receive exhausted fluid from the motor/pump 330, as gas in its air chamber 340 is vented to atmosphere, the cycle eventually directing mid-pressure air to the second circuit's intensifier 319 to drain the fluid therein. As shown in FIG. 5N, the high-pressure gas charge in the accumulator 317 expands more fully within the air chamber 341 (arrow 1410). Eventually, the charge in the air chamber 341 is fully expanded. The mid-pressure charge in the air chamber 341 is then coupled via open pneumatic valve 306b to the intensifier 319, which fills the opposing intensifier 318 with spent fluid from the outlet 374. The process repeats until a given amount of energy is recovered or the pressure in the tanks 302 drops below a predetermined level.


It should be clear that the system 300, as described with respect to FIGS. 4 and 5A-5N, could be run in reverse to compress gas in the tanks 302 by powering the electric generator/motor 332 to drive the motor/pump 330 in pump mode. In this case, the above-described process occurs in reverse order, with driven fluid causing compression within both stages of the air system in turn. That is, air is first compressed to a mid-pressure after being drawn into the intensifier from the environment. This mid-pressure air is then directed to the air chamber of the accumulator, where fluid then forces it to be compressed to high pressure. The high-pressure air is then forced into the tanks 302. Both this compression/energy storage stage and the above-described expansion/energy recovery stages are discussed with reference to the general system state diagram shown in FIG. 6.


Note that in the above-described systems 100, 300 (one or more stages), the compression and expansion cycle is predicated upon the presence of gas in the storage tanks 302 that is currently at a pressure above the mid-pressure level (e.g. above 20 ATM). For system 300, for example, when the prevailing pressure in the storage tanks 302 falls below the mid-pressure level (based, for example, upon levels sensed by tank sensors 312, 314), then the valves can be configured by the controller to employ only the intensifier for compression and expansion. That is, lower gas pressures are accommodated using the larger-area gas pistons on the intensifiers, while higher pressures employ the smaller-area gas pistons of the accumulators, 316, 317.


Before discussing the state diagram, it should be noted that one advantage of the described systems according to this invention is that, unlike various prior art systems, this system can be implemented using generally commercially available components. In the example of a system having a power output of 10 to 500 kW, for example, high-pressure storage tanks can be implemented using standard steel or composite cylindrical pressure vessels (e.g. Compressed Natural Gas 5500-psi steel cylinders). The accumulators can be implemented using standard steel or composite pressure cylinders with moveable pistons (e.g., a four-inch-inner-diameter piston accumulator). Intensifiers (pressure boosters/multipliers) having characteristics similar to the exemplary accumulator can be implemented (e.g. a fourteen-inch booster diameter and four-inch bore diameter single-acting pressure booster available from Parker-Hannifin of Cleveland, Ohio). A fluid motor/pump can be a standard high-efficiency axial piston, radial piston, or gear-based hydraulic motor/pump, and the associated electrical generator is also available commercially from a variety of industrial suppliers. Valves, lines, and fittings are commercially available with the specified characteristics as well.


Having discussed the exemplary sequence of physical steps in various embodiments of the system, the following is a more general discussion of operating states for the system 300 in both the expansion/energy recovery mode and the compression/energy storage mode. Reference is now made to FIG. 6.


In particular, FIG. 6 details a generalized state diagram 600 that can be employed by the control application 353 to operate the system's valves and motor/generator based upon the direction of the energy cycle (recovery/expansion or storage/compression) based upon the reported states of the various pressure, temperature, piston-position, and/or flow sensors. Base State 1 (610) is a state of the system in which all valves are closed and the system is neither compressing nor expanding gas. A first accumulator and intensifier (e.g., 316, 318) are filled with the maximum volume of hydraulic fluid and second accumulator and intensifier 1 (e.g., 317, 319) are filled with the maximum volume of air, which may or may not be at a pressure greater than atmospheric. The physical system state corresponding to Base State 1 is shown in FIG. 5A. Conversely, Base State 2 (620) of FIG. 6 is a state of the system in which all valves are closed and the system is neither compressing nor expanding gas. The second accumulator and intensifier are filled with the maximum volume of hydraulic fluid and the first accumulator and intensifier are filled with the maximum volume of air, which may or may not be at a pressure greater than atmospheric. The physical system state corresponding to Base State 2 is shown in FIG. 5K.


As shown further in the diagram of FIG. 6, Base State 1 and Base State 2 each link to a state termed Single Stage Compression 630. This general state represents a series of states of the system in which gas is compressed to store energy, and which occurs when the pressure in the storage tanks 302 is less than the mid-pressure level. Gas is admitted (from the environment, for example) into the intensifier (318 or 319—depending upon the current base state), and is then pressurized by driving hydraulic fluid into that intensifier. When the pressure of the gas in the intensifier reaches the pressure in the storage tanks 302, the gas is admitted into the storage tanks 302. This process repeats for the other intensifier, and the system returns to the original base state (610 or 620).


The Two Stage Compression 632 shown in FIG. 6 represents a series of states of the system in which gas is compressed in two stages to store energy, and which occurs when the pressure in the storage tanks 302 is greater than the mid-pressure level. The first stage of compression occurs in an intensifier (318 or 319) in which gas is pressurized to mid-pressure after being admitted at approximately atmospheric (from the environment, for example). The second stage of compression occurs in accumulator (316 or 317) in which gas is compressed to the pressure in the storage tanks 302 and then allowed to flow into the storage tanks 302. Following two stage compression, the system returns to the other base state from the current base state, as symbolized on the diagram by the crossing-over process arrows 634.


The Single State Expansion 640, as shown in FIG. 6, represents a series of states of the system in which gas is expanded to recover stored energy and which occurs when the pressure in the storage tanks 302 is less than the mid-pressure level. An amount of gas from storage tanks 302 is allowed to flow directly into an intensifier (318 or 319). This gas then expands in the intensifier, forcing hydraulic fluid through the hydraulic motor/pump 330 and into the second intensifier, where the exhausted fluid moves the piston with the gas-side open to atmospheric (or another low-pressure environment). The Single Stage Expansion process is then repeated for the second intensifier, after which the system returns to the original base state (610 or 620).


Likewise, the Two Stage Expansion 642, as shown in FIG. 6, represents a series of states of the system in which gas is expanded in two stages to recover stored energy and which occurs when pressure in the storage tanks is greater than the mid-pressure level. An amount of gas from storage tanks 302 is allowed into an accumulator (316 or 317), wherein the gas expands to mid-pressure, forcing hydraulic fluid through the hydraulic motor/pump 330 and into the second accumulator. The gas is then allowed into the corresponding intensifier (318 or 319), wherein the gas expands to near-atmospheric pressure, forcing hydraulic fluid through the hydraulic motor/pump 330 and into the second intensifier. The series of states comprising two-stage expansion are shown in the above-described FIGS. 5A-5N. Following two-stage expansion, the system returns to the other base state (610 or 620) as symbolized by the crossing process arrows 644.


It should be clear that the above-described system for storing and recovering energy is highly efficient in that it allows for gradual expansion of gas over a period that helps to maintain isothermal characteristics. The system particularly deals with the large expansion and compression of gas between high-pressure to near atmospheric (and the concomitant thermal transfer) by providing this compression/expansion in two or more separate stages that allow for more gradual heat transfer through the system components. Thus little or no outside energy is required to run the system (heating gas, etc.), rendering the system more environmentally friendly, capable of being implemented with commercially available components, and scalable to meet a variety of energy storage/recovery needs.



FIGS. 7A-7F depict the major systems of an alternative system/method of expansion/compression cycling an open-air staged hydraulic-pneumatic system, where the system 400 includes at least three accumulators 416a, 416b, 416c, at least one intensifier 418, and two motors/pumps 430a, 430b. The compressed gas storage tanks, valves, sensors, etc. are not shown for clarity. FIGS. 7A-7F illustrate the operation of the accumulators 416, intensifier 418, and the motors/pumps 430 during various stages of expansion (101-106). The system 400 returns to stage 101 after stage 106 is complete.


As shown in the figures, the designations D, F, AI, and F2 refer to whether the accumulator or intensifier is driving (D) or filling (F), with the additional labels for the accumulators where AI refers to accumulator to intensifier—the accumulator air side attached to and driving the intensifier air side, and F2 refers to filling at twice the rate of the standard filling.


As shown in FIG. 7A the layout consists of three equally sized hydraulic-pneumatic accumulators 416a, 416b, 416c, one intensifier 418 having a hydraulic fluid side 446 with a capacity of about ⅓ of the accumulator capacity, and two hydraulic motor/pumps 430a, 430b.



