Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology

Information

  • Patent Grant
  • 11818604
  • Patent Number
    11,818,604
  • Date Filed
    Tuesday, December 4, 2018
    5 years ago
  • Date Issued
    Tuesday, November 14, 2023
    7 months ago
Abstract
Systems and methods are described for exploiting inter-cell interference to achieve multiplexing gain in a multiple antenna system (MAS) with multi-user (MU) transmissions (“MU-MAS”). For example, a MU-MAS of one embodiment comprises a wireless cellular network with multiple distributed antennas operating cooperatively to eliminate inter-cell interference and increase network capacity exploiting inter-cell multiplexing gain.
Description
BACKGROUND

In the last three decades, the wireless cellular market has experienced increasing number of subscribers worldwide as well as demand for better services shifting from voice to web-browsing and real-time HD video streaming. This increasing demand for services that requires higher data rate, lower latency and improved reliability has driven a radical evolution of wireless technologies through different standards. Beginning from the first generation analog AMPS and TACS (for voice service) in the early 1980s, to 2G and 2.5G digital GSM, IS-95 and GPRS (for voice and data services) in the 1990s, to 3G with UMTS and CDMA2000 (for web-browsing) in the early 2000s, and finally LTE (for high-speed internet connectivity) currently under deployment in different countries worldwide.


Long-term evolution (LTE) is the standard developed by the 3rd generation partnership project (3GPP) for fourth generation (4G) wireless cellular systems. LTE can achieve up to 4× improvement in downlink spectral efficiency over previous 3G and HSPA+ standards by exploiting the spatial components of wireless channels via multiple-input multiple-output (MIMO) technology. LTE-Advanced is the evolution of LTE, currently under standardization, that will enable up to 8× increase in spectral efficiency over 3G standard systems.


Despite this technology evolution, it is very likely that in the next three years wireless carriers will not be able to satisfy the growing demand for data rate due to raising market penetration of smartphones and tables, offering more data-hungry applications like real-time HD video streaming, video conferencing and gaming. It has been estimated that capacity of wireless networks will grow 5× in Europe from 2011 to 2015 due to improved technologies such as LTE as well as more spectrum made available by the government [25]. For example, the FCC is planning to free 500 MHz of spectrum by 2020 (of which 300 MHz will be available by 2015) to promote wireless Internet connectivity throughout the US as part of the National Broadband Plan [24]. Unfortunately, the forecast for capacity usage by 2015 is 23× over 2011 in Europe [25] and similar spectrum deficit is expected to happen in the US by 2014 [26-27]. As a result of this data crunch, revenues for wireless carriers may drop below their CAPEX and OPEX with potentially devastating impact on the wireless market [28].


As capacity gains offered by LTE deployment and increased spectrum availability are insufficient, the only foreseeable solution to prevent this upcoming spectrum crisis is to promote new wireless technologies [29]. LTE-Advanced (the evolution of LTE standard) promises additional gains over LTE through more sophisticated MIMO techniques and by increasing the density of “small cells” [30]. However, there are limits to the number of cells that can fit a certain area without incurring interference issues or increasing the complexity of the backhaul to allow coordination across cells.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent publication with color drawing(s) will be provided by the U.S. Patent and Trademark Office upon request and payment of the necessary fee.


A better understanding of the present invention can be obtained from the following detailed description in conjunction with the drawings, in which:



FIG. 1 illustrates cells divided into a multiplexing region and a diversity region;



FIG. 2 illustrates inter-cell interference in a plurality of different regions;



FIG. 3 illustrates an embodiment in which the power transmitted from three base transceiver stations (BTSs) all transmitting simultaneously at the same frequency is increased, thereby allowing a higher level of interference throughout the cell;



FIG. 4 illustrates one embodiment in which many additional access points are added to deliberately increase the level of incoherent interference throughout the cell;



FIG. 5 illustrates a plurality of LTE network elements employed in one embodiment of the invention;



FIGS. 6a-c illustrates details associated with LTE frames;



FIGS. 7a-b illustrate a “resource element” which is the smallest modulation structure in LTE and consists of one OFDM subcarrier in frequency and one OFDM symbol duration in time;



FIG. 8 illustrates a SNR distribution for practical deployment of one embodiment of the invention in downtown San Francisco, Calif.;



FIG. 9 illustrates a system architecture employed in one embodiment of the invention.





DETAILED DESCRIPTION

One solution to overcome many of the above prior art limitations is an embodiment of Distributed-Input Distributed-Output (DIDO) technology. DIDO technology is described in the following patents and patent applications, all of which are assigned the assignee of the present patent and are incorporated by reference. These patents and applications are sometimes referred to collectively herein as the “Related Patents and Applications.”


U.S. application Ser. No. 13/233,006, entitled “System and Methods for planned evolution and obsolescence of multiuser spectrum”


U.S. application Ser. No. 13/232,996, entitled “Systems and Methods to Exploit Areas of Coherence in Wireless Systems”


U.S. application Ser. No. 13/475,598, entitled “Systems and Methods to Enhance Spatial Diversity in Distributed Input Distributed Output Wireless Systems.”


U.S. application Ser. No. 13/464,648, entitled “System and Methods to Compensate for Doppler Effects in Distributed-Input Distributed Output Systems.”


U.S. Pat. No. 8,542,763, issued Sep. 24, 2013, entitled “Systems And Methods To Coordinate Transmissions In Distributed Wireless Systems Via User Clustering”


U.S. application Ser. No. 12/802,988, entitled “Interference Management, Handoff, Power Control And Link Adaptation In Distributed-Input Distributed-Output (DIDO) Communication Systems”


U.S. Pat. No. 8,170,081, issued May 1, 2012, entitled “System And Method For Adjusting DIDO Interference Cancellation Based On Signal Strength Measurements”


U.S. application Ser. No. 12/802,974, entitled “System And Method For Managing Inter-Cluster Handoff Of Clients Which Traverse Multiple DIDO Clusters”


U.S. application Ser. No. 12/802,989, entitled “System And Method For Managing Handoff Of A Client Between Different Distributed-Input-Distributed-Output (DIDO) Networks Based On Detected Velocity Of The Client”


U.S. application Ser. No. 12/802,958, entitled “System And Method For Power Control And Antenna Grouping In A Distributed-Input-Distributed-Output (DIDO) Network”


U.S. application Ser. No. 12/802,975, entitled “System And Method For Link adaptation In DIDO Multicarrier Systems”


U.S. Pat. No. 8,571,086, issued Oct. 29, 2013, entitled “System And Method For DIDO Precoding Interpolation In Multicarrier Systems”


U.S. application Ser. No. 12/630,627, entitled “System and Method For Distributed Antenna Wireless Communications”


U.S. Pat. No. 7,599,420, issued Oct. 6, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”;


U.S. Pat. No. 7,633,994, issued Dec. 15, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”;


U.S. Pat. No. 7,636,381, issued Dec. 22, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”;


U.S. Pat. No. 8,160,121, issued Apr. 17, 2012, entitled, “System and Method For Distributed Input-Distributed Output Wireless Communications”;


U.S. Pat. No. 7,711,030, issued May 4, 2010, entitled “System and Method For Spatial-Multiplexed Tropospheric Scatter Communications”;


U.S. Pat. No. 7,418,053, issued Aug. 26, 2008, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”;


U.S. Pat. No. 7,885,354, issued Feb. 8, 2011, entitled “System and Method For Enhancing Near Vertical Incidence Skywave (“NVIS”) Communication Using Space-Time Coding.”


To reduce the size and complexity of the present patent application, the disclosure of some of the Related Patents and Applications is not explicitly set forth below. Please see the Related Patents and Applications for a full description of the disclosure.


One promising technology that will provide orders of magnitude increase in spectral efficiency over wireless links without the limitations of conventional cellular systems is distributed-input distributed-output (DIDO) technology (see Related Patents and Applications referenced in [0002-0020] above. The present invention describes DIDO technology employed in the context of cellular systems (such as LTE or LTE-Advanced), both within and without the constraints of cellular standards, to provide significant performance benefits over conventional wireless systems. We begin with an overview on MIMO and review different spatial processing techniques employed by LTE and LTE-Advanced. Then we show how the present invention provides significant capacity gains for next generation wireless communications systems compared to prior art approaches.


