The present disclosure relates to improving measurement accuracy in sensor systems. More particularly, the present disclosure is related to systems and methods for improving measurement accuracy of monitoring devices such as accelerometers used in wearable devices.
The ability of accurately measuring motion (e.g., speed and acceleration) is one of the important factors in the development of wearable devices. This is especially true for devices that measure caloric expenditure while the wearer of the device is in motion, e.g., during physical exercise.
Existing approaches that use classic integration of accelerometer data to measure speed suffer from difficulties of implementing those approaches into practice. This is mainly due to high sampling rate requirements and inherent accelerometer noise that causes a drift of the integration constant. Other approaches have their own drawbacks, and methods that rely on GPS data have limited applications.
One approach that applies a random forest classification method to acceleration data to classify modes of transportation, such as walking or using a bike, car, or train, completely fails to address accurate measuring of speed.
Accordingly, what is needed are systems and methods that improve the measurement accuracy of monitoring devices, including those that measure speed.
References will be made to embodiments of the invention, examples of which may be illustrated in the accompanying figures. These figures are intended to be illustrative, not limiting. Although the invention is generally described in the context of these embodiments, it should be understood that it is not intended to limit the scope of the invention to these particular embodiments.
In the following description, for purposes of explanation, specific details are set forth in order to provide an understanding of the invention. It will be apparent, however, to one skilled in the art that the invention can be practiced without these details. Furthermore, one skilled in the art will recognize that embodiments of the present invention, described below, may be implemented in a variety of ways, such as a process, an apparatus, a system, a device, or a method on a tangible computer-readable medium.
Components, or modules, shown in diagrams are illustrative of exemplary embodiments of the invention and are meant to avoid obscuring the invention. It shall also be understood that throughout this discussion that components may be described as separate functional units, which may comprise sub-units, but those skilled in the art will recognize that various components, or portions thereof, may be divided into separate components or may be integrated together, including integrated within a single system or component. It should be noted that functions or operations discussed herein may be implemented as components. Components may be implemented in software, hardware, or a combination thereof.
Furthermore, connections between components or systems within the figures are not intended to be limited to direct connections. Rather, data between these components may be modified, re-formatted, or otherwise changed by intermediary components. Also, additional or fewer connections may be used. It shall also be noted that the terms “coupled,” “connected,” or “communicatively coupled” shall be understood to include direct connections, indirect connections through one or more intermediary devices, and wireless connections.
Reference in the specification to “one embodiment,” “preferred embodiment,” “an embodiment,” or “embodiments” means that a particular feature, structure, characteristic, or function described in connection with the embodiment is included in at least one embodiment of the invention and may be in more than one embodiment. Also, the appearances of the above-noted phrases in various places in the specification are not necessarily all referring to the same embodiment or embodiments.
The use of certain terms in various places in the specification is for illustration and should not be construed as limiting. A service, function, or resource is not limited to a single service, function, or resource; usage of these terms may refer to a grouping of related services, functions, or resources, which may be distributed or aggregated. Furthermore, the use of memory, database, information base, data store, tables, hardware, and the like may be used herein to refer to system component or components into which information may be entered or otherwise recorded.
Furthermore, it shall be noted that: (1) certain steps may optionally be performed; (2) steps may not be limited to the specific order set forth herein; (3) certain steps may be performed in different orders; and (4) certain steps may be done concurrently.
Furthermore, it shall be noted that embodiments described herein are given in the context of estimating speed from motion data, but one skilled in the art shall recognize that the teachings of the present disclosure are not limited to estimating speed or the use of motion data and may equally be applied to other contexts that may benefit from improving the accuracy of sensor data. In this document, the terms “speed” and “speed type” are used interchangeably.
Motion sensor 104 is any device that is capable of generating motion-related signals from which motion-related data may be derived. Sensor 104 may directly or indirectly (e.g., via a smart phone) communicate to a remote network. In embodiments, sensor 104 is an accelerometer that measures acceleration and outputs raw or pre-processed accelerometer data 106, for example, by measuring acceleration over a period of time and generating a desired number of records 110 or data sets from the measured accelerometer data 106. In embodiments, e.g., for increased accuracy, sampled accelerometer data 106 may comprise individualized data, such that the extracted feature values are customized for a particular user, gender, exercise style, age, or other desired category, for example, in a training session that samples a particular user profile or group to generate feature values that may be used in lieu of a default feature values.