FIG. 7A represents stage or time instance 101, where accumulator 416a is being driven with high pressure gas from a pressure vessel. After a specific amount of compressed gas is admitted (based on the current vessel pressure), a valve will be closed, disconnecting the pressure vessel and the high pressure gas will continue to expand in accumulator 416a as shown in FIGS. 7B and 7C (i.e., stages 102 and 103). Accumulator 416b is empty of hydraulic fluid and its air chamber 440b is unpressurized and being vented to the atmosphere. The expansion of the gas in accumulator 416a drives the hydraulic fluid out of the accumulator, thereby driving the hydraulic motor 430a, with the output of the motor 430 refilling accumulator 416b with hydraulic fluid. At the time point shown in 101, accumulator 416c is at a state where gas has already been expanding for two units of time and is continuing to drive motor 430b while filling intensifier 418. Intensifier 418, similar to accumulator 416b, is empty of hydraulic fluid and its air chamber 444 is unpressurized and being vented to the atmosphere.


Continuing to time instance 102, as shown in FIG. 7B, the air chamber 440a of accumulator 416a continues to expand, thereby forcing fluid out of the fluid chamber 438a and driving motor/pump 430a and filling accumulator 416b. Accumulator 416c is now empty of hydraulic fluid, but remains at mid-pressure. The air chamber 440c of accumulator 416c is now connected to the air chamber 444 of intensifier 418. Intensifier 418 is now full of hydraulic fluid and the mid-pressure gas in accumulator 416c drives the intensifier 418, which provides intensification of the mid-pressure gas to high pressure hydraulic fluid. The high pressure hydraulic fluid drives motor/pump 430b with the output of motor/pump 430b also connected to and filling accumulator 416b through appropriate valving. Thus, accumulator 416b is filled at twice the normal rate when a single expanding hydraulic pneumatic device (accumulator or intensifier) is providing the fluid for filling.


At time instance 103, as shown in FIG. 7C, the system 400 has returned to a state similar to stage 101, but with different accumulators at equivalent stages. Accumulator 416b is now full of hydraulic fluid and is being driven with high pressure gas from a pressure vessel. After a specific amount of compressed gas is admitted (based on the current vessel pressure), a valve will be closed, disconnecting the pressure vessel. The high pressure gas will continue to expand in accumulator 416b as shown in stages 104 and 105. Accumulator 416c is empty of hydraulic fluid and the air chamber 440c is unpressurized and being vented to the atmosphere. The expansion of the gas in accumulator 416b drives the hydraulic fluid out of the accumulator, driving the hydraulic motor motor/pump 430b, with the output of the motor refilling accumulator 416c with hydraulic fluid via appropriate valving. At the time point shown in 103, accumulator 416a is at a state where gas has already been expanding for two units of time and is continuing to drive motor/pump 430a while now filling intensifier 418. Intensifier 418, similar to accumulator 416c, is again empty of hydraulic fluid and the air chamber 444 is unpressurized and being vented to the atmosphere.


Continuing to time instance 104, as shown in FIG. 7D, the air chamber 440b of accumulator 416b continues to expand, thereby forcing fluid out of the fluid chamber 438b and driving motor/pump 430a and filling accumulator 416c. Accumulator 416a is now empty of hydraulic fluid, but remains at mid-pressure. The air chamber 440a of accumulator 416a is now connected to the air chamber 444 of intensifier 418. Intensifier 418 is now full of hydraulic fluid and the mid-pressure gas in accumulator 416a drives the intensifier 418, which provides intensification of the mid-pressure gas to high pressure hydraulic fluid. The high pressure hydraulic fluid drives motor/pump 430b with the output of motor/pump 430b also connected to and filling accumulator 416c through appropriate valving. Thus, accumulator 416c is filled at twice the normal rate when a single expanding hydraulic pneumatic device (accumulator or intensifier) is providing the fluid for filling.


At time instance 105, as shown in FIG. 7E, the system 400 has returned to a state similar to stage 103, but with different accumulators at equivalent stages. Accumulator 416c is now full of hydraulic fluid and is being driven with high pressure gas from a pressure vessel. After a specific amount of compressed gas is admitted (based on the current vessel pressure), a valve will be closed, disconnecting the pressure vessel. The high pressure gas will continue to expand in accumulator 416c. Accumulator 416a is empty of hydraulic fluid and the air chamber 440a is unpressurized and being vented to the atmosphere. The expansion of the gas in accumulator 416c drives the hydraulic fluid out of the accumulator, driving the hydraulic motor motor/pump 430b, with the output of the motor refilling intensifier 418 with hydraulic fluid via appropriate valving. At the time point shown in 105, accumulator 416b is at a state where gas has already been expanding for two units of time and is continuing to drive motor/pump 430a while filling accumulator 416a with hydraulic fluid via appropriate valving. Intensifier 418, similar to accumulator 416a, is again empty of hydraulic fluid and the air chamber 444 is unpressurized and being vented to the atmosphere.


Continuing to time instance 106, as shown in FIG. 7F, the air chamber 440c of accumulator 416c continues to expand, thereby forcing fluid out of the fluid chamber 438c and driving motor/pump 430b and filling accumulator 416a. Accumulator 416b is now empty of hydraulic fluid, but remains at mid-pressure. The air chamber 440b of accumulator 416b is now connected to the air chamber 444 of intensifier 418. Intensifier 418 is now full of hydraulic fluid and the mid-pressure gas in accumulator 416b drives the intensifier 418, which provides intensification of the mid-pressure gas to high pressure hydraulic fluid. The high pressure hydraulic fluid drives motor/pump 430a with the output of motor/pump 430a also connected to and filling accumulator 416a through appropriate valving. Thus, accumulator 416a is filled at twice the normal rate when a single expanding hydraulic pneumatic device (accumulator or intensifier) is providing the fluid for filling. Following the states shown in 106, the system returns to the states shown in 101 and the cycle continues.



FIG. 8 is a table illustrating the expansion scheme described above and illustrated in FIGS. 7A-7F for a three accumulator, one intensifier system. It should be noted that throughout the cycle, two hydraulic-pneumatic devices (two accumulators or one intensifier plus one accumulator) are always expanding and the two motors are always being driven, but at different points in the expansion, such that the overall power remains relatively constant.



FIG. 9 is a graph illustrating the power versus time profile for the expansion scheme described above and illustrated in FIGS. 7A-7F for a three accumulator-one intensifier system. The power outputs for accumulator 416a, accumulator 416b, accumulator 416c, and intensifier 418 are represented as linear responses that decrease as the pressure in each device decreases. While this is a relative representation and depends greatly on the actual components and expansion scheme used, the general trend is shown. As shown in FIG. 9, the staging of the expansion allows for a relatively constant power output and an efficient use of resources.



FIG. 10 is a table illustrating an expansion scheme for a four accumulator-two intensifier system. It should be noted that throughout the cycle, at a minimum three hydraulic-pneumatic devices (at least two accumulators and one intensifier) are always expanding, but each starts at different time instances, such that the overall power is high and remains relatively constant.


This alternative system for expansion improves the power output by approximately two times over the systems for expansion described above. The system, while essentially doubling the power output over the alternative systems, only does so for system pressures above the mid-pressure. Thus, the three accumulators-one intensifier scheme reduces the system depth of discharge from nearly atmospheric (e.g., for the two accumulator two intensifier scheme) to the mid-pressure, reducing the system energy density by approximately 10%.



FIGS. 11 and 12 are schematic and pictorial representations, respectively, of one exemplary embodiment of a compressed gas-based energy storage system using a staged hydraulic-pneumatic energy conversion system that can provide approximately 5 kW of power. The system 200 is similar to those described with respect to FIGS. 1 and 4, with different control valve arrangements. The operation of the system is also substantially similar to the system 300 described in FIGS. 4-6.