MIMO employs multiple antennas at the transmitter and receiver sides of the wireless link and uses spatial processing to improve link reliability via diversity techniques (i.e., diversity gain) or provide higher data rate via multiplexing schemes (i.e., multiplexing gain) [1-2]. Diversity gain is a measure of enhanced robustness to signal fading, resulting in higher signal-to-noise ratio (SNR) for fixed data rate. Multiplexing gain is obtained by exploiting additional spatial degrees of freedom of the wireless channel to increase data rate for fixed probability of error. Fundamental tradeoffs between diversity and multiplexing in MIMO systems were described in [3-4].


In practical MIMO systems, link adaptation techniques can be used to switch dynamically between diversity and multiplexing schemes based on propagation conditions [20-23]. For example, link adaptation schemes described in [22-23] showed that beamforming or Orthogonal Space-Time Block Codes (OSTBC) are preferred schemes in low SNR regime or channels characterized by low spatial selectivity. By contrast, spatial multiplexing can provide significant gain in data rate for channels with high SNR and high spatial selectivity. For example, FIG. 1 shows that cells can be divided in two regions: i) a multiplexing region 101, characterized by high SNR (due to proximity to the cell tower or base station) where the spatial degrees of freedom of the channel can be exploited via spatial multiplexing to increase data rate; ii) a diversity region or cell-edge 102, where spatial multiplexing techniques are not as effective and diversity methods can be used to improve SNR and coverage (yielding only marginal increase in data rate). Note that the macrocell circle in FIG. 1 labels the shaded center of the circle as the “multiplexing region” 101 and the unshaded outer region of the circle as the “diversity region” 102. This same region designation is used throughout FIGS. 1-4, where the shaded region is the “multiplexing region” and the unshaded region is the “diversity region”, even if they are not labeled.


The LTE (Release 8) and LTE-Advanced (Release 10) standards define a set of ten transmission modes (TM) including either diversity or multiplexing schemes [35, 85-86]:

    • Mode 1: Single antenna port, port 0
    • Mode 2: Transmit diversity
    • Mode 3: Large-delay cyclic delay diversity (CDD), extension of open-loop spatial multiplexing for single-user MIMO (SU-MIMO)
    • Mode 4: Closed-loop spatial multiplexing for SU-MIMO
    • Mode 5: Multi-user MIMO (MU-MIMO)
    • Mode 6: Closed-loop spatial multiplexing, using a single transmission layercustom character
    • Mode 7: Single antenna port, UE-specific RS (port 5)custom character
    • Mode 8: Single or dual-layer transmission with UE-specific RS (ports 7 and/or 8)
    • Mode 9: Single or up to eight layers closed-loop SU-MIMO (added in Release 10)
    • Mode 10: Multi-layer closed-loop SU-MIMO, up to eight layers (added in Release 10)


Hereafter we describe diversity and multiplexing schemes commonly used in cellular systems as well as specific methods employed in LTE as outlined above, and compare them against techniques that are unique for DIDO communications. We first identify two types of transmission methods: i) intra-cell methods (exploiting micro-diversity in cellular systems), using multiple antennas to improve link reliability or data rate within one cell; ii) inter-cell methods (exploiting macro-diversity), allowing cooperation between cells to provide additional diversity or multiplexing gains. Then we describe how the present invention provides significant advantages (including spectral capacity gain) over prior art.


1. Intra-Cell Diversity Methods


Intra-cell diversity methods operate within one cell and are designed to increase SNR in scenarios with poor link quality (e.g., users at the cell-edge subject to high pathloss from the central tower or base station). Typical diversity schemes employed in MIMO communications are beamforming [5-11] and orthogonal space-time block codes (OSTBC) [12-15].


Diversity techniques supported by the LTE standard are transmit diversity, closed-loop rank-1 precoding and dedicated beamforming [31-35]. Transmit diversity scheme supports two or four transmit antennas over the downlink (DL) and only two antennas for the uplink (UL). In the DL channel, it is implemented via space-frequency block codes (SFBC) combined with frequency-switched transmit diversity (FSTD) to exploit space as well as frequency selectivity [31]. Rank-1 precoding creates a dedicated beam to one user based on quantized weights selected from a codebook (pre-designed using limited feedback techniques [36-42]) to reduce the feedback overhead from the user equipment (UE) to the base transceiver station (BTS, or eNodeB using LTE terminology). Alternatively, dedicated beamforming weights can be computed based on UE-specific reference signal.


2. Intra-Cell Multiplexing Methods


MIMO multiplexing schemes [1,19] provide gain in data rate in high SNR regime and in scenarios with enough spatial degrees of freedom in the channel (e.g., rich multipath environments with high spatial selectivity [16-18]) to support multiple parallel data streams over wireless links.


The LTE standard supports different multiplexing techniques for single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO) [31]. SU-MIMO schemes have two modes of operation: i) closed-loop, exploiting feedback information from the UE to select the DL precoding weights; ii) open-loop, used when feedback from the UE is unavailable or the UE is moving too fast to support closed-loop schemes. Closed-loop schemes use a set of pre-computed weights selected from a codebook. These weights can support two or four transmit antennas as well as one to four parallel data streams (identified by number of layers of the precoding matrix), depending on the UE request and decision of the scheduler at the BTS. LTE-Advanced will include new transmission modes up to MIMO 8×8 to provide up to 8× increase in spectral efficiency via spatial processing [62].


MU-MIMO schemes are defined for both UL and DL channels [31,50]. In the UL, every UE sends a reference signal to the BTS (consisting of cyclically shifted version of the Zadoff-Chu sequence [33]). Those reference signals are orthogonal, such that the BTS can estimate the channel from all UEs and demodulate data streams from multiple UEs simultaneously via spatial processing. In the DL, precoding weights for different UEs are selected from codebooks based on the feedback from the UEs and the scheduler (similarly to closed-loop SU-MIMO schemes) and only rank-1 precoding is allowed for every UE (e.g., each UE receives only one data stream).


Intra-cell multiplexing techniques employing spatial processing provide satisfactory performance only in propagation scenarios characterized by high SNR (or SINR) and high spatial selectivity (multipath-rich environments). For conventional macrocells, these conditions may be harder to achieve as BTSs are typically far from the UEs and the distribution of the SINR is typically centered at low values [43]. In these scenarios, MU-MIMO schemes or diversity techniques may be better choices than SU-MIMO with spatial multiplexing.


Other techniques and network solutions contemplated by LTE-Advanced to achieve additional multiplexing gain (without requiring spatial processing through MIMO) are: carrier aggregation (CA) and small cells. CA [30, 44-47] combines different portions of the RF spectrum to increase signal bandwidth up to 100 MHz [85], thereby yielding higher data rates. Intra-band CA combines different bands within the same portion of the spectrum. As such it can use the same RF chain for multiple channels, and multiple data streams are recombined in software. Inter-band CA requires different RF chains to operate at different portions of the spectrum as well as signal processing to recombine multiple data streams from different bands.


The key idea of small cells [30,47] is to reduce the size of conventional macro-cells, thereby allowing higher cell density and larger throughput per area of coverage. Small-cells are typically deployed through inexpensive access points with low power transmission (as depicted in FIG. 1) as opposed to tall and expensive cell towers used for macro-cells. Two types of small cells are defined in LTE-Advanced: i) metrocells, for outdoor installation in urban areas, supporting up 32 to 64 simultaneous users; and ii) femtocells, for indoor use, can serve at most 4 active users. One advantage of small cells is that the density of UEs close to the BTS is statistically higher, yielding better SNR that can be exploited via spatial multiplexing to increase data rate. There are, however, still many concerns about practical deployment of small cells, particularly related to the backhaul. In fact, it may be challenging to reach BTSs of every small cell via high-speed wireline connections, especially considering the high density of metrocells and femtocells in a given coverage area. While using Line-Of-Sight (LOS) backhaul to small cells can often be implemented inexpensively, compared to wireline backhaul, there often are no practical LOS backhaul paths available for preferred small cell BTS placements, and there is no general solution for Non-Line-Of-Sight (NLOS) wireless backhaul to small cell BTSs. Finally, small cells require complex real-time coordination across BTSs to avoid interference as in self-organized networks (SON) [30, 51-52] and sophisticated cell-planning tools (even more complex than conventional cellular systems, due to higher density of small cells) to plan their optimal location [48,49].


