Subdural hematomas are a type of hematoma often associated with traumatic brain injury in which blood gathers between the dura mater and the brain. Subdural hematomas may cause an increase in intracranial pressure (ICP), which can cause compression of and damage to the delicate brain tissue. Accordingly, subdural hematomas are often life-threatening when acute.
Currently, acute subdural hematomas are typically treated by forming one or more relatively large burr holes in the cranium to the subdural space to enable collected fluid and other materials to drain from the space. More recently, minimally-invasive techniques have been developed in which small intracranial bolts are threaded into the cranium to the subdural space to enable drainage.
While such techniques can be effective, they often are not and recurrence of a subdural hematoma is relatively common. In view of this, it can be appreciated that it would be desirable to have alternative systems and methods for evacuating subdural hematomas.
The present disclosure may be better understood with reference to the following figures. Matching reference numerals designate corresponding parts throughout the figures, which are not necessarily drawn to scale.
As described above, it would be desirable to have alternative systems and methods for evacuating subdural hematomas. Disclosed herein are examples of such systems and methods. In some embodiments, a system for evacuating subdural hematomas comprises an inlet through which an irrigation liquid, such as saline, can be delivered to the subdural space and a separate outlet through which liquid and other materials, such as clot material and/or other byproducts of the subdural hematoma, can be evacuated. In some embodiments, the inlet and outlet each comprise a relatively small diameter intracranial bolt having an internal passage through which fluid and other materials can pass. The inlet is in fluid communication with an irrigation reservoir that contains the irrigation fluid and the outlet is in fluid communication with a pump that creates negative pressure within the subdural space to draw out liquid and other materials from the space. In some instances, the negative pressure may also help re-expand the brain back into the subdural space that was previously occupied by the hematoma. Operation of the pump can be controlled with a pump controller that receives pressure signals from pressure sensors associated with the inlet and the outlet so that the desired level of negative pressure can be maintained and the pump can be shut off if an unintended consequence occurs, such as a clog or leak in the system 10. In some embodiments, the system further includes one or more monitoring sensors that can be used to identify one or more parameters of the evacuated fluid, such as its composition. The acquired data can be analyzed using one or more appropriate algorithms that are executed on an associated computer system.
In the following disclosure, various specific embodiments are described. It is to be understood that those embodiments are example implementations of the disclosed inventions and that alternative embodiments are possible. All such embodiments are intended to fall within the scope of this disclosure.
As is further illustrated in
Once the openings 24, 26 have been formed, intracranial bolts can be provided in the openings. More specifically, an inlet intracranial bolt 28 can be threaded into the inlet opening 24 and an outlet intracranial bolt 30 can be threaded into the outlet opening 26. As can be appreciated from
With further reference to
The outlet tube 42 is also connected to a pump 46, such as a peristaltic pump, so that the outlet manifold 38 and outlet intracranial bolt 30 are placed in fluid communication with the pump. The pump 46 operates to draw fluid from the subdural space 22 via the outlet intracranial bolt 30 and the outlet manifold 38, as well as to create a negative pressure condition within the space. In some embodiments, operation of the pump 46 is controlled by a pump controller 48 that receives feedback from pressure sensors of the system 10. In some embodiments, the pressure sensors include an inlet pressure sensor 50 associated with the inlet and an outlet pressure sensor 52 associated with the outlet. In the example of
As fluid and other material are evacuated from the subdural space 22 using the pump 46, this fluid/material can be deposited in a discharge reservoir 60. This reservoir 60 can include a sight glass or tube (not shown) through which a user of the system (e.g., physician or physician's assistant) can view the fluid/material that has been evacuated from the subdural space 22. In addition, a relief valve 62 can be associated with the discharge reservoir 60 to enable gas (e.g., air) to exit the reservoir. As is further shown in
As can be appreciated from the above discussion, the system 10 is a sterile, closed system in which the subdural hematoma can be replaced with an irrigation fluid and in which the introduction of air into the subdural space can be either completely or nearly eliminated. Preventing the introduction of air into the subdural space is important as it can be associated with post-operative confusion and may predispose the patient to pathological membrane formation and/or recurrence of chronic subdural hematoma.
In some embodiments, the fluid evacuated from the subdural space 22 can be monitored to determine its composition. Among other things, such monitoring can provide an indication as to when the evacuation process can be terminated, i.e., when the fluid being evacuated from the subdural space 22 is primarily irrigation fluid. Accordingly, the system 10 can further include one or monitoring sensors 66. As an example, one such sensor 66 can comprise a spectrophotometer that is configured to measure the spectra of the fluid in the outlet tube 42. Such a measurement can provide the user and the system 10 with an indication of the composition of the fluid, including whether or not it contains gas (e.g., air). Other sensors 66 can be provided to evaluate the fluid for the presence of pathological substances, such as blood, blood breakdown products, proteins, nucleic acid, or ions.