As shown in FIGS. 11 and 12, the system 200 includes five high-pressure gas/air storage tanks 202a-202e. Tanks 202a and 202b and tanks 202c and 202d are joined in parallel via manual valves 204a, 204b and 204c, 204d, respectively. Tank 202e also includes a manual shut-off valve 204e. The tanks 202 are joined to a main air line 208 via automatically controlled pneumatic two-way (i.e., shut-off) valves 206a, 206b, 206c to a main air line 308. The tank output lines include pressure sensors 212a, 212b, 212c. The lines/tanks 202 could also include temperature sensors. The various sensors can be monitored by a system controller 220 via appropriate connections, as described hereinabove. The main air line 208 is coupled to a pair of multi-stage (two stages in this example) accumulator circuits via automatically controlled pneumatic shut-off valves 207a, 207b. These valves 207a, 207b are coupled to respective accumulators 216 and 217. The air chambers 240, 241 of the accumulators 216, 217 are connected, via automatically controlled pneumatic shut-offs 207c, 207d, to the air chambers 244, 245 of the intensifiers 218, 219. Pneumatic shut-off valves 207e, 207f are also coupled to the air line connecting the respective accumulator and intensifier air chambers and to a respective atmospheric air vent 210a, 210b. This arrangement allows for air from the various tanks 202 to be selectively directed to either accumulator air chamber 244, 245. In addition, the various air lines and air chambers can include pressure and temperature sensors 222224 that deliver sensor telemetry to the controller 220.


The air chamber 240, 241 of each accumulator 216, 217 is enclosed by a movable piston 236, 237 having an appropriate sealing system using sealing rings and other components that are known to those of ordinary skill in the art. The piston 236, 237 moves along the accumulator housing in response to pressure differentials between the air chamber 240, 241 and an opposing fluid chamber 238, 239, respectively, on the opposite side of the accumulator housing. Likewise, the air chambers 244, 245 of the respective intensifiers 218, 219 are also enclosed by a moving piston assembly 242, 243. However, as previously discussed, the piston assembly 242, 243 includes an air piston 242a, 243a connected by a shaft, rod, or other coupling to a respective fluid piston, 242b, 243b that move in conjunction. The differences between the piston diameters allows a lower air pressure acting upon the air piston to generate a similar pressure on the associated fluid chamber as the higher air pressure acting on the accumulator piston. In this manner, and as previously described, the system allows for at least two stages of pressure to be employed to generate similar levels of fluid pressure.


The accumulator fluid chambers 238, 239 are interconnected to a hydraulic motor/pump arrangement 230 via a hydraulic valve 228a. The hydraulic motor/pump arrangement 230 includes a first port 231 and a second port 233. The arrangement 230 also includes several optional valves, including a normally open shut-off valve 225, a pressure relief valve 227, and three check valves 229 that can further control the operation of the motor/pump arrangement 230. For example, check valves 229a, 229b, direct fluid flow from the motor/pump's leak port to the port 231, 233 at a lower pressure. In addition, valves 225, 229c prevent the motor/pump from coming to a hard stop during an expansion cycle.


The hydraulic valve 228a is shown as a 3-position, 4-way directional valve that is electrically actuated and spring returned to a center closed position, where no flow through the valve 228a is possible in the unactuated state. The directional valve 228a controls the fluid flow from the accumulator fluid chambers 238, 239 to either the first port 231 or the second port 233 of the motor/pump arrangement 230. This arrangement allows fluid from either accumulator fluid chamber 238, 239 to drive the motor/pump 230 clockwise or counter-clockwise via a single valve.


The intensifier fluid chambers 246, 247 are also interconnected to the hydraulic motor/pump arrangement 230 via a hydraulic valve 228b. The hydraulic valve 228b is also a 3-position, 4-way directional valve that is electrically actuated and spring returned to a center closed position, where no flow through the valve 228b is possible in the unactuated state. The directional valve 228b controls the fluid flow from the intensifier fluid chambers 246, 247 to either the first port 231 or the second port 233 of the motor/pump arrangement 230. This arrangement allows fluid from either intensifier fluid chamber 246, 247 to drive the motor/pump 230 clockwise or counter-clockwise via a single valve.


The motor/pump 230 can be coupled to an electrical generator/motor and that drives, and is driven by the motor/pump 230. As discussed with respect to the previously described embodiments, the generator/motor assembly can be interconnected with a power distribution system and can be monitored for status and output/input level by the controller 220.


In addition, the fluid lines and fluid chambers can include pressure, temperature, or flow sensors and/or indicators 222224 that deliver sensor telemetry to the controller 220 and/or provide visual indication of an operational state. In addition, the pistons 236, 237, 242a, 243a can include position sensors 248 that report their present position to the controller 220. The position of the piston can be used to determine relative pressure and flow of both gas and fluid.


As shown in FIG. 12, the system 200 includes a frame or supporting structure 201 that can be used for mounting and/or housing the various components. The high pressure gas storage 202 includes five 10 gallon pressure vessels (for example, standard 3000 psi laboratory compressed air cylinders). The power conversion system includes two 1.5 gallon accumulators 216, 217 (for example, 3,000 psi, 4″ bore, 22″ stroke, as available from Parker-Hannifin, Cleveland, Ohio) and two 15 gallon intensifiers 218, 219 (for example, air side: 250 psi, 14″ bore, 22″ stroke; hydraulic side: 3000 psi, 4″ bore, 22″ stroke, as available from Parker-Hannifin, Cleveland, Ohio). The various sensors can be, for example, transducers and/or analog gauges as available from, for example, Omega Engineering, Inc., Stamford, Conn. for pressure, Nanmac Corporation, Framingham, Mass. for temperature, Temposonic, MTS Sensors, Cary, N.C. for position, CR Magnetics, 5310-50, St. Louis, Mo. for voltage, and LEM, Hass 200, Switzerland for current.


The various valves and valve controls to automate the system will be sized and selected to suit a particular application and can be obtained from Parker-Hannifin, Cleveland, Ohio. The hydraulic motor/pump 230 can be a 10 cc/rev, F11-10, axial piston pump, as available from Parker-Hannifin. The electric generator/motor can be a nominal 24 Volt, 400 Amp high efficiency brushless SolidSlot 24 DC motor with a NPS6000 buck boost regulator, as available from Ecycle, Inc., Temple, Pa. The controller 220 can include an USB data acquisition block (available from Omega Instruments) used with a standard PC running software created using the LabVIEW® software (as available from National Instruments Corporation, Austin, Tex.) and via closed loop control of pneumatically actuated valves (available from Parker-Hannifin) driven by 100 psi air that allow 50 millisecond response times to be achieved.



FIGS. 13A and 13B are graphical representations of the pressures in the various components through 13 energy storage (i.e., compression) cycles (FIG. 13A) and eight energy recovery (i.e., expansion) cycles (FIG. 13B). The accumulators' pressures are shown in solid lines (light and dark solid lines to differentiate between the two accumulators), intensifiers' pressures are shown in dashed lines (light and dark dashed lines to differentiate between the two intensifiers), and the compressed gas storage tank pressures are shown in dotted lines. In the graphs, the accumulators and intensifiers are identified as A1, A2 and I1, I2, respectively, to identify the first accumulator/intensifier cycled and the second accumulator/intensifier cycled. The graphs represent the pressures as they exist in the accumulators and intensifiers as the pressure in the storage tank increases and decreases, corresponding to compression and expansion cycles. The basic operation of the system is described with respect to FIGS. 4-6. Generally, a full expansion cycle, as shown in FIG. 13B, consists of air admitted from a high pressure gas bottle and expanded from high pressure to mid pressure in one accumulator and from mid-pressure to atmospheric pressure in an intensifier, followed by an expansion in a second accumulator and intensifier which returns the system to its original state. Generally, over the course of the compression phase, the pressure and energy stored in the tanks increases, and likewise during expansion decreases, as indicated in the graphs.



FIGS. 14A and 14B are graphical representations of the corresponding pneumatic and hydraulic pressures in the various components of the system 200 of FIG. 11 through four energy recovery (i.e., expansion) cycles. The accumulators' pressures are shown in solid lines (light and dark solid lines to differentiate between the two accumulators), intensifiers' pressures are shown in dashed lines (light and dark dashed lines to differentiate between the two intensifiers), and the compressed gas storage tank pressures are shown in dotted lines.


The graph of FIG. 14A represents the gas pressures of the accumulators 216, 217, the intensifiers 218, 219, and the tank 202 during expansion. The graph of FIG. 14B represents the corresponding hydraulic pressures of the accumulators 216, 217 and the intensifiers 218, 219 during the same expansion cycles. As can be seen in the graphs, the intensification stage keeps the hydraulic pressures high even when the gas pressures drop towards atmospheric.