It can be trivially shown there is no practical general solution that enables small cells to co-exist with macrocells and achieve optimal, or necessarily even improved, throughput. Among the myriad of such unsolvable situations is when small cell is located such that its UEs unavoidably overlap with a macrocell transmission and the small cell and the macrocell use the same frequencies to reach their respective UEs. Clearly in this situation, the macrocell transmission will interfere with the small cell transmission. While there may be some approach that mitigates such interference for particular circumstances of a particular macrocell, a particular small cell, the particular macrocell and small cell UEs involved, the throughput requirements of those UEs, and environmental circumstances, etc., any such approach would be highly specific, not only to the static plan of the macrocell and small cell, but to the dynamic circumstances of a particular time interval. Typically, the full throughput of the channel to each UE cannot be achieved.


3. Inter-Cell Diversity Methods


Inter-cell transmission techniques enable cooperation across BTSs to improve performance of wireless networks. These techniques are a special case of methods taught in Related Patents and Applications [0002-0020] to enable cooperation across wireless transceivers in the general case of distributed antenna networks for multiple UEs all using the same frequency simultaneously. Cooperation across BTSs to remove inter-cell interference for the particular case of cellular systems for a single UE at a given time at a given frequency was described in [53]. The system in [53] divides every macrocell into multiple subcells and enables soft-handoff across subcells by employing dedicated beamforming from coordinated BTSs to improve link robustness at a single UE at a single frequency, as it moves along the subcell boundaries.


More recently, this class of cooperative wireless cellular networks has been defined in the MIMO literature as “network MIMO” or “coordinated multi-point” (CoMP) systems. Theoretical analysis and simulated results on the benefits obtained in network MIMO by eliminating inter-cell interference are presented in [54-61]. The key advantage of network MIMO and CoMP is to remove inter-cell interference in the overlapping regions 201-203 of the cells shown in FIG. 2.


CoMP networks are actively becoming part of LTE-Advanced standard as a solution to mitigate inter-cell interference in next generation cellular networks [62-64]. Two CoMP solutions have been proposed so far in the standard to remove inter-cell interference: i) coordinated scheduling/beamforming (CS/CB), where the UE receives its data stream from only one BTS via beamfoming and coordination across BTSs is enabled to remove interference via beamforming or scheduling techniques; ii) joint processing (JP), where data for given UE is jointly transmitted from multiple BTSs to improve received signal quality and eliminate inter-cell interference. CoMP-JP yields larger gains than CoMP-CS/CB at the expenses of higher overhead in the backhaul to enable coordination across BTSs.


4. Inter-Cell Multiplexing Methods


Prior art multi-user wireless systems add complexity and introduce limitations to wireless networks which result in a situation where a given user's experience (e.g. available throughput, latency, predictability, reliability) is impacted by the utilization of the spectrum by other users in the area. Given the increasing demands for aggregate throughput within wireless spectrum shared by multiple users, and the increasing growth of applications that can rely upon multi-user wireless network reliability, predictability and low latency for a given user, it is apparent that prior art multi-user wireless technology suffers from many limitations. Indeed, with the limited availability of spectrum suitable for particular types of wireless communications (e.g. at wavelengths that are efficient in penetrating building walls), prior art wireless techniques will be insufficient to meet the increasing demands for bandwidth that is reliable, predictable and low-latency.


Prior art intra-cell diversity and multiplexing methods can only provide up to a theoretical 4× increase in throughput over current cellular networks for LTE (through MIMO 4×4) or at most a theoretical 8× for LTE-Advanced (through MIMO 8×8), although higher orders of MIMO achieve diminishing improvements in increasing throughput in a given multipath environment, particularly as UEs (such as smartphones) get smaller and more constrained in terms of antenna placement. Other marginal throughput gains in next generation cellular systems may be obtained from additional spectrum allocation (e.g., FCC national broadband plan), exploited via carrier aggregation techniques, and more dense distribution of BTSs via small cell networks and SON [30,46]. All the above techniques, however, still rely heavily on spectrum or time sharing techniques to enable multi-user transmissions, since the spectral efficiency gains obtained by spatial processing is limited.


While prior art inter-cell methods (e.g., network MIMO and CoMP systems [53-64]) can improve reliability of cellular networks by eliminating inter-cell interference, their capacity gains are only marginal. In fact, those systems constrain power transmitted from every BTS to be contained within the cell boundaries and are only effective to eliminate inter-cell interference due to power leakage across cells. FIG. 2 shows one example of cellular networks with three BTSs 210-212, each one characterized by its own coverage area or cell. The power transmitted from each BTS 210-212 is constrained to limit the amount of interference across cells, depicted in FIG. 2 by the areas where the cells overlap. As these systems operate in the low SINR regime at the interference region, their gains in spectral efficiency is only marginal, similarly to intra-cell schemes for SU-MIMO. To truly obtain significant capacity gains in inter-cell cooperative networks, power constraints limited to cell-boundaries must be relaxed and spatial multiplexing techniques should be enabled throughout the cells where the SINR is high (not just at the cell-edge with poor SINR performance as in prior art approaches).


It would thus be desirable to provide a system that achieves orders of magnitudes increase in spectral efficiency by removing any constraint on the power transmitted from distributed BTSs and exploiting inter-cell multiplexing gain via spatial processing. FIG. 3 shows the case where the power transmitted from three BTSs 301-303 all transmitting simultaneously at the same frequency is increased, thereby allowing a higher level of interference throughout the cell. In prior art systems, such interference would result in incoherent interference (disrupting UE signal reception) throughout the interfering areas of the BTSs, but this interference is actually exploited in embodiments of the invention through novel inter-cell multiplexing methods using spatial processing to create areas of coherent interference (enhancing UE signal reception) around every UE, thereby providing simultaneous non-interfering data streams to every UE and increasing their SINR throughout the cell.


In an exemplary embodiment of the invention, this inter-cell multiplexing gain is achieved through distributed-input distributed-output (DIDO) systems [0014-0020] and [77-78]. FIG. 4 shows one example where many additional access points 401 are added to deliberately increase the level of incoherent interference throughout the cell that is exploited in the present invention to generate areas of coherent interference around UEs and yield inter-cell multiplexing gain. Those additional BTSs can be low power transceivers, similar to inexpensive Wi-Fi access points, thereby providing smaller areas of coverage overlapping throughout the macro-cell as shown in FIG. 4.


We observe that prior art inter-cell methods avoid incoherent interference by intentionally limiting the transmit power from every BTS 210-212 as in FIG. 2 and eliminate residual inter-cell interference (on the overlapping areas between cells) via spatial processing, thereby providing improved SINR and inter-cell diversity gain. By contrast, the present invention exploits incoherent interference to create coherent interference around the UEs, by transmitting higher power from every BTS, thereby improving signal quality at the UE that is necessary condition to obtain inter-cell multiplexing gain throughout the cell via spatial processing. As such, the systems described in prior art cannot be used to achieve inter-cell multiplexing gain via spatial processing, since there is not sufficient signal quality throughout the cell (due to the limited transmit power from the BTSs) to enable inter-cell multiplexing methods as in the present invention. Moreover, the systems described in prior art would be inoperable to achieve the multiplexing gain achieved in the present invention depicted in FIGS. 3-4, given that prior art systems were designed to avoid inter-cell interference within the diversity regions shown in the shaded area of FIG. 1-4 rather than exploit inter-cell interference in the multiplexing regions to obtain inter-cell multiplexing gain as achieved in the present invention.


The embodiments of the invention include a system and methods to exploit inter-cell multiplexing gain in wireless communications networks via spatial processing, employing a multiple antenna system (MAS) with multi-user (MU) transmissions (a Multi-User Multiple Antenna System, or “MU-MAS”). In one embodiment of the invention, the power transmitted from the multiple antennas is constrained to minimize interference at cell boundaries (as in conventional cellular systems) and spatial processing methods are employed only to eliminate inter-cell interference. In another embodiment of the invention, the power transmitted from the multiple antennas is not constrained to any particular power level (as long as their power emission level falls within the regulatory or safety limits), thereby creating intentionally higher levels of inter-cell interference throughout the cell that is exploited to achieve inter-cell multiplexing gain and increase the capacity of the wireless communications network.


