Various types of liquids may be stored in containers, whether during production, processing, transportation, distribution, sale, or consumption. For example, during the production of wine, beer, or other types of alcohol and/or spirits, the liquid may be stored in a barrel for an extended period of time, which may range from several months to a number of years. During storage in the barrel, the liquid may undergo a process of fermentation, or aging, in preparation for eventual sale, distribution, and/or consumption.
The barrel, or other type of container, may be made of wood, of which oak is a common element for a variety of alcohol types, or other materials. Certain types of containers may not be completely air tight (whether by design, or by limitation) and a certain amount of liquid may escape, evaporate, leak, or otherwise decrease by volume over time. For example, a wood barrel may absorb a certain amount of the liquid over time, may be constructed of a porous wood that allows for the liquid to evaporate over time, or may include small cracks or openings that allow the liquid to leak out of the container.
A storage facility, such as a rackhouse, rickhouse, dunnage house, or any other type of warehouse, may store a high volume of barrels. Each barrel has a particular volume of liquid that is exposed to various environmental conditions. By way of example, barrels stored on a higher tier of a storage facility may experience more temperature fluctuations than barrels stored at a lower tier. Additionally, other environmental conditions can affect the barrels and the rate of liquid loss throughout a storage facility, such as humidity or barometric pressure. It would be desirable to monitor the environmental conditions, liquid levels, and other conditional parameters of liquid storage containers in a storage facility.
It is believed that certain embodiments will be better understood from the following description taken in conjunction with the accompanying drawings, in which like references indicate similar elements and in which:
Various non-limiting embodiments of the present disclosure will now be described to provide an overall understanding of the principles of the structure, function, and use of systems, apparatuses, devices, and methods disclosed. One or more examples of these non-limiting embodiments are illustrated in the selected examples disclosed and described in detail with reference made to
The systems, apparatuses, devices, and methods disclosed herein are described in detail by way of examples and with reference to the figures. The examples discussed herein are examples only and are provided to assist in the explanation of the apparatuses, devices, systems and methods described herein. None of the features or components shown in the drawings or discussed below should be taken as mandatory for any specific implementation of any of these apparatuses, devices, systems or methods unless specifically designated as mandatory. For ease of reading and clarity, certain components, modules, or methods may be described solely in connection with a specific figure. In this disclosure, any identification of specific techniques, arrangements, etc. are either related to a specific example presented or are merely a general description of such a technique, arrangement, etc. Identifications of specific details or examples are not intended to be, and should not be, construed as mandatory or limiting unless specifically designated as such. Any failure to specifically describe a combination or sub-combination of components should not be understood as an indication that any combination or sub-combination is not possible. It will be appreciated that modifications to disclosed and described examples, arrangements, configurations, components, elements, apparatuses, devices, systems, methods, etc. can be made and may be desired for a specific application. Also, for any methods described, regardless of whether the method is described in conjunction with a flow diagram, it should be understood that unless otherwise specified or required by context, any explicit or implicit ordering of steps performed in the execution of a method does not imply that those steps must be performed in the order presented but instead may be performed in a different order or in parallel.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” “some example embodiments,” “one example embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with any embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” “some example embodiments,” “one example embodiment, or “in an embodiment” in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
Throughout this disclosure, references to components or modules generally refer to items that logically can be grouped together to perform a function or group of related functions. Like reference numerals are generally intended to refer to the same or similar components. Components and modules can be implemented in software, hardware, or a combination of software and hardware. The term “software” is used expansively to include not only executable code, for example machine-executable or machine-interpretable instructions, but also data structures, data stores and computing instructions stored in any suitable electronic format, including firmware, and embedded software. The terms “information” and “data” are used expansively and includes a wide variety of electronic information, including executable code; content such as text, video data, and audio data, among others; and various codes or flags. The terms “information,” “data,” and “content” are sometimes used interchangeably when permitted by context. It should be noted that although for clarity and to aid in understanding some examples discussed herein might describe specific features or functions as part of a specific component or module, or as occurring at a specific layer of a computing device (for example, a hardware layer, operating system layer, or application layer), those features or functions may be implemented as part of a different component or module or operated at a different layer of a communication protocol stack. Those of ordinary skill in the art will recognize that the systems, apparatuses, devices, and methods described herein can be applied to, or easily modified for use with, other types of equipment, can use other arrangements of computing systems, and can use other protocols, or operate at other layers in communication protocol stacks, then are described.