In embodiments, motion sensor 104 samples accelerometer data 106 for certain periods of time and for a number of different but known speed types 114. For example, sensor 104 may sample accelerometer data 106 for a sampling time of 3 minutes at speeds 0.5 mph, 1 mph, 1.5 mph, and so on, up to a sample speed of, e.g., 10 mph. In embodiments, the sampling period may be divided into shorter time periods of accelerometer data 106 to which features 112 may be applied to extract feature values that may be assembled into data records 110.
In embodiments, a processor (not shown in
In embodiments, the processor applies features 112 to accelerometer data 106 that has been measured during a 3-second time span to extract feature values for each speed type 114. For illustration purposes, only four records 110 that are associated with four different speed types 114 are displayed in
In embodiments, records 110 are partitioned, for example by using a random selection process, into a training set (e.g., 80% of records 110) and a test set (e.g., 20% of records 110) that serves as a validation data set. It is understood that some or all of the motion data gathering operations, feature selections, and record creations may be performed in a preliminary step prior to estimating or making decisions regarding a final speed.
Raw data 202 is any sensor data that may be gathered, for example, at a known running speed and for a predetermined amount of time. In embodiments, raw data 202 comprises any type of motion-related data, such as velocity and acceleration data from which speed data may be gained. Acceleration data may comprise magnitude, orientation, and timing data related to an acceleration or velocity.
Moving averages 210 represent any processing of raw data 202. In embodiments, processing delivers information regarding minima, maxima, and average values derived from raw data 202. Difference values 220 represent any processing of raw data 202 and/or moving averages 210 from which, for example, comparative data may be derived. Features 230 represent any processed or pre-processed data that is derived from or calculated based on data processing step 208, and is not limited to moving averages 210 and/or difference values 220, but may include any other data processing steps.
In embodiments, raw data 202 is processed to generate frequency, average absolute acceleration and any permutation of a difference, D, in average absolute values of an acceleration for three axis x, y, and z for a suitable coordinate system. For example, D can be expressed as
D
1
=|a
x
|−|a
y
|−|a
z| (eq. 1)
D
2
=|a
y
|−|a
x
|−|a
z| (eq. 2)
D
3
=|a
z
|−|a
y
|−|a
y| (eq. 3)
In embodiments, difference values 220 correspond to features 230 that may be used in a classification scheme according to various embodiments of the present disclosure. In embodiments, any number of features 230 may be applied to some or all of a set of sample data that is associated with a known walking or running speed so as to extract feature values for each speed type. The extracted feature values may then be assembled to generate records that are representative for each speed type, as shown in
At step 304, a subset of features that may comprise any number of features is randomly selected from the set of features. It is understood that the subset may comprise some or all features in the set of features.
At step 306, the subset of features is applied to the selected records to obtain feature values for each selected record that is associated with a different speed. In embodiments, a set of feature value differences is calculated between pairs of feature values in the selected records. Alternative, in embodiments, for each type of speed, the associated feature can be an average of the features from multiple records randomly selected into a set of records.
In embodiments, the calculated differences between pairs of feature values may define a matrix as illustrated in
In embodiments, entries for a first feature, f1, 420 in matrix 400 comprise calculated distances between pairs of feature values, each pair being associated with two different speed types. Entries for a second feature, f2, 422 also comprise calculated distances between pairs of feature values, each pair being associated with two different speed types, and so on, until distances are calculated for all s features.
As a result, for each of the s features 402-410, a maximum difference may be calculated between feature values associated with different but known speeds 402-430. Using the maximum differences between speed types 402-430, a classification decision may be made to assign one of speed types 402-430 to sample data, as will be discussed next with reference to
At step 504, a sample feature value is identified for a query record of unknown speed that may be received from a device such as a motion sensor that comprises an accelerometer. The sample feature value may correspond to the maximum feature value identified in step 502.
At step 506, it may be determined whether one feature value in a pair of feature values is farther away from the sample feature value than the other feature value in the pair.
