Systems and methods for estimating depth from projected texture using camera arrays

Information

  • Patent Grant
  • 11486698
  • Patent Number
    11,486,698
  • Date Filed
    Monday, September 7, 2020
    4 years ago
  • Date Issued
    Tuesday, November 1, 2022
    2 years ago
Abstract
Systems and methods for estimating depth from projected texture using camera arrays are described. A camera array includes a conventional camera and at least one two-dimensional array of cameras, where the conventional camera has a higher resolution than the cameras in the at least one two-dimensional array of cameras, an illumination system configured to illuminate a scene with a projected texture, where an image processing pipeline application directs the processor to: utilize the illumination system controller application to control the illumination system to illuminate a scene with a projected texture, capture a set of images of the scene illuminated with the projected texture, and determining depth estimates for pixel locations in an image from a reference viewpoint using at least a subset of the set of images.
Description
FIELD OF THE INVENTION

The present application relates generally to the use of multi-baseline stereo systems to perform depth estimation and more specifically to the use of projected texture multi-baseline stereo systems for performing depth estimation.


BACKGROUND OF THE INVENTION

Camera arrays are typically passive depth acquisition devices that rely on texture in the scene to estimate depth. In image processing, the term texture or image texture is used to describe spatial arrangement of color or intensities in a region of an image. A region is considered to have texture when there is significant variation in color and/or intensity within the region. A region is said to be textureless when color and/or intensity are uniform or vary gradually. Disparity estimation processes used in multi-baseline stereo systems and camera arrays find correspondences between features visible in a set of images captured by the cameras in the system to determine depth. While this works for scenes with texture, depth estimation can fail in regions of a scene that lack texture due to insufficient features in the scene from which to determine pixel correspondences. Other depth cues can be used to compensate for an inability to recover depth based upon disparity including (but not limited to) shape from shading, depth from defocus, or other photogrammetry cues to determine depth in such flat (i.e. textureless) regions.


In a research report published in May of 1984 by the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology entitled “PRISM: A Practical Real-Time Imaging Stereo Matcher” by Nishihara (A.I. Memo 780), a process for determining depth using binocular stereo in which a scene is illuminated with an unstructured texture pattern by a projector is disclosed. The illumination is intended to provide suitable matching targets on surfaces in which surface contrast is low compared with sensor noise and other inter-image distortions. The disclosed process illuminates the scene with a random pattern and the depth estimation process assumes no a priori knowledge of the illumination pattern.


Following the publication of the research report by the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, a number of research groups have observed that use of random projected patterns with binocular stereo cameras can lead to regions of depth ambiguity due to the projected pattern being too self-similar in specific regions of the projected pattern. Accordingly, alternative projection patterns have been proposed to avoid self-similar regions. J. Lim, “Optimized projection pattern supplementing stereo systems,” in ICRA, 2009 proposes utilizing patterns generated using De Bruijn sequences and K. Klonige, “Projected Texture Stereo,” in ICRA, 2010 proposes utilizing patterns generated based upon Hamming codes.


SUMMARY OF THE INVENTION

Systems and methods in accordance with embodiments of the invention estimate depth from projected texture using camera arrays. One embodiment of the invention includes: at least one two-dimensional array of cameras comprising a plurality of cameras; an illumination system configured to illuminate a scene with a projected texture; a processor; and memory containing an image processing pipeline application and an illumination system controller application. In addition, the illumination system controller application directs the processor to control the illumination system to illuminate a scene with a projected texture. Furthermore, the image processing pipeline application directs the processor to: utilize the illumination system controller application to control the illumination system to illuminate a scene with a projected texture capture a set of images of the scene illuminated with the projected texture; determining depth estimates for pixel locations in an image from a reference viewpoint using at least a subset of the set of images. Also, generating a depth estimate for a given pixel location in the image from the reference viewpoint includes: identifying pixels in the at least a subset of the set of images that correspond to the given pixel location in the image from the reference viewpoint based upon expected disparity at a plurality of depths along a plurality of epipolar lines aligned at different angles; comparing the similarity of the corresponding pixels identified at each of the plurality of depths; and selecting the depth from the plurality of depths at which the identified corresponding pixels have the highest degree of similarity as a depth estimate for the given pixel location in the image from the reference viewpoint.


In a further embodiment, the at least one two-dimensional array of cameras comprises at least two two-dimensional arrays of cameras located in complementary occlusion zones surrounding the illumination system.


In another embodiment, a portion of a scene that is occluded in the field of view of at least one camera in a first of the two-dimensional arrays of cameras is visible in a plurality of cameras in a second of the arrays of cameras, where the first and second arrays of cameras are located in complementary occlusion zones on opposite sides of the illumination system.


In still further embodiment, the at least two two-dimensional arrays of cameras comprises a pair of two-dimensional arrays of cameras located in complementary occlusion zones on either side of the illumination system.


In still another embodiment, each array of cameras is a 2×2 array of monochrome cameras.


In a yet further embodiment, the projected texture includes a first spatial pattern period in a first direction and a second larger spatial pattern period in a second direction.


In yet another embodiment, the at least one two-dimensional array of cameras comprises one two-dimensional array of cameras including a plurality of lower resolution cameras and at least one higher resolution camera.


In a further embodiment again, the two-dimensional array of cameras comprises at least one lower resolution camera located above, below, to the left, and to the right of the higher resolution camera.


In another embodiment again, the higher resolution camera includes a Bayer filter pattern and the lower resolution cameras are monochrome cameras.


In a further additional embodiment, the image processing pipeline application configures the higher resolution camera to capture texture information when the illumination system is not illuminating the scene using the projected pattern.


In another additional embodiment, the projected texture includes a first spatial pattern period in a first direction and a second larger spatial pattern period in a second direction.


In a still yet further embodiment, the illumination system is a static illumination system configured to project a fixed pattern


In still yet another embodiment, the illumination system is a dynamic illumination system configured to project a controllable pattern; and the illumination system controller application directs the processor to control the pattern projected by the illumination system.


In a still further embodiment again, the illumination system includes a spatial light modulator selected from the group consisting of a reflective liquid crystal on silicon microdisplay and a translucent liquid crystal microdisplay.


In still another embodiment again, the image processing pipeline application directs the processor to: utilize the illumination system controller application to control the illumination system to illuminate a scene with a first projected texture; capture a first set of images of the scene illuminated with the first projected texture; determine initial depth estimates for pixel locations in an image from a reference viewpoint using at least a subset of the first set of images; utilize the illumination system controller application to control the illumination system to illuminate a scene with a second projected texture selected based upon at least one initial depth estimate for a pixel location in an image from a reference viewpoint; capture a second set of images of the scene illuminated with the second projected texture; and determine updated depth estimates for pixel locations in an image from a reference viewpoint using at least a subset of the first set of images.


In a still further additional embodiment, the spatial pattern period of the second projected texture at the at least one initial depth estimate for a pixel location in an image from a reference viewpoint is higher than the spatial resolution of the plurality of cameras at the at least one initial depth estimate for a pixel location in an image from the reference viewpoint.


In still another additional embodiment, the illumination system comprises an array of projectors.


In a yet further embodiment again, the array of projectors comprises projectors configured to project different patterns.


In yet another embodiment again, the different patterns comprise patterns having different spatial pattern periods.


In a further additional embodiment again, the projectors are configured to project controllable patterns; and the illumination system controller application directs the processor to control the patterns projected by the illumination system.


In another additional embodiment again, the projected pattern is random.


In another further embodiment, the projected pattern includes a smaller spatial pattern period in a first direction and a larger spatial pattern period in a second direction perpendicular to the first direction.


In still another further embodiment, the image processing pipeline application directs the processor to: utilize the illumination system controller application to control the illumination system to illuminate a scene with a projected texture; capture a first set of images of the scene illuminated with the projected texture; determining depth estimates for pixel locations in an image from a first reference viewpoint using at least a subset of the first set of images; utilize the illumination system controller application to control the illumination system to prevent the illumination of the scene with the projected texture; capture at least one image of the scene in which the natural texture of the scene is visible; and collocate natural texture and depth information for the scene.


In yet another further embodiment, the image processing pipeline application directs the processor to collocate natural texture and depth information for the scene by assuming that the first set of images and the at least one image are captured from the same viewpoint.


In another further embodiment again, at least one image of the scene in which the natural texture of the scene is visible is part of a second set of images of the scene in which the natural texture of the scene is visible. In addition, the image processing pipeline application further directs the processor to determining depth estimates for pixel locations in an image from a second reference viewpoint using at least a subset of the second set of images. Furthermore, the image processing pipeline application directs the processor to collocate natural texture and depth information for the scene by: identifying similar features in depth maps generated using the first and second sets of images; estimate relative pose using the similar features; and reprojecting depth estimates obtained using the first set of information into the second reference viewpoint.


In another further additional embodiment, the image processing pipeline application directs the processor to composite reprojected depth estimates generated using the first set of images and depth estimates generated using the second set of images based upon information concerning the reliability of the depth estimates.


Still yet another further embodiment includes: at least a pair of arrays of cameras located in complementary occlusion zones on either side of the illumination system, where each array of cameras comprises a plurality of cameras; an illumination system configured to illuminate a scene with a projected texture; a processor; and memory containing an image processing pipeline application and an illumination system controller application. In addition, the illumination system controller application directs the processor to control the illumination system to illuminate a scene with a projected texture. Furthermore, the image processing pipeline application directs the processor to: utilize the illumination system controller application to control the illumination system to illuminate a scene with a projected texture; capture a set of images of the scene illuminated with the projected texture; determining depth estimates for pixel locations in an image from a reference viewpoint using at least a subset of the set of images. Also, generating a depth estimate for a given pixel location in the image from the reference viewpoint includes: identifying pixels in the at least a subset of the set of images that correspond to the given pixel location in the image from the reference viewpoint based upon expected disparity at a plurality of depths along a plurality of epipolar lines aligned at different angles; comparing the similarity of the corresponding pixels identified at each of the plurality of depths; and selecting the depth from the plurality of depths at which the identified corresponding pixels have the highest degree of similarity as a depth estimate for the given pixel location in the image from the reference viewpoint.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A conceptually illustrates a camera array including a pair of arrays of cameras that each include an M×N arrays in accordance with an embodiment of the invention.



FIG. 1B conceptually illustrates a camera array including two arrays of cameras located on either side of an illumination system, where the arrays of cameras each include two monochrome cameras 104 in accordance with an embodiment of the invention.



FIG. 1C conceptually illustrates a camera array that utilizes two 2×2 arrays of monochrome cameras located in complementary occlusion zones on either size of an illumination system in accordance with an embodiment of the invention.



FIG. 1D conceptually illustrates a camera array including two 3×3 arrays of cameras located in complementary occlusion zones on either side of an illumination system, where each of the 3×3 arrays 102 of cameras forms a π filter group, in accordance with an embodiment of the invention.



FIG. 1E conceptually illustrates a camera array including two 1×4 linear arrays of cameras located in complementary occlusion zones on either side of an illumination system, where each of the 1×4 linear arrays 102 of cameras 104 includes two Green cameras, one Red camera, and one Blue camera, in accordance with an embodiment of the invention.



FIG. 1F conceptually illustrates a camera array including four arrays of cameras located in two pairs of complementary occlusion zones surrounding an illumination system in accordance with an embodiment of the invention.



FIG. 1G conceptually illustrates a camera array including a single array of cameras and a single illumination system in accordance with an embodiment of the invention.



FIG. 1H conceptually illustrates a camera array including two illumination systems located in complementary occlusion zones on either side of an array of cameras in accordance with an embodiment of the invention.



FIG. 1I conceptually illustrates a camera array including a conventional camera, an array of cameras, and an illumination system in accordance with an embodiment of the invention.



FIG. 2A conceptually illustrates epipolar lines utilized to perform disparity searches in a 2×2 array of monochrome cameras.



FIG. 2B conceptually illustrates epipolar lines utilized to perform disparity searches in a 5×5 array of monochrome cameras incorporating Green, Red and Blue cameras.



FIG. 3A conceptually illustrates a diffractive static illumination system in accordance with an embodiment of the invention.



FIG. 3B conceptually illustrates a static illumination system in which light from the light source is directly incident on the DOE.



FIG. 3C conceptually illustrates an illumination system including a reflective spatial light modulator system.



FIG. 3D conceptually illustrates an illumination system including a translucent spatial light modulator system.



FIG. 3E conceptually illustrates the comparative field of view onto which an illumination system projects light and the fields of view of cameras in a camera array.



FIG. 4A conceptually illustrates an array of projectors that project collimated light through DOEs in accordance with an embodiment of the invention.



FIG. 4B conceptually illustrates an array of projectors that project collimated light through DOEs through a lens that focuses the light on a focal plane in accordance with an embodiment of the invention.



FIG. 4C conceptually illustrates a projector array formed by a plurality of LEDS.



FIG. 4D conceptually illustrates an array of projectors that focuses light emerging from the projector microlenses on a focal plane using a lens in accordance with an embodiment of the invention.



FIGS. 4E-4I conceptually illustrate Gray code patterns that can be used to generate a non-random projected texture.



FIGS. 4J-4M conceptually illustrate the use of projected patterns incorporating randomly located dots having different sizes in accordance with some embodiments of the invention.



FIGS. 5A-5I illustrate camera array systems corresponding to the camera array systems illustrated in FIGS. 1A-1I with the exception that the illumination systems include an array of projectors.



FIG. 6 is a flow chart illustrating a process for collocating natural texture and depth information in accordance with an embodiment of the invention.



FIG. 7 is a flow chart illustrating a process for reprojecting depth information into the viewpoint of a set of texture information in accordance with an embodiment of the invention.





DETAILED DISCLOSURE OF THE INVENTION

Turning now to the drawings, systems and methods for estimating depth from projected texture using camera arrays in accordance with embodiments of the invention are illustrated. In several embodiments, a camera array is used to perform three-dimensional scanning of an object illuminated by a projected texture. In other embodiments, the camera array is configured to capture a depth map of a scene illuminated by a projected texture.


In many embodiments, a two dimensional array of cameras is utilized to capture a set of images of a scene illuminated by a projected texture and depth is estimated by performing disparity searches using the set of images. Corresponding pixels in the set of images captured by the cameras in the two dimensional array of cameras are located on different epipolar lines. When a random projection pattern is used, depth estimates can be unreliable where regions along an epipolar line are self-similar. With each increase in the number of different epipolar lines searched, the likelihood that a random projected pattern will be self-similar at each of the corresponding locations along the epipolar lines decreases.


In several embodiments, multiple cameras in the camera array are located in complementary occlusion zones around an illumination system so that depth estimates can be obtained when a projected pattern is occluded from the field of view of cameras located on one side of the illumination system by a foreground object. By distributing multiple cameras on either side of the illumination system, multiple cameras see the projected pattern in a region occluded from the fields of view of other cameras in the array. Therefore, depth estimates can be made using the subset of the images captured by the camera array in which the projected pattern is visible (i.e. unoccluded). In certain embodiments, the baseline between the camera arrays is larger than the baseline between cameras within a camera array. Accordingly, disparity observed along a first epipolar line will be significantly greater than disparity observed along a second (perpendicular) epipolar line. Therefore, a projected pattern can be utilized that incorporates a smaller spatial pattern period in a direction corresponding to the second epipolar line. For example, a pattern with a larger horizontal spatial pattern period than the vertical spatial pattern period can be utilized with a camera array in which a wide horizontal baseline exists between a pair of two-dimensional arrays of cameras and the largest vertical baseline between cameras in a two-dimensional array of cameras is significantly smaller than the horizontal baseline. In other embodiments, differences in spatial pattern periods can be employed along different axes within a projected pattern as appropriate to the requirements of a specific application.


In certain embodiments, a camera array including a set of lower resolution cameras and at least one higher resolution camera is utilized in combination with an illumination system. As is discussed in detail in U.S. Patent 2011/0069189 entitled “Capturing and Processing of Images Using Monolithic Camera Array with Heterogeneous Imagers” to Venkataraman et al. camera arrays can include cameras having different lenses and different resolutions. An array of lower resolution cameras can be utilized to estimate depth (irrespective of whether cameras in the array are located in complementary occlusion zones around the projector) and the higher resolution camera(s) utilized to acquire color information. In several embodiments, the lower resolution cameras are located in complementary occlusion zones around the higher resolution camera. In a number of embodiments at least one lower resolution camera is located above, below, to the left and to the right of the higher resolution camera.


A variety of illumination systems can be utilized to project texture. In several embodiments, static illumination systems are utilized that project a fixed pattern. In a number of embodiments, dynamic illumination systems are utilized in which the projected pattern is controllable. As discussed further below, camera arrays in accordance with many embodiments of the invention can control the projected pattern so that the spatial pattern period of the projected texture is selected to provide the greatest depth estimation precision at the depths at which objects are observed in the scene. In certain embodiments, an illumination system incorporating an array of projectors is utilized. In several embodiments, the projector array projects a fixed pattern. In other embodiments, the pattern projected by the projector array is controllable so that the spatial resolution of the intensity contrast is selected to provide the greatest depth estimation precision at the depths at which objects are observed in the scene. In a number of embodiments, the focal length of a projector in the illumination system is adjustable to coordinate spatial pattern period with the distance to an object within the scene.


Camera arrays that estimate depth using projected texture in accordance with embodiments of the invention are discussed further below.


Camera Arrays Incorporating Projectors


Passive depth acquisition systems, such as the camera arrays described in U.S. Pat. No. 8,619,082 entitled “Systems and Methods for Parallax Detection and Correction in Images Captured Using Array Cameras that Contain Occlusions using Subsets of Images to Perform Depth Estimation” to Ciurea et al., have a depth accuracy that is fundamentally dependent on three aspects of the camera array: (i) camera array geometry including (but not limited to) the baseline separation between the cameras in the array; (ii) focal length of the camera lenses; and (iii) pixel size of the sensors in each of the cameras. The relevant portions of U.S. Pat. No. 8,619,082 concerning depth estimation using sets of images is hereby incorporated by reference herein in its entirety. Generally, the accuracy of depth estimates made by performing disparity searches with respect to images captured by a camera array falls away inversely with distance of an object from the camera array. Illumination systems utilized in combination with camera arrays in accordance with many embodiments of the invention project texture so that, at any given distance from the camera array, the spatial density of contrasting intensities within the projected texture is no higher than the error in the depth generated by the disparity estimation algorithm at that distance. Stated another way, transitions between contrasting intensities in the projected texture are observable over two or more pixels. Where transitions between contrasting intensities in a projected texture have a spatial density that is higher than the spatial resolution of the cameras in the camera array, the images captured by the cameras in the array will average the projected texture with the result that the projected texture is less useful for performing depth estimation. In a number of embodiments, the illumination system is controllable so that the spatial density of projected texture is programmable. In this way, the projected texture can be dynamically configured based upon the distance of objects being illuminated.


A variety of camera arrays incorporating illumination systems in accordance with embodiments of the invention are illustrated in FIGS. 1A-1I and 5A-5I. The camera array 100 illustrated in FIG. 1A includes a pair of arrays 102 of cameras 104 that each include an M×N arrays of cameras 104. The camera arrays 102 are located in complementary occlusion zones on either size of an illumination system 106. The camera arrays 102 and the illumination system 106 are controlled and communicate with a processor 107. The processor is also configured to communicate with one or more different types of memory 108 that can be utilized to store an image processing pipeline application 110, image data 112 captured by the camera arrays 102, a projector controller application 114 and 3D image data 116. As is discussed further below, the 3D image data can include (but is not limited to) depth maps, meshes, color information, texture information, and/or point clouds. In many embodiments, the camera array is used as a 3D scanner to build a point cloud. In other embodiments, the camera array is used to capture images and/or video of a scene and corresponding depth maps.


A problem that can be encountered using an illumination system to project texture onto a scene for the purpose of performing depth estimation is that portions of the scene can be occluded in the field of view of one or more cameras in the camera array. Furthermore, foreground objects can occlude portions of the scene so that portions of the scene that are not illuminated by projected texture are visible within the field of view of one or more cameras in the camera array. In several embodiments, multiple cameras are located in complementary occlusion zones on either side of the projector. In this way, a portion of the scene that is not visible within the field of view of one or more cameras on a first side of the projector is visible within the field of view of multiple cameras on the opposite side of the projector.


When monochrome cameras are utilized to estimate depth, as few as two cameras can be located in complementary occlusion zones on either side of the projector. A camera array 120 including two arrays of cameras 102 located on either side of an illumination system 106, where the arrays of cameras each include two monochrome cameras 104 is illustrated in FIG. 1B. Suitable monochrome cameras include, but are not limited to, monochrome cameras that image the visible spectrum, monochrome cameras that image portions of the infrared (IR) spectrum, and/or monochrome cameras that image portions of the visible spectrum and portions of the IR spectrum.


In many embodiments, two dimensional arrays of cameras are utilized in complementary occlusion zones surrounding the illumination system. Estimating depth using a set of images captured by a linear array of cameras typically involves performing disparity searches along epipolar lines aligned at the same angle. As is discussed further below with reference to FIGS. 2A and 2B, estimating depth using a set of images captured by a two dimensional array of cameras typically involves performing disparity searches along epipolar lines aligned at different angles. When the illumination system 106 generates a random pattern, the likelihood that self-similar patches will exist in corresponding locations along multiple epipolar lines aligned at different angles is less likely than the case involving performing disparity searches along epipolar lines aligned at the same angle. Accordingly, the use of two dimensional arrays of cameras located in complementary occlusion zones around an illumination system can significantly enhance depth estimation performance. A camera array 130 that utilizes two 2×2 arrays 102 of monochrome cameras 104 located in complementary occlusion zones on either size of an illumination system 106 in accordance with an embodiment of the invention is illustrated in FIG. 1C. As noted above with respect to FIG. 1A, camera arrays in accordance with many embodiments of the invention can include any number of cameras in linear arrays and two-dimensional arrays located in complementary occlusion zones on either side of an illumination system.