The foregoing has been a detailed description of various embodiments of the invention. Various modifications and additions can be made without departing from the spirit and scope if the invention. Each of the various embodiments described above may be combined with other described embodiments in order to provide multiple features. Furthermore, while the foregoing describes a number of separate embodiments of the apparatus and method of the present invention, what has been described herein is merely illustrative of the application of the principles of the present invention. For example, the size, performance characteristics and number of components used to implement the system is highly variable. While two stages of expansion and compression are employed in one embodiment, in alternative embodiments, additional stages of intensifiers, with a larger area differential between gas and fluid pistons can be employed. Likewise, the surface area of the gas piston and fluid piston within an accumulator need not be the same. In any case, the intensifier provides a larger air piston surface area versus fluid piston area than the area differential of the accumulator's air and fluid pistons. Additionally, while the working gas is air herein, it is contemplated that high and low-pressure reservoirs of a different gas can be employed in alternative embodiments to improve heat-transfer or other system characteristics. Moreover, while piston components are used to transmit energy between the fluid and gas in both accumulators and intensifiers, it is contemplated that any separating boundary that prevents mixing of the media (fluid and gas), and that transmits mechanical energy therebetween based upon relative pressures can be substituted. Hence, the term “piston” can be taken broadly to include such energy transmitting boundaries. Accordingly, the described embodiments are to be considered in all respects as only illustrative and not restrictive.

Claims
  • 1. An energy storage and recovery system suitable for the efficient use and conservation of energy resources, the system comprising: a cylinder for compressing gas to store energy and expanding gas to impart energy; anda control system for controlling operation of the cylinder to enforce substantially isothermal expansion and compression of the gas therein to thereby increase efficiency of the expansion and compression, the control system being responsive to at least one system parameter associated with operation of the cylinder.
  • 2. The system of claim 1, wherein the at least one system parameter comprises at least one of a fluid state, a fluid flow, a temperature, and a pressure.
  • 3. The system of claim 1, wherein the cylinder comprises an interior portion and movable boundary therein separating the interior portion into first and second sides, the at least one system parameter comprising a position, within the cylinder, of the boundary.
  • 4. The system of claim 3, wherein the first side is pneumatic and the second side is hydraulic.
  • 5. The system of claim 1, further comprising a pneumatic circuit including a first portion of the cylinder, the control system controlling a first control valve within the pneumatic circuit.
  • 6. The system of claim 5, further comprising a hydraulic circuit including a second portion of the cylinder, the control system controlling a second control valve within the hydraulic circuit.
  • 7. The system of claim 6, further comprising a hydraulic motor/pump in fluid communication with the cylinder for causing compression of gas or receiving energy from expansion of gas, the control system controlling the hydraulic motor/pump based on the at least one system parameter.
  • 8. The system of claim 7, wherein the hydraulic motor/pump comprises a shaft, the control system controlling at least one of a speed or a torque of the rotating shaft based on the at least one system parameter.
  • 9. The system of claim 1, further comprising, selectively fluidly connected to the cylinder, a storage vessel for storage of the gas after compression or before expansion.
  • 10. The system of claim 9, further comprising a temperature sensor for sensing a temperature in the pressure vessel.
  • 11. The system of claim 1, further comprising a valve for venting the gas to atmosphere after expansion thereof.
  • 12. The system of claim 1, further comprising a temperature sensor for monitoring a temperature of the gas being compressed or expanded therewithin.
  • 13. The system of claim 1, further comprising a circulating water flow for thermally conditioning the gas being compressed or expanded within the cylinder.
  • 14. The system of claim 1, further comprising a second cylinder connected to the cylinder, the control system operating the cylinder and the second cylinder in a staged manner to provide a predetermined pressure profile at least at one outlet.
  • 15. The system of claim 14, wherein (i) the cylinder transfers mechanical energy at a first pressure ratio, and (ii) the second cylinder transfers mechanical energy at a second pressure ratio greater than the first pressure ratio.
  • 16. The system of claim 14, wherein the cylinder and the second cylinder are connected in parallel.
  • 17. The system of claim 14, wherein a maximum pressure of operation within the second cylinder is approximately 10 times a maximum pressure of operation within the cylinder.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/945,398, filed on Nov. 12, 2010, which is a continuation of U.S. patent application Ser. No. 12/421,057, filed on Apr. 9, 2009, now issued as U.S. Pat. No. 7,832,207, which claims priority to U.S. Provisional Patent Application Ser. Nos. 61/043,630, filed on Apr. 9, 2008, and 61/148,691, filed on Jan. 30, 2009, the disclosures of which are hereby incorporated herein by reference in their entireties.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under IIP-0810590 awarded by the NSF. The government has certain rights in the invention.