Then, at step 508, all feature value differences that were obtained from the record for the speed associated with the farther distance may be eliminated from the set of feature value differences, in effect, eliminating that speed from the pool of potential speed types.
At step 510, it is determined whether there is only a single speed type remains that has not yet been eliminated. If so, process 500 outputs, at step 512, that remaining speed type as the chosen or estimated speed. Otherwise, if there remains more than one speed type in the pool of n possible speed types, process 500 may resume with step 502 by determining a new maximum difference among the remaining feature value differences and continue to eliminate potential speeds types until a single speed type estimate remains.
where f1 and f2 are feature values 602-604 associated with two different speed types, type A and type B, and where f avg_i is the average of all feature values for the selected feature across all selected speed types. For ith feature, f avg_i serves to normalize feature values 602-604 for a given feature and may be expressed as
Distance function 610 in Equation 4 uses favg_i to normalize feature values 602-604 for different features.
In embodiments, the difference between pairs of feature values 602-604 are calculated from data records associated with different speeds, such that each pair of feature values 602-604 is associated with two different speed types. In effect, the distance between two data records may therefore be represented by the differences of their feature values 602-604 for a given feature.
As shown in example in
In detail, in embodiments, a number of N test sample records (e.g., 1000 samples) 702 obtained from unknown speed data may be input to a random forest 704 that comprises a number of M decision units 706.
In embodiments, the number of decisions in favor of a given speed type, vi, is given by
Nvi=Σ
1
M
Ym,vi (eq. 6)
for m=1 to M. In Equation 6, Ym, vi represents the number of decisions for vi by the mth decision unit.
The classification probability 710 at a given speed may then be determined from the expression
where Nvi represents the number decisions in favor of speed vi, and Nt represents the total number decisions for k speed types
Nt=Σ
1
k
Nvi (eq. 8)
In embodiments, classification probabilities 710 and speeds Vi may be applied to the most likely speed estimation function 712 using the probability measurement given by Equation 7 for each speed type, such that the estimated final speed is given by
Vest=ΣinPvi*Vi (eq. 9)
for n speeds, i=1 to n.
It is understood that the embodiments of the present disclosure are not limited to most likely speed estimates based on accelerometer data, but may equally be applied to any other type of sensor that operates under different conditions to determine any other most likely condition or discrete condition estimate. In embodiments, discrete condition estimates (e.g., final speeds) are averaged and assigned to one of a predetermined number of discrete conditions, thereby, e.g., to quantize outputs of a random forest scheme that is discussed with respect to
In embodiments, an error between the predicted or estimated speed Vest and the actual speed, Vreal, may be defined as root mean square error expressed by
Briefly returning to
Process 800 represents a decision unit in which features, which may have been selected from a larger set of features, are evaluated to improve classification accuracy of a decision process. In embodiments, process 800 comprises counting, at step 814, the number of occurrences that a particular feature corresponds to a speed that the decision unit has selected as the final speed.
In embodiments, features are ranked based on the number of counted occurrences. In other words, features involved in predicting final speeds more often are ranked higher than that have less predictive value. Intuitively, speeds associated with those features that provide large differences between feature values (i.e., large differences between speed types) are more likely to be selected.
In embodiments, at step 816, the less often used features are eliminated as less predictive from the pool of potential features, such that they are no longer used in the feature selection process. As a result, decisions will be made by using the most predictive features, thereby, improving the accuracy of the classification process. In addition, the reduced set of features greatly improves the computational speed of the processor (or processors), since the smaller data set results in a lower number of computations that need to be performed.
In embodiments, at step 910, a set of test sample data, Ntest, that comprises test sample features of known test speed types, vi, is provided to a random forest. Test sample data may be randomly selected from speed records and, as in
At step 912, the sample data is used to determine for each speed type, v, a number of correct decisions, Nm, made by a decision unit.
At step 914, based on the number of correct decisions, Nm, a success rate that indicates how often a decision unit correctly has identified a given speed type, vi, is determined. This may be accomplished, for example, by using expression
At step 916, based on the success rate, a total score for each of the n known test speed types may be calculated, for example, as
where i=1 to n speed types.