The camera arrays described above with reference to FIGS. 1B and 1C include monochrome cameras. In several embodiments, the camera arrays can include cameras that image in multiple spectral channels such as (but not limited to) cameras that employ Bayer filters. In many embodiments, the arrays of cameras located in complementary occlusion zones on either side of an illumination system include different types of cameras. For example, cameras that capture different color channels can be located in each of the groups of cameras. So long as multiple cameras that capture image data in one color channel are located in each the complementary occlusion zones, then depth estimation can be performed within regions of the image that are occluded by foreground objects.


A camera array 140 including two 3×3 arrays 102 of cameras 104 located in complementary occlusion zones on either side of an illumination system 106, where each of the 3×3 arrays 102 of cameras forms a π filter group is illustrated in FIG. 1D. Each 3×3 array of cameras includes a central Green camera, a pair of Blue cameras and Red cameras in complementary occlusion zones on either side of the central Green camera and four Green cameras. In the illustrated embodiment, the pairs of Red and Blue cameras are in alternate complementary occlusion zones in each of the two arrays of cameras. In other embodiments, the same configuration of cameras can be utilized in each π filter group. While specific π filter groups are descried above with reference to FIG. 1D, π filter groups that include a variety of different types of cameras including (but not limited to) central Bayer cameras, and central near-IR cameras are described in detail in U.S. Patent Publication No. 2013/0293760 entitled “Camera Modules Patterned with pi Filter Groups”, to Nisenzon et al., the relevant disclosure from which concerning arrangements of cameras including different spectral filters in camera arrays is hereby incorporated by reference herein in its entirety.


A camera array 150 including two 1×4 linear arrays 102 of cameras 104 located in complementary occlusion zones on either side of an illumination system 106, where each of the 1×4 linear arrays 102 of cameras 104 includes two Green cameras, one Red camera, and one Blue camera, in accordance with an embodiment of the invention is illustrated in FIG. 1E. As can readily be appreciated, the number of cameras included in each linear array depends upon the number of spectral channels imaged by the camera array 150 and can include multiple cameras in each spectral channel located in each of the complementary occlusion zones as appropriate to the requirements of specific applications.


While the camera arrays described above with respect to FIGS. 1A-1E involve placement of arrays of cameras in complementary occlusion zones on either side of an illumination system, camera arrays in accordance with many embodiments of the invention can include multiple cameras placed in multiple sets of complementary occlusion zones surrounding an illumination system. A camera array 160 including four arrays 102 of cameras 104 located in two pairs of complementary occlusion zones surrounding an illumination system 106 is illustrated in FIG. 1F. In other embodiments, the illumination system can be completely surrounded or ringed by cameras. In several embodiments, cameras are placed in a single ring surrounding the illumination system so that the cameras form pairs of cameras in complementary occlusion zones on opposite sides of the ring. In many embodiments, the ring includes at least eight cameras. In certain embodiments, the ring includes at least 12 cameras. As can readily be appreciated, the number of cameras and the placement of the cameras in complementary occlusion zones surrounding the illumination system is largely dependent upon the requirements of a specific application.


While the placement of multiple cameras in complementary occlusion zones surrounding an illumination system can be desirable in many applications, camera arrays incorporating illumination systems for projecting texture in accordance with a number of embodiments of the invention can include cameras that are not located in complementary occlusion zones. Significant performance improvements can be achieved by simply pairing a single two-dimensional camera array with an illumination system (particularly in 3D scanning applications where occlusions are less of a concern). A camera array 170 including a single array 102 of cameras 104 and a single illumination system 106 in accordance with an embodiment of the invention is illustrated in FIG. 1G. As noted above and discussed further below with reference to FIGS. 2A and 2B, estimating depth using a set of images captured by a two dimensional array of cameras typically involves performing disparity searches along epipolar lines aligned at different angles. When the illumination system 106 generates a random pattern, the likelihood that self-similar patches will exist in corresponding locations along multiple epipolar lines aligned at different angles is less likely than the case involving performing disparity searches along epipolar lines aligned at the same angle. Accordingly, the use of a two dimensional array of cameras can significantly enhance depth estimation performance relative to the depth estimation performance achieved using a binocular pair. While a binocular pair will fail when a portion of the scene is occluded in the field of view of one of the cameras, the same is not necessarily true with a two dimensional array of cameras (depending upon the size of the two dimensional array). To the extent that foreground objects prevent portions of the scene from being illuminated with the projected texture, the camera array can attempt to perform depth estimation using the texture inherent to the scene and/or accommodate high uncertainty depths where insufficient texture is available. The same approach can be utilized by camera arrays that incorporate multiple cameras in complementary occlusion zones. Alternatively, such camera arrays can attempt to estimate depth from a virtual viewpoint collocated with the illumination system. In this way, only portions of the scene on which texture is projected are within the field of view of the virtual viewpoint.


The issue of foreground objects preventing illumination of portions of the scene by projected texture can be addressed by utilizing multiple projectors. Locating illumination systems in complementary occlusion zones on either side of the camera array increases the likelihood that a portion of the scene visible from the viewpoint of a reference camera in the camera array is illuminated by projected texture. A camera array 180 including two illumination systems located in complementary occlusion zones on either side of an array 102 of cameras 104 in accordance with an embodiment of the invention is illustrated in FIG. 1H. As can readily be appreciated, any number of illumination systems can be located in different complementary occlusion zones surrounding the array of cameras as appropriate to the requirements of specific applications. As discussed further below, many illumination systems utilized in accordance with embodiments of the invention incorporate arrays of projectors. In several embodiments, the camera array is surrounded by an array of projectors. In a number of embodiments, the camera array is surrounded by a ring of projectors. The specific configuration of the projectors in the array of projectors is largely dependent upon the requirements of a specific application.


In many applications, an array of cameras is paired with a conventional camera. In several embodiments, the array of cameras is utilized to perform a first function such as (but not limited to) capturing still photos and/or performing depth estimation. The conventional camera can be utilized to perform a second function such as (but not limited to) capturing video sequences and/or high resolution images. In a particular set of embodiments, the conventional camera is utilized to capture images and video sequences and the array of cameras is utilized to capture image data that is utilized to determine depth. Depth maps generated using the array of cameras can be reprojected into the field of view of the conventional camera. In a number of embodiments, the camera array includes one or more illumination systems that project texture onto a scene. In several embodiments, image data is captured by the conventional camera and then the scene is illuminated by the projected texture and image data is captured by the array of cameras. As can readily be appreciated, the sequencing of the capture of image data can be reversed. In other embodiments, image data is also captured by the array of cameras when the scene is not illuminated by the illumination system. Various processes for registering depth maps generated using a scene illuminated with projected texture and image data captured when the scene is not illuminated with projected texture are discussed further below. A camera array 190 including a conventional camera 192, an array 102 of cameras 104, and an illumination system 106 in accordance with an embodiment of the invention is illustrated in FIG. 1I. The conventional camera 192 is typically higher resolution than the cameras 104 in the array 102. The conventional camera 192 may, however, have the same resolution and/or a lower resolution to that of one or more of the cameras 104 in the array 102. In several embodiments, the conventional camera is a Bayer camera and the cameras 104 in the array 102 of cameras can include (but are not limited to) monochrome cameras of the same type, monochrome cameras that image different portions of the spectrum, and Bayer cameras. In many embodiments, the conventional camera 192 is formed as a first camera module and the array of cameras is formed as a second camera module. In other embodiments, the layout of the conventional camera and the array of cameras enables the use of a single camera module incorporating all of the cameras. In the illustrated embodiment, the array 102 of cameras 104 is located between the conventional camera 192 and the illumination system 106. Ideally, the array 102 of cameras 104 is located as close to the conventional camera 192 as possible so that very little of the scene visible within the field of view of the conventional camera is occluded from the fields of view of the cameras in the array of cameras. By locating the illumination system 106 on the opposite side of the array 102 of cameras 104 from the conventional camera 192, foreground objects are likely to prevent illumination of portions of the scene that are occluded in fields of view of the cameras in the array of cameras. In certain embodiments, an alternative configuration is utilized in which the conventional camera is located between the array of cameras and the illumination system. In a number of embodiments, cameras from the array are located in complementary occlusion zones surrounding the conventional camera. In many embodiments, at least one camera is located above, below, to the left, and to the right of the conventional camera. In several embodiments, illumination systems are located in complementary occlusion zones surrounding the array of cameras. In many embodiments, cameras in the array of cameras are located in complementary occlusion zones on either side of the conventional camera and illumination systems are located in complementary occlusion zones on either side of the conventional camera. In other embodiments, a single illumination system is adjacent a conventional camera surrounded by an array of cameras. As can readily be appreciated, the locations of one or more conventional camera(s), the cameras in the array of cameras, and one or more illumination systems is largely dependent upon the requirements of a specific application.


The camera arrays 102 can be constructed from an array camera module or sensor including an array of focal planes and an optic array including a lens stack for each focal plane in the array camera module. Sensors including multiple focal planes and the operation of such sensors are discussed in U.S. Patent Publication No. 2012/0012748 entitled “Architectures for System on Chip Array Cameras”, to Pain et al., the relevant disclosure from which is incorporated herein by reference in its entirety. A sensor including a single array of pixels on which images are formed by the optics of each camera can also be utilized to capture image data. In several embodiments, each camera includes a separate sensor. In many embodiments, individual lens barrels are utilized to implement the optics of the camera. Array camera modules incorporating cameras implemented using combinations of separate sensors and optic arrays, separate sensors and separate lens barrels and a single sensor and separate lens barrels in accordance with embodiments of the invention are disclosed in U.S. patent application Ser. No. 14/536,537 entitled “Methods of Manufacturing Array Camera Modules Incorporating Independently Aligned Lens Stacks” to Rodda et al. filed Nov. 7, 2014, the relevant disclosure from which is incorporated by reference herein in its entirety. Light filters can be used within each optical channel formed by the optics of a camera in the array camera module to enable different cameras to capture image data with respect to different portions of the electromagnetic spectrum. As can readily be appreciated, the construction of an array of cameras utilized in combination with an illumination system is typically dependent upon the requirements of a specific application.


The illumination system 106 projects texture onto a scene that is utilized to estimate depths of objects within the scene. A variety of illumination systems can be utilized to project texture. In several embodiments, static illumination systems are utilized that project a fixed pattern. In a number of embodiments, dynamic illumination systems are utilized in which the projected pattern is controllable. As discussed further below, camera arrays in accordance with many embodiments of the invention can control the projected pattern so that the spatial pattern period of the projected texture is selected to provide the greatest depth estimation precision at the depths at which objects are observed in the scene. In certain embodiments, an illumination system incorporating an array of projectors is utilized. In several embodiments, the projector array projects a fixed pattern. In other embodiments, the pattern projected by the projector array is controllable so that the spatial resolution of the intensity contrast or spatial pattern period is selected to provide the greatest depth estimation precision at the depths at which objects are observed in the scene.


The processor 107 can include logic gates formed from transistors (or any other device) that are configured to dynamically perform actions based on the instructions stored in the memory. Accordingly, processors in accordance with many embodiments of the invention can be implemented using one or more microprocessor(s), coprocessor(s), application specific integrated circuit(s) and/or an appropriately configured field programmable gate array(s) that are directed using appropriate software to control various operating parameters of the camera arrays.


In a variety of embodiments, the memory 108 includes circuitry such as, but not limited to, memory cells constructed using transistors, that are configured to store instructions. The image processing pipeline application 110 and the projector controller application 114 are typically non-transitory machine readable instructions stored in the memory cells and utilized to direct the processor 107 to perform processes including (but not limited to) the various processes described below.


In many embodiments, the image processing pipeline application 110 controls the illumination of the scene via the illumination system 106 using the projector controller application 114. The image processing pipeline application 110 can control the capture of image data using an array 102 of cameras 104 to enable capture of an image and/or the natural texture of a scene. In several embodiments, the image processing pipeline application 110 can configure the processor 107 to process images captured by camera arrays 102 to produce a synthesized higher resolution image. Processes for performing super-resolution processing using image data captured by an array camera are described in U.S. Pat. No. 8,878,950 entitled “Systems and Methods for Synthesizing High Resolution Images Using Super-Resolution Processes” to Lelescu et al., the relevant disclosure from which including the disclosure related to performing super-resolution processes is hereby incorporated by reference in its entirety.


The image processing pipeline application 110 can also illuminate the scene using projected texture and estimate depths of objects within the scene using depth estimation processes similar to those described in U.S. Pat. No. 8,619,082 to Ciurea et al. and incorporated by reference above. The projected texture assists with depth estimation in textureless regions of the scene. In a number of embodiments, the image processing pipeline application 110 can use the projector controller application 114 to modify the modulation pattern of the projected texture to increase depth estimation precision at a specific distance from the camera array. In several embodiments, the image processing pipeline 110 collocates natural texture information and depth information to create a set of collocated depth and texture information. The collocation process assumes that the scene is static between the capture of a set of image data of the scene illuminated by projected texture and a set of image data captured when the scene is not illuminated by projected texture. In many embodiments, the collocation process utilizes a depth map generated from the set of images used to obtain the natural texture information. In a number of embodiments, the process of reprojecting the depth information into the field of view of the texture information (or vice versa) involves compositing depth information determined using projected texture and without projected texture. In certain embodiments, confidence maps are utilized to guide the compositing of depth information. Various processes for collocating depth and texture information in accordance with embodiments of the invention are discussed further below.


While specific camera arrays incorporating illumination systems are described above with reference to FIG. 1A-1I, any of a variety of camera arrays can be utilized in combination with a projection system to estimate depth based upon projected texture in accordance with embodiments of the invention. Before discussing various illumination systems that can be utilized in camera arrays to project texture in accordance with embodiments of the invention, the benefits that can be achieved when using two-dimensional arrays of cameras to perform depth estimation from projected texture generated by an illumination system in accordance with various embodiments of the invention are discussed further below.


Utilizing Epipolar Lines Aligned at Different Angles to Perform Disparity Searches


Use of a two-dimensional array of cameras to estimate depth can involve determining the similarity of corresponding pixels in a plurality of images at different depths. Due to the spatial relationship of cameras in a two-dimensional array of cameras, the epipolar lines searched during the disparity search are aligned at different angels. In a binocular stereo system that utilizes a random projected texture, self-similar regions of projected texture can result in incorrect depth estimates. When disparity searches are conducted across epipolar lines aligned at different angles, the likelihood that a random projected texture includes similar patterns in corresponding pixel locations along multiple epipolar lines aligned at different angles is low. Indeed, the likelihood decreases with the increase in the number of cameras in the array utilized to perform the epipolar line search. Epipolar lines utilized to perform disparity searches in a 2×2 array of monochrome cameras are illustrated in FIG. 2A. The camera 202 in the top right hand corner of the array forms a reference camera and arrows indicate the direction of anticipated shifts of corresponding pixels with depth in alternate view images captured by the remaining three cameras 204. As can readily be appreciated, disparity searches involve searching along three different epipolar lines aligned at different angles with respect to each other.


Epipolar lines utilized to perform disparity searches in a 5×5 array of monochrome cameras including 17 Green cameras 4 Red cameras and 4 Blue cameras are illustrated in FIG. 2A. Assuming that the disparity search is performed using only the corresponding pixels from the Green cameras, disparity searches involve searching along eight different epipolar lines aligned at different angles with respect to each other. In other embodiments, the number of epipolar lines searched can be increased by utilizing corresponding pixels in each of the three color channels in the manner described in U.S. Pat. No. 8,780,113 entitled “Systems and Methods for Performing Depth Estimation using Image Data from Multiple Spectral Channels”, to Ciurea et al., the relevant disclosure from which is hereby incorporated by reference in its entirety. As can readily be appreciated, the specific number and type of cameras utilized to perform disparity searches is largely dependent upon the requirements of a specific application. By increasing the number of cameras in the array and/or the number of dimensions in the array (i.e. 1D to 2D), however, significant benefits can be achieved when estimating depth using projected textures irrespective of the size of the array. Where arrays of cameras are spaced with a wide baseline, the wide baseline can become the dominant epipolar direction. In several embodiments, projected patterns that are orthogonal to the dominant epipolar direction can increase the importance of other epipolar directions in the depth estimation process. Systems for projecting texture that can be utilized by camera arrays in accordance with embodiments of the invention are described further below.


Illumination Systems Utilized to Project Texture


A variety of illumination systems can be utilized to project texture for use in depth estimation in accordance with embodiments of the invention. In several embodiments, static illumination systems are utilized that project a fixed pattern. In a number of embodiments, dynamic illumination systems are utilized in which the projected pattern is controllable. As discussed further below, camera arrays in accordance with many embodiments of the invention can control the projected pattern so that the spatial resolution of the intensity contrast is selected to provide the greatest depth estimation precision at the depths at which objects are observed in the scene. In certain embodiments, an illumination system incorporating an array of projectors is utilized. In several embodiments, the projector array projects a fixed pattern. In other embodiments, the pattern projected by the projector array is controllable so that the spatial resolution of the intensity contrast is selected to provide the greatest depth estimation precision at the depths at which objects are observed in the scene.


Static Illumination Systems


A diffractive static illumination system in accordance with an embodiment of the invention is illustrated in FIG. 3A. The static illumination system 300 includes a light source 302. In several embodiments, the light source 302 is a monochromatic point source such as (but not limited to) a single mode fiber end face (potentially cleaned up by a spatial frequency filter), a laser diode, or a vertical-cavity surface-emitting laser (VCSEL). The light source 302 emits light that is collimated by a collimator 304 such as (but not limited to) a collimating lens. The collimated light is incident on a diffractive optical element (DOE) 306. If the DOE is designed appropriately to include a spherical phase component, the collimator 304 can be omitted from the static illumination system 300. A static illumination system 310 in which light from the light source 302 is directly incident on the DOE 306 is shown in FIG. 3B. In a number of embodiments, the DOE 306 is a phase grating such as binary or multilevel gratings. In other embodiments, amplitude gratings can also be utilized. In many embodiments, the features of the texture can be color or polarization and is not simply limited to spot shape and separation.


When using a conventional diffractive static illumination system, the angular period of the projected pattern is fixed or constant. In several embodiments, the projected texture can employ random texture, texture generated using De Bruijn sequences or texture generated based upon Hamming codes. As can readily be appreciated, any texture appropriate to the requirements of a specific application can be statically projected in accordance with embodiments of the invention by designing the potentially more complex DOE (theoretically any intensity distribution can be generated with the appropriately designed DOE from a coherent source). Random patterns are most desirable for the array camera in order to avoid confusion of the parallax detection process due to false parallax matches that can arise from a periodic texture pattern. Although, in many embodiments any of a variety of non-periodic texture and/or periodic texture patterns can be utilized as appropriate to the requirements of specific applications. Irrespective of the projected texture, texture projected by a static illumination system has a spatial pattern period that increases with distance. In several embodiments, the spatial period can be modified utilizing a controllable DOE to provide a spatial pattern period that is likely to yield the highest depth estimation precision at a given depth. In many embodiments, the system is designed so that suitable depth estimation precision is obtained at a minimum object distance. At the minimum object distance the pattern is determined so that adjacent points projected on the object at the minimum distance after being modulated by the camera array's blur (both lens and sensor) is still discernable as distinct points. Therefore, the modulation transfer function of the imaging systems needs to be taken into consideration in designing the density of projected patter at the minimum desired operating distance.


In several embodiments, an illumination system can be constructed using a light emitting diode as a light source. However, the LED needs to be structured and then imaged by a projection lens (“relayed”) into the scene in order to provide projected texture. Alternatively, the LED can be homogenized (e.g. with a microlens array condenser) and illuminated a diaphragm that has the desired (de-magnified, ideally non-periodic) projection pattern in it, which is then also imaged into the scene. An appropriately configured LED can be utilized as a single device or as part of an array. In several embodiments, the typically lithographically manufactured diaphragm or array of diaphragms can be replaced by a translucent LCD in order to provide the flexibility to change the projection pattern. Various dynamic illumination systems in accordance with embodiments of the invention are described below.


Dynamic Illumination Systems


A variety of dynamic illumination systems can be constructed using devices such as (but not limited to) spatial light modulation systems. Spatial light modulation systems are devices that can be used to modulate in a controllable manner the amplitude, phase, and/or polarization of light waves in space and time. In a number of embodiments, the spatial light modulator system is implemented using a reflective liquid crystal on silicon microdisplay. In many instances a spatial light modulation system is pixelated, which means that different phase, transmission, and/or polarization parameters can be applied to different spatial locations within the spatial light modulation system. In this way, the spatial light modulation system acts as a programmable grating (within the limits of its pixilation) in the case of its use in a diffractive pattern generator and a programmable diaphragm in the case of a reflective projector. An illumination system 320 including a reflective spatial light modulator system 322 is illustrated in FIG. 3C. A controller 324 controls the modulation applied to the incident light generated by the light source 302. In the illustrated embodiment, the incident light is shown as calumniated by the collimator 304. As noted above, a collimator can be omitted where the modulation pattern is selected appropriately. The controller 324 can be implemented via a dedicated device and/or using a processor forming part of the camera array that incorporates the dynamic illumination system.


In several embodiments, the spatial light modulator system is implemented using a translucent liquid crystal microdisplay. An illumination system 330 including a translucent spatial light modulator system 332 is illustrated in FIG. 3D. A controller 334 controls the modulation applied to the incident light generated by the light source 302. In the illustrated embodiment, the incident light is shown as calumniated by the collimator 304. As noted above, a collimator can be omitted where the modulation pattern is selected appropriately. The controller 334 can be implemented via a dedicated device and/or using a processor forming part of the camera array that incorporates the dynamic illumination system.