Irrespective of the nature of the data that is collected by the one or more monitoring sensors 66, signals generated by the sensors can be provided to a data acquisition unit 68 that can, for example, amplify and/or modify the signals (e.g., convert the signals from analog to digital signals) before they are provided to a computer system 70, which comprises software and/or firmware that is configured to analyze the signals. Such analysis can include analyzing the spectra measured by the one or more monitoring sensors to provide an indication to a user of the system to end the evacuation procedure. In such a case, flow of irrigation fluid to the subdural space 22 can be halted and the remaining fluid in the subdural space 22 can be evacuated using the pump 46. In other embodiments, the computer system 70 can be configured to automatically shut down the system. It is further noted that software and/or firmware on the computer system 70 can be used to receive pressure data from the pump controller 48 and analyze that data as well. Moreover, the computer system 70 can, in some embodiments, be configured to control operation of the pump controller 48.
The memory 74 (a non-transitory computer-readable medium) stores software applications (programs) including an operating system 82 and a fluid analysis program 84 that can at least be used to analyze the data received from the monitoring sensor 66 to provide an indication of the composition of the evaluated liquid. As is further shown in
The disclosed systems and methods are minimally invasive and may be performed in the operating room or at the bedside. While the current state of the art does not include a quantitative endpoint for evacuation of chronic subdural hematoma, the disclosed systems and methods provide a quantitative measure that enables the clinician to know whether the subdural hematoma has been completely evacuated and an increased time window to achieve complete clearance of pathological substances from the subdural space. This can be paired with routine imaging (e.g., computed tomography) to assess for complete evacuation of subdural hematoma with re-expansion of the brain. In addition, the disclosed systems and methods minimize or eliminate pneumocephalus and tension pneumocephalus and their associated risks and required treatments.
While the current state of the art relies on passive re-expansion of the brain for restoration of the subdural space, the disclosed systems and methods apply negative pressure to the subdural space that may result in more rapid restoration of the subdural space with brain re-expansion, which would lead to improved recovery of neurological deficits caused by brain compression and/or irritation. In addition, it is likely that a more rapid cure of chronic subdural hematoma will decrease the risk of seizures due to brain compression or irritation.
As a further matter, the disclosed systems and methods will likely reduce the risk of early institution of deep venous thrombosis (DVT) chemical prophylaxis (e.g., subcutaneous heparin). Chemical prophylaxis has been shown to be a risk factor for recurrence, and this could be mitigated with continuous drainage of any small amounts of blood products resulting from chemical DVT prophylaxis. This would be expected to lead to decreased risk of DVTs.
Various modifications can be made to the disclosed systems. For example, multiple inlet and/or outlet intracranial bolts can be used for subdural hematomas with mixed densities or that have more than one component separated by one or more membranes (forming discrete hematoma regions), as in the case of a mixed-density subdural hematoma. In addition, the system can further include a tool for opening the dura to enable fluid to be removed.
This application is the 35 U.S.C. § 371 national stage application of PCT Application No. PCT/US18/65818, filed Dec. 14, 2018, where the PCT claims the benefit of and priority to U.S. Provisional Application Ser. No. 62/599,644, filed Dec. 15, 2017, both of which are herein incorporated by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/065818 | 12/14/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/118910 | 6/20/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5029584 | Smith | Jul 1991 | A |
8292856 | Bertrand | Oct 2012 | B2 |
20050043673 | Lieberman | Feb 2005 | A1 |
20080033400 | Holper et al. | Feb 2008 | A1 |
20080097276 | Bertrand et al. | Apr 2008 | A1 |
20110178455 | Burnett | Jul 2011 | A1 |
20110282263 | Branch, Jr. | Nov 2011 | A1 |
20120053506 | Ludvig | Mar 2012 | A1 |
20120172791 | Odland | Jul 2012 | A1 |
20140364821 | Gibbons | Dec 2014 | A1 |
20150094644 | Lenihan et al. | Apr 2015 | A1 |
20170027604 | Wallace | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
1382291 | Jan 2004 | EP |
1749549 | Feb 2007 | EP |
9748425 | Dec 1997 | WO |
Entry |
---|
European Extended Search Report, EP App. No. 18889473.7, dated Sep. 23, 2021 (7 pages). |
Office action dated Dec. 15, 2022 in co-pending Chinese patent application No. 2018800866852 filedJul. 16, 2020. |
Notice of Preliminary Rejection dated May 9, 2023 in co-pending Korean Patent Application No. 10-2020-7019491. |
Notice of Deficiencies dated Jun. 8, 2023 in co-pending Israeli Patent Application No. 275403. |
Number | Date | Country | |
---|---|---|---|
20200353134 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62599644 | Dec 2017 | US |