The present disclosure generally relates to the technical field of autonomous vehicles. In particular, methods, systems, and devices for reliably launching an autonomous vehicle are disclosed.
Social networks are beginning to link with autonomous vehicles to provide enhanced experiences for their users. Autonomous vehicles may provide additional perspectives when capturing images, video and/or audio for example. To increase adoption of the use of autonomous vehicles as part of a robust social network experience, the autonomous vehicles should be easy for users to use and integrate into their daily lives. Therefore, improved methods, devices and systems for the use of autonomous vehicles in conjunction with social networks are desired.
In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. Some embodiments are illustrated by way of example, and not limitation, in the figures of the accompanying drawings.
The description that follows includes systems, methods, techniques, instruction sequences, and computing machine program products that embody illustrative embodiments of the disclosure. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide an understanding of various embodiments of the inventive subject matter. It will be evident, however, to those skilled in the art, that embodiments of the inventive subject matter may be practiced without these specific details. In general, well-known instruction instances, protocols, structures, and techniques are not necessarily shown in detail.
Disclosed are methods, systems, and devices to improve the reliability of launching an autonomous vehicle. In some aspects, the autonomous vehicle may be in communication with a social network. For example, the autonomous vehicle may be equipped with a camera, and be configured to capture images or videos from an aerial perspective. After images are captured by the autonomous vehicle, they may be uploaded to a user's social network account, enabling the user to edit and/or share these images via the social network.
In some aspects, the autonomous vehicle may be launched by being thrown by the social network user. Upon detecting that it has been thrown, the autonomous vehicle may initiate flight operations, such as by energizing one or more motors integrated with the autonomous vehicle. In some cases, upon detection of the launch, the autonomous vehicle may also initiate a flight control program that provides for autonomous vehicle functions, such as one or more of flight stabilization, attitude and/or altitude control, obstacle avoidance, tracking of the user, and other functions.
The disclosed methods, systems, and devices may rely on data from an accelerometer and a touch sensor when determining whether the vehicle has been launched. For example, in some aspects, input received from the accelerometer must match specific criteria, and input received from one or more touch sensors on the autonomous vehicle must match specific second criteria before a launch can be detected. By relying on input from both an accelerometer and the one or more touch sensors, the reliability of launch detection may be improved. This may, for example, prevent energizing of an autonomous vehicle motor when the autonomous vehicle has not been launched, therefore improving safety.
In the example shown in
The network 106 may include, or operate in conjunction with, an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network, another type of network, or a combination of two or more such networks. For example, the network 106 or a portion of the network 106 may include a wireless or cellular network and the connection to the network 106 may be a Code Division Multiple Access (CDMA) connection, a Global System for Mobile communications (GSM) connection, or another type of cellular or wireless coupling. In this example, the coupling may implement any of a variety of types of data transfer technology, such as Single Carrier Radio Transmission Technology (1×RTT), Evolution-Data Optimized (EVDO) technology, General Packet Radio Service (GPRS) technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third-Generation Partnership Project (3GPP) including 3G, fourth-generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), High-Speed Packet Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX), Long-Term Evolution (LTE) standard, or others defined by various standard-setting organizations, other long-range protocols, or other data transfer technology.
The messaging server system 108 provides server-side functionality via the network 106 to a particular messaging client application 104. While certain functions of the messaging system 100 are described herein as being performed by either a messaging client application 104 or by the messaging server system 108, it will be appreciated that the location of certain functionality either within the messaging client application 104 or the messaging server system 108 is a design choice. For example, it may be technically preferable to initially deploy certain technology and functionality within the messaging server system 108, but to later migrate this technology and functionality to the messaging client application 104 where a client device 102 has a sufficient processing capacity.
The messaging server system 108 supports various services and operations that are provided to the messaging client application 104. Such operations include transmitting data to, receiving data from, and processing data generated by the messaging client application 104. This data may include message content, client device information, geolocation information, media annotation and overlays, message content persistence conditions, social network information, and live event information, as examples. Data exchanges within the messaging system 100 are invoked and controlled through functions available via user interfaces (UIs) of the messaging client application 104.