The ability to control the modulation pattern enables the selection of a modulation pattern(s) that are specific to the depths of objects within a scene. In several embodiments, initial depth estimates are determined with respect to objects in a scene and the initial depth estimates utilized to generate a projected texture having spatial pattern periods determined based upon the depths of the objects illuminated by specific portions of the projected texture. Similar techniques can be utilized to generate a set of textures that provide different levels of depth estimation precision at various depths. These textures can then be projected in a sequence and the depth estimates obtained using the projected texture likely to yield the highest depth estimation precision utilized to determine distances to objects visible within the scene. In this way, each set of captured images is only utilized to perform depth estimation within a given range of disparities at which a given projected texture yields the highest depth estimation precision.


In several embodiments, the projected texture can employ random texture, texture generated using De Bruijn sequences or texture generated based upon Hamming codes. As noted above, the spatial pattern periods of different regions of the texture can be modified based upon the depths of the objects illuminated by the projected texture. Alternatively, textures that provide different levels of depth estimation precision at various depths can be projected in a sequence and the depth estimates obtained using the projected texture likely to yield the highest depth estimation precision utilized to determine distances to objects visible within the scene.


Irrespective of whether the illumination system is static or dynamic, the illumination system will ideally be designed to project texture across the entire field of view of each of the cameras in the camera array. When cameras are located in complementary occlusion zones on either side of an illumination system, the field of view onto which the illumination system projects texture is typically significantly larger than the fields of view of the cameras. The comparative field of view onto which an illumination system projects light and the fields of view of cameras in a camera array is conceptually illustrated in FIG. 3E. An illumination system 400 is surrounded by two arrays of cameras 402, 404 located in complementary occlusion zones. The field of view 406 onto which the illumination system 400 projects light is significantly wider than the fields of view 408, 410 of the cameras in the arrays of cameras 402, 404. Beyond a predetermined distance, the projected texture is visible throughout the entire field of view 408, 410 of the cameras in the arrays of cameras 402, 404 (assuming an absence of foreground objects).


While a variety of illumination systems are described above with reference to FIGS. 3A-3D that use a single light source, illumination systems in accordance with several embodiments of the invention utilize multiple projectors. Illumination systems incorporating arrays of projectors in accordance with various embodiments of the invention are discussed below.


Projecting Textures Using Arrays of Projectors


An array of projectors that project collimated light through DOEs in accordance with an embodiment of the invention is illustrated in FIG. 4A. The projectors in the projector array 400 each include a light source 402 and a collimator 404. In the illustrated embodiment, the collimator 404 is a collimating lens. In other embodiments, any of a variety of collimators can be utilized and/or the collimated can be omitted. The collimated light from each light source 402 passes through a DOE 406 that modulates the light projected onto the scene. In several embodiments, a lens can be utilized to focus the projected light. An array of projectors 420 that project collimated light through DOEs through a lens 422 that focuses the light on a focal plane in accordance with an embodiment of the invention is illustrated in FIG. 4B. As can readily be appreciated the modulation patterns utilized in the array of projects can be static or dynamic as appropriate to the requirements of specific applications. Furthermore, different projectors in the array of projectors having different DOEs and/or colored light sources could be switched on in different combinations to create different patterns.


In a number of embodiments, a projector array is constructed using a plurality of light emitting diodes (LED)s. A projector array formed by a plurality of LEDS is illustrated in FIG. 4C. The projector array 450 includes LEDs 452 that project light onto a set of condenser microlenses 454 in a microlens array that can be formed upon a glass substrate 456. Modulation patterns can be patterned onto the glass substrate that modulate light passing through the substrate and project light via projection microlenses 458 in a microlens array formed upon the opposite surface of the glass substrate. Each combination of a condenser and projector microlens can be considered to be a micro-projection unit. In several embodiments, a lens can be utilized to focus the projected light onto a focal plane. An array of projectors 460 that focuses light emerging from the projector microlenses on a focal plane using a lens 462 in accordance with an embodiment of the invention is illustrated in FIG. 4D.


Projector arrays can be utilized to project a variety of patterns in accordance with various embodiments of the invention. A projected texture that includes intensity modulation can be achieved using Gray code patterns in which different projectors project overlaying patterns of increasingly smaller spatial pattern periods. Gray code patterns are conceptually illustrated in FIGS. 4E-4H. The increase in intensity across one spatial pattern period 480 of the pattern having the largest spatial pattern period shown in FIG. 4E is illustrated in FIG. 4I. As can readily be appreciated, the effect of projecting the Gray code patterns is to successively increase and decrease the intensity of the projected pattern across scene onto which the texture is projected. In several embodiments, Gray code patterns are used in combination with phase-shifted shaped fringe projection patterns.


The patterns described above with reference to FIGS. 4E-4H vary in a predictable pattern across the scene. When two-dimensional camera arrays are utilized to estimate depth, the projected texture will ideally vary along every epipolar line searched during the depth estimation process. As noted above, the spatial pattern period may be different along different epipolar lines for reasons including (but not limited to) compensating for the presence of a dominant epipolar line. Accordingly, projector arrays in accordance with many embodiments of the invention project random textures. The use of a series of projected patterns incorporating randomly located dots having different sizes is illustrated in FIGS. 4J-4M. As can readily be appreciated, the projection of the different random dot patterns can achieve a random pattern having non-deterministic intensity variations (color variations and/or phase variations) with a spatial pattern period determined based upon the size of the smallest dots. Due to the randomness of the projected patterns, there are likely to be some regions within the pattern that are similar. The likelihood that these regions will be located in regions along multiple epipolar lines that correspond at a specific depth is low. Therefore, the random pattern can provide improved performance in the context of camera arrays that estimate depth using two-dimensional arrays of cameras. Where the generation of patterns by the projector array is controllable, the spatial pattern period can be controlled so that the spatial pattern period provides increased depth estimation precision at a given depth. In several embodiments, spatial pattern period is controlled by only illuminating the scene using projectors having static spatial patterns with spatial pattern periods above a specified threshold. In this way, additional projectors can be used to successively illuminate the scene and depth estimates obtained using the image data captured when the scene was illuminated with projected texture that yields the highest depth estimation precision at a given depth. Where a large projector array is utilized, different projectors can be utilized to illuminate different portions of the field of view of the cameras in the camera array and the spatial pattern periods in each region modified in the manner outlined above based upon an initial depth estimate for the region.


Although specific projector arrays and sets of patterns that can be utilized by projector arrays are described above with reference to FIGS. 4A-4M, any of a variety of projector arrays and/or projected patterns can be utilized to project texture for the purposes of estimating depth using a camera array as appropriate to the requirements of specific applications in accordance with embodiments of the invention. Camera arrays incorporating arrays of projectors in accordance with various embodiments of the invention are discussed further below.


Camera Arrays Incorporating Arrays of Projectors


An illumination system incorporating an array of projectors can be utilized in any camera array configuration incorporating an illumination system. FIGS. 5A-5I illustrate camera array systems 500, 520, 530, 540, 550, 560, 570, 580, 590 corresponding to the camera array systems 100, 120, 130, 140, 150, 160, 170, 180, 190 illustrated in FIGS. 1A-1I with the exception that the illumination systems 106 include an array of projectors 502. As can readily be appreciated, camera arrays including arrays of cameras, and/or arrays of projectors located in any of a variety of configurations can be utilized as appropriate to the requirements of specific applications in accordance with embodiments of the invention.


Capturing Depth and Natural Texture of an Imaged Scene


Many applications require capture of the texture of a natural scene in addition to determining depth information. Camera arrays in accordance with a number of embodiments of the invention are configured to capture image data of a scene without illumination with projected texture and image data of the same scene illuminated with projected texture. The image data concerning the natural texture of the scene can be combined with depth estimates obtained using the projected texture. In several embodiments, the natural texture of the scene is rendered as an image and the depth map is registered with respect to the image. In a number of embodiments, the combined data is used to form a point cloud and/or to generate a mesh and texture for one or more objects visible within the scene. Where motion between the capture of the two sets of image date is negligible, then collation is a simple matter as the data can be assumed to be captured from the same viewpoint. Where significant motion is allowed, depth maps generated using each set of data and/or other depth queues can be utilized to detected corresponding features and determine the motion of the camera array between the capture of the sets of data.


A process for collocating natural texture and depth information in accordance with an embodiment of the invention is illustrated in FIG. 6. The process 600 includes illuminating (602) a scene using projected texture and capturing a set of images using a camera array. As noted above, the projected texture can be static, a sequence of dynamic textures or determined dynamically based upon initial depth estimates. A set of images captured by cameras in the camera array can be utilized to estimate (604) depths of objects visible within the scene. In a number of embodiments, the depth estimates are utilized to generate a depth map. In several embodiments, a confidence map is generated to indicate the reliability of depth estimates within the depth map. Any of a variety of confidence metrics can be utilized including (but not limited to) those described above in U.S. Pat. No. 8,619,082 to Ciurea et al., the relevant disclosure from which related to confidence metrics is hereby incorporated by reference herein in its entirety.


The illumination system ceases (606) projection. Where motion is allowed and the camera array incorporates motion sensors, motion measurements can optionally be obtained (608). The motion measurements can be utilized in subsequent processing related to estimating the relative poses of the cameras in the camera array between capture of sets of image data.


A set of image data is captured (610) in which the natural texture of the scene is visible using cameras in the camera array. In a number of embodiments, depths to scene objects are optionally estimated (612). The depth information can be utilized to identify features or sets of features that are similar to features or sets of features visible in the depth information obtained from the set of images in which the projected texture is visible.


Where the cameras in the array capture image data in different spectral channels, texture information may be optionally synthesized (614) using image data from the various spectral channels. In many embodiments, the synthesis involves performing fusion of the image data. In several embodiments, the synthesis involves performing a super-resolution similar to the super-resolution processes referenced above. In other embodiments, the natural texture of the scene is captured using a single monochrome camera or a single Bayer camera in the camera array.


When information concerning the natural texture of the scene and information concerning the depths of objects within the scene is obtained, the information can be collocated to create a set of information that includes both texture and depth. A variety of processes can be utilized to collocate the two sets of information. In several embodiments, depth information determined using the natural texture of the scene can be utilized to reproject one of the sets of information into the viewpoint of another of the sets of information. In other embodiments, any of a variety of depth cues discernible from the texture information can be used to perform colocation. In certain embodiments, texture that is likely to yield reliable depth estimates and the confidence map are utilized to perform colocation. As can readily be appreciated, the sequence in which the sets of image data are captured in FIG. 6 can be reversed.


Reprojecting Depth Maps


A process for reprojecting depth information into the viewpoint of a set of texture information in accordance with an embodiment of the invention is illustrated in FIG. 7. The process 700 includes obtaining (702) an initial depth map and an alternate view depth map. The initial depth map can be generated using a set of image data captured when the scene is illuminated with projected texture. The alternate view depth map can be generated using image data captured of the scene when the illumination system does not illuminate the scene and so the natural texture of the scene is visible. Where motion sensor measurement data is available, motion sensor measurement data can also be obtained (704) to assist with determining the relative pose of the cameras in the array between the viewpoint of the initial depth map and the viewpoint of the alternate view depth map.


In many embodiments, the depth maps are filtered (706) based upon confidence maps to eliminate depth estimates that are unreliable. Features can then be identified (708, 710) in each depth map. Any of a variety of features can be utilized to identify a landmark including (but not limited to) features identified using Scale-invariant Feature Transform (SIFT) descriptors, features identified using Speeded Up Robust Features (SURF) descriptors, and/or features identified using Binary Robust Independent Elementary Features (BRIEF) descriptors. As can readily be appreciated, the specific technique utilized to identify features is largely dependent upon the requirements of a specific application.


The relative pose of the cameras in the array between the viewpoint of the initial depth map and the viewpoint of the alternate view depth map can be determined (712) by minimizing the reprojection error of a set of common features visible in both the initial depth map and the alternate view depth map. Any of a wide variety of structure from motion techniques can be utilized to determine the relative pose that minimizes reprojection error. In several embodiments, the search process is assisted by the availability of motion sensor measurement data.


The relative pose can be utilized to reproject (714) the initial depth map into the field of view of the texture information and obtain collocated depth and texture information. In many embodiments, the reprojection can provide additional information concerning the reliability of the reprojected depth estimates. In several embodiments, the confidence map of the reprojected depth information is optionally updated (716). In certain embodiments, the confidence maps of the reprojected initial depth map and the alternate view depth map can be utilized to composite depth estimates from the two depth maps. In this way, depth estimates at the edges of objects that are generally very reliable in natural scenes can be utilized in the composited depth map. In many embodiments, edge maps are utilized to guide the compositing and the depth estimates are filtered to provide realistic depth transitions between depth information composited from the two depth maps. As can readily be appreciated, any of a variety of techniques can be utilized to composite depth maps as appropriate to the requirements of specific applications in accordance with embodiments of the invention.


While specific processes for collocating depths information and texture information obtained using a camera array incorporating an illumination system are described above with reference to FIGS. 6 and 7, any of a variety of processes can be utilized to collocate depth and texture information as appropriate to the requirements of specific applications. Furthermore, such processes can be utilized with any of a variety of camera architectures including binocular stereo camera arrays incorporating a single static illumination system in accordance with many embodiments of the invention.


While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as an example of one embodiment thereof. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.

Claims
  • 1. A camera array, comprising: a conventional camera;at least one two-dimensional array of cameras comprising a plurality of cameras, wherein the conventional camera has a higher resolution than the plurality of cameras in the at least one two-dimensional array of cameras, wherein a horizontal baseline between the conventional camera and the at least one two-dimensional array of cameras is larger than a vertical baseline between cameras within the at least one two-dimensional array of cameras;an illumination system configured to illuminate a scene with a projected texture;a processor; andmemory containing an image processing pipeline application and an illumination system controller application;wherein the illumination system controller application directs the processor to control the illumination system to illuminate a scene with a projected texture;wherein the image processing pipeline application directs the processor to: utilize the illumination system controller application to control the illumination system to illuminate the scene with the projected texture;capture using the conventional camera and the at least one two-dimensional array of cameras, a set of images of the scene illuminated with the projected texture;determine depth estimates for pixel locations in an image from a reference viewpoint using at least a subset of the set of images, wherein generating a depth estimate for a given pixel location in the image from the reference viewpoint comprises: identifying pixels in the at least a subset of the set of images that correspond to the given pixel location in the image from the reference viewpoint based upon expected disparity at a plurality of depths along a plurality of epipolar lines aligned at different angles;comparing the similarity of the corresponding pixels identified at each of the plurality of depths; andselecting the depth from the plurality of depths at which the identified corresponding pixels have the highest degree of similarity as a depth estimate for the given pixel location in the image from the reference viewpoint;process the set of images using the depth estimates to produce a synthesized higher resolution image.
  • 2. The camera array of claim 1, wherein the at least one two-dimensional array of cameras comprises at least two two-dimensional arrays of cameras located in complementary occlusion zones surrounding the illumination system.
  • 3. The camera array of claim 2, wherein a portion of a scene that is occluded in the field of view of at least one camera in a first of the two-dimensional arrays of cameras is visible in a plurality of cameras in a second of the arrays of cameras, where the first and second arrays of cameras are located in complementary occlusion zones on opposite sides of the illumination system.
  • 4. The camera array of claim 3, wherein the at least two two-dimensional arrays of cameras comprises a pair of two-dimensional arrays of cameras located in complementary occlusion zones on either side of the illumination system.
  • 5. The camera array of claim 4, wherein each array of cameras is a 2×2 array of monochrome cameras.
  • 6. The camera array of claim 4, wherein the projected texture includes a first spatial pattern period in a first direction and a second larger spatial pattern period in a second direction.
  • 7. The camera array of claim 1, wherein the at least one two-dimensional array of cameras comprises one two-dimensional array of cameras including a plurality of lower resolution cameras and at least one higher resolution camera.
  • 8. The camera array of claim 7, wherein the two-dimensional array of cameras comprises at least one lower resolution camera located above, below, to the left, and to the right of the higher resolution camera.
  • 9. The camera array of claim 8, wherein the higher resolution camera includes a Bayer filter pattern and the lower resolution cameras are monochrome cameras.
  • 10. The camera array of claim 9, wherein the image processing pipeline application configures the higher resolution camera to capture texture information when the illumination system is not illuminating the scene using the projected pattern.
  • 11. The camera array of claim 1, wherein the projected texture includes a first spatial pattern period in a first direction and a second larger spatial pattern period in a second direction.
  • 12. The camera array of claim 1, wherein the illumination system is a static illumination system configured to project a fixed pattern.
  • 13. The camera array of claim 1, wherein: the illumination system is a dynamic illumination system configured to project a controllable pattern; andthe illumination system controller application directs the processor to control the pattern projected by the illumination system.
  • 14. The camera array of claim 1, wherein the illumination system includes a spatial light modulator selected from the group consisting of a reflective liquid crystal on silicon microdisplay and a translucent liquid crystal microdisplay.
  • 15. The camera array of claim 14, wherein the image processing pipeline application directs the processor to: utilize the illumination system controller application to control the illumination system to illuminate a scene with a first projected texture;capture a first set of images of the scene illuminated with the first projected texture;determine initial depth estimates for pixel locations in an image from a reference viewpoint using at least a subset of the first set of images;utilize the illumination system controller application to control the illumination system to illuminate a scene with a second projected texture selected based upon at least one initial depth estimate for a pixel location in an image from a reference viewpoint;capture a second set of images of the scene illuminated with the second projected texture; anddetermine updated depth estimates for pixel locations in an image from a reference viewpoint using at least a subset of the first set of images.
  • 16. The camera array of claim 15, wherein the spatial pattern period of the second projected texture at the at least one initial depth estimate for a pixel location in an image from a reference viewpoint is higher than the spatial resolution of the plurality of cameras at the at least one initial depth estimate for a pixel location in an image from the reference viewpoint.
  • 17. The camera array of claim 1, wherein the illumination system comprises an array of projectors.
  • 18. The camera array of claim 17, wherein the array of projectors comprises projectors configured to project different patterns.
  • 19. The camera array of claim 18, wherein the different patterns comprise patterns having different spatial pattern periods.
  • 20. The camera array of claim 18, wherein: the projectors are configured to project controllable patterns; andthe illumination system controller application directs the processor to control the patterns projected by the illumination system.
CROSS-REFERENCE TO RELATED APPLICATIONS

The current application is a continuation of U.S. patent application Ser. No. 16/177,191, entitled “Systems and Methods for Estimating Depth from Projected Texture using Camera Arrays” filed Oct. 31, 2018, which is a continuation of U.S. patent application Ser. No. 14/547,048, entitled “Systems and Methods for Estimating Depth from Projected Texture using Camera Arrays” filed Nov. 18, 2014, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 61/905,423, entitled “Structured Lighting System for Depth Acquisition in Texture-less Regions using Camera Arrays” filed Nov. 18, 2013, the disclosures of which are incorporated herein by reference.