In one embodiment, the wireless communications network is a cellular network as in FIGS. 1-2, such as a cellular network based on LTE standards. In another embodiment of the invention, the wireless communications network is not constrained to any particular cell layout and the cell boundaries can extend over larger areas as in FIGS. 3-4. For example, the wireless communications network could be a wireless local area network (WLAN), or a mesh, ad-hoc or sensor network, or a distributed antenna system, or a DIDO system with access points placed serendipitously without any transmit power constraint. But, such example network structures should not be considered as limiting the general applicability of the present invention to wireless communications networks. The present invention applies to any wireless network where multiplexing gain is achieved by transmitting signals from multiple antennas that interfere where received by multiple UEs so as to create simultaneous non-interfering data streams to multiple UEs.


As illustrated in FIG. 9, one embodiment of the MU-MAS consists of a centralized processor 901, a base station network (BSN) 902 and M base transceiver stations (BTS) 903 communicating wirelessly to N client devices, also referred to as user equipment UEs (illustrated as UEs 1-4). The centralized processor unit 901 receives N streams of information over a network 900 (e.g., the Internet) with different network content C1-5 (e.g., videos, web-pages, video games, text, voice, etc., streamed from Web servers or other network sources) intended for different client devices UE 1-4. Hereafter, we use the term “stream of information” to refer to any stream of data sent over the network 900 containing information that can be demodulated or decoded as a standalone stream, according to certain modulation/coding scheme or protocol, to produce any data, including but not limited to audio, Web and video content. In one embodiment, the stream of information is a sequence of bits carrying network content that can be demodulated or decoded as a standalone stream.


The centralized processor 901 utilizes precoding transformation to combine (according to algorithms, such as those described in the Related Patents and Applications) the N streams of information from the network content into M streams of bits. By way of example, but not limitation, the precoding transformation can be linear (e.g., zero-forcing [65], block-diagonalization [66-67], matrix inversion, etc.) or non-linear (e.g., dirty-paper coding [68-70] or Tomlinson-Harashima precoding [71-72], lattice techniques or trellis precoding [73-74], vector perturbation techniques [75-76]). Hereafter, we use the term “stream of bits” to refer to any sequence of bits that does not necessarily contain any useful bit of information and as such cannot be demodulated or decoded as a standalone stream to retrieve the network content. In one embodiment of the invention, the stream of bits is the complex baseband signal produced by the centralized processor and quantized over given number of bits to be sent to one of the M transceiver stations.


In one embodiment, the MAS is a distributed-input distributed-output (DIDO) system as described in Related Patents and Patent Applications. In this embodiment, the DIDO system consists of:

    • User Equipment (UE) 1-4: An RF transceiver for fixed or mobile clients receiving data streams over the downlink (DL) channel from the DIDO backhaul and transmitting data to the DIDO backhaul via the uplink (UL) channel
    • Base Transceiver Station (BTS) 903: The BTSs interface the DIDO backhaul with the wireless channel. BTSs of one embodiment are access points consisting of DAC/ADC and radio frequency (RF) chain to convert the baseband signal to RF. In some cases, the BTS is a simple RF transceiver equipped with power amplifier/antenna and the RF signal is carried to the BTS via RF-over-fiber technology as described in Related Patents and Applications.
    • Controller (CTR) 905: A CTR 905 is one particular type of BTS designed for certain specialized features such as transmitting training signals for time/frequency synchronization of the BTSs and/or the UEs, receiving/transmitting control information from/to the UEs, receiving the channel state information (CSI) or channel quality information from the UEs. One or multiple CTR stations can be included in any DIDO system. When multiple CTRs are available, the information to or from those stations can be combined to increase diversity and improve link quality. In one embodiment, the CSI is received from multiple CTRs via maximum ratio combining (MRC) techniques to improve CSI demodulation. In another embodiment, the control information is sent from multiple CTRs via maximum ratio transmission (MRT) to improve SNR at the receiver side. The scope of the invention is not limited to MRC or MRT, and any other diversity technique (such as antenna selection, etc.) can be employed to improve wireless links between CTRs and UEs.
    • Centralized Processor (CP) 901: The CP is a DIDO server interfacing the Internet or other types of external networks with the DIDO backhaul. In one embodiment, the CP computes the DIDO baseband processing and sends the waveforms to the distributed BTSs for DL transmission
    • Base Station Network (BSN) 902: The BSN is the network connecting the CP to the distributed BTSs carrying information for either the DL or the UL channel. The BSN is a wireline or a wireless network or a combination of the two. For example, the BSN is a DSL, cable, optical fiber network, or Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) wireless link. Furthermore, the BSN is a proprietary network, or a local area network, or the Internet.


Hereafter we describe how the above DIDO system framework can be incorporated into the LTE standard for cellular systems (and also non-cellular system utilizing LTE protocols) to achieve additional gains in spectral efficiency. We begin with a general overview of LTE framework and modulation techniques employed in the DL and UL channels. Then we provide a brief description of the physical layer frame structure and resource allocation in the LTE standard. Finally, we define DIDO precoding methods for downlink (DL) and uplink (UL) channels in multi-user scenarios using the LTE framework. For the DL schemes, we propose two solutions: open-loop and closed-loop DIDO schemes.


LTE is designed with a flat network architecture (as opposed a hierarchical architecture from previous cellular standards) to provide: reduced latency, reduced packet losses via ARQ, reduced call setup time, improved coverage and throughput via macro-diversity. The network elements in LTE networks depicted in FIG. 5 are [79]:

    • GW (gateway) 501-502: is the router connecting the LTE network to external networks (i.e., the Internet). The GW is split into serving gateway (S-GW) 502 that terminates the E-UTRAN interface and PDN gateway (P-GW) 501 being the interface with external networks. The S-GW 502 and P-GW 501 are part of the so called evolved packet core (EPC);
    • MME (mobility management entity) 503: manages mobility, security parameters and UE identity. The MME 503 is also part of the LTE EPC;
    • eNodeB (enhanced Node-B) 504: is the base station handling radio resource management, user mobility and scheduling; and
    • UE (user equipment) 505: are the mobile stations.


In one embodiment of the invention, the LTE network is a DIDO network wherein the DIDO-UE is the UE in LTE networks, the DIDO-BTS is the LTE eNodeB, the DIDO-CTR is the LTE eNodeB or MME, the DIDO-CP is the LTE GW.


The LTE frame has duration of 10 msec and consists of ten subframes as depicted in FIGS. 6a-c [33,80]. Every subframe is divided in two slots of duration 0.5 msec each. The LTE standards defines two types of frames: i) type 1 for FDD operation as in FIG. 6a, where all subframes are assigned either for the downlink (DL) or uplink (UL) channels; ii) type 2 for TDD operation as in FIG. 6b, where part of the subframes are assigned to the DL and part to the UL (depending on the selected configuration), whereas a few subframes are reserved for “special use.” There is at least one special subframe per frame and it consists of three fields: i) downlink pilot time slot (DwPTS) reserved for DL transmission; ii) guard period (GP); iii) uplink pilot time slot (UpPTS), for UL transmission.


LTE employs orthogonal frequency division multiplexing (OFDM) and orthogonal frequency-division multiple access (OFMDA) modulation for the DL and Single-carrier FDMA (SC-FDMA) for the UL. The “resource element” (RE) is the smallest modulation structure in LTE and consists of one OFDM subcarrier in frequency and one OFDM symbol duration in time, as shown in FIGS. 7a-b. The “resource block” (RB) consists of 12 subcarriers in frequency and one 0.5 msec slot in time (consisting of 3 to 7 OFDM symbol periods, depending on DL versus UL channel and type of cyclic prefix).