Turning now specifically to the messaging server system 108, an Application Programming Interface (API) server 110 is coupled to, and provides a programmatic interface to, an application server 112. The application server 112 is communicatively coupled to a database server 118, which facilitates access to a database 120 in which is stored data associated with messages processed by the application server 112.
The API server 110 receives and transmits message data (e.g., commands and message payloads) between the client device 102 and the application server 112. Specifically, the API server 110 provides a set of interfaces (e.g., routines and protocols) that can be called or queried by the messaging client application 104 in order to invoke functionality of the application server 112. The API server 110 exposes various functions supported by the application server 112, including account registration; login functionality; the sending of messages, via the application server 112, from a particular messaging client application 104 to another messaging client application 104; the sending of media files (e.g., images or video) from a messaging client application 104 to the application server 112, for possible access by another messaging client application 104; the setting of a collection of media data (e.g., story); the retrieval of a list of friends of a user of a client device 102; the retrieval of such collections; the retrieval of messages and content; the adding and deletion of friends to and from a social graph; the location of friends within a social graph; and the detecting of an application event (e.g., relating to the messaging client application 104).
The application server 112 hosts a number of applications and subsystems, including a messaging server application 114 and a social network system 116. The messaging server application 114 implements a number of message processing technologies and functions, particularly related to the aggregation and other processing of content (e.g., textual and multimedia content) included in messages received from multiple instances of the messaging client application 104. As will be described in further detail, the text and media content from multiple sources may be aggregated into collections of content (e.g., called stories or galleries). These collections are then made available, by the messaging server application 114, to the messaging client application 104. Other processor- and memory-intensive processing of data may also be performed server-side by the messaging server application 114, in view of the hardware requirements for such processing.
The social network system 116 supports various social networking functions and services, and makes these functions and services available to the messaging server application 114. To this end, the social network system 116 maintains and accesses an entity graph within the database 120. Examples of functions and services supported by the social network system 116 include the identification of other users of the messaging system 100 with whom a particular user has relationships or whom the user is “following,” and also the identification of other entities and interests of a particular user.
The disclosed methods and systems may provide for improved launch of an autonomous vehicle that may be in communication with the client device 102 and, in some aspects, with the social network system 116.
Methods, devices, and systems disclosed herein may provide the autonomous vehicle 119 with a more reliable method of air launching when compared to other methods. For example, in some aspects, the autonomous vehicle 119 may utilize a combination of sensors when determining whether the autonomous vehicle 119 has been air launched. For example, accelerations provided by an accelerometer within the autonomous vehicle 119 may be examined to identify certain signature accelerations typical of an air launch. If the accelerations match those signatures, then input from other sensors, for example touch sensors located on the drone, may be examined to determine if any touch is detected. If no touch is detected, and the accelerations measured by the autonomous vehicle 119 match acceleration signatures typically experienced during an air launch operation, then the autonomous vehicle 119 may power up its one or more motors and transition into a flight control program.
In some aspects, the hardware processor 202 may control the image sensor 214. For example, the hardware processor 202 may capture snapshot images and/or videos using the image sensor 214. In some aspects, the autonomous vehicle 119 may also include a microphone (not shown). The microphone may be utilized to capture audio data to accompany video data captured by the image sensor 214 in some aspects. While the hardware processor 202 is shown in
The accelerations in the region 304 may be positive and at least a portion of the accelerations in the region 304 may be above a first threshold 320 in some aspects. In some embodiments not shown in
Accelerations within the region 306 are negative accelerations. In some aspects, the accelerations present in the region 306 may be indicative of a free-fall event. In some aspects, at least a portion of the accelerations in the region 306 may be below a second threshold value 330. In some aspects, other than that illustrated in
Decision operation 605 determines whether launching of the vehicle is enabled. Enabling of a launch of the vehicle may consider one or more conditions. In some aspects, an autonomous vehicle may include an enabling switch, the switch having at least two distinct positions. In some embodiments, the switch must be set to a first or “on” or “active” position for the vehicle to be considered launch enabled. A second switch position such as an “off” or “disarmed” position may prevent operation 605 from determining that launch is enabled.