As described in more detail below, the present disclosure generally relates to detection, monitoring, and reporting of various environmental and conditional parameters. While many of the following examples are described in the context of bourbon production for the purposes of illustration, this disclosure is not so limited. Instead, the systems, apparatuses, devices, and methods described herein can be applicable to a variety of instances in which liquid is stored in a container, such as during whiskey production and wine production, for example. Moreover, beyond consumable liquids, the systems, apparatuses, devices, and methods described herein are also applicable to the level detection, monitoring, and reporting of any liquid that is stored in a container, such as chemicals, oils, or industrial liquids. Thus, while many of the examples described herein relate to bourbon barrels, it is to be readily appreciated that the systems, apparatuses, devices, and methods can have applicability across a variety of different types of storage tanks, vessels, and the like. Moreover the systems, apparatuses, devices, and methods described herein can be deployed in a variety of different types of storage facilities, such as warehouses, rickhouses, rackhouses, palletized warehouses, and so forth.
Upon consideration of this disclosure, however, it is to be appreciated that the systems and methods described herein can be used in a variety of operational environments beyond hazardous locations.
As described in more detail below, a plurality of wireless sensor nodes 102 can be positioned within the hazardous location 100 that are configured to periodically broadcast sensor-based information. In some embodiments, each wireless sensor node 102 is associated with a barrel of stored liquid (such as distilled spirits, for example) and can be configured to monitor several parameters that occur inside and outside a barrel. These measurements can include liquid level, ambient temperature, ambient pressure, humidity, acceleration (barrel movement), among others. The wireless sensor nodes 102 can also wirelesses relay battery information, such as the state of charge and the remaining capacity, during its periodic wireless transmission routine.
As schematically shown in
Each of the radiating cables 104 can be in electrical communication with one of the receivers 106A-N. In some embodiments, as depicted in
Still referring to
In some embodiments, a microcontroller of each wireless sensor node 202 transmits data through a 2.4 gigahertz ISM band radio signal. However, data can be transmitted on any frequency with a transceiver including 900 megahertz, 400 megahertz, 2.4 gigahertz, and 5 gigahertz, for example. Additionally, with regard to rickhouses, the stored barrels can be viewed as large walls of water between every row. Radio frequencies do not propagate through water well, if at all, and attenuate quite sharply. While a lower frequency radio could potentially transmit through these walls of water, the 2.4 gigahertz signal is generally completely blocked by water. This transmission issue is bypassed through the implementation of a distributed antenna system of the present disclosure as the radio frequency transmissions are collected proximate to each wireless sensor node.
As the radiating cables 204 can be routed through an explosive environment, the receiver 206 can have intrinsically safe radio frequency (RF) isolators 205. The receiver 206 can include a software defined radio (SDR) 207 and a processor. In some example embodiments, the SDR 207 is a two channel wide-band receiver that allows for radio signals from the wireless sensor nodes 202 to be received, decoded, and de-packetized. When the location 200 can have a large number of wireless sensors nodes 202 that are all transmitting on the same frequency, it is possible to encounter issues where the transmissions overlap. To combat this, radio frequencies can be separated. In some embodiments, between 2-80 channels, each channel being 1-2 megahertz wide, can be utilized. While a normal radio receiver can only listen to one channel at a time, the wide-band software defined radio 207 can beneficially listen to multiple channels all at the same time. As a result, one radio transceiver can be used to simultaneously decode transmissions coming from multiple channels inside the location 200.
As shown, the receiver 206 can provide the transmissions to the uplink 208 which can, for example, provide transmissions to a storage container monitoring computing system 250 via a network 212. The storage container monitoring the computing system 250 can provide information to various computing devices 262, such as a mobile communication device 264 or a distillery computing system 266. Such information can relate to, for example, volume levels of various containers 230, environmental data associated with various containers 230, and environmental data associated with the location 200. In some embodiments, information regarding the structural soundness of the location 200 can be ascertained by the data received from the wireless sensor nodes 202. For example, slight movements of the wireless sensor nodes 202 over time can be tracked to identify if the barrels are starting to lean or otherwise shift, which can be indicative of a pending collapse or other structural failure of the rickhouse.