1. Downlink Closed-Loop DIDO in LTE


DIDO closed-loop schemes can be used either in time-division duplex (TDD) or frequency division duplex (FDD) systems. In FDD systems, DL and UL channels operate at different frequencies and therefore the DL channel state information (CSI) must be estimated at the UE side and reported back to the CP through the BTSs or the CTRs via the UL channel. In TDD systems, DL and UL channels are set at the same frequency and the system may employ either closed-loop techniques or open-loop schemes exploiting channel reciprocity (as described in the following section). The main disadvantage of closed-loop schemes is they require feedback, resulting in larger overhead for control information over the UL.


One embodiment of a mechanism for closed-loop schemes in DIDO systems is as follows: i) the BTSs 903 send signaling information to the UEs over the DL; ii) the UEs exploit that signaling information to estimate the DL channel state information (CSI) from all the “active BTSs”; iii) the UEs quantize the DL CSI or use codebooks to select the precoding weights to be used for the next transmission; iv) the UEs send the quantized CSI or the codebook index to the BTSs 903 or CTRs 905 via the UL channel; v) the BTSs 903 or CTRs 905 report the CSI information or codebook index to the CP 901 that calculates the precoding weights for data transmission over the DL. The “active BTSs” are defined as the set of BTSs that are reached by given UE. For example, in related co-pending U.S. application Ser. No. 12/802,974, entitled “System And Method For Managing Inter-Cluster Handoff Of Clients Which Traverse Multiple DIDO Clusters” and related co-pending U.S. application Ser. No. 12/917,257, entitled “Systems And Methods To Coordinate Transmissions In Distributed Wireless Systems Via User Clustering” we defined the “user-cluster” as the set of BTSs that are reached by given UE. The number of active BTSs are limited to a user-cluster so as to reduce the amount of CSI to be estimated from the BTSs to given UE, thereby reducing the feedback overhead over the UL and the complexity of the DIDO precoding calculation at the CP 901.


1.1 Downlink DIDO Signaling within the LTE Standard


The LTE standard defines two types of reference signals (RS) that can be used for DL signaling in closed-loop schemes [33,50, 82-83]: i) cell-specific reference signal (CRS); ii) UE specific RS such as channel state information (CSI) reference signal (CSI-RS) and demodulation RS (DM-RS). The cell-specific RS is not precoded, whereas the UE-specific RS is precoded [50]. CRS is used in LTE Release 8 that employs SU/MU-MIMO codebook-based techniques with up to four antennas in every cell. LTE-Advanced Release 10 supports non-codebook based SU/MU-MIMO schemes with up to eight transmit antennas as well as CoMP schemes with antennas distributed over different cells. As such, Release 10 allows for more flexible signaling schemes via CSI-RS. In the present invention, we describe how either types of signaling schemes can be used in DIDO systems to enable precoding.


1.1.1 DIDO Signaling Using CRS


The CRS is employed in LTE (Release 8) systems to estimate the CSI from all transmit antennas at the BTS to the UE [80,84]. The CRS is obtained as the product of a two-dimensional orthogonal sequence and a two-dimensional pseudo-random numerical (PRN) sequence. There are three orthogonal and 170 possible PRN sequences, for a total of 510 different CRS sequences. Every sequence uniquely identifies one cell. CRS is transmitted within the first and third-last OFDM symbol of every slot, and every sixth subcarrier. Orthogonal patterns in time and frequency are designed for every transmit antenna of the BTS, for the UE to uniquely estimate the CSI from each of the four antennas. This high density of CRS in time and frequency (i.e., sent every slot of 0.5 msec, and every sixth subcarrier), producing 5% overhead, was designed intentionally to support scenarios with fast channel variations over time and frequency [83].


In practical DIDO systems, it may be the case that every UE sees more than only four BTSs within its user-cluster. For example, FIG. 8 shows the SNR distribution for practical deployment of DIDO systems in downtown San Francisco, Calif. The propagation model is based on 3GPP pathloss/shadowing model [81] and assumes a carrier frequency of 900 MHz. The dots in the map indicate the location of the DIDO-BTSs, whereas the dark circle represents the user-cluster (with the UE being located at the center of the circle). In sparsely populated areas, the UE sees only a few BTSs within its user-cluster (e.g., as low as three BTSs for the example in FIG. 8), whereas in densely populated areas each user-cluster may comprise as many as 26 BTSs as in FIG. 8.


The high redundancy of the CRS can be exploited in DIDO systems to enable CSI estimation from any number of transmit antennas greater than four. For example, if the channel is fixed-wireless or characterized by low Doppler effects, there is no need to compute the CSI from all four transmit antennas every 0.5 msec (slot duration). Likewise, if the channel is frequency-flat, estimating the CSI every sixth subcarrier is redundant. In that case, the resource elements (RE) occupied by the redundant CRS can be re-allocated for other transmit antennas or BTSs in the DIDO system. In one embodiment of the invention, the system allocates resource elements of redundant CRS to extra antennas or BTSs in the DIDO system. In another embodiment, the system estimates time and frequency selectivity of the channel and dynamically allocates the CRS for different BTSs or only the BTSs within the user-cluster to different resource elements.


1.1.2 DIDO Signaling Using CSI-RS and DM-RS


In the LTE-Advanced (Release 10) standard the CSI-RS is used by every UE to estimate the CSI from the BTSs [33,83]. The standard defines orthogonal CSI-RS for different transmitters at the BTS, so that the UE can differentiate the CSI from different BTSs. Up to eight transmit antennas at the BTS are supported by the CSI-RS as in Tables 6.10.5.2-1,2 in [33]. The CSI-RS is sent with a periodicity that ranges between 5 and 80 subframes (i.e., CSI-RS send every 5 to 80 msec) as in Tables 6.10.5.3-1 in [33]. The periodicity of the CSI-RS in LTE-Advanced was designed intentionally larger than the CRS in LTE to avoid excessive overhead of control information, particularly for legacy LTE terminals unable to make use of these extra resources. Another reference signal used for CSI estimation is to demodulation RS (DM-RS). The DM-RS is a demodulation reference signal intended to a specific UE and transmitted only in the resource block assigned for transmission to that UE.


When more than eight antennas (maximum number of transmitters supported by the LTE-Advanced standard) are within the user-cluster, alternative techniques must be employed to enable DIDO precoding while maintaining system compliance to the LTE-Advanced standard. In one embodiment of the invention, every UE uses the CSI-RS or the DM-RS or combination of both to estimate the CSI from all active BTSs in its own user-cluster. In the same embodiment, the DIDO system detects the number of BTSs within the user-cluster and whether or not the user-cluster is compliant to the LTE-Advanced standard (supporting at most eight antennas). If it is not compliant, the DIDO system employs alternative techniques to enable DL signaling from the BTSs to the current UE. In one embodiment, the transmit power from the BTSs is reduced until at most eight BTSs are reachable by the UE within its user-cluster. This solution, however, may result in reduction of data rate as coverage would be reduced.


Another solution is to divide the BTSs in the user-cluster in subsets and send one set of CSI-RS for every subset at a time. For example, if the CSI-RS periodicity is 5 subframes (i.e., 5 msec) as in Table 6.10.5.3-1 in [33], every 5 msec the CSI-RS is sent from a new subset of BTSs. Note that this solution works as long as the CSI-RS periodicity is short enough to cover all BTS subsets within the channel coherence time of the UE (which is a function of the Doppler velocity of the UE). For example, if the selected CSI-RS periodicity is 5 msec and the channel coherence time is 100 msec, it is possible to define up to 20 BTS subsets of 8 BTS each, adding up to a total of 160 BTSs within the user-cluster. In another embodiment of the invention, the DIDO system estimates the channel coherence time of the UE and decides how many BTSs can be supported within the user-cluster for given CSI-RS periodicity, to avoid degradation due to channel variations and Doppler effect.