US Referenced Citations (622)
Number Name Date Kind
114297 Ivens et al. May 1871 A
224081 Eckart Feb 1880 A
233432 Pitchford Oct 1880 A
1635524 Aikman Jul 1927 A
1681280 Bruckner Aug 1928 A
2025142 Zahm et al. Dec 1935 A
2042991 Harris, Jr. Jun 1936 A
2141703 Bays Dec 1938 A
2280100 SinQleton Apr 1942 A
2280845 Parker Apr 1942 A
2404660 Rouleau Jul 1946 A
2420098 Rouleau May 1947 A
2539862 Rushinq Jan 1951 A
2628564 Jacobs Feb 1953 A
2712728 Lewis et al. Jul 1955 A
2813398 Wilcox Nov 1957 A
2829501 Walls Apr 1958 A
2880759 Wisman Apr 1959 A
3041842 Heinecke Jul 1962 A
3236512 Caslav et al. Feb 1966 A
3269121 Ludwig Aug 1966 A
3538340 LanQ Nov 1970 A
3608311 Roesel, Jr. Sep 1971 A
3648458 McAlister Mar 1972 A
3650636 Eskeli Mar 1972 A
3672160 Kim Jun 1972 A
3677008 Koutz Jul 1972 A
3704079 Berlyn Nov 1972 A
3757517 RiQollot Sep 1973 A
3793848 Eskeli Feb 1974 A
3801793 Goebel Apr 1974 A
3803847 McAlister Apr 1974 A
3839863 Frazier Oct 1974 A
3847182 Greer Nov 1974 A
3895493 Riqollot Jul 1975 A
3903696 Carman Sep 1975 A
3935469 Haydock Jan 1976 A
3939356 Loane Feb 1976 A
3942323 Maillet Mar 1976 A
3945207 Hyatt Mar 1976 A
3948049 Ohms et al. Apr 1976 A
3952516 Lapp Apr 1976 A
3952723 Browning Apr 1976 A
3958899 Coleman, Jr. et al. May 1976 A
3986354 Erb Oct 1976 A
3988592 Porter Oct 1976 A
3988897 Strub Nov 1976 A
3990246 Wilmers Nov 1976 A
3991574 Frazier Nov 1976 A
3996741 HerberQ Dec 1976 A
3998049 McKinley et al. Dec 1976 A
4008006 Bea Feb 1977 A
4027993 Wolff Jun 1977 A
4030303 Kraus et al. Jun 1977 A
4031702 Burnett et al. Jun 1977 A
4031704 Moore et al. Jun 1977 A
4041708 Wolff Aug 1977 A
4050246 Bourquardez Sep 1977 A
4055950 Grossman Nov 1977 A
4058979 Germain Nov 1977 A
4089744 Cahn May 1978 A
4095118 Rathbun Jun 1978 A
4100745 Gyarmathy et al. Jul 1978 A
4104955 Murphy Aug 1978 A
4108077 Laing Aug 1978 A
4109465 Plen Aug 1978 A
4110987 Cahn et al. Sep 1978 A
4112311 Theyse Sep 1978 A
4117342 Melley, Jr. Sep 1978 A
4117696 Fawcett et al. Oct 1978 A
4118637 Tackett Oct 1978 A
4124182 Loeb Nov 1978 A
4126000 Funk Nov 1978 A
4136432 Melley, Jr. Jan 1979 A
4142368 Mantegani Mar 1979 A
4147204 Pfenninger Apr 1979 A
4149092 Cros Apr 1979 A
4150547 Hobson Apr 1979 A
4154292 Herrick May 1979 A
4167372 Tackett Sep 1979 A
4170878 Jahniq Oct 1979 A
4173431 Smith Nov 1979 A
4189925 Long Feb 1980 A
4197700 Jahniq Apr 1980 A
4197715 Fawcett et al. Apr 1980 A
4201514 Huetter May 1980 A
4204126 Diggs May 1980 A
4206608 Bell Jun 1980 A
4209982 Pitts Jul 1980 A
4220006 Kindt Sep 1980 A
4229143 Pucher Oct 1980 A
4229661 Mead et al. Oct 1980 A
4232253 Mortelmans Nov 1980 A
4237692 Ahrens et al. Dec 1980 A
4242878 Brinkerhoff Jan 1981 A
4246978 Schulz et al. Jan 1981 A
4262735 Courrege Apr 1981 A
4273514 Shore et al. Jun 1981 A
4274010 Lawson-tancred Jun 1981 A
4275310 Summers et al. Jun 1981 A
4281256 Ahrens Jul 1981 A
4293323 Cohen Oct 1981 A
4299198 Woodhull Nov 1981 A
4302684 Gogins Nov 1981 A
4304103 Hamrick Dec 1981 A
4311011 Lewis Jan 1982 A
4316096 Syverson Feb 1982 A
4317439 Emmerlinq Mar 1982 A
4335867 Bihlmaier Jun 1982 A
4340822 Gregg Jul 1982 A
4341072 Clyne Jul 1982 A
4348863 Taylor et al. Sep 1982 A
4353214 Gardner Oct 1982 A
4354420 Bianchetta Oct 1982 A
4355956 Ringrose et al. Oct 1982 A
4358250 Payne Nov 1982 A
4367786 Hafner et al. Jan 1983 A
4368692 Kita Jan 1983 A
4368775 Ward Jan 1983 A
4370559 Langley, Jr. Jan 1983 A
4372114 Burnham Feb 1983 A
4375387 deFilippi et al. Mar 1983 A
4380419 Morton Apr 1983 A
4393752 Meier Jul 1983 A
4411136 Funk Oct 1983 A
4421661 Claar et al. Dec 1983 A
4428711 Archer Jan 1984 A
4435131 Ruben Mar 1984 A
4444011 Kolin Apr 1984 A
4446698 Benson May 1984 A
4447738 Allison May 1984 A
4449372 Rilett May 1984 A
4452046 Valentin Jun 1984 A
4454429 Buonome Jun 1984 A
4454720 Leibowitz Jun 1984 A
4455834 Earle Jun 1984 A
4462213 Lewis Jul 1984 A
4474002 Perry Oct 1984 A
4476851 Brugger et al. Oct 1984 A
4478553 Leibowitz et al. Oct 1984 A
4489554 Otters Dec 1984 A
4491739 Watson Jan 1985 A
4492539 Specht Jan 1985 A
4493189 Slater Jan 1985 A
4496847 Parkings Jan 1985 A
4498848 Petrovsky et al. Feb 1985 A
4502284 Chrisoqhilos Mar 1985 A
4503673 Schachle Mar 1985 A
4515516 Perrine et al. May 1985 A
4520840 Michel Jun 1985 A
4525631 Allison Jun 1985 A
4530208 Sato Jul 1985 A
4547209 Netzer Oct 1985 A
4585039 Hamilton Apr 1986 A
4589475 Jones May 1986 A
4593202 Dickinson Jun 1986 A
4619225 Lowther Oct 1986 A
4624623 Wagner Nov 1986 A
4648801 Wilson Mar 1987 A
4651525 Cestero Mar 1987 A
4653986 Ashton Mar 1987 A
4671742 Gyimesi Jun 1987 A
4676068 Funk Jun 1987 A
4679396 Heggie Jul 1987 A
4691524 Holscher Sep 1987 A
4693080 Van Hooff Sep 1987 A
4706456 Backe Nov 1987 A
4707988 Palmers Nov 1987 A
4710100 Laing et al. Dec 1987 A
4735552 Watson Apr 1988 A
4739620 Pierce Apr 1988 A
4760697 Heggie Aug 1988 A
4761118 Zanarini et al. Aug 1988 A
4765142 Nakhamkin Aug 1988 A
4765143 Crawford et al. Aug 1988 A
4767938 Bervig Aug 1988 A
4792700 Ammons Dec 1988 A
4849648 Longardner Jul 1989 A
4870816 Nakhamkin Oct 1989 A
4872307 Nakhamkin Oct 1989 A
4873828 Lainq et al. Oct 1989 A
4873831 Dehne Oct 1989 A
4876992 Sobotowski Oct 1989 A
4877530 Moses Oct 1989 A
4885912 Nakhamkin Dec 1989 A
4886534 Castan Dec 1989 A
4907495 Sugahara Mar 1990 A
4936109 Lonqardner Jun 1990 A
4942736 Bronicki Jul 1990 A
4947977 Raymond Aug 1990 A
4955195 Jones et al. Sep 1990 A
4984432 Corey Jan 1991 A
5056601 Grimmer Oct 1991 A
5058385 Everett, Jr. Oct 1991 A
5062498 Tobias Nov 1991 A
5107681 Wolfbauer, III Apr 1992 A
5133190 Abdelmalek Jul 1992 A
5138838 Crosser Aug 1992 A
5140170 Henderson Aug 1992 A
5152260 Erickson et al. Oct 1992 A
5161449 Everett, Jr. Nov 1992 A
5169295 Stoqner et al. Dec 1992 A
5182086 Henderson et al. Jan 1993 A
5203168 Oshina Apr 1993 A
5209063 Shirai et al. May 1993 A
5213470 Lundquist May 1993 A
5239833 Fineblum Aug 1993 A
5259345 Richeson Nov 1993 A
5271225 Adamides Dec 1993 A
5279206 Krantz Jan 1994 A
5296799 Davis Mar 1994 A
5309713 Vassallo May 1994 A
5321946 Abdelmalek Jun 1994 A
5327987 Abdelmalek Jul 1994 A
5339633 Fujii et al. Aug 1994 A
5341644 Nelson Aug 1994 A