The storage container monitoring computing system 250 can include one or more processors 252 configured to execute code stored in memory 252. Data collected from various barrels can be stored in various types of data stores, schematically shown as database 256. The storage container monitoring computing system 250 can further include one or more computer servers, which can include one or more web servers, one or more application servers, and/or other types of servers. For convenience, only one web server 260 and one application server 258 are depicted in
In some embodiments, the web server 258 can provide a graphical web user interface through which various users can interact with the storage container monitoring computing system 250. The graphical web user interface can also be referred to as a graphical user interface, client portal, client interface, graphical client interface, and so forth. The web server 260 can accept requests, such as HTTP requests, from clients and serve the clients responses, such as HTTP responses, along with optional data content, such as web pages (e.g. HTML documents) and linked objects (such as images, video, documents, data, and so forth). The application server 258 can provide a user interface for users who do not communicate with the storage container monitoring computing system 250 using a web browser. Such users can have special software installed on their computing device to allow the user to communicate with the application server 258 via a network.
The storage container monitoring computing system 250 can be in communication with the containers 230 via the network 212, using a suitable communications interface. The network 212 can be an electronic communications network and can include, but is not limited to, the Internet, LANs, WANs, GPRS networks, other networks, or combinations thereof. The network 212 can include wired, wireless, fiber optic, other connections, or combinations thereof. In general, the network 212 can be any combination of connections and protocols that will support communications between the storage container monitoring computing system 250 and the wireless sensors nodes 202. In some embodiments, the wireless sensor nodes 202 provide raw data and the storage container monitoring computing system 250 performs analysis on the data to assess volume change, environmental conditions, and so forth.
Embodiments of the storage container monitoring computing system 250 can also be implemented in cloud computing environments. “Cloud computing” may be defined as a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned via virtualization and released with minimal management effort or service provider interaction, and then scaled accordingly. A cloud model can be composed of various characteristics (e.g., on-demand self-service, broad network access, resource pooling, rapid elasticity, measured service, etc.), service models (e.g., Software as a Service (“SaaS”), Platform as a Service (“PaaS”), Infrastructure as a Service (“IaaS”), and deployment models (e.g., private cloud, community cloud, public cloud, hybrid cloud, etc.).
With regard to determining the location of a particular storage container 430 in the X-Y plane, any of a variety of techniques can be used. In one embodiment, the radio receiver that is picking up the strongest signal from the particular storage container 430 can be determined. As the signal collected from wireless sensor node 404 collected by the radiating cable 404 naturally loses signal strength as it travels toward the receiver, and based on the known routing of the radiating cable through the storage location, it can be determined where the storage container is along the radiating cable by its signal strength. Therefore, through a combination of pressure readings and signal strength determination, the location of a particular storage container to be geolocated in the X-Y-Z dimensions.
By way of an operational example, the storage container 431 in
A first side of the electrode portion 504 can contain a plurality of electrodes with ground shielding positioned therebetween. A total ground shield can be positioned on the second side. In one embodiment, the electrode portion 504 includes PET (polyethylene terephthalate) semicrystalline, which is a type of alcohol resistant plastic. Other plastic or non-conductive formulations (e.g. polycarbonate, fiberglass, etc.) could also be used in the construction of alternative embodiments. The electrode portion 504 can include two sensing electrodes and a static reference electrode. The two sensing electrodes are engineered to project an electric field through the wood of a barrel. The static electrode compensates the other two electrodes for ambient moisture and temperature effects. The main level sensing electrodes of the sensor system 502 can measure liquid levels within a barrel and account for capacitance change while ignoring ambient effects as measured by the static electrode. The sensor housing 506 can include an electronics package 508 (
Sensor systems in accordance with the present disclosure can be coupled to a barrel (or other storage container) using any suitable method. For example,
In accordance with another embodiment,
While the sensor system of
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value.
It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
The foregoing description of embodiments and examples has been presented for purposes of description. It is not intended to be exhaustive or limiting to the forms described. Numerous modifications are possible in light of the above teachings. Some of those modifications have been discussed and others will be understood by those skilled in the art. The embodiments were chosen and described for illustration of various embodiments. The scope is, of course, not limited to the examples or embodiments set forth herein, but can be employed in any number of applications and equivalent articles by those of ordinary skill in the art. Rather it is hereby intended the scope be defined by the claims appended hereto.
This application claims the benefit of U.S. Serial No. 63/286,595, filed on Dec. 7, 2021, entitled SYSTEMS AND METHODS FOR ENVIRONMENTAL AND CONDITIONAL PARAMETER MONITORING, the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63286595 | Dec 2021 | US |