US Referenced Citations (1144)
Number Name Date Kind
4124798 Thompson Nov 1978 A
4198646 Alexander et al. Apr 1980 A
4323925 Abell et al. Apr 1982 A
4460449 Montalbano Jul 1984 A
4467365 Murayama et al. Aug 1984 A
4652909 Glenn Mar 1987 A
4888645 Mitchell et al. Dec 1989 A
4899060 Lischke Feb 1990 A
4962425 Rea Oct 1990 A
5005083 Grage et al. Apr 1991 A
5070414 Tsutsumi Dec 1991 A
5144448 Hornbaker et al. Sep 1992 A
5157499 Oguma et al. Oct 1992 A
5325449 Burt et al. Jun 1994 A
5327125 Iwase et al. Jul 1994 A
5463464 Ladewski Oct 1995 A
5488674 Burt et al. Jan 1996 A
5629524 Stettner et al. May 1997 A
5638461 Fridge Jun 1997 A
5757425 Barton et al. May 1998 A
5793900 Nourbakhsh et al. Aug 1998 A
5801919 Griencewic Sep 1998 A
5808350 Jack et al. Sep 1998 A
5832312 Rieger et al. Nov 1998 A
5833507 Woodgate et al. Nov 1998 A
5880691 Fossum et al. Mar 1999 A
5911008 Niikura et al. Jun 1999 A
5933190 Dierickx et al. Aug 1999 A
5963664 Kumar et al. Oct 1999 A
5973844 Burger Oct 1999 A
6002743 Telymonde Dec 1999 A
6005607 Uomori et al. Dec 1999 A
6034690 Gallery et al. Mar 2000 A
6069351 Mack May 2000 A
6069365 Chow et al. May 2000 A
6095989 Hay et al. Aug 2000 A
6097394 Levoy et al. Aug 2000 A
6124974 Burger Sep 2000 A
6130786 Osawa et al. Oct 2000 A
6137100 Fossum et al. Oct 2000 A
6137535 Meyers Oct 2000 A
6141048 Meyers Oct 2000 A
6160909 Melen Dec 2000 A
6163414 Kikuchi et al. Dec 2000 A
6172352 Liu Jan 2001 B1
6175379 Uomori et al. Jan 2001 B1
6205241 Melen Mar 2001 B1
6239909 Hayashi et al. May 2001 B1
6292713 Jouppi et al. Sep 2001 B1
6340994 Margulis et al. Jan 2002 B1
6358862 Ireland et al. Mar 2002 B1
6373518 Sogawa Apr 2002 B1
6419638 Hay et al. Jul 2002 B1
6443579 Myers Sep 2002 B1
6445815 Sato Sep 2002 B1
6476805 Shume et al. Nov 2002 B1
6477260 Shimomura Nov 2002 B1
6502097 Chan et al. Dec 2002 B1
6525302 Dowski, Jr. et al. Feb 2003 B2
6552742 Seta Apr 2003 B1
6563537 Kawamura et al. May 2003 B1
6571466 Glenn et al. Jun 2003 B1
6603513 Berezin Aug 2003 B1
6611289 Yu et al. Aug 2003 B1
6627896 Hashimoto et al. Sep 2003 B1
6628330 Lin Sep 2003 B1
6628845 Stone et al. Sep 2003 B1
6635941 Suda Oct 2003 B2
6639596 Shum et al. Oct 2003 B1
6647142 Beardsley Nov 2003 B1
6657218 Noda Dec 2003 B2
6671399 Berestov Dec 2003 B1
6674892 Melen Jan 2004 B1
6750904 Lambert Jun 2004 B1
6765617 Tangen et al. Jul 2004 B1
6771833 Edgar Aug 2004 B1
6774941 Boisvert et al. Aug 2004 B1
6788338 Dinev et al. Sep 2004 B1
6795253 Shinohara Sep 2004 B2
6801653 Wu et al. Oct 2004 B1
6819328 Moriwaki et al. Nov 2004 B1
6819358 Kagle et al. Nov 2004 B1
6879735 Portniaguine et al. Apr 2005 B1
6897454 Sasaki et al. May 2005 B2
6903770 Kobayashi et al. Jun 2005 B1
6909121 Nishikawa Jun 2005 B2
6917702 Beardsley Jul 2005 B2
6927922 George et al. Aug 2005 B2
6958862 Joseph Oct 2005 B1
6985175 Iwai et al. Jan 2006 B2
7015954 Foote et al. Mar 2006 B1
7085409 Sawhney et al. Aug 2006 B2
7161614 Yamashita et al. Jan 2007 B1
7199348 Olsen et al. Apr 2007 B2
7206449 Raskar et al. Apr 2007 B2
7215364 Wachtel et al. May 2007 B2
7235785 Hornback et al. Jun 2007 B2
7245761 Swaminathan et al. Jul 2007 B2
7262799 Suda Aug 2007 B2
7292735 Blake et al. Nov 2007 B2
7295697 Satoh Nov 2007 B1
7333651 Kim et al. Feb 2008 B1
7369165 Bosco et al. May 2008 B2
7391572 Jacobowitz et al. Jun 2008 B2
7408725 Sato Aug 2008 B2
7425984 Chen et al. Sep 2008 B2
7430312 Gu Sep 2008 B2
7471765 Jaffray et al. Dec 2008 B2
7496293 Shamir et al. Feb 2009 B2
7564019 Olsen et al. Jul 2009 B2
7599547 Sun et al. Oct 2009 B2
7606484 Richards et al. Oct 2009 B1
7620265 Wolff et al. Nov 2009 B1
7633511 Shum et al. Dec 2009 B2
7639435 Chiang Dec 2009 B2
7639838 Nims Dec 2009 B2
7646549 Zalevsky et al. Jan 2010 B2
7657090 Omatsu et al. Feb 2010 B2
7667824 Moran Feb 2010 B1
7675080 Boettiger Mar 2010 B2
7675681 Tomikawa et al. Mar 2010 B2
7706634 Schmitt et al. Apr 2010 B2
7723662 Levoy et al. May 2010 B2
7738013 Galambos et al. Jun 2010 B2
7741620 Doering et al. Jun 2010 B2
7782364 Smith Aug 2010 B2
7826153 Hong Nov 2010 B2
7840067 Shen et al. Nov 2010 B2
7912673 Hébert et al. Mar 2011 B2
7924321 Nayar et al. Apr 2011 B2
7956871 Fainstain et al. Jun 2011 B2
7965314 Miller et al. Jun 2011 B1
7973834 Yang Jul 2011 B2
7986018 Rennie Jul 2011 B2
7990447 Honda et al. Aug 2011 B2
8000498 Shih et al. Aug 2011 B2
8013904 Tan et al. Sep 2011 B2
8027531 Wilburn et al. Sep 2011 B2
8044994 Vetro et al. Oct 2011 B2
8055466 Bryll Nov 2011 B2
8077245 Adamo et al. Dec 2011 B2
8089515 Chebil et al. Jan 2012 B2
8098297 Crisan et al. Jan 2012 B2
8098304 Pinto et al. Jan 2012 B2
8106949 Tan et al. Jan 2012 B2
8111910 Tanaka Feb 2012 B2
8126279 Marcellin et al. Feb 2012 B2
8130120 Kawabata et al. Mar 2012 B2
8131097 Lelescu et al. Mar 2012 B2
8149323 Li et al. Apr 2012 B2
8164629 Zhang Apr 2012 B1
8169486 Corcoran et al. May 2012 B2
8180145 Wu et al. May 2012 B2
8189065 Georgiev et al. May 2012 B2
8189089 Georgiev et al. May 2012 B1
8194296 Compton et al. Jun 2012 B2
8212914 Chiu Jul 2012 B2
8213711 Tam Jul 2012 B2
8231814 Duparre Jul 2012 B2
8242426 Ward et al. Aug 2012 B2
8244027 Takahashi Aug 2012 B2
8244058 Intwala et al. Aug 2012 B1
8254668 Mashitani et al. Aug 2012 B2
8279325 Pitts et al. Oct 2012 B2
8280194 Wong et al. Oct 2012 B2
8284240 Saint-Pierre et al. Oct 2012 B2
8289409 Chang Oct 2012 B2
8289440 Pitts et al. Oct 2012 B2
8290358 Georgiev Oct 2012 B1
8294099 Blackwell, Jr. Oct 2012 B2
8294754 Jung et al. Oct 2012 B2
8300085 Yang et al. Oct 2012 B2
8305456 McMahon Nov 2012 B1
8315476 Georgiev et al. Nov 2012 B1
8345144 Georgiev et al. Jan 2013 B1
8360574 Ishak et al. Jan 2013 B2
8400555 Georgiev et al. Mar 2013 B1
8406562 Bassi et al. Mar 2013 B2
8411146 Twede Apr 2013 B2
8416282 Lablans Apr 2013 B2
8446492 Nakano et al. May 2013 B2
8456517 Spektor et al. Jun 2013 B2
8493496 Freedman et al. Jul 2013 B2
8514291 Chang Aug 2013 B2
8514491 Duparre Aug 2013 B2
8541730 Inuiya Sep 2013 B2
8542933 Venkataraman et al. Sep 2013 B2
8553093 Wong et al. Oct 2013 B2
8559705 Ng Oct 2013 B2
8559756 Georgiev et al. Oct 2013 B2
8565547 Strandemar Oct 2013 B2
8576302 Yoshikawa Nov 2013 B2
8577183 Robinson Nov 2013 B2
8581995 Lin et al. Nov 2013 B2
8619082 Ciurea et al. Dec 2013 B1
8648918 Kauker et al. Feb 2014 B2
8648919 Mantzel et al. Feb 2014 B2
8655052 Spooner et al. Feb 2014 B2
8682107 Yoon et al. Mar 2014 B2
8687087 Pertsel et al. Apr 2014 B2
8692893 McMahon Apr 2014 B2
8754941 Sarwari et al. Jun 2014 B1
8773536 Zhang Jul 2014 B1
8780113 Ciurea et al. Jul 2014 B1
8804255 Duparre Aug 2014 B2
8823813 Mantzel et al. Sep 2014 B2
8830375 Ludwig Sep 2014 B2
8831367 Venkataraman et al. Sep 2014 B2
8831377 Pitts et al. Sep 2014 B2
8836793 Kriesel et al. Sep 2014 B1
8842201 Tajiri Sep 2014 B2
8854462 Herbin et al. Oct 2014 B2
8861089 Duparre Oct 2014 B2
8866912 Mullis Oct 2014 B2
8866920 Venkataraman et al. Oct 2014 B2
8866951 Keelan Oct 2014 B2
8878950 Lelescu et al. Nov 2014 B2
8885059 Venkataraman et al. Nov 2014 B1
8885922 Ito et al. Nov 2014 B2
8896594 Xiong et al. Nov 2014 B2
8896719 Venkataraman et al. Nov 2014 B1
8902321 Venkataraman et al. Dec 2014 B2
8928793 McMahon Jan 2015 B2
8977038 Tian et al. Mar 2015 B2
9001226 Ng et al. Apr 2015 B1
9019426 Han et al. Apr 2015 B2
9025894 Venkataraman et al. May 2015 B2
9025895 Venkataraman et al. May 2015 B2
9030528 Pesach et al. May 2015 B2
9031335 Venkataraman et al. May 2015 B2
9031342 Venkataraman May 2015 B2
9031343 Venkataraman May 2015 B2
9036928 Venkataraman May 2015 B2
9036931 Venkataraman et al. May 2015 B2
9041823 Venkataraman et al. May 2015 B2
9041824 Lelescu et al. May 2015 B2
9041829 Venkataraman et al. May 2015 B2
9042667 Venkataraman et al. May 2015 B2
9047684 Lelescu et al. Jun 2015 B2
9049367 Venkataraman et al. Jun 2015 B2
9055233 Venkataraman et al. Jun 2015 B2
9060120 Venkataraman et al. Jun 2015 B2
9060124 Venkataraman et al. Jun 2015 B2
9077893 Venkataraman et al. Jul 2015 B2
9094661 Venkataraman et al. Jul 2015 B2
9100586 McMahon et al. Aug 2015 B2
9100635 Duparre et al. Aug 2015 B2
9123117 Ciurea et al. Sep 2015 B2
9123118 Ciurea et al. Sep 2015 B2
9124815 Venkataraman et al. Sep 2015 B2
9124831 Mullis Sep 2015 B2
9124864 Mullis Sep 2015 B2
9128228 Duparre Sep 2015 B2
9129183 Venkataraman et al. Sep 2015 B2
9129377 Ciurea et al. Sep 2015 B2
9143711 McMahon Sep 2015 B2
9147254 Florian et al. Sep 2015 B2
9185276 Rodda et al. Nov 2015 B2
9188765 Venkataraman et al. Nov 2015 B2
9191580 Venkataraman et al. Nov 2015 B2
9197821 McMahon Nov 2015 B2
9210392 Nisenzon et al. Dec 2015 B2
9214013 Venkataraman et al. Dec 2015 B2
9235898 Venkataraman et al. Jan 2016 B2
9235900 Ciurea et al. Jan 2016 B2
9240049 Ciurea et al. Jan 2016 B2
9253380 Venkataraman et al. Feb 2016 B2
9253397 Lee et al. Feb 2016 B2
9256974 Hines Feb 2016 B1
9264592 Rodda et al. Feb 2016 B2
9264610 Duparre Feb 2016 B2
9361662 Lelescu et al. Jun 2016 B2
9374512 Venkataraman et al. Jun 2016 B2
9412206 McMahon et al. Aug 2016 B2
9413953 Maeda Aug 2016 B2
9426343 Rodda et al. Aug 2016 B2
9426361 Venkataraman et al. Aug 2016 B2
9438888 Venkataraman et al. Sep 2016 B2
9445003 Lelescu et al. Sep 2016 B1
9456134 Venkataraman et al. Sep 2016 B2
9456196 Kim et al. Sep 2016 B2
9462164 Venkataraman et al. Oct 2016 B2
9485496 Venkataraman et al. Nov 2016 B2
9497370 Venkataraman et al. Nov 2016 B2
9497429 Mullis et al. Nov 2016 B2
9516222 Duparre et al. Dec 2016 B2
9519972 Venkataraman et al. Dec 2016 B2
9521319 Rodda et al. Dec 2016 B2
9521416 McMahon et al. Dec 2016 B1
9536166 Venkataraman et al. Jan 2017 B2
9576369 Venkataraman et al. Feb 2017 B2
9578237 Duparre et al. Feb 2017 B2
9578259 Molina Feb 2017 B2
9602805 Venkataraman et al. Mar 2017 B2
9633442 Venkataraman et al. Apr 2017 B2
9635274 Lin et al. Apr 2017 B2
9638883 Duparre May 2017 B1
9661310 Deng et al. May 2017 B2
9706132 Nisenzon et al. Jul 2017 B2
9712759 Venkataraman et al. Jul 2017 B2
9733486 Lelescu et al. Aug 2017 B2
9741118 Mullis Aug 2017 B2
9743051 Venkataraman et al. Aug 2017 B2
9749547 Venkataraman et al. Aug 2017 B2
9749568 McMahon Aug 2017 B2
9754422 McMahon et al. Sep 2017 B2
9766380 Duparre et al. Sep 2017 B2
9769365 Jannard Sep 2017 B1
9774789 Ciurea et al. Sep 2017 B2
9774831 Venkataraman et al. Sep 2017 B2
9787911 McMahon et al. Oct 2017 B2
9794476 Nayar et al. Oct 2017 B2
9800856 Venkataraman et al. Oct 2017 B2
9800859 Venkataraman et al. Oct 2017 B2
9807382 Duparre et al. Oct 2017 B2
9811753 Venkataraman et al. Nov 2017 B2
9813616 Lelescu et al. Nov 2017 B2
9813617 Venkataraman et al. Nov 2017 B2
9858673 Ciurea et al. Jan 2018 B2
9864921 Venkataraman et al. Jan 2018 B2
9888194 Duparre Feb 2018 B2
9898856 Yang et al. Feb 2018 B2
9917998 Venkataraman et al. Mar 2018 B2
9924092 Rodda et al. Mar 2018 B2
9936148 McMahon Apr 2018 B2
9955070 Lelescu et al. Apr 2018 B2
9986224 Mullis May 2018 B2
10009538 Venkataraman et al. Jun 2018 B2
10019816 Venkataraman et al. Jul 2018 B2
10027901 Venkataraman et al. Jul 2018 B2
10089740 Srikanth et al. Oct 2018 B2
10091405 Molina Oct 2018 B2
10119808 Venkataraman et al. Nov 2018 B2
10122993 Venkataraman et al. Nov 2018 B2
10127682 Mullis Nov 2018 B2
10142560 Venkataraman et al. Nov 2018 B2
10182216 Mullis et al. Jan 2019 B2
10275676 Venkataraman et al. Apr 2019 B2
10306120 Duparre May 2019 B2
10311649 McMohan et al. Jun 2019 B2
10334241 Duparre et al. Jun 2019 B2
10366472 Lelescu et al. Jul 2019 B2
10375302 Nayar et al. Aug 2019 B2
10375319 Venkataraman et al. Aug 2019 B2
10380752 Ciurea et al. Aug 2019 B2
10390005 Nisenzon et al. Aug 2019 B2
10430682 Venkataraman et al. Oct 2019 B2
10462362 Lelescu et al. Oct 2019 B2
10542208 Lelescu et al. Jan 2020 B2
10560684 Mullis Feb 2020 B2
10638099 Mullis et al. Apr 2020 B2
10839485 Lelescu et al. Nov 2020 B2
10909707 Ciurea et al. Feb 2021 B2
10984276 Venkataraman et al. Apr 2021 B2
20010005225 Clark et al. Jun 2001 A1
20010019621 Hanna et al. Sep 2001 A1
20010028038 Hamaguchi et al. Oct 2001 A1
20010038387 Tomooka et al. Nov 2001 A1
20020012056 Trevino et al. Jan 2002 A1
20020015536 Warren et al. Feb 2002 A1
20020027608 Johnson et al. Mar 2002 A1
20020028014 Ono Mar 2002 A1
20020039438 Mori et al. Apr 2002 A1
20020057845 Fossum et al. May 2002 A1
20020061131 Sawhney et al. May 2002 A1
20020063807 Margulis May 2002 A1
20020075450 Aratani et al. Jun 2002 A1
20020087403 Meyers et al. Jul 2002 A1
20020089596 Yasuo Jul 2002 A1
20020094027 Sato et al. Jul 2002 A1
20020101528 Lee et al. Aug 2002 A1
20020113867 Takigawa et al. Aug 2002 A1
20020113888 Sonoda et al. Aug 2002 A1
20020118113 Oku et al. Aug 2002 A1
20020120634 Min et al. Aug 2002 A1
20020122113 Foote Sep 2002 A1
20020163054 Suda Nov 2002 A1
20020167537 Trajkovic Nov 2002 A1
20020171666 Endo et al. Nov 2002 A1
20020177054 Saitoh et al. Nov 2002 A1
20020190991 Efran et al. Dec 2002 A1
20020195548 Dowski, Jr. et al. Dec 2002 A1
20030025227 Daniell Feb 2003 A1
20030026474 Yano Feb 2003 A1
20030086079 Barth et al. May 2003 A1
20030124763 Fan et al. Jul 2003 A1
20030140347 Varsa Jul 2003 A1
20030156189 Utsumi et al. Aug 2003 A1
20030179418 Wengender et al. Sep 2003 A1
20030188659 Merry et al. Oct 2003 A1
20030190072 Adkins et al. Oct 2003 A1
20030198377 Ng Oct 2003 A1
20030211405 Venkataraman Nov 2003 A1
20040003409 Berstis Jan 2004 A1
20040008271 Hagimori et al. Jan 2004 A1
20040012689 Tinnerino et al. Jan 2004 A1
20040027358 Nakao Feb 2004 A1
20040047274 Amanai Mar 2004 A1
20040050104 Ghosh et al. Mar 2004 A1
20040056966 Schechner et al. Mar 2004 A1
20040061787 Liu et al. Apr 2004 A1
20040066454 Otani et al. Apr 2004 A1
20040071367 Irani et al. Apr 2004 A1
20040075654 Hsiao et al. Apr 2004 A1
20040096119 Williams et al. May 2004 A1
20040100570 Shizukuishi May 2004 A1
20040105021 Hu Jun 2004 A1
20040114807 Lelescu et al. Jun 2004 A1
20040141659 Zhang Jul 2004 A1
20040151401 Sawhney et al. Aug 2004 A1
20040165090 Ning Aug 2004 A1
20040169617 Yelton et al. Sep 2004 A1
20040170340 Tipping et al. Sep 2004 A1
20040174439 Upton Sep 2004 A1
20040179008 Gordon et al. Sep 2004 A1
20040179834 Szajewski et al. Sep 2004 A1
20040196379 Chen et al. Oct 2004 A1
20040207600 Zhang et al. Oct 2004 A1
20040207836 Chhibber et al. Oct 2004 A1
20040212734 Macinnis et al. Oct 2004 A1
20040213449 Safaee-Rad et al. Oct 2004 A1
20040218809 Blake et al. Nov 2004 A1
20040234873 Venkataraman Nov 2004 A1
20040239782 Equitz et al. Dec 2004 A1
20040239885 Jaynes et al. Dec 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20040251509 Choi Dec 2004 A1
20040264806 Herley Dec 2004 A1
20050006477 Patel Jan 2005 A1
20050007461 Chou et al. Jan 2005 A1
20050009313 Suzuki et al. Jan 2005 A1
20050010621 Pinto et al. Jan 2005 A1
20050012035 Miller Jan 2005 A1
20050036778 DeMonte Feb 2005 A1
20050047678 Jones et al. Mar 2005 A1
20050048690 Yamamoto Mar 2005 A1
20050068436 Fraenkel et al. Mar 2005 A1
20050083531 Millerd et al. Apr 2005 A1
20050084179 Hanna et al. Apr 2005 A1
20050128509 Tokkonen et al. Jun 2005 A1
20050128595 Shimizu Jun 2005 A1
20050132098 Sonoda et al. Jun 2005 A1
20050134698 Schroeder et al. Jun 2005 A1
20050134699 Nagashima Jun 2005 A1
20050134712 Gruhlke et al. Jun 2005 A1
20050147277 Higaki et al. Jul 2005 A1
20050151759 Gonzalez-Banos et al. Jul 2005 A1
20050168924 Wu et al. Aug 2005 A1
20050175257 Kuroki Aug 2005 A1
20050185711 Pfister et al. Aug 2005 A1
20050205785 Hornback et al. Sep 2005 A1
20050219264 Shum et al. Oct 2005 A1
20050219363 Kohler et al. Oct 2005 A1
20050224843 Boemler Oct 2005 A1
20050225654 Feldman et al. Oct 2005 A1
20050265633 Piacentino et al. Dec 2005 A1
20050275946 Choo et al. Dec 2005 A1
20050286612 Takanashi Dec 2005 A1
20050286756 Hong et al. Dec 2005 A1
20060002635 Nestares et al. Jan 2006 A1
20060007331 Izumi et al. Jan 2006 A1
20060013318 Webb et al. Jan 2006 A1
20060018509 Miyoshi Jan 2006 A1
20060023197 Joel Feb 2006 A1
20060023314 Boettiger et al. Feb 2006 A1
20060028476 Sobel et al. Feb 2006 A1
20060029270 Berestov et al. Feb 2006 A1
20060029271 Miyoshi et al. Feb 2006 A1
20060033005 Jerdev et al. Feb 2006 A1
20060034003 Zalevsky Feb 2006 A1
20060034531 Poon et al. Feb 2006 A1
20060035415 Wood Feb 2006 A1
20060038891 Okutomi et al. Feb 2006 A1
20060039611 Rother et al. Feb 2006 A1
20060046204 Ono et al. Mar 2006 A1
20060049930 Zruya et al. Mar 2006 A1
20060050980 Kohashi et al. Mar 2006 A1
20060054780 Garrood et al. Mar 2006 A1
20060054782 Olsen et al. Mar 2006 A1
20060055811 Frtiz et al. Mar 2006 A1
20060069478 Iwama Mar 2006 A1
20060072029 Miyatake et al. Apr 2006 A1
20060087747 Ohzawa et al. Apr 2006 A1
20060098888 Morishita May 2006 A1
20060103754 Wenstrand et al. May 2006 A1
20060119597 Oshino Jun 2006 A1
20060125936 Gruhike et al. Jun 2006 A1
20060138322 Costello et al. Jun 2006 A1
20060139475 Esch et al. Jun 2006 A1
20060152803 Provitola Jul 2006 A1
20060157640 Perlman et al. Jul 2006 A1
20060159369 Young Jul 2006 A1
20060176566 Boettiger et al. Aug 2006 A1
20060187322 Janson, Jr. et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060197937 Bamji et al. Sep 2006 A1
20060203100 Ajito et al. Sep 2006 A1
20060203113 Wada et al. Sep 2006 A1
20060210146 Gu Sep 2006 A1
20060210186 Berkner Sep 2006 A1
20060214085 Olsen et al. Sep 2006 A1
20060221250 Rossbach et al. Oct 2006 A1
20060239549 Kelly et al. Oct 2006 A1
20060243889 Farnworth et al. Nov 2006 A1
20060251410 Trutna Nov 2006 A1
20060274174 Tewinkle Dec 2006 A1
20060278948 Yamaguchi et al. Dec 2006 A1
20060279648 Senba et al. Dec 2006 A1
20060289772 Johnson et al. Dec 2006 A1
20070002159 Olsen et al. Jan 2007 A1
20070008575 Yu et al. Jan 2007 A1
20070009150 Suwa Jan 2007 A1
20070024614 Tam et al. Feb 2007 A1
20070030356 Yea et al. Feb 2007 A1
20070035707 Margulis Feb 2007 A1
20070036427 Nakamura et al. Feb 2007 A1
20070040828 Zalevsky et al. Feb 2007 A1
20070040922 McKee et al. Feb 2007 A1
20070041391 Lin et al. Feb 2007 A1
20070052825 Cho Mar 2007 A1
20070083114 Yang et al. Apr 2007 A1
20070085917 Kobayashi Apr 2007 A1
20070092245 Bazakos et al. Apr 2007 A1
20070102622 Olsen et al. May 2007 A1
20070116447 Ye May 2007 A1
20070126898 Feldman et al. Jun 2007 A1
20070127831 Venkataraman Jun 2007 A1