In some aspects, gestures may be utilized to enable launch of the vehicle. For example, in some aspects, the image sensor 214 may capture images which are analyzed by the processor 202. A predetermined gesture identified by the processor 202 may indicate the vehicle is to be enabled for launch. In some aspects, a rotation gesture may serve this purpose. In some aspects, inputs from an accelerometer may be analyzed to determine if the vehicle is enabled for launch. For example, in some aspects, rotating the vehicle 360 degrees about an axis, such as 1, 2, 3, 4, 5, 6, or any predetermined number of times may be considered a launch enabling signal. In some aspects, the rotations must be detected within a predetermined elapsed time period. For example, a number of rotations detected within, for example, no more than three seconds per rotation must be detected in some aspects. For example, two rotations must be detected within six seconds in some embodiments. In other embodiments, three rotations within nine seconds must be detected. Other numbers of rotations, rate of rotations, and/or total elapsed time for the rotations to be detected are contemplated.
Upon detecting a predetermined number of vehicle rotations about an axis, the processor 202 may enable the vehicle 119 for launch in some aspects. In some aspects, two or more of the methods discussed above may be required to enable the vehicle 119 for launch. In these embodiments, each of the selected launch enabling conditions must be satisfied to enable launch of the vehicle.
In some aspects, a period of inactivity, where no launch enabling inputs are received, may disable the vehicle for launch. In other aspects, the vehicle may be disabled for launch via the switch discussed above, or by recognition of a disarming gesture, or a disarming movement of the vehicle that is recognized based on input from the accelerometer. In some aspects, when the vehicle is enabled for launch, an indicator light may illuminate or flash. In some aspects, the vehicle may include a speaker, and may emit an audible sound when enabled for launch and/or disabled for launch.
In operation 610, a first input is received from a touch sensor. For example, in some aspects, the hardware processor 202 may read data from the touch sensor 206 over the bus 210. In some aspects, the input may indicate whether a touch is detected or if no touch is detected. For example, as discussed above, in some aspects, the autonomous vehicle 119 may include paint with varying electrical characteristics depending on whether the paint is being touched or not. In some other aspects, the autonomous vehicle 119 may include a shell or body portion that may be made of a metal material, such as aluminum. In these aspects, the material of the shell may exhibit an electrical characteristic that varies based on whether the shell is being touched or not. In these aspects, the touch sensor may be the paint or the aluminum shell. In other aspects, a touch sensor may be positioned on the shell or body portion of the autonomous vehicle. The touch sensor may have a deformable portion. When a shape of the deformable portion varies due to touch, this may change an electrical characteristic of the touch sensor.
In operation 620, a second input is received from an accelerometer. In some aspects, the input may define one or more accelerations over time experienced by an autonomous vehicle, such as the autonomous vehicle 119. In some aspects, the accelerations may include one or more of positive accelerations and negative accelerations, with positive accelerations being in a direction opposite to a gravitational force and negative accelerations being in a direction consistent to or aligned with the gravitational force.
Operation 630 determines whether a launch of the autonomous vehicle is detected based on the inputs. In some aspects, a launch detection may require that the acceleration received in operation 620 meet an acceleration criteria, and the input from the touch sensor of operation 610 meet a touch input criteria. If both criteria are met, then a launch may be detected in some aspects. As discussed above with respect to
In some aspects, the acceleration criteria may include a first period of acceleration in a positive direction, with the positive acceleration period including some acceleration measurements above a first threshold such as the threshold 320 shown in
In some aspects, detecting an launch event may be dependent on whether the autonomous vehicle was “armed” for a launch. For example, if the vehicle is not “armed,” in some aspects, a launch cannot be detected. In some aspects, decision operation 605, which describes above being “enabled” for launch, is synonymous with the vehicle being “armed” for launch.