5344627 Fujii et al. Sep 1994 A
5364611 Iijima et al. Nov 1994 A
5365980 Deberardinis Nov 1994 A
5375417 Barth Dec 1994 A
5379589 Cohn et al. Jan 1995 A
5384489 Bellac Jan 1995 A
5387089 Stogner et al. Feb 1995 A
5394693 Plyter Mar 1995 A
5427194 Miller Jun 1995 A
5436508 Sorensen Jul 1995 A
5448889 Bronicki Sep 1995 A
5454408 Dibella et al. Oct 1995 A
5454426 Moseley Oct 1995 A
5467722 Meratla Nov 1995 A
5477677 Krnavek Dec 1995 A
5491969 Cohn et al. Feb 1996 A
5491977 Cho Feb 1996 A
5524821 Vie et al. Jun 1996 A
5537822 Shnaid et al. Jul 1996 A
5544698 Paulman Aug 1996 A
5561978 Buschur Oct 1996 A
5562010 McGuire Oct 1996 A
5579640 Gray, Jr. et al. Dec 1996 A
5584664 Elliott et al. Dec 1996 A
5592028 Pritchard Jan 1997 A
5598736 Erskine Feb 1997 A
5599172 Mccabe Feb 1997 A
5600953 Oshita et al. Feb 1997 A
5616007 Cohen Apr 1997 A
5634340 Grennan Jun 1997 A
5641273 Moseley Jun 1997 A
5674053 Paul et al. Oct 1997 A
5685155 Brown Nov 1997 A
5768893 Hoshino et al. Jun 1998 A
5769610 Paul et al. Jun 1998 A
5771693 Coney Jun 1998 A
5775107 Sparkman Jul 1998 A
5778675 Nakhamkin Jul 1998 A
5794442 Lisniansky Aug 1998 A
5797980 Fillet Aug 1998 A
5819533 Moonen Oct 1998 A
5819635 Moonen Oct 1998 A
5831757 DiFrancesco Nov 1998 A
5832728 Buck Nov 1998 A
5832906 Douville et al. Nov 1998 A
5839270 Jirnov et al. Nov 1998 A
5845479 Nakhamkin Dec 1998 A
5873250 Lewis Feb 1999 A
5901809 Berkun May 1999 A
5924283 Burke, Jr. Jul 1999 A
5934063 Nakhamkin Aug 1999 A
5934076 Coney Aug 1999 A
5937652 Abdelmalek Aug 1999 A
5971027 Beachley et al. Oct 1999 A
6012279 Hines Jan 2000 A
6023105 Youssef Feb 2000 A
6026349 Heneman Feb 2000 A
6029445 Lech Feb 2000 A
6073445 Johnson Jun 2000 A
6073448 Lozada Jun 2000 A
6085520 Kohno Jul 2000 A
6090186 Spencer Jul 2000 A
6119802 Puett, Jr. Sep 2000 A
6132181 Mccabe Oct 2000 A
6145311 Cyphelly Nov 2000 A
6148602 Demetri Nov 2000 A
6153943 Mistr, Jr. Nov 2000 A
6158499 Rhodes Dec 2000 A
6170443 Hofbauer Jan 2001 B1
6178735 Frutschi Jan 2001 B1
6179446 Sarmadi Jan 2001 B1
6188182 Nickols et al. Feb 2001 B1
6202707 Woodall et al. Mar 2001 B1
6206660 Coney et al. Mar 2001 B1
6210131 Whitehead Apr 2001 B1
6216462 Gray, Jr. Apr 2001 B1
6225706 Keller May 2001 B1
6276123 Chen et al. Aug 2001 B1
6327858 Negre et al. Dec 2001 B1
6327994 Labrador Dec 2001 B1
6349543 Lisniansky Feb 2002 B1
RE37603 Coney Mar 2002 E
6352576 Spencer et al. Mar 2002 B1
6360535 Fisher Mar 2002 B1
6367570 Long, III Apr 2002 B1
6372023 Kiyono et al. Apr 2002 B1
6389814 Viteri et al. May 2002 B2
6397578 Tsukamoto Jun 2002 B2
6401458 Jacobson Jun 2002 B2
6407465 Peltz et al. Jun 2002 B1
6419462 Horie et al. Jul 2002 B1
6422016 Alkhamis Jul 2002 B2
6478289 Trewin Nov 2002 B1
6512966 Lof Jan 2003 B2
6513326 Maceda et al. Feb 2003 B1
6516615 Stockhausen et al. Feb 2003 B1
6516616 Carver Feb 2003 B2
6598392 Majeres Jul 2003 B2
6598402 Kataoka et al. Jul 2003 B2
6606860 McFarland Aug 2003 B2
6612348 Wiley Sep 2003 B1
6619930 Jansen et al. Sep 2003 B2
6626212 Morioka et al. Sep 2003 B2
6629413 Wendt et al. Oct 2003 B1
6637185 hatamiva et al. Oct 2003 B2
6652241 Alder Nov 2003 B1
6652243 Krasnov Nov 2003 B2
6666024 Moskal Dec 2003 B1
6670402 Lee et al. Dec 2003 B1
6672056 Roth et al. Jan 2004 B2
6675765 Endoh Jan 2004 B2
6688108 Van Liere Feb 2004 B1
6698472 Camacho et al. Mar 2004 B2
6711984 Tagge et al. Mar 2004 B2
6712166 Rush et al. Mar 2004 B2
6715514 Parker, III Apr 2004 B2
6718761 Merswolke et al. Apr 2004 B2
6739131 Kershaw May 2004 B1
6739419 Jain et al. May 2004 B2
6745569 Gerdes Jun 2004 B2
6745801 Cohen et al. Jun 2004 B1
6748737 Lafferty Jun 2004 B2
6762926 Shiue et al. Jul 2004 B1
6786245 Eichelberger Sep 2004 B1
6789387 Brinkman Sep 2004 B2
6789576 Umetsu et al. Sep 2004 B2
6797039 Spencer Sep 2004 B2
6815840 Aldendeshe Nov 2004 B1
6817185 Coney et al. Nov 2004 B2
6834737 Bloxham Dec 2004 B2
6840309 Wilson et al. Jan 2005 B2
6848259 Keller-sornig Feb 2005 B2
6857450 Rupp Feb 2005 B2
6874453 Coney et al. Apr 2005 B2
6883775 Coney et al. Apr 2005 B2
6886326 Holtzapple et al. May 2005 B2
6892802 Kelly et al. May 2005 B2
6900556 Provanzana May 2005 B2
6922991 Polcuch Aug 2005 B2
6925821 Sienel Aug 2005 B2
6927503 Enish et al. Aug 2005 B2
6931848 Maceda et al. Aug 2005 B2
6935096 Haiun Aug 2005 B2
6938415 Last Sep 2005 B2
6938654 Gershtein et al. Sep 2005 B2
6946017 Leppin et al. Sep 2005 B2
6948328 Kidwell Sep 2005 B2
6952058 Mccoin Oct 2005 B2
6959546 Corcoran Nov 2005 B2
6963802 Enis Nov 2005 B2
6964165 Uhl et al. Nov 2005 B2
6964176 Kidwell Nov 2005 B2
6974307 Antoune et al. Dec 2005 B2
7000389 Lewellin Feb 2006 B2
7007474 Ochs et al. Mar 2006 B1
7017690 Burke Mar 2006 B2
7028934 Burynski, Jr. Apr 2006 B2
7040083 Horii et al. May 2006 B2
7040108 Flammang May 2006 B1
7040859 Kane May 2006 B2
7043920 Viteri et al. May 2006 B2
7047744 Robertson et al. May 2006 B1
7055325 Wolken Jun 2006 B2
7067937 Enish et al. Jun 2006 B2
7075189 Heronemus Jul 2006 B2
RE39249 Link, Jr. Aug 2006 E
7084520 Zambrano Aug 2006 B2
7086231 Pinkerton Aug 2006 B2
7093450 Jimenez Haertel et al. Aug 2006 B2
7093626 Li et al. Aug 2006 B2
7098552 Mccoin Aug 2006 B2
7107766 Zacche′ et al. Sep 2006 B2
7107767 Frazer et al. Sep 2006 B2
7116006 Mccoin Oct 2006 B2
7124576 Cherney et al. Oct 2006 B2
7124586 Neqre et al. Oct 2006 B2
7127895 Pinkerton et al. Oct 2006 B2
7128777 Spencer Oct 2006 B2
7134279 White Nov 2006 B2
7155912 Enis et al. Jan 2007 B2
7168928 West Jan 2007 B1
7168929 Sieqel et al. Jan 2007 B2
7169489 Redmond Jan 2007 B2
7177751 Froloff Feb 2007 B2
7178337 Pflanz Feb 2007 B2
7191603 Taube Mar 2007 B2
7197871 Yoshino Apr 2007 B2
7201095 Hughey Apr 2007 B2
7218009 Hendrickson et al. May 2007 B2
7219779 Bauer et al. May 2007 B2
7225762 Mahlanen Jun 2007 B2
7228690 Barker Jun 2007 B2
7230348 Poole Jun 2007 B2
7231998 Schechter Jun 2007 B1
7240812 Kamikozuru Jul 2007 B2
7249617 Musselman et al. Jul 2007 B2
7254944 Goetzinger et al. Aug 2007 B1
7273122 Rose Sep 2007 B2
7281371 Heidenreich Oct 2007 B1
7308361 Enis et al. Dec 2007 B2
7317261 Rolt Jan 2008 B2
7322377 Baltes Jan 2008 B2
7325401 Kesseli et al. Feb 2008 B1
7328575 Hedman Feb 2008 B2