20070139333 Sato et al. Jun 2007 A1
20070140685 Wu Jun 2007 A1
20070146503 Shiraki Jun 2007 A1
20070146511 Kinoshita et al. Jun 2007 A1
20070153335 Hosaka Jul 2007 A1
20070158427 Zhu et al. Jul 2007 A1
20070159541 Sparks et al. Jul 2007 A1
20070160310 Tanida et al. Jul 2007 A1
20070165931 Higaki Jul 2007 A1
20070166447 Ur-Rehman et al. Jul 2007 A1
20070171290 Kroger Jul 2007 A1
20070177004 Kolehmainen et al. Aug 2007 A1
20070182843 Shimamura et al. Aug 2007 A1
20070201859 Sarrat Aug 2007 A1
20070206241 Smith et al. Sep 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20070216765 Wong et al. Sep 2007 A1
20070225600 Weibrecht et al. Sep 2007 A1
20070228256 Mentzer et al. Oct 2007 A1
20070236595 Pan et al. Oct 2007 A1
20070242141 Ciurea Oct 2007 A1
20070247517 Zhang et al. Oct 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070258006 Olsen et al. Nov 2007 A1
20070258706 Raskar et al. Nov 2007 A1
20070263113 Baek et al. Nov 2007 A1
20070263114 Gurevich et al. Nov 2007 A1
20070268374 Robinson Nov 2007 A1
20070296721 Chang et al. Dec 2007 A1
20070296832 Ota et al. Dec 2007 A1
20070296835 Olsen et al. Dec 2007 A1
20070296847 Chang et al. Dec 2007 A1
20070297696 Hamza et al. Dec 2007 A1
20080006859 Mionetto Jan 2008 A1
20080019611 Larkin et al. Jan 2008 A1
20080024683 Damera-Venkata et al. Jan 2008 A1
20080025649 Liu et al. Jan 2008 A1
20080029714 Olsen et al. Feb 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030597 Olsen et al. Feb 2008 A1
20080043095 Vetro et al. Feb 2008 A1
20080043096 Vetro et al. Feb 2008 A1
20080054518 Ra et al. Mar 2008 A1
20080056302 Erdal et al. Mar 2008 A1
20080062164 Bassi et al. Mar 2008 A1
20080079805 Takagi et al. Apr 2008 A1
20080080028 Bakin et al. Apr 2008 A1
20080084486 Enge et al. Apr 2008 A1
20080088793 Sverdrup et al. Apr 2008 A1
20080095523 Schilling-Benz et al. Apr 2008 A1
20080099804 Venezia et al. May 2008 A1
20080106620 Sawachi May 2008 A1
20080112059 Choi et al. May 2008 A1
20080112635 Kondo et al. May 2008 A1
20080117289 Schowengerdt et al. May 2008 A1
20080118241 TeKolste et al. May 2008 A1
20080131019 Ng Jun 2008 A1
20080131107 Ueno Jun 2008 A1
20080151097 Chen et al. Jun 2008 A1
20080152215 Horie et al. Jun 2008 A1
20080152296 Oh et al. Jun 2008 A1
20080156991 Hu et al. Jul 2008 A1
20080158259 Kempf et al. Jul 2008 A1
20080158375 Kakkori et al. Jul 2008 A1
20080158698 Chang et al. Jul 2008 A1
20080165257 Boettiger Jul 2008 A1
20080174670 Olsen et al. Jul 2008 A1
20080187305 Raskar et al. Aug 2008 A1
20080193026 Horie et al. Aug 2008 A1
20080208506 Kuwata Aug 2008 A1
20080211737 Kim et al. Sep 2008 A1
20080218610 Chapman et al. Sep 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Janson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20080239116 Smith Oct 2008 A1
20080240598 Hasegawa Oct 2008 A1
20080247638 Tanida et al. Oct 2008 A1
20080247653 Moussavi et al. Oct 2008 A1
20080272416 Yun Nov 2008 A1
20080273751 Yuan et al. Nov 2008 A1
20080278591 Barna et al. Nov 2008 A1
20080278610 Boettiger Nov 2008 A1
20080284880 Numata Nov 2008 A1
20080291295 Kato et al. Nov 2008 A1
20080298674 Baker et al. Dec 2008 A1
20080310501 Ward et al. Dec 2008 A1
20090027543 Kanehiro Jan 2009 A1
20090050946 Duparre et al. Feb 2009 A1
20090052743 Techmer Feb 2009 A1
20090060281 Tanida et al. Mar 2009 A1
20090066693 Carson Mar 2009 A1
20090079862 Subbotin Mar 2009 A1
20090086074 Li et al. Apr 2009 A1
20090091645 Trimeche et al. Apr 2009 A1
20090091806 Inuiya Apr 2009 A1
20090092363 Daum et al. Apr 2009 A1
20090096050 Park Apr 2009 A1
20090102956 Georgiev Apr 2009 A1
20090103792 Rahn et al. Apr 2009 A1
20090109306 Shan et al. Apr 2009 A1
20090127430 Hirasawa et al. May 2009 A1
20090128644 Camp, Jr. et al. May 2009 A1
20090128833 Yahav May 2009 A1
20090129667 Ho et al. May 2009 A1
20090140131 Utagawa Jun 2009 A1
20090141933 Wagg Jun 2009 A1
20090147919 Goto et al. Jun 2009 A1
20090152664 Klem et al. Jun 2009 A1
20090167922 Perlman et al. Jul 2009 A1
20090167934 Gupta Jul 2009 A1
20090175349 Ye et al. Jul 2009 A1
20090179142 Duparre et al. Jul 2009 A1
20090180021 Kikuchi et al. Jul 2009 A1
20090200622 Tai et al. Aug 2009 A1
20090201371 Matsuda et al. Aug 2009 A1
20090207235 Francini et al. Aug 2009 A1
20090219435 Yuan Sep 2009 A1
20090225203 Tanida et al. Sep 2009 A1
20090237520 Kaneko et al. Sep 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090256947 Ciurea et al. Oct 2009 A1
20090263017 Tanbakuchi Oct 2009 A1
20090268192 Koenck et al. Oct 2009 A1
20090268970 Babacan et al. Oct 2009 A1
20090268983 Stone et al. Oct 2009 A1
20090273663 Yoshida Nov 2009 A1
20090274387 Jin Nov 2009 A1
20090279800 Uetani et al. Nov 2009 A1
20090284651 Srinivasan Nov 2009 A1
20090290811 Imai Nov 2009 A1
20090297056 Lelescu et al. Dec 2009 A1
20090302205 Olsen et al. Dec 2009 A9
20090317061 Jung et al. Dec 2009 A1
20090322876 Lee et al. Dec 2009 A1
20090323195 Hembree et al. Dec 2009 A1
20090323206 Oliver et al. Dec 2009 A1
20090324118 Maslov et al. Dec 2009 A1
20100002126 Wenstrand et al. Jan 2010 A1
20100002313 Duparre et al. Jan 2010 A1
20100002314 Duparre Jan 2010 A1
20100007714 Kim et al. Jan 2010 A1
20100013927 Nixon Jan 2010 A1
20100044815 Chang Feb 2010 A1
20100045809 Packard Feb 2010 A1
20100053342 Hwang et al. Mar 2010 A1
20100053347 Agarwala et al. Mar 2010 A1
20100053600 Tanida et al. Mar 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100073463 Momonoi et al. Mar 2010 A1
20100074532 Gordon Mar 2010 A1
20100085351 Deb et al. Apr 2010 A1
20100085425 Tan Apr 2010 A1
20100086227 Sun et al. Apr 2010 A1
20100091389 Henriksen et al. Apr 2010 A1
20100097491 Farina et al. Apr 2010 A1
20100103175 Okutomi et al. Apr 2010 A1
20100103259 Tanida et al. Apr 2010 A1
20100103308 Butterfield et al. Apr 2010 A1
20100111444 Coffman May 2010 A1
20100118127 Nam et al. May 2010 A1
20100128145 Pitts et al. May 2010 A1
20100129048 Pitts et al. May 2010 A1
20100133230 Henriksen et al. Jun 2010 A1
20100133418 Sargent et al. Jun 2010 A1
20100141802 Knight et al. Jun 2010 A1
20100142828 Chang et al. Jun 2010 A1
20100142839 Lakus-Becker Jun 2010 A1
20100157073 Kondo et al. Jun 2010 A1
20100165152 Lim Jul 2010 A1
20100166410 Chang Jul 2010 A1
20100171866 Brady et al. Jul 2010 A1
20100177411 Hegde et al. Jul 2010 A1
20100182406 Benitez Jul 2010 A1
20100194860 Mentz et al. Aug 2010 A1
20100194901 van Hoorebeke et al. Aug 2010 A1
20100195716 Klein Gunnewiek et al. Aug 2010 A1
20100201809 Oyama et al. Aug 2010 A1
20100201834 Maruyama et al. Aug 2010 A1
20100202054 Niederer Aug 2010 A1
20100202683 Robinson Aug 2010 A1
20100208100 Olsen et al. Aug 2010 A9
20100214423 Ogawa Aug 2010 A1
20100220212 Perlman et al. Sep 2010 A1
20100223237 Mishra et al. Sep 2010 A1
20100225740 Jung et al. Sep 2010 A1
20100231285 Boomer et al. Sep 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100244165 Lake et al. Sep 2010 A1
20100245684 Xiao et al. Sep 2010 A1
20100254627 Panahpour Tehrani et al. Oct 2010 A1
20100259610 Petersen Oct 2010 A1
20100265346 Iizuka Oct 2010 A1
20100265381 Yamamoto et al. Oct 2010 A1
20100265385 Knight et al. Oct 2010 A1
20100277629 Tanaka Nov 2010 A1
20100281070 Chan et al. Nov 2010 A1
20100289941 Ito et al. Nov 2010 A1
20100290483 Park et al. Nov 2010 A1
20100302423 Adams, Jr. et al. Dec 2010 A1
20100309292 Ho et al. Dec 2010 A1
20100309368 Choi et al. Dec 2010 A1
20100321595 Chiu Dec 2010 A1
20100321640 Yeh et al. Dec 2010 A1
20100329556 Mitarai et al. Dec 2010 A1
20100329582 Albu et al. Dec 2010 A1
20110001037 Tewinkle Jan 2011 A1
20110018973 Takayama Jan 2011 A1
20110019048 Raynor et al. Jan 2011 A1
20110019243 Constant, Jr. et al. Jan 2011 A1
20110031381 Tay et al. Feb 2011 A1
20110032341 Ignatov et al. Feb 2011 A1
20110032370 Ludwig Feb 2011 A1
20110033129 Robinson Feb 2011 A1
20110038536 Gong Feb 2011 A1
20110043604 Peleg et al. Feb 2011 A1
20110043613 Rohaly et al. Feb 2011 A1
20110043661 Podoleanu Feb 2011 A1
20110043665 Ogasahara Feb 2011 A1
20110043668 McKinnon et al. Feb 2011 A1
20110044502 Liu et al. Feb 2011 A1
20110051255 Lee et al. Mar 2011 A1
20110055729 Mason et al. Mar 2011 A1
20110064327 Dagher et al. Mar 2011 A1
20110069189 Venkataraman et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110085028 Samadani et al. Apr 2011 A1
20110090217 Mashitani et al. Apr 2011 A1
20110108708 Olsen et al. May 2011 A1
20110115886 Nguyen et al. May 2011 A1
20110121421 Charbon et al. May 2011 A1
20110122308 Duparre May 2011 A1
20110128393 Tavi et al. Jun 2011 A1
20110128412 Milnes et al. Jun 2011 A1
20110129165 Lim et al. Jun 2011 A1
20110141309 Nagashima et al. Jun 2011 A1
20110142138 Tian et al. Jun 2011 A1
20110149408 Hahgholt et al. Jun 2011 A1
20110149409 Haugholt et al. Jun 2011 A1
20110150321 Cheong et al. Jun 2011 A1
20110153248 Gu et al. Jun 2011 A1
20110157321 Nakajima et al. Jun 2011 A1
20110157451 Chang Jun 2011 A1
20110169921 Lee et al. Jul 2011 A1
20110169994 DiFrancesco et al. Jul 2011 A1
20110176020 Chang Jul 2011 A1
20110181797 Galstian et al. Jul 2011 A1
20110193944 Lian et al. Aug 2011 A1
20110199458 Hayasaka et al. Aug 2011 A1
20110200319 Kravitz et al. Aug 2011 A1
20110206291 Kashani et al. Aug 2011 A1
20110207074 Hall-Holt et al. Aug 2011 A1
20110211068 Yokota Sep 2011 A1
20110211077 Nayar et al. Sep 2011 A1
20110211824 Georgiev et al. Sep 2011 A1
20110221599 Högasten Sep 2011 A1
20110221658 Haddick et al. Sep 2011 A1
20110221939 Jerdev Sep 2011 A1
20110221950 Oostra et al. Sep 2011 A1
20110222757 Yeatman, Jr. et al. Sep 2011 A1
20110228142 Brueckner et al. Sep 2011 A1
20110228144 Tian et al. Sep 2011 A1
20110234841 Akeley et al. Sep 2011 A1
20110241234 Duparre Oct 2011 A1
20110242342 Goma et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110242356 Aleksic et al. Oct 2011 A1
20110243428 Das Gupta et al. Oct 2011 A1
20110255592 Sung et al. Oct 2011 A1
20110255745 Hodder et al. Oct 2011 A1
20110261993 Weiming et al. Oct 2011 A1
20110267264 Mccarthy et al. Nov 2011 A1
20110267348 Lin et al. Nov 2011 A1
20110273531 Ito et al. Nov 2011 A1
20110274175 Sumitomo Nov 2011 A1
20110274366 Tardif Nov 2011 A1
20110279705 Kuang et al. Nov 2011 A1
20110279721 McMahon Nov 2011 A1
20110285701 Chen et al. Nov 2011 A1
20110285866 Bhrugumalla et al. Nov 2011 A1
20110285910 Bamji et al. Nov 2011 A1
20110292216 Fergus et al. Dec 2011 A1
20110298898 Jung et al. Dec 2011 A1
20110298917 Yanagita Dec 2011 A1
20110300929 Tardif et al. Dec 2011 A1
20110310980 Mathew Dec 2011 A1
20110316968 Taguchi et al. Dec 2011 A1
20110317766 Lim et al. Dec 2011 A1
20120012748 Pain et al. Jan 2012 A1
20120014456 Martinez Bauza et al. Jan 2012 A1
20120019530 Baker Jan 2012 A1
20120019700 Gaber Jan 2012 A1
20120023456 Sun et al. Jan 2012 A1
20120026297 Sato Feb 2012 A1
20120026342 Yu et al. Feb 2012 A1
20120026366 Golan et al. Feb 2012 A1
20120026451 Nystrom Feb 2012 A1
20120026478 Chen et al. Feb 2012 A1
20120038745 Yu et al. Feb 2012 A1
20120039525 Tian et al. Feb 2012 A1
20120044249 Mashitani et al. Feb 2012 A1
20120044372 C{circumflex over (t)}é et al. Feb 2012 A1
20120051624 Ando Mar 2012 A1
20120056982 Katz et al. Mar 2012 A1
20120057040 Park et al. Mar 2012 A1
20120062697 Treado et al. Mar 2012 A1
20120062702 Jiang et al. Mar 2012 A1
20120062756 Tian et al. Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120081519 Goma et al. Apr 2012 A1
20120086803 Malzbender et al. Apr 2012 A1
20120105590 Fukumoto et al. May 2012 A1
20120105654 Kwatra et al. May 2012 A1
20120105691 Waqas et al. May 2012 A1
20120113232 Joblove May 2012 A1
20120113318 Galstian et al. May 2012 A1
20120113413 Miahczylowicz-Wolski et al. May 2012 A1
20120114224 Xu et al. May 2012 A1
20120120264 Lee et al. May 2012 A1
20120127275 Von Zitzewitz et al. May 2012 A1
20120147139 Li et al. Jun 2012 A1
20120147205 Lelescu et al. Jun 2012 A1
20120153153 Chang et al. Jun 2012 A1
20120154551 Inoue Jun 2012 A1
20120155830 Sasaki et al. Jun 2012 A1
20120163672 McKinnon Jun 2012 A1
20120163725 Fukuhara Jun 2012 A1
20120169433 Mullins et al. Jul 2012 A1
20120170134 Bolis et al. Jul 2012 A1
20120176479 Mayhew et al. Jul 2012 A1
20120176481 Lukk et al. Jul 2012 A1
20120188235 Wu et al. Jul 2012 A1
20120188341 Klein Gunnewiek et al. Jul 2012 A1
20120188389 Lin et al. Jul 2012 A1
20120188420 Black et al. Jul 2012 A1
20120188634 Kubala et al. Jul 2012 A1
20120198677 Duparre Aug 2012 A1
20120200669 Lai et al. Aug 2012 A1
20120200726 Bugnariu Aug 2012 A1
20120200734 Tang Aug 2012 A1
20120206582 DiCarlo et al. Aug 2012 A1
20120219236 Ali et al. Aug 2012 A1
20120224083 Jovanovski et al. Sep 2012 A1
20120229602 Chen et al. Sep 2012 A1
20120229628 Ishiyama et al. Sep 2012 A1
20120237114 Park et al. Sep 2012 A1
20120249550 Akeley et al. Oct 2012 A1
20120249750 Izzat et al. Oct 2012 A1
20120249836 Ali et al. Oct 2012 A1
20120249853 Krolczyk et al. Oct 2012 A1
20120250990 Bocirnea Oct 2012 A1
20120262601 Choi et al. Oct 2012 A1
20120262607 Shimura et al. Oct 2012 A1
20120268574 Gidon et al. Oct 2012 A1
20120274626 Hsieh Nov 2012 A1
20120287291 McMahon Nov 2012 A1
20120290257 Hodge et al. Nov 2012 A1
20120293489 Chen et al. Nov 2012 A1
20120293624 Chen et al. Nov 2012 A1
20120293695 Tanaka Nov 2012 A1
20120307093 Miyoshi Dec 2012 A1
20120307099 Yahata Dec 2012 A1
20120314033 Lee et al. Dec 2012 A1
20120314937 Kim et al. Dec 2012 A1
20120327222 Ng et al. Dec 2012 A1
20130002828 Ding et al. Jan 2013 A1
20130003184 Duparre Jan 2013 A1
20130010073 Do et al. Jan 2013 A1
20130016245 Yuba Jan 2013 A1
20130016885 Tsujimoto Jan 2013 A1
20130022111 Chen et al. Jan 2013 A1
20130027580 Olsen et al. Jan 2013 A1
20130033579 Wajs Feb 2013 A1
20130033585 Li et al. Feb 2013 A1
20130038696 Ding et al. Feb 2013 A1
20130047396 Au et al. Feb 2013 A1
20130050504 Safaee-Rad et al. Feb 2013 A1
20130050526 Keelan Feb 2013 A1
20130057710 McMahon Mar 2013 A1
20130070060 Chatterjee et al. Mar 2013 A1
20130076967 Brunner et al. Mar 2013 A1
20130077859 Stauder et al. Mar 2013 A1
20130077880 Venkataraman et al. Mar 2013 A1
20130077882 Venkataraman et al. Mar 2013 A1
20130083172 Baba Apr 2013 A1
20130088489 Schmeitz et al. Apr 2013 A1
20130088637 Duparre Apr 2013 A1
20130093842 Yahata Apr 2013 A1
20130100254 Morioka et al. Apr 2013 A1
20130107061 Kumar et al. May 2013 A1
20130113888 Koguchi May 2013 A1
20130113899 Morohoshi et al. May 2013 A1
20130113939 Strandemar May 2013 A1
20130120536 Song et al. May 2013 A1
20130120605 Georgiev et al. May 2013 A1
20130121559 Hu et al. May 2013 A1
20130128068 Georgiev et al. May 2013 A1
20130128069 Georgiev et al. May 2013 A1
20130128087 Georgiev et al. May 2013 A1
20130128121 Agarwala et al. May 2013 A1
20130135315 Bares et al. May 2013 A1
20130135448 Nagumo et al. May 2013 A1
20130147979 McMahon et al. Jun 2013 A1
20130155050 Rastogi et al. Jun 2013 A1
20130162641 Zhang et al. Jun 2013 A1
20130169754 Aronsson et al. Jul 2013 A1
20130176394 Tian et al. Jul 2013 A1
20130208138 Li et al. Aug 2013 A1
20130215108 McMahon et al. Aug 2013 A1
20130215231 Hiramoto et al. Aug 2013 A1
20130222556 Shimada Aug 2013 A1
20130222656 Kaneko Aug 2013 A1
20130223759 Nishiyama Aug 2013 A1
20130229540 Farina et al. Sep 2013 A1
20130230237 Schlosser et al. Sep 2013 A1
20130250123 Zhang et al. Sep 2013 A1
20130250150 Malone et al. Sep 2013 A1
20130258067 Zhang et al. Oct 2013 A1
20130259317 Gaddy Oct 2013 A1
20130265459 Duparre et al. Oct 2013 A1
20130274596 Azizian et al. Oct 2013 A1
20130274923 By Oct 2013 A1
20130286236 Mankowski Oct 2013 A1
20130293760 Nisenzon et al. Nov 2013 A1
20130308197 Duparre Nov 2013 A1
20130321581 El-ghoroury et al. Dec 2013 A1
20130321589 Kirk et al. Dec 2013 A1
20130335598 Gustavsson et al. Dec 2013 A1
20130342641 Morioka et al. Dec 2013 A1
20140002674 Duparre et al. Jan 2014 A1
20140002675 Duparre et al. Jan 2014 A1
20140009586 McNamer et al. Jan 2014 A1
20140013273 Ng Jan 2014 A1
20140037137 Broaddus et al. Feb 2014 A1
20140037140 Benhimane et al. Feb 2014 A1
20140043507 Wang et al. Feb 2014 A1
20140059462 Wernersson Feb 2014 A1
20140076336 Clayton et al. Mar 2014 A1
20140078333 Miao Mar 2014 A1
20140079336 Venkataraman et al. Mar 2014 A1
20140081454 Nuyujukian et al. Mar 2014 A1
20140085502 Lin et al. Mar 2014 A1
20140092281 Nisenzon et al. Apr 2014 A1
20140098266 Nayar et al. Apr 2014 A1
20140098267 Tian et al. Apr 2014 A1
20140104490 Hsieh et al. Apr 2014 A1
20140118493 Sali et al. May 2014 A1
20140118584 Lee et al. May 2014 A1
20140125771 Grossmann et al. May 2014 A1
20140132810 McMahon May 2014 A1
20140139642 Ni et al. May 2014 A1
20140140626 Cho et al. May 2014 A1
20140146132 Bagnato et al. May 2014 A1
20140146201 Knight et al. May 2014 A1
20140176592 Wilburn et al. Jun 2014 A1
20140183334 Wang et al. Jul 2014 A1
20140186045 Poddar et al. Jul 2014 A1
20140192154 Jeong et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140198188 Izawa Jul 2014 A1
20140204183 Lee et al. Jul 2014 A1
20140218546 McMahon Aug 2014 A1
20140232822 Venkataraman et al. Aug 2014 A1
20140240528 Venkataraman et al. Aug 2014 A1
20140240529 Venkataraman et al. Aug 2014 A1
20140253738 Mullis Sep 2014 A1
20140267243 Venkataraman et al. Sep 2014 A1
20140267286 Duparre Sep 2014 A1
20140267633 Venkataraman et al. Sep 2014 A1
20140267762 Mullis et al. Sep 2014 A1
20140267829 McMahon et al. Sep 2014 A1
20140267890 Lelescu et al. Sep 2014 A1
20140285675 Mullis Sep 2014 A1
20140300706 Song Oct 2014 A1
20140313315 Shoham et al. Oct 2014 A1
20140321712 Ciurea et al. Oct 2014 A1
20140333731 Venkataraman et al. Nov 2014 A1
20140333764 Venkataraman et al. Nov 2014 A1
20140333787 Venkataraman et al. Nov 2014 A1
20140340539 Venkataraman et al. Nov 2014 A1
20140347509 Venkataraman et al. Nov 2014 A1
20140347748 Duparre Nov 2014 A1
20140354773 Venkataraman et al. Dec 2014 A1
20140354843 Venkataraman et al. Dec 2014 A1
20140354844 Venkataraman et al. Dec 2014 A1
20140354853 Venkataraman et al. Dec 2014 A1
20140354854 Venkataraman et al. Dec 2014 A1
20140354855 Venkataraman et al. Dec 2014 A1
20140355870 Venkataraman et al. Dec 2014 A1
20140368662 Venkataraman et al. Dec 2014 A1
20140368683 Venkataraman et al. Dec 2014 A1