Operation 640 controls the autonomous vehicle in response to the determining. For example, in some aspects, if a launch is detected in operation 630, operation 640 may energize one or more motors of the autonomous vehicle, such as any of the motors 214a-d shown in
Software Architecture
As used herein, the term “component” may refer to a device, a physical entity, or logic having boundaries defined by function or subroutine calls, branch points, APIs, and/or other technologies that provide for the partitioning or modularization of particular processing or control functions. Components may be combined via their interfaces with other components to carry out a machine process. A component may be a packaged functional hardware unit designed for use with other components and a part of a program that usually performs a particular function of related functions.
Components may constitute either software components (e.g., code embodied on a machine-readable medium) or hardware components. A “hardware component” is a tangible unit capable of performing certain operations and may be configured or arranged in a certain physical manner. In various exemplary embodiments, one or more computer systems (e.g., a standalone computer system, a client computer system, or a server computer system) or one or more hardware components of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware component that operates to perform certain operations as described herein. A hardware component may also be implemented mechanically, electronically, or any suitable combination thereof. For example, a hardware component may include dedicated circuitry or logic that is permanently configured to perform certain operations.
A hardware component may be a special-purpose processor, such as a Field-Programmable Gate Array (FPGA) or an Application-Specific Integrated Circuit (ASIC). A hardware component may also include programmable logic or circuitry that is temporarily configured by software to perform certain operations. For example, a hardware component may include software executed by a general-purpose processor or other programmable processor. Once configured by such software, hardware components become specific machines (or specific components of a machine) uniquely tailored to perform the configured functions and are no longer general-purpose processors. It will be appreciated that the decision to implement a hardware component mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
A processor may be, or include, any circuit or virtual circuit (a physical circuit emulated by logic executing on an actual processor) that manipulates data values according to control signals (e.g., “commands,” “op codes,” “machine code,” etc.) and that produces corresponding output signals that are applied to operate a machine. A processor may, for example, be a Central Processing Unit (CPU), a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (CISC) processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an ASIC, a Radio-Frequency Integrated Circuit (RFIC), or any combination thereof. A processor may further be a multi-core processor having two or more independent processors (sometimes referred to as “cores”) that may execute instructions contemporaneously.
Accordingly, the phrase “hardware component” (or “hardware-implemented component”) should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. Considering embodiments in which hardware components are temporarily configured (e.g., programmed), each of the hardware components need not be configured or instantiated at any one instance in time. For example, where a hardware component comprises a general-purpose processor configured by software to become a special-purpose processor, the general-purpose processor may be configured as respectively different special-purpose processors (e.g., comprising different hardware components) at different times. Software accordingly configures a particular processor or processors, for example, to constitute a particular hardware component at one instance of time and to constitute a different hardware component at a different instance of time. Hardware components can provide information to, and receive information from, other hardware components. Accordingly, the described hardware components may be regarded as being communicatively coupled. Where multiple hardware components exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between or among two or more of the hardware components. In embodiments in which multiple hardware components are configured or instantiated at different times, communications between or among such hardware components may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware components have access.
For example, one hardware component may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware component may then, at a later time, access the memory device to retrieve and process the stored output. Hardware components may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information). The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented components that operate to perform one or more operations or functions described herein. As used herein, “processor-implemented component” refers to a hardware component implemented using one or more processors. Similarly, the methods described herein may be at least partially processor-implemented, with a particular processor or processors being an example of hardware. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented components.
Moreover, the one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., an API). The performance of certain of the operations may be distributed among the processors, not only residing within a single machine, but deployed across a number of machines. In some exemplary embodiments, the processors or processor-implemented components may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other exemplary embodiments, the processors or processor-implemented components may be distributed across a number of geographic locations.
In the exemplary architecture of
The operating system 702 may manage hardware resources and provide common services. The operating system 702 may include, for example, a kernel 722, services 724, and drivers 726. The kernel 722 may act as an abstraction layer between the hardware and the other software layers. For example, the kernel 722 may be responsible for memory management, processor management (e.g., scheduling), component management, networking, security settings, and so on. The services 724 may provide other common services for the other software layers. The drivers 726 are responsible for controlling or interfacing with the underlying hardware. For instance, the drivers 726 include display drivers, camera drivers, Bluetooth® drivers, flash memory drivers, serial communication drivers (e.g., Universal Serial Bus (USB) drivers), Wi-Fi® drivers, audio drivers, power management drivers, and so forth depending on the hardware configuration.