The solutions for CSI-RS proposed so far are all compliant with the LTE standard and can be deployed within the framework of conventional LTE systems. For example, the proposed method that allows more than eight antennas per user-cluster would not require modifications of the UE LTE hardware and software implementation, and only slight modification of the protocols used at the BTSs and CP to enable selection of BTSs subset at any given time. These modifications can be easily implemented in a cloud-based software defined radio (SDR) platform, which is one promising deployment paradigm for DIDO systems. Alternatively, if it is possible to relax the constraints of the LTE standard and develop slightly modified hardware and software for LTE UEs to support similar, but non-LTE-compliant DIDO modes of operation, so as enable UEs to be able to operate in full LTE-compliant mode, or in a modified mode that supports non-LTE-compliant DIDO operation. For example, another solution is to increase the amount of CSI-RS to enable higher number of BTSs in the system. In another embodiment of the invention, different CSI-RS patterns and periodicities are allowed as a means to increase the number of supported BTSs per user-cluster. Such slight modifications to the LTE standard may be small enough that existing LTE UE chipsets can be used with simply software modification. Or, if hardware modification would be needed to the chipsets, the changes would be small.


1.2 Uplink DIDO CSI Feedback Methods within the LTE Standard


In the LTE and LTE-Advanced standards, the UE feeds back information to the BTS to communicate its current channel conditions as well as the precoding weights for closed-loop transmission over the DL channel. Three different channel indicators are included in those standards [35]:

    • Rank indicator (RI): indicates how many spatial streams are transmitted to given UE. This number is always equal or less than the number of transmit antennas.
    • Precoding matrix indicator (PMI): is the index of the codebook used for precoding over the DL channel.
    • Channel quality indicator (CQI): defines the modulation and forward error correction (FEC) coding scheme to be used over the DL to maintain predefined error rate performance for given channel conditions


Only one RI is reported for the whole bandwidth, whereas the PMI and CQI reporting can be wideband or per sub-band, depending on the frequency-selectivity of the channel. These indicators are transmitted in the UL over two different types of physical channels: i) the physical uplink control channel (PUCCH), used only for control information; ii) the physical uplink shared channel (PUSCH), used for both data and control information, allocated over one resource block (RB) and on a sub-frame basis. On the PUCCH, the procedure to report the RI, PMI and CQI is periodic and the indicators can be either wideband (for frequency-flat channels) or UE-selected on a sub-band basis (for frequency-selective channels). On the PUSCH, the feedback procedure is aperiodic and can be UE-selected on a sub-band basis (for frequency-selective channels) or higher-layer configured sub-band (e.g., for transmission mode 9 in LTE-Advance with eight transmitters).


In one embodiment of the invention, the DIDO system employs RI, PMI and CQI to report to BTSs and CP its current channel conditions as well as precoding information. In one embodiment, the UE uses the PUCCH channel to report those indicators to the CP. In another embodiment, in case a larger number of indicators is necessary for DIDO precoding, the UE employs the PUSCH to report additional indicators to the CP. In case the channel is frequency-flat, the UE can exploit extra UL resources to report the PMI for a larger number of antennas in the DIDO systems. In one embodiment of the invention, the UE or BTSs or CP estimate the channel frequency selectivity and, in case the channel is frequency-flat, the UE exploits the extra UL resources to report the PMI for larger number of BTSs.


2. Downlink Open-Loop DIDO in LTE


DIDO open-loop schemes can only be used in time-division duplex (TDD) systems exploiting channel reciprocity. One embodiment of a mechanism for open-loop schemes in DIDO systems is as follows: i) the UEs 1-4 send signaling information to the BTSs 903 or CTRs 905 over the UL; ii) the BTSs 903 or CTRs 905 exploit that signaling information to estimate the UL CSI from all UEs 1-4; iii) the BTSs 903 or CTRs 905 employ RF calibration to convert the UL CSI into DL CSI; iv) the BTSs 903 or CTRs 905 send the DL CSI or codebook index to the CP via the BSN 902; v) based on that DL CSI, the CP 901 calculates the precoding weights for data transmission over the DL. Similarly to closed-loop DIDO schemes, user-clusters can be employed to reduce the amount of CSI to be estimated at the BTSs from the UEs, thereby reducing the computational burden at the BTSs as well as the amount of signaling required over the UL. In one embodiment of the invention, open-loop precoding techniques are employed to send simultaneous non-interfering data streams from the BTSs to the UEs over the DL channel.


In LTE there are two types of reference signal for the uplink channel [31,33,87]: i) sounding reference signal (SRS), used for scheduling and link adaptation; ii) demodulation reference signal (DMRS), used for data reception. In one embodiment of the invention, the SRS or DMRS is employed in open-loop DIDO systems to estimate the UL channels form all UEs to all BTSs. In the time domain, the DMRS is sent at the fourth OFDM symbol (when a normal cyclic prefix is used) of every LTE slot (of duration 0.5 msec). In the frequency domain, the DMRS sent over the PUSCH is mapped for every UE to the same resource block (RB) used by that UE for UL data transmission.


The length of the DMRS is MRRS=mNRB, where m is the number of RBs and NRB=12 is the number of subcarriers per RB. To support multiple UEs, several DMRS are generated from one base Zadoff-Chu [88] or computer-generated constant amplitude zero autocorrelation (CG-CAZAC) sequence, via cyclic shift of the base sequence. Base sequences are divided into 30 groups and neighbor LTE cells select DMRS from different groups to reduce inter-cell interference. For example, if the maximum number of resource blocks within one OFDM symbol is 110 (i.e., assuming 20 MHz overall signal bandwidth), it is possible to generate up to 110×30=3300 different sequences.


In one embodiment of the invention, the DIDO system assigns the UEs to “virtual cells” to maximize the number of SRS or DMRS that can be used in the UL. In one exemplary embodiment, the virtual cell is the area of coherence (described in related co-pending U.S. application Ser. No. 13/232,996, entitled “Systems and Methods to Exploit Areas of Coherence in Wireless Systems”) around the UE and the DIDO system generates up to 3300 areas of coherence for different UEs. In another embodiment of the invention, each of the 30 base sequences is assigned to a different DIDO cluster (clusters are defined in related U.S. Pat. No. 8,170,081, issued May 1, 2012, entitled “System And Method For Adjusting DIDO Interference Cancellation Based On Signal Strength Measurements”) to reduce inter-cluster interference across adjacent DIDO clusters. In another embodiment, the SRS or DMRS are assigned according to certain frequency hopping patterns to exploit channel frequency diversity.


In case there are not enough orthogonal SRSs or DMRSs for all UEs to be served simultaneously in the DL via DIDO precoding, one alternative is to multiplex the SRS or DMRS of different UEs in the time domain. For example, the UEs are divided into different groups and the SRSs or DMRSs for those groups are sent over consecutive time slots (of duration 0.5 msec each). In this case, however, it is necessary to guarantee that the periodicity of the SRS or DMRS assignment for different groups is lower than the channel coherence time of the fastest moving UE. In fact, this is necessary condition to guarantee that the channel does not vary for all UEs from the time the CSI is estimated via SRS or DMRS to the time system transmits DL data streams to the UEs via DIDO precoding. In one embodiment of the invention, the system divides the active UEs into groups and assigns the same set of SRS or DMRS to each group over consecutive time slots. In the same embodiment, the system estimates the shortest channel coherence time for all active UEs and calculates the maximum number of UE groups as well as the periodicity of the SRS or DMRS time multiplexing based on that information.


3. Uplink DIDO Techniques in LTE


Embodiments of the invention employ open-loop MU-MIMO schemes over the UL channel to receive simultaneous UL data streams from all UEs to the BTSs. One embodiment of the UL open-loop MU-MIMO scheme includes the following steps: i) UEs 1-4 send signaling information and data payload to all BTSs 903; ii) the BTSs 903 compute the channel estimations from all UEs using the signaling information; iii) the BTSs 903 send the channel estimates and data payloads to the CP 901; iv) the CP 901 uses the channel estimates to remove inter-channel interference from all UEs' data payloads via spatial filtering and demodulates the data streams form all UEs. In one embodiment, the open-loop MU-MIMO system employs single-carrier frequency division multiple access (SC-FDMA) to increase the number of UL channels from the UEs to the BTSs and multiplex them in the frequency domain.