At step 918, in embodiments, for a given decision unit, if the total score for the decision unit falls below a threshold (e.g., Score,m<80%), that decision unit may be eliminated. In embodiments, if one or more scores for a given decision unit fall below a threshold, that decision unit may be eliminated or replaced. In embodiments, if, for a given decision unit, the error, as
is larger than an acceptable threshold level (e.g., 20%), that decision unit may be replaced by another decision unit. In addition, the number of decision units M in the forest may be increased. Conversely, in embodiments, if the error is lower than the threshold, the number of decision units in the forest may be reduced, for example, by eliminating one or more of those decision units that result in decisions having the largest errors.
Aspects of the present patent document are directed to information handling systems. For purposes of this disclosure, an information handling system may include any instrumentality or aggregate of instrumentalities operable to compute, calculate, determine, classify, process, transmit, receive, retrieve, originate, route, switch, store, display, communicate, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes. For example, an information handling system may be a personal computer (e.g., desktop or laptop), tablet computer, mobile device (e.g., personal digital assistant (PDA) or smart phone), server (e.g., blade server or rack server), a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. The information handling system may include random access memory (RAM), one or more processing resources such as a central processing unit (CPU) or hardware or software control logic, ROM, and/or other types of nonvolatile memory. Additional components of the information handling system may include one or more disk drives, one or more network ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, touchscreen and/or a video display. The information handling system may also include one or more buses operable to transmit communications between the various hardware components.
A number of controllers and peripheral devices may also be provided, as shown in
In the illustrated system, all major system components may connect to a bus 1016, which may represent more than one physical bus. However, various system components may or may not be in physical proximity to one another. For example, input data and/or output data may be remotely transmitted from one physical location to another. In addition, programs that implement various aspects of this invention may be accessed from a remote location (e.g., a server) over a network. Such data and/or programs may be conveyed through any of a variety of machine-readable medium including, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media; and hardware devices that are specially configured to store or to store and execute program code, such as application specific integrated circuits (ASICs), programmable logic devices (PLDs), flash memory devices, and ROM and RAM devices.
Embodiments of the present invention may be encoded upon one or more non-transitory computer-readable media with instructions for one or more processors or processing units to cause steps to be performed. It shall be noted that the one or more non-transitory computer-readable media shall include volatile and non-volatile memory. It shall be noted that alternative implementations are possible, including a hardware implementation or a software/hardware implementation. Hardware-implemented functions may be realized using ASIC(s), programmable arrays, digital signal processing circuitry, or the like. Accordingly, the “means” terms in any claims are intended to cover both software and hardware implementations. Similarly, the term “computer-readable medium or media” as used herein includes software and/or hardware having a program of instructions embodied thereon, or a combination thereof. With these implementation alternatives in mind, it is to be understood that the figures and accompanying description provide the functional information one skilled in the art would require to write program code (i.e., software) and/or to fabricate circuits (i.e., hardware) to perform the processing required.
It shall be noted that embodiments of the present invention may further relate to computer products with a non-transitory, tangible computer-readable medium that have computer code thereon for performing various computer-implemented operations. The media and computer code may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind known or available to those having skill in the relevant arts. Examples of tangible computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media; and hardware devices that are specially configured to store or to store and execute program code, such as application specific integrated circuits (ASICs), programmable logic devices (PLDs), flash memory devices, and ROM and RAM devices. Examples of computer code include machine code, such as produced by a compiler, and files containing higher level code that are executed by a computer using an interpreter. Embodiments of the present invention may be implemented in whole or in part as machine-executable instructions that may be in program modules that are executed by a processing device. Examples of program modules include libraries, programs, routines, objects, components, and data structures. In distributed computing environments, program modules may be physically located in settings that are local, remote, or both.
One skilled in the art will recognize no computing system or programming language is critical to the practice of the present invention. One skilled in the art will also recognize that a number of the elements described above may be physically and/or functionally separated into sub-modules or combined together.
It shall be noted that elements of the claims, below, may be arranged differently including having multiple dependencies, configurations, and combinations. For example, in embodiments, the subject matter of various claims may be combined with other claims.
It will be appreciated to those skilled in the art that the preceding examples and embodiment are exemplary and not limiting to the scope of the present invention. It is intended that all permutations, enhancements, equivalents, combinations, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of the present invention.