The libraries 720 provide a common infrastructure that is used by the applications 716 and/or other components and/or layers. The libraries 720 provide functionality that allows other software components to perform tasks in an easier fashion than by interfacing directly with the underlying operating system 702 functionality (e.g., kernel 722, services 724, and/or drivers 726). The libraries 720 may include system libraries 744 (e.g., C standard library) that may provide functions such as memory allocation functions, string manipulation functions, mathematical functions, and the like. In addition, the libraries 720 may include API libraries 746 such as media libraries (e.g., libraries to support presentation and manipulation of various media formats such as MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG), graphics libraries (e.g., an OpenGL framework that may be used to render 2D and 3D graphic content on a display), database libraries (e.g., SQLite that may provide various relational database functions), web libraries (e.g., WebKit that may provide web browsing functionality), and the like. The libraries 720 may also include a wide variety of other libraries 748 to provide many other APIs to the applications 716 and other software components/modules.
The frameworks/middleware 718 provide a higher-level common infrastructure that may be used by the applications 716 and/or other software components/modules. For example, the frameworks/middleware 718 may provide various graphic user interface (GUI) functions, high-level resource management, high-level location services, and so forth. The frameworks/middleware 718 may provide a broad spectrum of other APIs that may be utilized by the applications 716 and/or other software components/modules, some of which may be specific to a particular operating system 702 or platform.
The applications 716 include built-in applications 738 and/or third-party applications 740. Examples of representative built-in applications 738 may include, but are not limited to, a contacts application, a browser application, a book reader application, a location application, a media application, a messaging application, and/or a game application. The third-party applications 740 may include an application developed using the ANDROID™ or IOS™ software development kit (SDK) by an entity other than the vendor of the particular platform, and may be mobile software running on a mobile operating system such as IOS™, ANDROID™, WINDOWS® Phone, or other mobile operating systems. The third-party applications 740 may invoke the API calls 708 provided by the mobile operating system (such as the operating system 702) to facilitate functionality described herein.
The applications 716 may use built-in operating system functions (e.g., kernel 722, services 724, and/or drivers 726), libraries 720, and frameworks/middleware 718 to create user interfaces to interact with users of the system. Alternatively, or additionally, in some systems interactions with a user may occur through a presentation layer, such as the presentation layer 714. In these systems, the application/component “logic” can be separated from the aspects of the application/component that interact with a user.
Exemplary Machine
The machine 800 may include processors 804, memory/storage 806, and I/O components 818, which may be configured to communicate with each other such as via a bus 802. The memory/storage 806 may include a memory 814, such as a main memory, or other memory storage, and a storage unit 816, both accessible to the processors 804 such as via the bus 802. The storage unit 816 and memory 814 store the instructions 810 embodying any one or more of the methodologies or functions described herein. The instructions 810 may also reside, completely or partially, within the memory 814, within the storage unit 816, within at least one of the processors 804 (e.g., within the processor's cache memory), or any suitable combination thereof, during execution thereof by the machine 800. Accordingly, the memory 814, the storage unit 816, and the memory of the processors 804 are examples of machine-readable media. In some aspect, the processors 202 and processors 804 may be the same processors.
As used herein, the term “machine-readable medium,” “computer-readable medium,” or the like may refer to any component, device, or other tangible medium able to store instructions and data temporarily or permanently. Examples of such media may include, but are not limited to, random-access memory (RAM), read-only memory (ROM), buffer memory, flash memory, optical media, magnetic media, cache memory, other types of storage (e.g., Electrically Erasable Programmable Read-Only Memory (EEPROM)), and/or any suitable combination thereof. The term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, or associated caches and servers) able to store instructions. The term “machine-readable medium” may also be taken to include any medium, or combination of multiple media, that is capable of storing instructions (e.g., code) for execution by a machine, such that the instructions, when executed by one or more processors of the machine, cause the machine to perform any one or more of the methodologies described herein. Accordingly, a “machine-readable medium” may refer to a single storage apparatus or device, as well as “cloud-based” storage systems or storage networks that include multiple storage apparatus or devices. The term “machine-readable medium” excludes transitory signals per se.