In one embodiment, synchronization among UEs is achieved via signaling from the DL and all BTSs 903 are assumed locked to the same time/frequency reference clock, either via direct wiring to the same clock or sharing a common time/frequency reference, in one embodiment through GPSDO. Variations in channel delay spread at different UEs may generate jitter among the time references of different UEs that may affect the performance of MU-MIMO methods over the UL. In one embodiment, only the UEs within the same DIDO cluster (e.g., UEs in close proximity with one another) are processed with MU-MIMO methods to reduce the relative propagation delay spread across different UEs. In another embodiment, the relative propagation delays between UEs are compensated at the UEs or at the BTSs to guarantee simultaneous reception of data payloads from different UEs 1-4 at the BTSs 903.


The techniques for enabling signaling information for data demodulation over the UL may be the same methods used for signaling in the downlink open-loop DIDO scheme described at the previous section. The CP 901 may employ different spatial processing techniques to remove inter-channel interference from the UEs data payload. In one embodiment of the invention, the CP 901 employs non-linear spatial processing methods such as maximum likelihood (ML), decision feedback equalization (DFE) or successive interference cancellation (SIC) receivers. In another embodiment the CP 901 employs linear filters such as zeros-forcing (ZF) or minimum mean squared error (MMSE) receivers to cancel co-channel interference and demodulate the uplink data streams individually.


4. Integration with Existing LTE Networks


In the United States and other regions of the world, LTE networks are already in operation or are in the process of being deployed and/or committed to be deployed. It would be of significant benefit to LTE operators if they could gradually deploy DIDO capability into their existing or already-committed deployments. In this way, they could deploy DIDO in areas where it would provide the most immediate benefit, and gradually expand the DIDO capability to cover more their network. In time, once they have sufficient DIDO coverage in an area, they can choose to cease using cells entirely, and instead switch entirely to DIDO and achieve much higher spectral density at much lower cost. Throughout this entire transition from cellular to DIDO, the LTE operator's wireless customers will never see a loss in service. Rather, they will simply see their data throughput and reliability improve, while the operator will see its costs decline.


There are several embodiments that would enable a gradual integration of DIDO into existing LTE networks. In all cases, the BTSs for DIDO will be referred as DIDO-LTE BTSs and will utilize one of the LTE-compatible DIDO embodiments described above, or other LTE-compatible embodiments as they may be developed in the future. Or, the DIDO-LTE BTSs will utilize a slight variant of the LTE standard, such as those described above and the UEs will either be updated (e.g. if a software update is sufficient to modify the UE to be DIDO compatible), or a new generation of UEs that are DIDO-compatible will be deployed. In either case, the new BTSs that support DIDO either within the constraints of the LTE standard, or as a variant of the LTE standard will be referred to below as DIDO-LTE BTSs.


The LTE standard supports various channel bandwidths (e.g., 1.4, 3, 5, 10, 15 and 20 MHz). In one embodiment, an operator with an existing LTE network can either allocate new bandwidth for the LTE-DIDO BTSs, or would subdivide the existing LTE spectrum (e.g. 20 MHz could be subdivided into two 10 MHz blocks) to support conventional LTE BTSs in a cellular configuration in one block of spectrum and DIDO LTE BTSs in another block of spectrum. Effectively, this would establish two separate LTE networks, and UE devices would be configured to use one or the other network, or select between the two. In the case of subdivided spectrum, the spectrum may be divided evenly between the conventional LTE network and the DIDO-LTE network, or unevenly, allocated more spectrum to whichever network could best utilize it given the level of cellular LTE BTS and DIDO-LTE BTS deployment and/or UE usage patterns. This subdivision could change as needed over time, and at some point, when there are sufficient DIDO-LTE BTSs deployed to provide the same or better coverage as the cellular BTSs, all of the spectrum can be allocated to DIDO-LTE BTSs, and the cellular BTSs can be decommissioned.


In another embodiment, the conventional cellular LTE BTSs can be configured to be coordinated with the DIDO-LTE BTSs such that they share the same spectrum, but take turns using the spectrum. For example, if they were sharing the spectrum use equally, then each BTS network would utilize one 10 ms frame time in alternation, e.g. one 10 ms frame for the cellular LTE BTS, followed by one 10 ms frame for the DIDO-LTE BTS. The frame times could be subdivided in unequal intervals as well. This interval splitting could change as needed over time, and at some point, when there are sufficient DIDO-LTE BTSs deployed to provide the same or better coverage as the cellular BTSs, all of the time can be allocated to DIDO-LTE BTSs, and the cellular BTSs can be decommissioned.


In another embodiment of the invention, DIDO is employed as LOS or NLOS wireless backhaul to small cells in LTE and LTE-Advanced networks. As small-cells are deployed in LTE networks, DIDO provides high-speed wireless backhaul to those small cells. As the demand for higher data rate increases, more small-cells are added to the network until the wireless network reaches a limit where no more small-cells can be added in a given area without causing inter-cell interference. In the same embodiment of the invention, DIDO BTSs are used to replace gradually small-cells, thereby exploiting inter-cell interference to provide increased network capacity.


REFERENCES



  • [1] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications, Cambridge University Press, 40 West 20th Street, New York, N.Y., USA, 2003

  • [2] D. Gesbert, M. Shafi, D. Shiu, P. J. Smith and A. Naguib, “From theory to practice: an overview of MIMO space-time coded wireless systems”, IEEE Journal on Selected Areas on Communications, vol. 2, n. 3, pp. 281-302, April 2003

  • [3] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels,” IEEE Trans. Info. Th., vol. 49, no. 5, pp. 1073-1096, May 2003

  • [4] D. N. C. Tse, P. Viswanath, and L. Zheng, “Diversity-multiplexing tradeoff in multiple-access channels”, IEEE Trans. Info. Th., vol. 50, no. 9, pp. 1859-1874, September 2004

  • [5] E. Visotsky and U. Madhow, “Space-time transmit precoding with imperfect feedback,” IEEE Trans. Info. Th., vol. 47, pp. 2632-2639, September 2001.

  • [6] S. A. Jafar, S. Vishwanath, and A. Goldsmith, “Channel capacity and beamforming for multiple transmit and receive antennas with covariance feedback,” Proc. IEEE Int. Conf. on Comm., vol. 7, pp. 2266-2270, June 2001.

  • [7] S. A. Jafar and A. Goldsmith, “Transmitter optimization and optimality of beamforming for multiple antenna systems,” IEEE Trans. Wireless Comm., vol. 3, pp. 1165-1175, July 2004.

  • [8] E. A. Jorswieck and H. Boche, “Channel capacity and capacity-range of beamforming in MIMO wireless systems under correlated fading with covariance feedback,” IEEE Trans. Wireless Comm., vol. 3, pp. 1543-1553, September 2004.

  • [9] A. L. Moustakas and S. H. Simon, “Optimizing multiple-input single-output (MISO) communication systems with general Gaussian channels: nontrivial covariance and nonzero mean,” IEEE Trans. Info. Th., vol. 49, pp. 2770-2780, October 2003.

  • [10] M. Kang and M. S. Alouini, “Water-filling capacity and beamforming performance of MIMO systems with covariance feedback,” IEEE Work. on Sign. Proc. Adv. in Wire. Comm., pp. 556-560, June 2003.

  • [11] S. H. Simon and A. L. Moustakas, “Optimizing MIMO antenna systems with channel covariance feedback,” IEEE Jour. Select. Areas in Comm., vol. 21, pp. 406-417, April 2003.

  • [12] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Jour. Select. Areas in Comm., vol. 16, no. 8, pp. 1451-1458, October 1998.

  • [13] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Info. Th., vol. 44, pp. 744-65, March 1998.

  • [14] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Info. Th., vol. 45, pp. 1456-467, July 1999.

  • [15] E. N. Onggosanusi, A. G. Dabak, and T. A. Schmidl, “High rate space-time block coded scheme: performance and improvement in correlated fading channels,” Proc. IEEE Wireless Comm. and Net. Conf., vol. 1, pp. 194-199, March 2002.

  • [16] G. D. Durgin, Space-Time Wireless Channels, Prentice Hall, Upper Saddle River, N.J., USA, 2003

  • [17] D.-S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans. Comm., vol. 48, no. 3, pp. 502-513, March 2000

  • [18] A. Forenza and R. W. Heath Jr., “Impact of antenna geometry on MIMO communication in indoor clustered channels,” Proc. IEEE Antennas and Prop. Symp., vol. 2, pp. 1700-1703, June 2004.