20140368684 Venkataraman et al. Dec 2014 A1
20140368685 Venkataraman et al. Dec 2014 A1
20140368686 Duparre Dec 2014 A1
20140369612 Venkataraman et al. Dec 2014 A1
20140369615 Venkataraman et al. Dec 2014 A1
20140376825 Venkataraman et al. Dec 2014 A1
20140376826 Venkataraman et al. Dec 2014 A1
20150002734 Lee Jan 2015 A1
20150003752 Venkataraman et al. Jan 2015 A1
20150003753 Venkataraman et al. Jan 2015 A1
20150009353 Venkataraman et al. Jan 2015 A1
20150009354 Venkataraman et al. Jan 2015 A1
20150009362 Venkataraman et al. Jan 2015 A1
20150015669 Venkataraman et al. Jan 2015 A1
20150035992 Mullis Feb 2015 A1
20150036014 Lelescu et al. Feb 2015 A1
20150036015 Lelescu et al. Feb 2015 A1
20150042766 Ciurea et al. Feb 2015 A1
20150042767 Ciurea et al. Feb 2015 A1
20150042833 Lelescu et al. Feb 2015 A1
20150049915 Ciurea et al. Feb 2015 A1
20150049916 Ciurea et al. Feb 2015 A1
20150049917 Ciurea et al. Feb 2015 A1
20150055884 Venkataraman et al. Feb 2015 A1
20150085073 Bruls et al. Mar 2015 A1
20150085174 Shabtay et al. Mar 2015 A1
20150091900 Yang et al. Apr 2015 A1
20150098079 Montgomery et al. Apr 2015 A1
20150104076 Hayasaka Apr 2015 A1
20150104101 Bryant et al. Apr 2015 A1
20150122411 Rodda et al. May 2015 A1
20150124059 Georgiev et al. May 2015 A1
20150124113 Rodda et al. May 2015 A1
20150124151 Rodda et al. May 2015 A1
20150138346 Venkataraman et al. May 2015 A1
20150146029 Venkataraman et al. May 2015 A1
20150146030 Venkataraman et al. May 2015 A1
20150161798 Venkataraman et al. Jun 2015 A1
20150199793 Venkataraman et al. Jul 2015 A1
20150199841 Venkataraman et al. Jul 2015 A1
20150235476 McMahon et al. Aug 2015 A1
20150243480 Yamada Aug 2015 A1
20150244927 Laroia et al. Aug 2015 A1
20150248744 Hayasaka Sep 2015 A1
20150254868 Srikanth et al. Sep 2015 A1
20150264337 Venkataraman et al. Sep 2015 A1
20150296137 Duparre et al. Oct 2015 A1
20150312455 Venkataraman et al. Oct 2015 A1
20150326852 Duparre et al. Nov 2015 A1
20150332468 Hayasaka et al. Nov 2015 A1
20150373261 Rodda et al. Dec 2015 A1
20160037097 Duparre Feb 2016 A1
20160044252 Molina Feb 2016 A1
20160044257 Venkataraman et al. Feb 2016 A1
20160057332 Ciurea et al. Feb 2016 A1
20160065934 Kaza et al. Mar 2016 A1
20160163051 Mullis Jun 2016 A1
20160165106 Duparre Jun 2016 A1
20160165134 Lelescu et al. Jun 2016 A1
20160165147 Nisenzon et al. Jun 2016 A1
20160165212 Mullis Jun 2016 A1
20160195733 Lelescu et al. Jul 2016 A1
20160198096 McMahon et al. Jul 2016 A1
20160227195 Venkataraman et al. Aug 2016 A1
20160249001 McMahon Aug 2016 A1
20160255333 Nisenzon et al. Sep 2016 A1
20160266284 Duparre et al. Sep 2016 A1
20160267665 Venkataraman et al. Sep 2016 A1
20160267672 Ciurea et al. Sep 2016 A1
20160269626 McMahon Sep 2016 A1
20160269627 McMahon Sep 2016 A1
20160269650 Venkataraman et al. Sep 2016 A1
20160269651 Venkataraman et al. Sep 2016 A1
20160269664 Duparre Sep 2016 A1
20160316140 Nayar et al. Oct 2016 A1
20170006233 Venkataraman et al. Jan 2017 A1
20170048468 Pain et al. Feb 2017 A1
20170053382 Lelescu et al. Feb 2017 A1
20170054901 Venkataraman et al. Feb 2017 A1
20170070672 Rodda et al. Mar 2017 A1
20170070673 Lelescu et al. Mar 2017 A1
20170078568 Venkataraman et al. Mar 2017 A1
20170085845 Venkataraman et al. Mar 2017 A1
20170094243 Venkataraman et al. Mar 2017 A1
20170099465 Mullis et al. Apr 2017 A1
20170163862 Molina Jun 2017 A1
20170178363 Venkataraman et al. Jun 2017 A1
20170187933 Duparre Jun 2017 A1
20170188011 Panescu et al. Jun 2017 A1
20170244960 Ciurea et al. Aug 2017 A1
20170257562 Venkataraman et al. Sep 2017 A1
20170365104 McMahon et al. Dec 2017 A1
20180007284 Venkataraman et al. Jan 2018 A1
20180013945 Ciurea et al. Jan 2018 A1
20180024330 Laroia Jan 2018 A1
20180035057 McMahon et al. Feb 2018 A1
20180040135 Mullis Feb 2018 A1
20180048830 Venkataraman et al. Feb 2018 A1
20180048879 Venkataraman et al. Feb 2018 A1
20180081090 Duparre et al. Mar 2018 A1
20180097993 Nayar et al. Apr 2018 A1
20180109782 Duparre et al. Apr 2018 A1
20180124311 Lelescu et al. May 2018 A1
20180139382 Venkataraman et al. May 2018 A1
20180197035 Venkataraman et al. Jul 2018 A1
20180211402 Ciurea et al. Jul 2018 A1
20180240265 Yang et al. Aug 2018 A1
20180270473 Mullis Sep 2018 A1
20180302554 Lelescu et al. Oct 2018 A1
20180330182 Venkataraman et al. Nov 2018 A1
20190098209 Venkataraman et al. Mar 2019 A1
20190109998 Venkataraman et al. Apr 2019 A1
20190215496 Mullis et al. Jul 2019 A1
20190268586 Mullis Aug 2019 A1
20190289176 Duparre Sep 2019 A1
20190347768 Lelescu et al. Nov 2019 A1
20190356863 Venkataraman et al. Nov 2019 A1
20190362515 Ciurea et al. Nov 2019 A1
20190364263 Jannard et al. Nov 2019 A1
20200026948 Venkataraman et al. Jan 2020 A1
20200252597 Mullis Aug 2020 A1
20200389604 Venkataraman et al. Dec 2020 A1
20210133927 Lelescu et al. May 2021 A1
20210150748 Ciurea et al. May 2021 A1
20210312207 Venkataraman et al. Oct 2021 A1
Foreign Referenced Citations (219)
Number Date Country
1619358 May 2005 CN
1839394 Sep 2006 CN
1985524 Jun 2007 CN
101010619 Aug 2007 CN
101064780 Oct 2007 CN
101102388 Jan 2008 CN
101147392 Mar 2008 CN
201043890 Apr 2008 CN
101212566 Jul 2008 CN
101427372 May 2009 CN
101606086 Dec 2009 CN
101883291 Nov 2010 CN
102037717 Apr 2011 CN
102375199 Mar 2012 CN
104081414 Oct 2014 CN
104508681 Apr 2015 CN
104662589 May 2015 CN
104685513 Jun 2015 CN
104685860 Jun 2015 CN
104081414 Aug 2017 CN
104662589 Aug 2017 CN
107230236 Oct 2017 CN
107346061 Nov 2017 CN
104685513 Apr 2018 CN
104335246 Sep 2018 CN
107230236 Dec 2020 CN
602011041799.1 Sep 2017 DE
0677821 Oct 1995 EP
0840502 May 1998 EP
1201407 May 2002 EP
1355274 Oct 2003 EP
1418766 May 2004 EP
1734766 Dec 2006 EP
1243945 Jan 2009 EP
2026563 Feb 2009 EP
2104334 Sep 2009 EP
2244484 Oct 2010 EP
0957642 Apr 2011 EP
2336816 Jun 2011 EP
2339532 Jun 2011 EP
2381418 Oct 2011 EP
2502115 Sep 2012 EP
2652678 Oct 2013 EP
2761534 Aug 2014 EP
2867718 May 2015 EP
2873028 May 2015 EP
2888698 Jul 2015 EP
2888720 Jul 2015 EP
2901671 Aug 2015 EP
2973476 Jan 2016 EP
3066690 Sep 2016 EP
2652678 Sep 2017 EP
2817955 Apr 2018 EP
3328048 May 2018 EP
3075140 Jun 2018 EP
2761534 Nov 2020 EP
2888720 Mar 2021 EP
3328048 Apr 2021 EP
3869797 Aug 2021 EP
3876510 Sep 2021 EP
2482022 Jan 2012 GB
2708CHENP2014 Aug 2015 IN
361194 Mar 2021 IN
59-025483 Feb 1984 JP
64-037177 Feb 1989 JP
02-285772 Nov 1990 JP
06129851 May 1994 JP
07-015457 Jan 1995 JP
H0756112 Mar 1995 JP
09171075 Jun 1997 JP
09181913 Jul 1997 JP
10253351 Sep 1998 JP
11142609 May 1999 JP
11223708 Aug 1999 JP
11325889 Nov 1999 JP
2000209503 Jul 2000 JP
2001008235 Jan 2001 JP
2001194114 Jul 2001 JP
2001264033 Sep 2001 JP
2001277260 Oct 2001 JP
2001337263 Dec 2001 JP
2002195910 Jul 2002 JP
2002205310 Jul 2002 JP
2002250607 Sep 2002 JP
2002252338 Sep 2002 JP
2003094445 Apr 2003 JP
2003139910 May 2003 JP
2003163938 Jun 2003 JP
2003298920 Oct 2003 JP
2004221585 Aug 2004 JP
2005116022 Apr 2005 JP
1669332 Jul 2005 JP
2005181460 Jul 2005 JP
2005295381 Oct 2005 JP
2005303694 Oct 2005 JP
2005341569 Dec 2005 JP
2005354124 Dec 2005 JP
2006033228 Feb 2006 JP
2006033493 Feb 2006 JP
2006047944 Feb 2006 JP
2006258930 Sep 2006 JP
2007520107 Jul 2007 JP
2007259136 Oct 2007 JP
2008039852 Feb 2008 JP
2008055908 Mar 2008 JP
2008507874 Mar 2008 JP
2008172735 Jul 2008 JP
2008258885 Oct 2008 JP
2009064421 Mar 2009 JP
2009132010 Jun 2009 JP
2009300268 Dec 2009 JP
2010139288 Jun 2010 JP
2011017764 Jan 2011 JP
2011030184 Feb 2011 JP
2011109484 Jun 2011 JP
2011523538 Aug 2011 JP
2011203238 Oct 2011 JP
2012504805 Feb 2012 JP
2013509022 Mar 2013 JP
2013526801 Jun 2013 JP
2014521117 Aug 2014 JP
2014535191 Dec 2014 JP
2015522178 Aug 2015 JP
2015534734 Dec 2015 JP
2016524125 Aug 2016 JP
6140709 May 2017 JP
2017163550 Sep 2017 JP
2017163587 Sep 2017 JP
2017531976 Oct 2017 JP
6546613 Jul 2019 JP
2019-220957 Dec 2019 JP
6630891 Dec 2019 JP
2020017999 Jan 2020 JP
6767543 Sep 2020 JP
6767558 Sep 2020 JP
1020110097647 Aug 2011 KR
20170063827 Jun 2017 KR
101824672 Feb 2018 KR
101843994 Mar 2018 KR
10-2002165 Jul 2019 KR
191151 Jul 2013 SG
11201500910R Oct 2015 SG
200828994 Jul 2008 TW
200939739 Sep 2009 TW
201228382 Jul 2012 TW
I535292 May 2016 TW
1994020875 Sep 1994 WO
2005057922 Jun 2005 WO
2006039906 Apr 2006 WO
2006039906 Apr 2006 WO
2007013250 Feb 2007 WO
2007052191 May 2007 WO
2007083579 Jul 2007 WO
2007134137 Nov 2007 WO
2008045198 Apr 2008 WO
2008050904 May 2008 WO
2008108271 Sep 2008 WO
2008108926 Sep 2008 WO
2008150817 Dec 2008 WO
2009073950 Jun 2009 WO
2009151903 Dec 2009 WO
2009157273 Dec 2009 WO
2010037512 Apr 2010 WO
2011008443 Jan 2011 WO
2011026527 Mar 2011 WO
2011046607 Apr 2011 WO
2011055655 May 2011 WO
2011063347 May 2011 WO
2011105814 Sep 2011 WO
2011116203 Sep 2011 WO
2011063347 Oct 2011 WO
2011143501 Nov 2011 WO
2012057619 May 2012 WO
2012057620 May 2012 WO
2012057621 May 2012 WO
2012057622 May 2012 WO
2012057623 May 2012 WO
2012057620 Jun 2012 WO
2012074361 Jun 2012 WO
2012078126 Jun 2012 WO
2012082904 Jun 2012 WO
2012155119 Nov 2012 WO
2013003276 Jan 2013 WO
2013043751 Mar 2013 WO
2013043761 Mar 2013 WO
2013049699 Apr 2013 WO
2013055960 Apr 2013 WO
2013119706 Aug 2013 WO
2013126578 Aug 2013 WO
2013166215 Nov 2013 WO
2014004134 Jan 2014 WO
2014005123 Jan 2014 WO
2014031795 Feb 2014 WO
2014052974 Apr 2014 WO
2014032020 May 2014 WO
2014078443 May 2014 WO
2014130849 Aug 2014 WO
2014133974 Sep 2014 WO
2014138695 Sep 2014 WO
2014138697 Sep 2014 WO
2014144157 Sep 2014 WO
2014145856 Sep 2014 WO
2014149403 Sep 2014 WO
2014149902 Sep 2014 WO
2014150856 Sep 2014 WO
2014153098 Sep 2014 WO
2014159721 Oct 2014 WO
2014159779 Oct 2014 WO
2014160142 Oct 2014 WO
2014164550 Oct 2014 WO
2014164909 Oct 2014 WO
2014165244 Oct 2014 WO
2014133974 Apr 2015 WO
2015048694 Apr 2015 WO
2015070105 May 2015 WO
2015074078 May 2015 WO
2015081279 Jun 2015 WO
2015134996 Sep 2015 WO
2016054089 Apr 2016 WO
Non-Patent Literature Citations (304)
Entry
Wei Jiang, and Masatoshi Okutomi, Shigeki Sugimoto, “Panoramic 3D Reconstruction Using Rotational Stereo Camera with Simple Epipolar Constraints”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006 (Year: 2006).
Extended European Search Report for EP Application No. 11781313.9, Completed Oct. 1, 2013, dated Oct. 8, 2013, 6 pages.
Extended European Search Report for EP Application No. 13810429.4, Completed Jan. 7, 2016, dated Jan. 15, 2016, 6 Pgs.
Extended European Search Report for European Application EP12782935.6, completed Aug. 28, 2014, dated Sep. 4, 2014, 7 Pgs.
Extended European Search Report for European Application EP12804266.0, Report Completed Jan. 27, 2015, dated Feb. 3, 2015, 7 Pgs.
Extended European Search Report for European Application EP12835041.0, Report Completed Jan. 28, 2015, dated Feb. 4, 2015, 6 Pgs.
Extended European Search Report for European Application EP13751714.0, completed Aug. 5, 2015, dated Aug. 18, 2015, 8 Pgs.
Extended European Search Report for European Application EP13810229.8, Report Completed Apr. 14, 2016, dated Apr. 21, 2016, 7 pgs.
Extended European Search Report for European Application No. 10832330.4, completed Sep. 26, 2013, dated Oct. 4, 2013, 7 pgs.
Extended European Search Report for European Application No. 11848308.0, Search completed Jan. 13, 2016, dated Jan. 22, 2016, 10 Pgs.
Extended European Search Report for European Application No. 13830945.5, Search completed Jun. 28, 2016, dated Jul. 7, 2016, 14 Pgs.
Extended European Search Report for European Application No. 13841613.6, Search completed Jul. 18, 2016, dated Jul. 26, 2016, 8 Pgs.
Extended European Search Report for European Application No. 14763087.5, Search completed Dec. 7, 2016, dated Dec. 19, 2016, 9 pgs.
Extended European Search Report for European Application No. 14860103.2, Search completed Feb. 23, 2017, dated Mar. 3, 2017, 7 Pgs.
Extended European Search Report for European Application No. 14865463.5, Search completed May 30, 2017, dated Jun. 8, 2017, 6 Pgs.
Extended European Search Report for European Application No. 15847754.7, Search completed Jan. 25, 2018, dated Feb. 9, 2018, 8 Pgs.
Extended European Search Report for European Application No. 18151530.5, Completed Mar. 28, 2018, dated Apr. 20, 2018, 11 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2009/044687, Completed Jul. 30, 2010, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/056151, Report dated Mar. 25, 2014, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/056166, Report dated Mar. 25, 2014, Report dated Apr. 3, 2014 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/058093, Report dated Sep. 18, 2013, dated Oct. 22, 2013, 40 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/059813, Search Completed Apr. 15, 2014, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/059991, dated Mar. 17, 2015, dated Mar. 26, 2015, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/US10/057661, dated May 22, 2012, dated May 31, 2012, 10 pages.
International Preliminary Report on Patentability for International Application PCT/US11/036349, Report dated Nov. 13, 2012, dated Nov. 22, 2012, 9 pages.
International Preliminary Report on Patentability for International Application PCT/US13/56065, dated Feb. 24, 2015, dated Mar. 5, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2011/064921, dated Jun. 18, 2013, dated Jun. 27, 2013, 14 pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/024987, dated Aug. 12, 2014, 13 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/027146, completed Aug. 26, 2014, dated Sep. 4, 2014, 10 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/039155, completed Nov. 4, 2014, dated Nov. 13, 2014, 10 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/046002, dated Dec. 31, 2014, dated Jan. 8, 2015, 6 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/048772, dated Dec. 31, 2014, dated Jan. 8, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/056502, dated Feb. 24, 2015, dated Mar. 5, 2015, 7 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/069932, dated May 19, 2015, dated May 28, 2015, 12 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/017766, dated Aug. 25, 2015, dated Sep. 3, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/018084, dated Aug. 25, 2015, dated Sep. 3, 2015, 11 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/018116, dated Sep. 15, 2015, dated Sep. 24, 2015, 12 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/021439, dated Sep. 15, 2015, dated Sep. 24, 2015, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/022118, dated Sep. 8, 2015, dated Sep. 17, 2015, 4 pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/022123, dated Sep. 8, 2015, dated Sep. 17, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/022774, dated Sep. 22, 2015, dated Oct. 1, 2015, 5 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/023762, dated Mar. 2, 2015, dated Mar. 9, 2015, 10 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/024407, dated Sep. 15, 2015, dated Sep. 24, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/024903, dated Sep. 15, 2015, dated Sep. 24, 2015, 12 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/024947, dated Sep. 15, 2015, dated Sep. 24, 2015, 7 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/025100, dated Sep. 15, 2015, dated Sep. 24, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/025904, dated Sep. 15, 2015, dated Sep. 24, 2015, 5 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/028447, dated Sep. 15, 2015, dated Sep. 24, 2015, 7 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/029052, dated Sep. 15, 2015, dated Sep. 24, 2015, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/030692, dated Sep. 15, 2015, dated Sep. 24, 2015, 6 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/064693, dated May 10, 2016, dated May 19, 2016, 14 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/066229, dated May 24, 2016, dated Jun. 2, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/067740, dated May 31, 2016, dated Jun. 9, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2015/019529, dated Sep. 13, 2016, dated Sep. 22, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2015/053013, dated Apr. 4, 2017, dated Apr. 13, 2017, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US13/62720, dated Mar. 31, 2015, dated Apr. 9, 2015, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/46002, completed Nov. 13, 2013, dated Nov. 29, 2013, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/56065, Completed Nov. 25, 2013, dated Nov. 26, 2013, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/59991, Completed Feb. 6, 2014, dated Feb. 26, 2014, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2012/056166, Report Completed Nov. 10, 2012, dated Nov. 20, 2012, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/024987, Completed Mar. 27, 2013, dated Apr. 15, 2013, 14 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/027146, completed Apr. 2, 2013, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/039155, completed Jul. 1, 2013, dated Jul. 11, 2013, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/048772, Completed Oct. 21, 2013, dated Nov. 8, 2013, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/056502, Completed Feb. 18, 2014, dated Mar. 19, 2014, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/069932, Completed Mar. 14, 2014, dated Apr. 14, 2014, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2015/019529, completed May 5, 2015, dated Jun. 8, 2015, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2015/053013, completed Dec. 1, 2015, dated Dec. 30, 2015, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US11/36349, dated Aug. 22, 2011, 11 pgs.
International Search Report and Written Opinion for International Application PCT/US13/62720, completed Mar. 25, 2014, dated Apr. 21, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/17766, completed May 28, 2014, dated Jun. 18, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/18084, completed May 23, 2014, dated Jun. 10, 2014, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US14/18116, Report completed May 13, 2014, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US14/21439, completed Jun. 5, 2014, dated Jun. 20, 2014, 10 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/22118, completed Jun. 9, 2014, dated Jun. 25, 2014, 5 pgs.