The I/O components 818 may include a wide variety of components to provide a user interface for receiving input, providing output, producing output, transmitting information, exchanging information, capturing measurements, and so on. The specific I/O components 818 that are included in the user interface of a particular machine 800 will depend on the type of machine. For example, portable machines such as mobile phones will likely include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 818 may include many other components that are not shown in
In further exemplary embodiments, the I/O components 818 may include biometric components 830, motion components 834, environment components 836, or position components 838, as well as a wide array of other components. For example, the biometric components 830 may include components to detect expressions (e.g., hand expressions, facial expressions, vocal expressions, body gestures, or eye tracking), measure biosignals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram-based identification), and the like. The motion components 834 may include acceleration sensor components (e.g., accelerometer), gravitation sensor components, rotation sensor components (e.g., gyroscope), and so forth. The environment components 836 may include, for example, illumination sensor components (e.g., photometer), temperature sensor components (e.g., one or more thermometers that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas detection sensors to detect concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or signals corresponding to a surrounding physical environment. The position components 838 may include location sensor components (e.g., a GPS receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which altitude may be derived), orientation sensor components (e.g., magnetometers), and the like.
Communication may be implemented using a wide variety of technologies. The I/O components 818 may include communication components 840 operable to couple the machine 800 to a network 832 or devices 820 via a coupling 824 and a coupling 822 respectively. For example, the communication components 840 may include a network interface component or other suitable device to interface with the network 832. In further examples, the communication components 840 may include wired communication components, wireless communication components, cellular communication components, Near Field Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), Wi-Fi® components, and other communication components to provide communication via other modalities. The devices 820 may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a USB).
Moreover, the communication components 840 may detect identifiers or include components operable to detect identifiers. For example, the communication components 840 may include Radio Frequency Identification (RFID) tag reader components, NFC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF4111, Ultra Code, UCC RSS-2D bar code, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals). In addition, a variety of information may be derived via the communication components 840, such as location via Internet Protocol (IP) geolocation, location via Wi-Fi® signal triangulation, location via detecting an NFC beacon signal that may indicate a particular location, and so forth.
Where a phrase similar to “at least one of A, B, or C,” “at least one of A, B, and C,” “one or more of A, B, or C,” or “one or more of A, B, and C” is used, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or any combination of the elements A, B, and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C may be present.
Changes and modifications may be made to the disclosed embodiments without departing from the scope of the present disclosure. These and other changes or modifications are intended to be included within the scope of the present disclosure, as expressed in the following claims.