7329099 Hartman Feb 2008 B2
7347049 Rajendran et al. Mar 2008 B2
7353786 Scuderi et al. Apr 2008 B2
7353845 Underwood et al. Apr 2008 B2
7354252 Baatrup et al. Apr 2008 B2
7364410 Link, Jr. Apr 2008 B2
7392871 Severinsky et al. Jul 2008 B2
7406828 Nakhamkin Aug 2008 B1
7407501 Zvuloni Aug 2008 B2
7415835 Cowans et al. Aug 2008 B2
7415995 Plummer et al. Aug 2008 B2
7417331 De La Torre et al. Aug 2008 B2
7418820 Harvey et al. Sep 2008 B2
7436086 Mcclintic Oct 2008 B2
7441399 Utamura Oct 2008 B2
7448213 Mitani Nov 2008 B2
7453164 Borden et al. Nov 2008 B2
7469527 Neqre et al. Dec 2008 B2
7471010 Fingersh Dec 2008 B1
7481337 Luharuka et al. Jan 2009 B2
7488159 Bhatt et al. Feb 2009 B2
7527483 Glauber May 2009 B1
7579700 Meller Aug 2009 B1
7603970 Scuderi et al. Oct 2009 B2
7607503 Schechter Oct 2009 B1
7693402 Hudson et al. Apr 2010 B2
7802426 Bollinger Sep 2010 B2
7827787 Cherney et al. Nov 2010 B2
7832207 McBride et al. Nov 2010 B2
7843076 Gogoana et al. Nov 2010 B2
7874155 McBride et al. Jan 2011 B2
7900444 McBride et al. Mar 2011 B1
8037678 McBride et al. Oct 2011 B2
8046990 Bollinger et al. Nov 2011 B2
20010045093 Jacobson Nov 2001 A1
20030131599 Gerdes Jul 2003 A1
20030145589 Tillyer Aug 2003 A1
20030177767 Keller-sornig et al. Sep 2003 A1
20030180155 Coney et al. Sep 2003 A1
20040050042 Frazer Mar 2004 A1
20040050049 Wendt et al. Mar 2004 A1
20040146406 Last Jul 2004 A1
20040146408 Anderson Jul 2004 A1
20040148934 Pinkerton et al. Aug 2004 A1
20040211182 Gould Oct 2004 A1
20040244580 Coney et al. Dec 2004 A1
20040261415 Negre et al. Dec 2004 A1
20050016165 Enis et al. Jan 2005 A1
20050028529 Bartlett et al. Feb 2005 A1
20050047930 Schmid Mar 2005 A1
20050072154 Frutschi Apr 2005 A1
20050115234 Asano et al. Jun 2005 A1
20050155347 Lewellin Jul 2005 A1
20050166592 Larson et al. Aug 2005 A1
20050274334 Warren Dec 2005 A1
20050275225 Bertolotti Dec 2005 A1
20050279086 Hoos Dec 2005 A1
20050279292 Hudson et al. Dec 2005 A1
20050279296 Coney et al. Dec 2005 A1
20060055175 Grinblat Mar 2006 A1
20060059936 Radke et al. Mar 2006 A1
20060059937 Perkins et al. Mar 2006 A1
20060075749 Cherney et al. Apr 2006 A1
20060090467 Crow May 2006 A1
20060090477 Rolff May 2006 A1
20060107664 Hudson et al. May 2006 A1
20060162543 Abe et al. Jul 2006 A1
20060162910 Kelly et al. Jul 2006 A1
20060175337 Defosset Aug 2006 A1
20060201148 Zabtcioqlu Sep 2006 A1
20060248886 Ma Nov 2006 A1
20060248892 Ingersoll Nov 2006 A1
20060254281 Badeer et al. Nov 2006 A1
20060260311 Ingersoll Nov 2006 A1
20060260312 Ingersoll Nov 2006 A1
20060262465 Wiederhold Nov 2006 A1
20060266034 Ingersoll Nov 2006 A1
20060266035 Ingersoll et al. Nov 2006 A1
20060266036 Ingersoll Nov 2006 A1
20060266037 Ingersoll Nov 2006 A1
20060280993 Keefer et al. Dec 2006 A1
20060283967 Cho et al. Dec 2006 A1
20070006586 Hoffman et al. Jan 2007 A1
20070022754 Perkins et al. Feb 2007 A1
20070022755 Pinkerton et al. Feb 2007 A1
20070062194 Ingersoll Mar 2007 A1
20070074533 Hugenroth et al. Apr 2007 A1
20070095069 Joshi et al. May 2007 A1
20070113803 Froloff et al. May 2007 A1
20070116572 Barbu et al. May 2007 A1
20070137595 Greenwell Jun 2007 A1
20070151528 Hedman Jul 2007 A1
20070158946 Annen et al. Jul 2007 A1
20070181199 Weber Aug 2007 A1
20070182160 Enis et al. Aug 2007 A1
20070205298 Harrison et al. Sep 2007 A1
20070234749 Enis et al. Oct 2007 A1
20070243066 Baron Oct 2007 A1
20070245735 Ashikian Oct 2007 A1
20070258834 Froloff et al. Nov 2007 A1
20080000436 Goldman Jan 2008 A1
20080016868 Ochs et al. Jan 2008 A1
20080047272 Schoell Feb 2008 A1
20080050234 Ingersoll et al. Feb 2008 A1
20080072870 Chomyszak et al. Mar 2008 A1
20080087165 Wright et al. Apr 2008 A1
20080104939 Hoffmann et al. May 2008 A1
20080112807 Uphues et al. May 2008 A1
20080127632 Finkenrath et al. Jun 2008 A1
20080138265 Lackner et al. Jun 2008 A1
20080155975 Brinkman Jul 2008 A1
20080155976 Smith et al. Jul 2008 A1
20080157528 Wang et al. Jul 2008 A1
20080157537 Richard Jul 2008 A1
20080164449 Gray et al. Jul 2008 A1
20080185194 Leone Aug 2008 A1
20080202120 Karyambas Aug 2008 A1
20080211230 Gurin Sep 2008 A1
20080228323 Laumer et al. Sep 2008 A1
20080233029 Fan et al. Sep 2008 A1
20080238105 Ortiz et al. Oct 2008 A1
20080238187 Garnett et al. Oct 2008 A1
20080250788 Nuel et al. Oct 2008 A1
20080251302 Lynn et al. Oct 2008 A1
20080272597 Althaus Nov 2008 A1
20080272598 Nakhamkin Nov 2008 A1
20080272605 Borden et al. Nov 2008 A1
20080308168 O'Brien, II et al. Dec 2008 A1
20080308270 Wilson Dec 2008 A1
20080315589 Malmrup Dec 2008 A1
20090000290 Brinkman Jan 2009 A1
20090007558 Hall et al. Jan 2009 A1
20090008173 Hall et al. Jan 2009 A1
20090010772 Siemroth Jan 2009 A1
20090020275 Neher et al. Jan 2009 A1
20090021012 Stull et al. Jan 2009 A1
20090056331 Zhao et al. Mar 2009 A1
20090071153 Boyapati et al. Mar 2009 A1
20090107784 Gabriel et al. Apr 2009 A1
20090145130 Kaufman Jun 2009 A1
20090158740 Littau et al. Jun 2009 A1
20090178409 Shinnar Jul 2009 A1
20090200805 Kim et al. Aug 2009 A1
20090220364 Rigal et al. Sep 2009 A1
20090229902 Stansbury, III Sep 2009 A1
20090249826 Hugelman Oct 2009 A1
20090282822 McBride et al. Nov 2009 A1
20090282840 Chen et al. Nov 2009 A1
20090294096 Mills et al. Dec 2009 A1
20090301089 Bollinger Dec 2009 A1
20090317267 Gill et al. Dec 2009 A1
20090322090 Wolf Dec 2009 A1
20100018196 Li et al. Jan 2010 A1
20100077765 Japikse Apr 2010 A1
20100089063 McBride et al. Apr 2010 A1
20100133903 Rufer Jun 2010 A1
20100139277 McBride et al. Jun 2010 A1
20100193270 Deshaies et al. Aug 2010 A1
20100199652 Lemofouet et al. Aug 2010 A1
20100205960 McBride et al. Aug 2010 A1
20100229544 Bollinger et al. Sep 2010 A1
20100326062 Fong et al. Dec 2010 A1
20100326064 Fong et al. Dec 2010 A1
20100326066 Fong et al. Dec 2010 A1
20100326068 Fong et al. Dec 2010 A1
20100326069 Fong et al. Dec 2010 A1
20100326075 Fong et al. Dec 2010 A1
20100329891 Fong et al. Dec 2010 A1
20100329903 Fong et al. Dec 2010 A1
20100329909 Fong et al. Dec 2010 A1
20110023488 Fong et al. Feb 2011 A1
20110023977 Fong et al. Feb 2011 A1
20110030359 Fong et al. Feb 2011 A1
20110030552 Fong et al. Feb 2011 A1