International Search Report and Written Opinion for International Application PCT/US14/22774 report completed Jun. 9, 2014, dated Jul. 14, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/24407, report completed Jun. 11, 2014, dated Jul. 8, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/25100, report completed Jul. 7, 2014, dated Aug. 7, 2014, 5 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/25904 report completed Jun. 10, 2014, dated Jul. 10, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US2009/044687, completed Jan. 5, 2010, dated Jan. 13, 2010, 9 pgs.
International Search Report and Written Opinion for International Application PCT/US2010/057661, completed Mar. 9, 2011, 14 pgs.
International Search Report and Written Opinion for International Application PCT/US2011/064921, completed Feb. 25, 2011, dated Mar. 6, 2012, 17 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/037670, dated Jul. 18, 2012, Completed Jul. 5, 2012, 9 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/044014, completed Oct. 12, 2012, 15 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/056151, completed Nov. 14, 2012, 10 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/058093, Report completed Nov. 15, 2012, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/059813, completed Dec. 17, 2012, 8 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/022123, completed Jun. 9, 2014, dated Jun. 25, 2014, 5 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/023762, Completed May 30, 2014, dated Jul. 3, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/024903, completed Jun. 12, 2014, dated Jun. 27, 2014, 13 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/024947, Completed Jul. 8, 2014, dated Aug. 5, 2014, 8 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/028447, completed Jun. 30, 2014, dated Jul. 21, 2014, 8 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/029052, completed Jun. 30, 2014, dated Jul. 24, 2014, 10 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/030692, completed Jul. 28, 2014, dated Aug. 27, 2014, 7 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/064693, Completed Mar. 7, 2015, dated Apr. 2, 2015, 15 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/066229, Completed Mar. 6, 2015, dated Mar. 19, 2015, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/067740, Completed Jan. 29, 2015, dated Mar. 3, 2015, 10 pgs.
Office Action for U.S. Appl. No. 12/952,106, dated Aug. 16, 2012, 12 pgs.
Supplementary European Search Report for EP Application No. 13831768.0, Search completed May 18, 2016, dated May 30, 2016, 13 Pgs.
Supplementary European Search Report for European Application 09763194.9, completed Nov. 7, 2011, dated Nov. 29, 2011, 9 pgs.
“Exchangeable image file format for digital still cameras: Exif Version 2.2”, Japan Electronics and Information Technology Industries Association, Prepared by Technical Standardization Committee on AV & IT Storage Systems and Equipment, JEITA CP-3451, Apr. 2002, Retrieved from: http://www.exif.org/Exif2-2.PDF, 154 pgs.
“File Formats Version 6”, Alias Systems, 2004, 40 pgs.
“Light fields and computational photography”, Stanford Computer Graphics Laboratory, Retrieved from: http://graphics.stanford.edu/projects/lightfield/, Earliest publication online: Feb. 10, 1997, 3 pgs.
Aufderheide et al., “A MEMS-based Smart Sensor System for Estimation of Camera Pose for Computer Vision Applications”, Research and Innovation Conference 2011, Jul. 29, 2011, pp. 1-10.
Baker et al., “Limits on Super-Resolution and How to Break Them”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2002, vol. 24, No. 9, pp. 1167-1183.
Barron et al., “Intrinsic Scene Properties from a Single RGB-D Image”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, OR, USA, pp. 17-24.
Bennett et al., “Multispectral Bilateral Video Fusion”, 2007 IEEE Transactions on Image Processing, May 2007, published Apr. 16, 2007, vol. 16, No. 5, pp. 1185-1194.
Bennett et al., “Multispectral Video Fusion”, Computer Graphics (ACM SIGGRAPH Proceedings), Jul. 25, 2006, published Jul. 30, 2006, 1 pg.
Bertalmio et al., “Image Inpainting”, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000, ACM Pres/Addison-Wesley Publishing Co., pp. 417-424.
Bertero et al., “Super-resolution in computational imaging”, Micron, Jan. 1, 2003, vol. 34, Issues 6-7, 17 pgs.
Bishop et al., “Full-Resolution Depth Map Estimation from an Aliased Plenoptic Light Field”, ACCV Nov. 8, 2010, Part II, LNCS 6493, pp. 186-200.
Bishop et al., “Light Field Superresolution”, Computational Photography (ICCP), 2009 IEEE International Conference, Conference Date Apr. 16-17, published Jan. 26, 2009, 9 pgs.
Bishop et al., “The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution”, IEEE Transactions on Pattern Analysis and Machine Intelligence, May 2012, vol. 34, No. 5, published Aug. 18, 2011, pp. 972-998.
Borman, “Topics in Multiframe Superresolution Restoration”, Thesis of Sean Borman, Apr. 2004, 282 pgs.
Borman et al, “Image Sequence Processing”, Dekker Encyclopedia of Optical Engineering, Oct. 14, 2002, 81 pgs.
Borman et al., “Block-Matching Sub-Pixel Motion Estimation from Noisy, Under-Sampled Frames—An Empirical Performance Evaluation”, Proc SPIE, Dec. 28, 1998, vol. 3653, 10 pgs.
Borman et al., “Image Resampling and Constraint Formulation for Multi-Frame Super-Resolution Restoration”, Proc. SPIE, published Jul. 1, 2003, vol. 5016, 12 pgs.
Borman et al., “Linear models for multi-frame super-resolution restoration under non-affine registration and spatially varying PSF”, Proc. SPIE, May 21, 2004, vol. 5299, 12 pgs.
Borman et al., “Nonlinear Prediction Methods for Estimation of Clique Weighting Parameters in NonGaussian Image Models”, Proc. SPIE, Sep. 22, 1998, vol. 3459, 9 pgs.
Borman et al., “Simultaneous Multi-Frame MAP Super-Resolution Video Enhancement Using Spatio-Temporal Priors”, Image Processing, 1999, ICIP 99 Proceedings, vol. 3, pp. 469-473.
Borman et al., “Super-Resolution from Image Sequences—A Review”, Circuits & Systems, 1998, pp. 374-378.
Bose et al., “Superresolution and Noise Filtering Using Moving Least Squares”, IEEE Transactions on Image Processing, Aug. 2006, vol. 15, Issue 8, published Jul. 17, 2006, pp. 2239-2248.
Boye et al., “Comparison of Subpixel Image Registration Algorithms”, Proc. of SPIE—IS&T Electronic Imaging, Feb. 3, 2009, vol. 7246, pp. 72460X-1-72460X-9; doi: 10.1117/12.810369.
Bruckner et al., “Artificial compound eye applying hyperacuity”, Optics Express, Dec. 11, 2006, vol. 14, No. 25, pp. 12076-12084.
Bruckner et al., “Driving microoptical imaging systems towards miniature camera applications”, Proc. SPIE, Micro-Optics, May 13, 2010, 11 pgs.
Bruckner et al., “Thin wafer-level camera lenses inspired by insect compound eyes”, Optics Express, Nov. 22, 2010, vol. 18, No. 24, pp. 24379-24394.
Bryan et al., “Perspective Distortion from Interpersonal Distance Is an Implicit Visual Cue for Social Judgments of Faces”, PLOS One, vol. 7, Issue 9, Sep. 26, 2012, e45301, doi:10.1371/journal.pone.0045301, 9 pages.
Capel, “Image Mosaicing and Super-resolution”, Retrieved on Nov. 10, 2012, Retrieved from the Internet at URL:<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.2643&rep=rep1 &type=pdf>, 2001, 269 pgs.
Carroll et al., “Image Warps for Artistic Perspective Manipulation”, ACM Transactions on Graphics (TOG), vol. 29, No. 4, Jul. 26, 2010, Article No. 127, 9 pgs.
Chan et al., “Extending the Depth of Field in a Compound-Eye Imaging System with Super-Resolution Reconstruction”, Proceedings—International Conference on Pattern Recognition, Jan. 1, 2006, vol. 3, pp. 623-626.
Chan et al., “Investigation of Computational Compound-Eye Imaging System with Super-Resolution Reconstruction”, IEEE, ISASSP, Jun. 19, 2006, pp. 1177-1180.
Chan et al., “Super-resolution reconstruction in a computational compound-eye imaging system”, Multidim Syst Sign Process, published online Feb. 23, 2007, vol. 18, pp. 83-101.
Chen et al., “Image Matting with Local and Nonlocal Smooth Priors”, CVPR '13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23, 2013, pp. 1902-1907.
Chen et al., “Interactive deformation of light fields”, Symposium on Interactive 3D Graphics, 2005, pp. 139-146.
Chen et al., “KNN matting”, 2012 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 16-21, 2012, Providence, RI, USA, pp. 869-876.
Chen et al., “KNN Matting”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2013, vol. 35, No. 9, pp. 2175-2188.
Collins et al., “An Active Camera System for Acquiring Multi-View Video”, IEEE 2002 International Conference on Image Processing, Date of Conference: Sep. 22-25, 2002, Rochester, NY, 4 pgs.
Cooper et al., “The perceptual basis of common photographic practice”, Journal of Vision, vol. 12, No. 5, Article 8, May 25, 2012, pp. 1-14.
Crabb et al., “Real-time foreground segmentation via range and color imaging”, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, Jun. 23-28, 2008, pp. 1-5.
Debevec et al., “Recovering High Dynamic Range Radiance Maps from Photographs”, Computer Graphics (ACM SIGGRAPH Proceedings), Aug. 16, 1997, 10 pgs.
Do, Minh N. “Immersive Visual Communication with Depth”, Presented at Microsoft Research, Jun. 15, 2011, Retrieved from: http://minhdo.ece.illinois.edu/talks/ImmersiveComm.pdf, 42 pgs.
Do et al., “Immersive Visual Communication”, IEEE Signal Processing Magazine, vol. 28, Issue 1, Jan. 2011, DOI: 10.1109/MSP.2010.939075, Retrieved from: http://minhdo.ece.illinois.edu/publications/ImmerComm_SPM.pdf, pp. 58-66.
Drouin et al., “Fast Multiple-Baseline Stereo with Occlusion”, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05), Ottawa, Ontario, Canada, Jun. 13-16, 2005, pp. 540-547.
Drouin et al., “Geo-Consistency for Wide Multi-Camera Stereo”, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, Jun. 20-25, 2005, pp. 351-358.
Drouin et al., “Improving Border Localization of Multi-Baseline Stereo Using Border-Cut”, International Journal of Computer Vision, Jul. 5, 2006, vol. 83, Issue 3, 8 pgs.
Drulea et al., “Motion Estimation Using the Correlation Transform”, IEEE Transactions on Image Processing, Aug. 2013, vol. 22, No. 8, pp. 3260-3270, first published May 14, 2013.
Duparre et al., “Artificial apposition compound eye fabricated by micro-optics technology”, Applied Optics, Aug. 1, 2004, vol. 43, No. 22, pp. 4303-4310.
Duparre et al., “Artificial compound eye zoom camera”, Bioinspiration & Biomimetics, Nov. 21, 2008, vol. 3, pp. 1-6.
Duparre et al., “Artificial compound eyes—different concepts and their application to ultra flat image acquisition sensors”, MOEMS and Miniaturized Systems IV, Proc. SPIE 5346, Jan. 24, 2004, pp. 89-100.
Duparre et al., “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence”, Optics Express, Dec. 26, 2005, vol. 13, No. 26, pp. 10539-10551.
Duparre et al., “Micro-optical artificial compound eyes”, Bioinspiration & Biomimetics, Apr. 6, 2006, vol. 1, pp. R1-R16.
Duparre et al., “Microoptical artificial compound eyes—from design to experimental verification of two different concepts”, Proc. of SPIE, Optical Design and Engineering II, vol. 5962, Oct. 17, 2005, pp. 59622A-1-59622A-12.
Duparre et al., “Microoptical Artificial Compound Eyes—Two Different Concepts for Compact Imaging Systems”, 11th Microoptics Conference, Oct. 30-Nov. 2, 2005, 2 pgs.
Duparre et al., “Microoptical telescope compound eye”, Optics Express, Feb. 7, 2005, vol. 13, No. 3, pp. 889-903.
Duparre et al., “Micro-optically fabricated artificial apposition compound eye”, Electronic Imaging—Science and Technology, Prod. SPIE 5301, Jan. 2004, pp. 25-33.
Duparre et al., “Novel Optics/Micro-Optics for Miniature Imaging Systems”, Proc. of SPIE, Apr. 21, 2006, vol. 6196, pp. 619607-1-619607-15.
Duparre et al., “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices”, Optical Systems Design, Proc. SPIE 5249, Sep. 2003, pp. 408-418.
Duparre et al., “Thin compound-eye camera”, Applied Optics, May 20, 2005, vol. 44, No. 15, pp. 2949-2956.
Duparre et al., “Ultra-Thin Camera Based on Artificial Apposition Compound Eyes”, 10th Microoptics Conference, Sep. 1-3, 2004, 2 pgs.
Eng et al., “Gaze correction for 3D tele-immersive communication system”, IVMSP Workshop, 2013 IEEE 11th. IEEE, Jun. 10, 2013.
Fanaswala, “Regularized Super-Resolution of Multi-View Images”, Retrieved on Nov. 10, 2012 (Nov. 10, 2012). Retrieved from the Internet at URL:<http://www.site.uottawa.ca/-edubois/theses/Fanaswala_thesis.pdf>, 2009, 163 pgs.
Fang et al., “Volume Morphing Methods for Landmark Based 3D Image Deformation”, SPIE vol. 2710, Proc. 1996 SPIE Intl Symposium on Medical Imaging, Newport Beach, CA, Feb. 10, 1996, pp. 404-415.
Farrell et al., “Resolution and Light Sensitivity Tradeoff with Pixel Size”, Proceedings of the SPIE Electronic Imaging 2006 Conference, Feb. 2, 2006, vol. 6069, 8 pgs.
Farsiu et al., “Advances and Challenges in Super-Resolution”, International Journal of Imaging Systems and Technology, Aug. 12, 2004, vol. 14, pp. 47-57.
Farsiu et al., “Fast and Robust Multiframe Super Resolution”, IEEE Transactions on Image Processing, Oct. 2004, published Sep. 3, 2004, vol. 13, No. 10, pp. 1327-1344.
Farsiu et al., “Multiframe Demosaicing and Super-Resolution of Color Images”, IEEE Transactions on Image Processing, Jan. 2006, vol. 15, No. 1, date of publication Dec. 12, 2005, pp. 141-159.
Fecker et al., “Depth Map Compression for Unstructured Lumigraph Rendering”, Proc. SPIE 6077, Proceedings Visual Communications and Image Processing 2006, Jan. 18, 2006, pp. 60770B-1-60770B-8.
Feris et al., “Multi-Flash Stereopsis: Depth Edge Preserving Stereo with Small Baseline Illumination”, IEEE Trans on PAMI, 2006, 31 pgs.
Fife et al., “A 3D Multi-Aperture Image Sensor Architecture”, Custom Integrated Circuits Conference, 2006, CICC '06, IEEE, pp. 281-284.
Fife et al., “A 3MPixel Multi-Aperture Image Sensor with 0.7Mu Pixels in 0.11Mu CMOS”, ISSCC 2008, Session 2, Image Sensors & Technology, 2008, pp. 48-50.
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 191-198.
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 49-58.
Gastal et al., “Shared Sampling for Real-Time Alpha Matting”, Computer Graphics Forum, Eurographics 2010, vol. 29, Issue 2, May 2010, pp. 575-58.
Georgeiv et al., “Light Field Camera Design for Integral View Photography”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs.
Georgiev et al., “Light-Field Capture by Multiplexing in the Frequency Domain”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs.
Goldman et al., “Video Object Annotation, Navigation, and Composition”, In Proceedings of UIST 2008, Oct. 19-22, 2008, Monterey CA, USA, pp. 3-12.
Gortler et al., “The Lumigraph”, In Proceedings of SIGGRAPH 1996, published Aug. 1, 1996, pp. 43-54.
Gupta et al., “Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, OR, USA, pp. 564-571.
Hacohen et al., “Non-Rigid Dense Correspondence with Applications for Image Enhancement”, ACM Transactions on Graphics, vol. 30, No. 4, Aug. 7, 2011, 9 pgs.
Hamilton, “JPEG File Interchange Format, Version 1.02”, Sep. 1, 1992, 9 pgs.
Hardie, “A Fast Image Super-Algorithm Using an Adaptive Wiener Filter”, IEEE Transactions on Image Processing, Dec. 2007, published Nov. 19, 2007, vol. 16, No. 12, pp. 2953-2964.
Hasinoff et al., “Search-and-Replace Editing for Personal Photo Collections”, 2010 International Conference: Computational Photography (ICCP) Mar. 2010, pp. 1-8.
Hernandez-Lopez et al., “Detecting objects using color and depth segmentation with Kinect sensor”, Procedia Technology, vol. 3, Jan. 1, 2012, pp. 196-204, XP055307680, ISSN: 2212-0173, DOI: 10.1016/j.protcy.2012.03.021.
Holoeye Photonics AG, “LC 2012 Spatial Light Modulator (transmissive)”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918151716/http://holoeye.com/spatial-light-modulators/lc-2012-spatial-light-modulator/ on Oct. 20, 2017, 3 pages.
Holoeye Photonics AG, “Spatial Light Modulators”, Oct. 2, 2013, Brochure retrieved from https://web.archive.org/web/20131002061028/http://holoeye.com/wp-content/uploads/Spatial_Light_Modulators.pdf on Oct. 13, 2017, 4 pgs.
Holoeye Photonics AG, “Spatial Light Modulators”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918113140/http://holoeye.com/spatial-light-modulators/ on Oct. 13, 2017, 4 pages.
Horisaki et al., “Irregular Lens Arrangement Design to Improve Imaging Performance of Compound-Eye Imaging Systems”, Applied Physics Express, Jan. 29, 2010, vol. 3, pp. 022501-1-022501-3.
Horisaki et al., “Superposition Imaging for Three-Dimensionally Space-Invariant Point Spread Functions”, Applied Physics Express, Oct. 13, 2011, vol. 4, pp. 112501-1-112501-3.
Horn et al., “LightShop: Interactive Light Field Manipulation and Rendering”, In Proceedings of I3D, Jan. 1, 2007, pp. 121-128.
Isaksen et al., “Dynamically Reparameterized Light Fields”, In Proceedings of SIGGRAPH 2000, pp. 297-306.
Izadi et al., “KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera”, UIST'11, Oct. 16-19, 2011, Santa Barbara, CA, pp. 559-568.
Janoch et al., “A category-level 3-D object dataset: Putting the Kinect to work”, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Nov. 6-13, 2011, Barcelona, Spain, pp. 1168-1174.
Jarabo et al., “Efficient Propagation of Light Field Edits”, In Proceedings of SIACG 2011, pp. 75-80.
Jiang et al., “Panoramic 3D Reconstruction Using Rotational Stereo Camera with Simple Epipolar Constraints”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 1, Jun. 17-22, 2006, New York, NY, USA, pp. 371-378.
Joshi, Neel S., “Color Calibration for Arrays of Inexpensive Image Sensors”, Master's with Distinction in Research Report, Stanford University, Department of Computer Science, Mar. 2004, 30 pgs.