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
This application is a continuation of U.S. application Ser. No. 16/294,597, filed Mar. 6, 2019 and entitled, “Reliable Drone Launching,” which claims priority to U.S. Provisional Application No. 62/639,280, filed Mar. 6, 2018 and entitled “Systems, Devices, and Methods for Reliable Launching.” The contents of these prior applications are considered part of this application, and are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5772010 | Watanabe | Jun 1998 | A |
6038295 | Mattes | Mar 2000 | A |
6819982 | Doane | Nov 2004 | B2 |
6980909 | Root et al. | Dec 2005 | B2 |
7173651 | Knowles | Feb 2007 | B1 |
7411493 | Smith | Aug 2008 | B2 |
7535890 | Rojas | May 2009 | B2 |
7542073 | Li et al. | Jun 2009 | B2 |
8115149 | Manole | Feb 2012 | B1 |
8131597 | Hudetz | Mar 2012 | B2 |
8174562 | Hartman | May 2012 | B2 |
8199747 | Rojas et al. | Jun 2012 | B2 |
8274550 | Steuart, III | Sep 2012 | B2 |
8332475 | Rosen et al. | Dec 2012 | B2 |
8646720 | Shaw | Feb 2014 | B2 |
8718333 | Wolf et al. | May 2014 | B2 |
8724622 | Rojas | May 2014 | B2 |
8874677 | Rosen et al. | Oct 2014 | B2 |
8909679 | Root et al. | Dec 2014 | B2 |
8995433 | Rojas | Mar 2015 | B2 |
9040574 | Wang et al. | May 2015 | B2 |
9055416 | Rosen et al. | Jun 2015 | B2 |
9100806 | Rosen et al. | Aug 2015 | B2 |
9100807 | Rosen et al. | Aug 2015 | B2 |
9191776 | Root et al. | Nov 2015 | B2 |
9204252 | Root | Dec 2015 | B2 |
9344642 | Niemi et al. | May 2016 | B2 |
9345711 | Friedhoff | May 2016 | B2 |
9443227 | Evans et al. | Sep 2016 | B2 |
9471059 | Wilkins | Oct 2016 | B1 |
9489661 | Evans et al. | Nov 2016 | B2 |
9489937 | Beard et al. | Nov 2016 | B1 |
9491134 | Rosen et al. | Nov 2016 | B2 |
9576369 | Venkataraman et al. | Feb 2017 | B2 |
9589448 | Schneider et al. | Mar 2017 | B1 |
9681046 | Adsumilli et al. | Jun 2017 | B2 |
9723272 | Lu et al. | Aug 2017 | B2 |
9747901 | Gentry | Aug 2017 | B1 |
9922659 | Bradlow et al. | Mar 2018 | B2 |
9989965 | Cuban et al. | Jun 2018 | B2 |
10061328 | Canoy et al. | Aug 2018 | B2 |
10109224 | Ratti et al. | Oct 2018 | B1 |
10140987 | Erickson et al. | Nov 2018 | B2 |
10168700 | Gordon et al. | Jan 2019 | B2 |
10234872 | Wang | Mar 2019 | B2 |
10370118 | Nielsen et al. | Aug 2019 | B1 |
10501180 | Yu | Dec 2019 | B2 |
10768639 | Meisenholder et al. | Sep 2020 | B1 |
11126206 | Meisenholder et al. | Sep 2021 | B2 |
11407511 | Buchmueller | Aug 2022 | B1 |
20070250526 | Hanna | Oct 2007 | A1 |
20080255842 | Simhi | Oct 2008 | A1 |
20090122133 | Hartman | May 2009 | A1 |
20110202598 | Evans et al. | Aug 2011 | A1 |
20120194420 | Osterhout et al. | Aug 2012 | A1 |
20120209924 | Evans et al. | Aug 2012 | A1 |
20120281885 | Syrdal et al. | Nov 2012 | A1 |
20120287274 | Bevirt | Nov 2012 | A1 |
20120316769 | Gagliardi | Dec 2012 | A1 |
20130056581 | Sparks | Mar 2013 | A1 |
20130238168 | Reyes | Sep 2013 | A1 |
20140254896 | Zhou et al. | Sep 2014 | A1 |
20150022432 | Stewart et al. | Jan 2015 | A1 |
20150070272 | Kim et al. | Mar 2015 | A1 |
20150175263 | Reyes | Jun 2015 | A1 |
20150199022 | Gottesman et al. | Jul 2015 | A1 |
20150287246 | Huston et al. | Oct 2015 | A1 |
20150331490 | Yamada | Nov 2015 | A1 |
20150362917 | Wang et al. | Dec 2015 | A1 |
20160062364 | Foinet | Mar 2016 | A1 |