20110056193 McBride et al. Mar 2011 A1
20110056368 McBride et al. Mar 2011 A1
20110061741 Ingersoll et al. Mar 2011 A1
20110061836 Ingersoll et al. Mar 2011 A1
20110062166 Ingersoll et al. Mar 2011 A1
20110079010 McBride et al. Apr 2011 A1
20110083438 McBride et al. Apr 2011 A1
20110107755 McBride et al. May 2011 A1
20110115223 Stahlkopf et al. May 2011 A1
20110131966 McBride et al. Jun 2011 A1
20110138797 Bollinger et al. Jun 2011 A1
20110167813 McBride et al. Jul 2011 A1
20110204064 Crane et al. Aug 2011 A1
20110219763 McBride et al. Sep 2011 A1
20110232281 McBride et al. Sep 2011 A1
20110233934 Crane et al. Sep 2011 A1
20110252777 Bollinger et al. Oct 2011 A1
20110258996 Ingersoll et al. Oct 2011 A1
20110258999 Ingersoll et al. Oct 2011 A1
20110259001 McBride et al. Oct 2011 A1
20110259442 McBride et al. Oct 2011 A1
20110266810 McBride et al. Nov 2011 A1
20110283690 McBride et al. Nov 2011 A1
20110296821 Bollinger et al. Dec 2011 A1
20110296822 Bollinger et al. Dec 2011 A1
20110296823 McBride et al. Dec 2011 A1
20110314800 Fong et al. Dec 2011 A1
20110314804 Fong et al. Dec 2011 A1
Foreign Referenced Citations (204)
Number Date Country
898225 Mar 1984 BE
1008885 Aug 1996 BE
1061262 May 1992 CN
1171490 Jan 1998 CN
1276308 Dec 2000 CN
1277323 Dec 2000 CN
1412443 Apr 2003 CN
1743665 Mar 2006 CN
2821162 Sep 2006 CN
2828319 Oct 2006 CN
2828368 Oct 2006 CN
1888328 Jan 2007 CN
1967091 May 2007 CN
101033731 Sep 2007 CN
101042115 Sep 2007 CN
101070822 Nov 2007 CN
101149002 Mar 2008 CN
101162073 Apr 2008 CN
201103518 Aug 2008 CN
201106527 Aug 2008 CN
101289963 Oct 2008 CN
201125855 Oct 2008 CN
101377190 Apr 2009 CN
101408213 Apr 2009 CN
101435451 May 2009 CN
25 38 870 Jun 1977 DE
19530253 Nov 1996 DE
19903907 Aug 2000 DE
19911534 Sep 2000 DE
10042020 May 2001 DE
20118183 Mar 2003 DE
20120330 Apr 2003 DE
10147940 May 2003 DE
10205733 Aug 2003 DE
10212480 Oct 2003 DE
20312293 Dec 2003 DE
10220499 Apr 2004 DE
10334637 Feb 2005 DE
10 2005 047622 Apr 2007 DE
0204748 Mar 1981 EP
0091801 Oct 1983 EP
0097002 Dec 1983 EP
0196690 Oct 1986 EP
0212692 Mar 1987 EP
0364106 Apr 1990 EP
0507395 Oct 1992 EP
0821162 Jan 1998 EP
0 857 877 Aug 1998 EP
1 388 442 Feb 2004 EP
1405662 Apr 2004 EP
1657452 May 2006 EP
1726350 Nov 2006 EP
1741899 Jan 2007 EP
1 780 058 May 2007 EP
1988294 Nov 2008 EP
2014896 Jan 2009 EP
2078857 Jul 2009 EP
2449805 Sep 1980 FR
2816993 May 2002 FR
2829805 Mar 2003 FR
722524 Nov 1951 GB
772703 Apr 1957 GB
1449076 Sep 1976 GB
1479940 Jul 1977 GB
2106992 Apr 1983 GB
2223810 Apr 1990 GB
2 300 673 Nov 1996 GB
2373546 Sep 2002 GB
2403356 Dec 2004 GB
57010778 Jan 1982 JP
57070970 May 1982 JP
57120058 Jul 1982 JP
58183880 Oct 1982 JP
58150079 Sep 1983 JP
58192976 Nov 1983 JP
60206985 Oct 1985 JP
62101900 May 1987 JP
63227973 Sep 1988 JP
2075674 Mar 1990 JP
2247469 Oct 1990 JP
3009090 Jan 1991 JP
3281984 Dec 1991 JP
4121424 Apr 1992 JP
6185450 Jul 1994 JP
8145488 Jun 1996 JP
9166079 Jun 1997 JP
10313547 Nov 1998 JP
2000-346093 Jun 1999 JP
11351125 Dec 1999 JP
2000166128 Jun 2000 JP
200346093 Dec 2000 JP
2002127902 May 2002 JP
2003083230 Mar 2003 JP
2005023918 Jan 2005 JP
2005036769 Feb 2005 JP
2005068963 Mar 2005 JP
2006220252 Aug 2006 JP
2007001872 Jan 2007 JP
2007145251 Jun 2007 JP
2007211730 Aug 2007 JP
2008038658 Feb 2008 JP
840000180 Feb 1984 KR
2004004637 Jan 2004 KR
1884822 Dec 2006 ON
2101562 Jan 1998 RU
2169857 Jun 2001 RU
2213255 Sep 2003 RU
800438 Jan 1981 SU
69030 Aug 2004 UA
WO-8200319 Feb 1982 WO
WO-8802818 Apr 1988 WO
WO-9941498 Aug 1990 WO
WO-9222741 Dec 1992 WO
WO-9306367 Apr 1993 WO
WO-9311363 Jun 1993 WO
WO-9324754 Dec 1993 WO
WO 9412785 Jun 1994 WO
WO-9525381 Sep 1995 WO
WO-9601942 Jan 1996 WO
WO-9622456 Jul 1996 WO
WO-9634213 Oct 1996 WO
WO-9701029 Jan 1997 WO
WO-9717546 May 1997 WO
WO-9802818 Jan 1998 WO
WO-9817492 Apr 1998 WO
WO-0001945 Jan 2000 WO
WO-0037800 Jun 2000 WO
WO-0065212 Nov 2000 WO
WO-0068578 Nov 2000 WO
WO-0175308 Oct 2001 WO
WO 0175290 Oct 2001 WO
WO-0225083 Mar 2002 WO
WO-0246621 Jun 2002 WO
WO-02103200 Dec 2002 WO
WO-03021107 Mar 2003 WO
WO-03021702 Mar 2003 WO
WO-03078812 Sep 2003 WO
WO-03081011 Oct 2003 WO
WO-2004034391 May 2004 WO
WO-2004059155 Jul 2004 WO
WO-2004072452 Aug 2004 WO
WO-2004074679 Sep 2004 WO
WO-2004109172 Dec 2004 WO
WO-2005044424 May 2005 WO
WO-2005062969 Jul 2005 WO
WO-2005067373 Jul 2005 WO
WO-2005079461 Sep 2005 WO
WO-2005088131 Sep 2005 WO
WO-2005095155 Oct 2005 WO
WO-2006029633 Mar 2006 WO
WO-2006058085 Jun 2006 WO
WO-2006124006 Nov 2006 WO
WO-2007002094 Jan 2007 WO
WO-2007003954 Jan 2007 WO
WO-2007012143 Feb 2007 WO
WO-2007035997 Apr 2007 WO
WO-2007051034 May 2007 WO
WO-2007066117 Jun 2007 WO
WO-2007086792 Aug 2007 WO
WO-2007089872 Aug 2007 WO
WO-2007096656 Aug 2007 WO
WO-2007111839 Oct 2007 WO
WO-2007136765 Nov 2007 WO
WO-2007140914 Dec 2007 WO
WO-2008003950 Jan 2008 WO
WO-2008014769 Feb 2008 WO
WO-2008023901 Feb 2008 WO
WO-2008027259 Mar 2008 WO
WO-2008028881 Mar 2008 WO
WO-2008039725 Apr 2008 WO
WO-2008045468 Apr 2008 WO
WO-2009045468 Apr 2008 WO
WO-2008051427 May 2008 WO
WO-2008074075 Jun 2008 WO
WO-2008084507 Jul 2008 WO
WO-2008091373 Jul 2008 WO
WO 2008102292 Aug 2008 WO
WO-2008106967 Sep 2008 WO
WO-2008108870 Sep 2008 WO
WO-2008109006 Sep 2008 WO
WO-2008110018 Sep 2008 WO
WO-2008115479 Sep 2008 WO
WO-2008121378 Oct 2008 WO
WO-2008139267 Nov 2008 WO
WO-2008152432 Dec 2008 WO
WO-2008153591 Dec 2008 WO
WO-2008157327 Dec 2008 WO
WO-2009034421 Mar 2009 WO
WO-2009034548 Mar 2009 WO
WO-2009038973 Mar 2009 WO
WO-2009044139 Apr 2009 WO
WO-2009045110 Apr 2009 WO
WO-2009114205 Sep 2009 WO
WO-2009126784 Oct 2009 WO
WO-2010006319 Jan 2010 WO
WO-2010009053 Jan 2010 WO
WO-2010040890 Apr 2010 WO
WO-2010105155 Sep 2010 WO
WO-2010135658 Nov 2010 WO
WO-2011008321 Jan 2011 WO
WO-2011008325 Jan 2011 WO
WO-2011008500 Jan 2011 WO
WO-2011079267 Jun 2011 WO
WO-2011079271 Jun 2011 WO
Related Publications (1)
Number Date Country
20110219760 A1 Sep 2011 US
Provisional Applications (2)
Number Date Country
61043630 Apr 2008 US
61148691 Jan 2009 US
Continuations (2)
Number Date Country
Parent 12945398 Nov 2010 US
Child 13012323 US
Parent 12421057 Apr 2009 US
Child 12945398 US