Joshi et al., “Synthetic Aperture Tracking: Tracking Through Occlusions”, ICCV IEEE 11th International Conference on Computer Vision; Publication [online]. Oct. 2007 [retrieved Jul. 28, 2014]. Retrieved from the Internet: <URL: http:l/ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4409032&isnumber=4408819>; pp. 1-8.
Kang et al., “Handling Occlusions in Dense Multi-view Stereo”, Computer Vision and Pattern Recognition, 2001, vol. 1, pp. I-103-I-110.
Kim, “Scene Reconstruction from a Light Field”, Master Thesis, Sep. 1, 2010 (Sep. 1, 2010), pp. 1-72.
Kim et al., “Scene reconstruction from high spatio-angular resolution light fields”, ACM Transactions on Graphics (TOG)—SIGGRAPH 2013 Conference Proceedings, vol. 32 Issue 4, Article 73, Jul. 21, 2013, 11 pages.
Kitamura et al., “Reconstruction of a high-resolution image on a compound-eye image-capturing system”, Applied Optics, Mar. 10, 2004, vol. 43, No. 8, pp. 1719-1727.
Konolige, Kurt, “Projected Texture Stereo”, 2010 IEEE International Conference on Robotics and Automation, May 3-7, 2010, p. 148-155.
Krishnamurthy et al., “Compression and Transmission of Depth Maps for Image-Based Rendering”, Image Processing, 2001, pp. 828-831.
Kubota et al., “Reconstructing Dense Light Field From Array of Multifocus Images for Novel View Synthesis”, IEEE Transactions on Image Processing, vol. 16, No. 1, Jan. 2007, pp. 269-279.
Kutulakos et al., “Occluding Contour Detection Using Affine Invariants and Purposive Viewpoint Control”, Computer Vision and Pattern Recognition, Proceedings CVPR 94, Seattle, Washington, Jun. 21-23, 1994, 8 pgs.
Lai et al., “A Large-Scale Hierarchical Multi-View RGB-D Object Dataset”, Proceedings—IEEE International Conference on Robotics and Automation, Conference Date May 9-13, 2011, 8 pgs., DOI:10.1109/ICRA.201135980382.
Lane et al., “A Survey of Mobile Phone Sensing”, IEEE Communications Magazine, vol. 48, Issue 9, Sep. 2010, pp. 140-150.
Lee et al., “Automatic Upright Adjustment of Photographs”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 877-884.
Lee et al., “Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module”, ETRI Journal, vol. 31, No. 6, Dec. 2009, pp. 695-702.
Lee et al., “Nonlocal matting”, CVPR 2011, Jun. 20-25, 2011, pp. 2193-2200.
LensVector, “How LensVector Autofocus Works”, 2010, printed Nov. 2, 2012 from http://www.lensvector.com/overview.html, 1 pg.
Levin et al., “A Closed Form Solution to Natural Image Matting”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006, vol. 1, pp. 61-68.
Levin et al., “Spectral Matting”, 2007 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 17-22, 2007, Minneapolis, MN, USA, pp. 1-8.
Levoy, “Light Fields and Computational Imaging”, IEEE Computer Society, Sep. 1, 2006, vol. 39, Issue No. 8, pp. 46-55.
Levoy et al., “Light Field Rendering”, Proc. ADM SIGGRAPH '96, pp. 1-12.
Li et al., “A Hybrid Camera for Motion Deblurring and Depth Map Super-Resolution”, Jun. 23-28, 2008, IEEE Conference on Computer Vision and Pattern Recognition, 8 pgs. Retrieved from www.eecis.udel.edu/˜jye/lab_research/08/deblur-feng.pdf on Feb. 5, 2014.
Li et al., “Fusing Images With Different Focuses Using Support Vector Machines”, IEEE Transactions on Neural Networks, vol. 15, No. 6, Nov. 8, 2004, pp. 1555-1561.
Lim, Jongwoo, “Optimized Projection Pattern Supplementing Stereo Systems”, 2009 IEEE International Conference on Robotics and Automation, May 12-17, 2009, pp. 2823-2829.
Liu et al., “Virtual View Reconstruction Using Temporal Information”, 2012 IEEE International Conference on Multimedia and Expo, 2012, pp. 115-120.
Lo et al., “Stereoscopic 3D Copy & Paste”, ACM Transactions on Graphics, vol. 29, No. 6, Article 147, Dec. 2010, pp. 147:1-147:10.
Martinez et al., “Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis”, Analytical Chemistry (American Chemical Society), vol. 80, No. 10, May 15, 2008, pp. 3699-3707.
McGuire et al., “Defocus video matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2005, vol. 24, Issue 3, Jul. 2005, pp. 567-576.
Merkle et al., “Adaptation and optimization of coding algorithms for mobile 3DTV”, MobileSDTV Project No. 216503, Nov. 2008, 55 pgs.
Mitra et al., “Light Field Denoising, Light Field Superresolution and Stereo Camera Based Refocussing using a GMM Light Field Patch Prior”, Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on Jun. 16-21, 2012, pp. 22-28.
Moreno-Noguer et al., “Active Refocusing of Images and Videos”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Jul. 2007, 10 pages.
Muehlebach, “Camera Auto Exposure Control for VSLAM Applications”, Studies on Mechatronics, Swiss Federal Institute of Technology Zurich, Autumn Term 2010 course, 67 pgs.
Nayar, “Computational Cameras: Redefining the Image”, IEEE Computer Society, Aug. 14, 2006, pp. 30-38.
Ng, “Digital Light Field Photography”, Thesis, Jul. 2006, 203 pgs.
Ng et al., “Light Field Photography with a Hand-held Plenoptic Camera”, Stanford Tech Report CTSR Feb. 2005, Apr. 20, 2005, pp. 1-11.
Ng et al., “Super-Resolution Image Restoration from Blurred Low-Resolution Images”, Journal of Mathematical Imaging and Vision, 2005, vol. 23, pp. 367-378.
Nguyen et al., “Error Analysis for Image-Based Rendering with Depth Information”, IEEE Transactions on Image Processing, vol. 18, Issue 4, Apr. 2009, pp. 703-716.
Nguyen et al., “Image-Based Rendering with Depth Information Using the Propagation Algorithm”, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, vol. 5, Mar. 23-23, 2005, pp. II-589-II-592.
Nishihara, H.K., “PRISM: A Practical Real-Time Imaging Stereo Matcher”, Massachusetts Institute of Technology, A.I. Memo 780, May 1984, 32 pgs . . . .
Nitta et al., “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method”, Applied Optics, May 1, 2006, vol. 45, No. 13, pp. 2893-2900.
Nomura et al., “Scene Collages and Flexible Camera Arrays”, Proceedings of Eurographics Symposium on Rendering, Jun. 2007, 12 pgs.
Park et al., “Multispectral Imaging Using Multiplexed Illumination”, 2007 IEEE 11th International Conference on Computer Vision, Oct. 14-21, 2007, Rio de Janeiro, Brazil, pp. 1-8.
Park et al., “Super-Resolution Image Reconstruction”, IEEE Signal Processing Magazine, May 2003, pp. 21-36.
Parkkinen et al., “Characteristic Spectra of Munsell Colors”, Journal of the Optical Society of America A, vol. 6, Issue 2, Feb. 1989, pp. 318-322.
Perwass et al., “Single Lens 3D-Camera with Extended Depth-of-Field”, printed from www.raytrix.de, Jan. 22, 2012, 15 pgs.
Pham et al., “Robust Super-Resolution without Regularization”, Journal of Physics: Conference Series 124, Jul. 2008, pp. 1-19.
Philips 3D Solutions, “3D Interface Specifications, White Paper”, Feb. 15, 2008, 2005-2008 Philips Electronics Nederland B.V., Philips 3D Solutions retrieved from www.philips.com/3dsolutions, 29 pgs., Feb. 15, 2008.
Polight, “Designing Imaging Products Using Reflowable Autofocus Lenses”, printed Nov. 2, 2012 from http://www.polight.no/tunable-polymer-autofocus-lens-html--11.html, 1 pg.
Pouydebasque et al., “Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers”, Sensors and Actuators A: Physical, vol. 172, Issue 1, Dec. 2011, pp. 280-286.
Protter et al., “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction”, IEEE Transactions on Image Processing, Dec. 2, 2008, vol. 18, No. 1, pp. 36-51.
Radtke et al., “Laser lithographic fabrication and characterization of a spherical artificial compound eye”, Optics Express, Mar. 19, 2007, vol. 15, No. 6, pp. 3067-3077.
Rajan et al., “Simultaneous Estimation of Super Resolved Scene and Depth Map from Low Resolution Defocused Observations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 9, Sep. 8, 2003, pp. 1-16.
Rander et al., “Virtualized Reality: Constructing Time-Varying Virtual Worlds From Real World Events”, Proc. of IEEE Visualization '97, Phoenix, Arizona, Oct. 19-24, 1997, pp. 277-283, 552.
Rhemann et al, “Fast Cost-Volume Filtering for Visual Correspondence and Beyond”, IEEE Trans. Pattern Anal. Mach. Intell, 2013, vol. 35, No. 2, pp. 504-511.
Rhemann et al., “A perceptually motivated online benchmark for image matting”, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 20-25, 2009, Miami, FL, USA, pp. 1826-1833.
Robert et al., “Dense Depth Map Reconstruction :A Minimization and Regularization Approach which Preserves Discontinuities”, European Conference on Computer Vision (ECCV), pp. 439-451, (1996).
Robertson et al., “Dynamic Range Improvement Through Multiple Exposures”, In Proc. of the Int. Conf. on Image Processing, 1999, 5 pgs.
Robertson et al., “Estimation-theoretic approach to dynamic range enhancement using multiple exposures”, Journal of Electronic Imaging, Apr. 2003, vol. 12, No. 2, pp. 219-228.
Roy et al., “Non-Uniform Hierarchical Pyramid Stereo for Large Images”, Computer and Robot Vision, 2002, pp. 208-215.
Sauer et al., “Parallel Computation of Sequential Pixel Updates in Statistical Tomographic Reconstruction”, ICIP 1995 Proceedings of the 1995 International Conference on Image Processing, Date of Conference: Oct. 23-26, 1995, pp. 93-96.
Scharstein et al., “High-Accuracy Stereo Depth Maps Using Structured Light”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), Jun. 2003, vol. 1, pp. 195-202.
Seitz et al., “Plenoptic Image Editing”, International Journal of Computer Vision 48, Conference Date Jan. 7, 1998, 29 pgs, DOI: 10.1109/ICCV.1998.710696 ⋅ Source: DBLP Conference: Computer Vision, Sixth International Conference.
Shotton et al., “Real-time human pose recognition in parts from single depth images”, CVPR 2011, Jun. 20-25, 2011, Colorado Springs, CO, USA, pp. 1297-1304.
Shum et al., “A Review of Image-based Rendering Techniques”, Visual Communications and Image Processing 2000, May 2000, 12 pgs.
Shum et al., “Pop-Up Light Field: An Interactive Image-Based Modeling and Rendering System”, Apr. 2004, ACM Transactions on Graphics, vol. 23, No. 2, pp. 143-162. Retrieved from http://131.107.65.14/en-us/um/people/jiansun/papers/PopupLightField_TOG.pdf on Feb. 5, 2014.
Silberman et al., “Indoor segmentation and support inference from RGBD images”, ECCV'12 Proceedings of the 12th European conference on Computer Vision, vol. Part V, Oct. 7-13, 2012, Florence, Italy, pp. 746-760.
Stober, “Stanford researchers developing 3-D camera with 12,616 lenses”, Stanford Report, Mar. 19, 2008, Retrieved from: http://news.stanford.edu/news/2008/march19/camera-031908.html, 5 pgs.
Stollberg et al., “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects”, Optics Express, Aug. 31, 2009, vol. 17, No. 18, pp. 15747-15759.
Sun et al., “Image Super-Resolution Using Gradient Profile Prior”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, 8 pgs.; DOI: 10.1109/CVPR.2008.4587659.
Taguchi et al., “Rendering-Oriented Decoding for a Distributed Multiview Coding System Using a Coset Code”, Hindawi Publishing Corporation, EURASIP Journal on Image and Video Processing, vol. 2009, Article ID 251081, Online: Apr. 22, 2009, 12 pages.
Takeda et al., “Super-resolution Without Explicit Subpixel Motion Estimation”, IEEE Transaction on Image Processing, Sep. 2009, vol. 18, No. 9, pp. 1958-1975.
Tallon et al., “Upsampling and Denoising of Depth Maps Via Joint-Segmentation”, 20th European Signal Processing Conference, Aug. 27-31, 2012, 5 pgs.
Tanida et al., “Color imaging with an integrated compound imaging system”, Optics Express, Sep. 8, 2003, vol. 11, No. 18, pp. 2109-2117.
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification”, Applied Optics, Apr. 10, 2001, vol. 40, No. 11, pp. 1806-1813.
Tao et al., “Depth from Combining Defocus and Correspondence Using Light-Field Cameras”, ICCV '13 Proceedings of the 2013 IEEE International Conference on Computer Vision, Dec. 1, 2013, pp. 673-680.
Taylor, “Virtual camera movement: The way of the future?”, American Cinematographer vol. 77, No. 9, Sep. 1996, 93-100.
Tseng et al., “Automatic 3-D depth recovery from a single urban-scene image”, 2012 Visual Communications and Image Processing, Nov. 27-30, 2012, San Diego, CA, USA, pp. 1-6.
Vaish et al., “Reconstructing Occluded Surfaces Using Synthetic Apertures: Stereo, Focus and Robust Measures”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 2, Jun. 17-22, 2006, pp. 2331-2338.
Vaish et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform”, IEEE Workshop on A3DISS, CVPR, 2005, 8 pgs.
Vaish et al., “Using Plane + Parallax for Calibrating Dense Camera Arrays”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004, 8 pgs.
Van Der Wal et al., “The Acadia Vision Processor”, Proceedings Fifth IEEE International Workshop on Computer Architectures for Machine Perception, Sep. 13, 2000, Padova, Italy, pp. 31-40.
Veilleux, “CCD Gain Lab: The Theory”, University of Maryland, College Park—Observational Astronomy (ASTR 310), Oct. 19, 2006, pp. 1-5 (online], [retrieved on May 13, 2014]. Retrieved from the Internet <URL: http://www.astro.umd.edu/˜veilleux/ASTR310/fall06/ccd_theory.pdf, 5 pgs.
Venkataraman et al., “PiCam: An Ultra-Thin High Performance Monolithic Camera Array”, ACM Transactions on Graphics (TOG), ACM, US, vol. 32, No. 6, 1 Nov. 1, 2013, pp. 1-13.
Vetro et al., “Coding Approaches for End-To-End 3D TV Systems”, Mitsubishi Electric Research Laboratories, Inc., TR2004-137, Dec. 2004, 6 pgs.
Viola et al., “Robust Real-time Object Detection”, Cambridge Research Laboratory, Technical Report Series, Compaq, CRL 2001/01, Feb. 2001, Printed from: http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-2001-1.pdf, 30 pgs.
Vuong et al., “A New Auto Exposure and Auto White-Balance Algorithm to Detect High Dynamic Range Conditions Using CMOS Technology”, Proceedings of the World Congress on Engineering and Computer Science 2008, WCECS 2008, Oct. 22-24, 2008.
Wang, “Calculation of Image Position, Size and Orientation Using First Order Properties”, Dec. 29, 2010, OPTI521 Tutorial, 10 pgs.
Wang et al., “Automatic Natural Video Matting with Depth”, 15th Pacific Conference on Computer Graphics and Applications, PG '07, Oct. 29-Nov. 2, 2007, Maui, HI, USA, pp. 469-472.
Wang et al., “Image and Video Matting: A Survey”, Foundations and Trends, Computer Graphics and Vision, vol. 3, No. 2, 2007, pp. 91-175.
Wang et al., “Soft scissors: an interactive tool for realtime high quality matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Article 9, Jul. 2007, 6 pages, published Aug. 5, 2007.
Wetzstein et al., “Computational Plenoptic Imaging”, Computer Graphics Forum, 2011, vol. 30, No. 8, pp. 2397-2426.
Wheeler et al., “Super-Resolution Image Synthesis Using Projections Onto Convex Sets in the Frequency Domain”, Proc. SPIE, Mar. 11, 2005, vol. 5674, 12 pgs.
Wieringa et al., “Remote Non-invasive Stereoscopic Imaging of Blood Vessels: First In-vivo Results of a New Multispectral Contrast Enhancement Technology”, Annals of Biomedical Engineering, vol. 34, No. 12, Dec. 2006, pp. 1870-1878, Published online Oct. 12, 2006.
Wikipedia, “Polarizing Filter (Photography)”, retrieved from http://en.wikipedia.org/wiki/Polarizing_filter_(photography) on Dec. 12, 2012, last modified on Sep. 26, 2012, 5 pgs.
Wilburn, “High Performance Imaging Using Arrays of Inexpensive Cameras”, Thesis of Bennett Wilburn, Dec. 2004, 128 pgs.
Wilburn et al., “High Performance Imaging Using Large Camera Arrays”, ACM Transactions on Graphics, Jul. 2005, vol. 24, No. 3, pp. 1-12.
Wilburn et al., “High-Speed Videography Using a Dense Camera Array”, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., vol. 2, Jun. 27-Jul. 2, 2004, pp. 294-301.
Wilburn et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002, SPIE Electronic Imaging, 2002, 8 pgs.
Wippermann et al., “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective”, Proceedings of SPIE, Optical Design and Engineering II, Oct. 15, 2005, 59622C-1-59622C-11.
Wu et al., “A virtual view synthesis algorithm based on image inpainting”, 2012 Third International Conference on Networking and Distributed Computing, Hangzhou, China, Oct. 21-24, 2012, pp. 153-156.
Xu, “Real-Time Realistic Rendering and High Dynamic Range Image Display and Compression”, Dissertation, School of Computer Science in the College of Engineering and Computer Science at the University of Central Florida, Orlando, Florida, Fall Term 2005, 192 pgs.
Yang et al., “A Real-Time Distributed Light Field Camera”, Eurographics Workshop on Rendering (2002), published Jul. 26, 2002, pp. 1-10.
Yang et al., “Superresolution Using Preconditioned Conjugate Gradient Method”, Proceedings of SPIE—The International Society for Optical Engineering, Jul. 2002, 8 pgs.
Yokochi et al., “Extrinsic Camera Parameter Estimation Based-on Feature Tracking and GPS Data”, 2006, Nara Institute of Science and Technology, Graduate School of Information Science, LNCS 3851, pp. 369-378.
Zhang et al., “A Self-Reconfigurable Camera Array”, Eurographics Symposium on Rendering, published Aug. 8, 2004, 12 pgs.
Zhang et al., “Depth estimation, spatially variant image registration, and super-resolution using a multi-lenslet camera”, Proceedings of SPIE, vol. 7705, Apr. 23, 2010, pp. 770505-770505-8, XP055113797 ISSN: 0277-786X, DOI: 10.1117/12.852171.
Zheng et al., “Balloon Motion Estimation Using Two Frames”, Proceedings of the Asilomar Conference on Signals, Systems and Computers, IEEE, Comp. Soc. Press, US, vol. 2 of 02, Nov. 4, 1991, pp. 1057-1061.
Zhu et al., “Fusion of Time-of-Flight Depth and Stereo for High Accuracy Depth Maps”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, Anchorage, AK, USA, pp. 1.
Zomet et al., “Robust Super-Resolution”, IEEE, 2001, pp. 1-6.
Extended European Search Report for European Application No. 21169308.0, Search completed Aug. 2, 2021, dated Aug. 9, 2021, 9 Pgs.
Extended Search Report for European Application No. 21155002.5, Search completed Jun. 7, 2021 , dated Jun. 11, 2021, 14 Pgs.
Related Publications (1)
Number Date Country
20210063141 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
61905423 Nov 2013 US
Continuations (2)
Number Date Country
Parent 16177191 Oct 2018 US
Child 17013783 US
Parent 14547048 Nov 2014 US
Child 16177191 US