20160063987 | Xu et al. | Mar 2016 | A1 |
20160101856 | Kohstall | Apr 2016 | A1 |
20160161946 | Wuth Sepulveda et al. | Jun 2016 | A1 |
20160179096 | Bradlow et al. | Jun 2016 | A1 |
20160292886 | Erad et al. | Oct 2016 | A1 |
20160307573 | Wobrock | Oct 2016 | A1 |
20160313742 | Wang | Oct 2016 | A1 |
20160336020 | Bradlow et al. | Nov 2016 | A1 |
20170023947 | McMillion | Jan 2017 | A1 |
20170031369 | Liu et al. | Feb 2017 | A1 |
20170045891 | Wang | Feb 2017 | A1 |
20170094259 | Kouperman et al. | Mar 2017 | A1 |
20170099424 | Jones | Apr 2017 | A1 |
20170102699 | Anderson | Apr 2017 | A1 |
20170176992 | Wang | Jun 2017 | A1 |
20170177925 | Volkart | Jun 2017 | A1 |
20170193308 | Buyse | Jul 2017 | A1 |
20170197731 | Yang | Jul 2017 | A1 |
20170225796 | Sun et al. | Aug 2017 | A1 |
20170228690 | Kohli | Aug 2017 | A1 |
20170244937 | Meier et al. | Aug 2017 | A1 |
20170320564 | Kuzikov | Nov 2017 | A1 |
20170337791 | Gordon-carroll | Nov 2017 | A1 |
20170371353 | Millinger, III | Dec 2017 | A1 |
20180065759 | Michalski | Mar 2018 | A1 |
20180082682 | Erickson et al. | Mar 2018 | A1 |
20180129212 | Lee | May 2018 | A1 |
20180246529 | Hu et al. | Aug 2018 | A1 |
20180321676 | Matuszeski | Nov 2018 | A1 |
20190011921 | Wang et al. | Jan 2019 | A1 |
20190384298 | Liu | Dec 2019 | A1 |
20200035030 | Schradin | Jan 2020 | A1 |
20200097027 | Su | Mar 2020 | A1 |
20200134212 | Hutchison | Apr 2020 | A1 |
20200241575 | Meisenholder et al. | Jul 2020 | A1 |
20210018935 | Huang | Jan 2021 | A1 |
20210362848 | Spencer | Nov 2021 | A1 |
20210382503 | Meisenholder et al. | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
2887596 | Jul 2015 | CA |
Entry |
---|
US 10,656,660 B1, 05/2020, Meisenholder et al. (withdrawn) |
“U.S. Appl. No. 16/294,597, Final Office Action mailed Jan. 20, 2023”. |
“U.S. Appl. No. 16/294,597, Non Final Office Action mailed Aug. 18, 2022”, 15 pgs. |
“U.S. Appl. No. 16/294,597, Notice of Allowance mailed May 15, 2023”. |
“U.S. Appl. No. 16/294,597, Response filed Apr. 20, 2023 to Final Office Action mailed Jan. 20, 2023”, 9 pgs. |
“U.S. Appl. No. 16/294,597, Response filed Nov. 1, 2022 to Non Final Office Action mailed Aug. 18, 2022”, 13 pgs. |
Laput, Gierad, et al., “PixelTone: A Multimodal Interface for Image Editing”, ACM, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, FR, (2013), 10 pgs. |
Leyden, John, “This SMS will self-destruct in 40 seconds”, [Online] Retrieved from the Internet: <URL: http://www.theregister.co.uk/2005/12/12/stealthtext/>, (Dec. 12, 2005), 1 pg. |
Meisenholder, David, et al., “Remoteless Control of Drone Behavior”, U.S. Appl. No. 15/640,143, filed Jun. 30, 2017, 108 pgs. |
Pourmehr, Shokoofeh, et al., “‘You two! Take off!’: Creating, Modifying, and Commanding Groups of Robots Using Face Engagement and Indirect Speech in Voice Commands”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, JP, (2013), 137-142. |
Yamada, Wataru, et al., “iSphere: Self-Luminous Spherical Drone Display”, Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (UIST), Quebec City, CA, (Oct. 22-25, 2017), 635-343. |
Number | Date | Country | |
---|---|---|---|
20230341876 A1 | Oct 2023 | US |
Number | Date | Country | |
---|---|---|---|
62639280 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16294597 | Mar 2019 | US |
Child | 18215665 | US |