  • [19] E. A. Jorswieck and H. Boche, “Channel capacity and capacity-range of beamforming in MIMO wireless systems under correlated fading with covariance feedback,” IEEE Trans. Wireless Comm., vol. 3, pp. 1543-1553, September 2004

  • [20] R. W. Heath Jr. and A. Paulraj, “Switching between multiplexing and diversity based on constellation distance,” Proc. of Allerton Conf. on custom character208, Comm. Control and Comp., September 2000.

  • [21] S. Catreux, V. Erceg, D. Gesbert, and R. W. Heath Jr., “Adaptive modulation and MIMO coding for broadband wireless data networks,” IEEE Comm. Mag., vol. 2, pp. 108-115, June 2002.

  • [22] A. Forenza, A. Pandharipande, H. Kim, and R. W. Heath Jr., “Adaptive MIMO transmission scheme: Exploiting the spatial selectivity of wireless channels,” Proc. IEEE Veh. Technol. Conf., vol. 5, pp. 3188-3192, May 2005

  • [23] C. B. Chae, A. Forenza, R. W. Heath, Jr., M. R. McKay, and I. B. Collings, “Adaptive MIMO Transmission Techniques for Broadband Wireless Communication Systems,” IEEE Communications Magazine, vol. 48, no. 5, pp. 112-118, May 2010

  • [24] FCC, “Broadband action agenda”, National Broadband Plan, 2010 http://www.broadband.gov/plan/national-broadband-plan-action-agenda.pdf

  • [25], N. Delfas, F. Meunier, S. Flannery, T. Tsusaka, E. Gelblum and S. Kovler, “Mobile data wave: who dares to invest, wins”, Morgan Stanley Research Global, Jun. 13, 2012

  • [26] D. Goldman, “Sorry, America: your wireless airwaves are full”, CNN Money http://money.cnn.com/2012/02/21/technology/spectrum_crunch/index.htm

  • [27] P. Rysavy, “No silver bullets for FCC, NTIA spectrum challenge”, Daily report for executives, Bloomberg BNA, August 2012 http://www.rysavy.com/Articles/2012_09_No_Spectrum_Silver_Bullets.pdf

  • [28] T. W. Hazlett, “Radio spectrum for a hungry wireless world”, Sep. 22, 2011

  • [29] B. J. Love, D. J. Love and J. V. Krogmeier, “Like deck chairs on the Titanic: why spectrum reallocation won't avert the coming data crunch but technology might keep the wireless industry afloat”, February 2012

  • [30] Qualcomm, “The 1000× data challenge, the latest on wireless, voice, services and chipset evolution”, 4G World, Oct. 31, 2012

  • [31] J. Lee, J.-K. Han, J. Zhang, “MIMO technologies in 3GPP LTE and LTE-advanced”, EURASIP Journal on Wireless Communications and Networking, Hindawi, May 2009

  • [32] 3GPP, TS 36.201, “Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer—General Description (Release 8)”

  • [33] 3GPP, TS 36.211, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)”

  • [34] 3GPP, TS 36.212, “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 8)”

  • [35] 3GPP, TS 36.213, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 8)”

  • [36] T. Yoo, N. Jindal, and A. Goldsmith, “Multi-antenna broadcast channels with limited feedback and user selection,” IEEE Journal on Sel. Areas in Communications, vol. 25, pp. 1478-91, July 2007.

  • [37] P. Ding, D. J. Love, and M. D. Zoltowski, “On the sum rate of channel subspace feedback for multi-antenna broadcast channels,” in Proc., IEEE Globecom, vol. 5, pp. 2699-2703, November 2005.

  • [38] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE Trans. on Info. Theory, vol. 52, pp. 5045-60, November 2006.

  • [39] D. J. Love, R. W. Heath, Jr., V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “An Overview of Limited Feedback in Wireless Communication Systems,” IEEE Journal on Sel. Areas in Comm., Special Issue on Exploiting Limited Feedback in Tomorrow's Wireless Communication Networks, vol. 26, no. 8, pp. 1341-1365, October 2008.

  • R. W. Heath, Jr., D. J. Love, V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “Exploiting Limited Feedback in Tomorrow's Wireless Communication Networks,” IEEE Journal on Sel. Areas in Comm., Special Issue on Exploiting Limited Feedback in Tomorrow's Wireless Communication Networks, vol. 26, no. 8, pp. 1337-1340, October 2008.

  • [41] D. J. Love, R. W. Heath, Jr., and T. Strohmer, “Grassmannian Beamforming for Multiple-Input Multiple-Output Wireless Systems,” IEEE Trans. on Info. Theory special issue on MIMO Communication, vol. 49, pp. 2735-2747, October 2003

  • [42] C. B. Chae, D. Mazzarese, N. Jindal and R. W. Heath, Jr., “Coordinated Beamforming with Limited Feedback in the MIMO Broadcast Channel” IEEE Journal on Sel. Areas in Comm., Special Issue on Exploiting Limited Feedback in Tomorrow's Wireless Communication Networks, vol. 26, no. 8, pp. 1505-1515, October 2008

  • [43] A. Paulraj, “Is OFDMA, MIMO and OS the right stuff for mobile broadband?” http://www.ieeevtc.org/vtc2005fall/presentations/paulraj.pdf, September 2005

  • [44] J. Wannstrom, “Carrier aggregation explained”, 3GPP http://www.3gpp.org/Carrier-Aggregation-explained

  • [45] 3GPP, TS 36.808, “Evolved Universal Terrestrial Radio Access (E-UTRA); Carrier Aggregation (Release 10)”, v10.0.0, June 2012

  • [46] Nokia Siemens Networks, “2020: beyond 4G, radio evolution for the gigabit experience”, White Paper, 2011, www.nokiasiemensnetworks.com

  • [47] S. Marek, “AT&T's Rinne talks about carrier aggregation trials, small cells and more”, http://www.fiercebroadbandwireless.com/story/atts-rinne-talks-about-carrier-aggregation-trials-small-cells-and-more/2012-11-08

  • [48] M. Reed, “InterfereX”, Tech23, 2011 http://www.youtube.com/watch?v=YPpELm6iip8

  • [49] NICTA, “InterfereX”, http://www.nicta.com.au/research/archive/research_themes/networked_systems/interferex

  • [50] J. Duplicity, et al., “MU-MIMO in LTE systems”, EURASIP Journal on Wireless Communications and Networking, March 2011

  • [51] S. Feng and E. Seidel, “Self-organizing networks (SON) in 3GPP LTE”, Nomor research, May 2008

  • [52] NEC, “Self organizing networks”, White paper, February 2009

  • [53] U.S. Pat. No. 5,809,422, issued Sep. 15, 1998, entitled “Distributed microcellular communications system”, G. R. Raleigh, M. A. Pollack

  • [54] G. J. Foschini, H. C. Huang, K. Karakayali, R. A. Valenzuela, and S. Venkatesan. The Value of Coherent Base Station Coordination. In Conference on Information Sciences and Systems (CISS 2005), March 2005

  • [55] M. K. Karakayali, G. J. Foschini, R. A. Valenzuela, and R. D. Yates, “On the maximum common rate achievable in a coordinated network,” Proc. of the Int'l Conf. on Communications (ICC'06), vol. 9, pp. 4333-4338, June 2006.

  • [56] M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela, “Network coordination for spectrally efficient communications in cellular systems,” IEEE Wireless Communications Magazine, vol. 13, no. 4, pp. 56-61, August 2006.

  • [57] G. J. Foschini, M. K. Karakayali, and R. A. Valenzuela, “Coordinating multiple antenna cellular networks to achieve enormous spectral efficiency,” Proceedings of the IEEE, vol. 153, no. 4, pp. 548-555, August 2006.

  • [58] S. Venkatesan, A. Lozano, and R. Valenzuela, “Network MIMO: overcoming inter-cell interference in indoor wireless systems”, Proc. of Asilomar conf., pp. 83-87, November 2007

  • [59] S. Venkatesan, H. Huang, A. Lozano, and R. Valenzuela, “A WiMAX-based implementation of network MIMO for indoor wireless systems”, EURASIP Journal on Advances in Signal Processing, September 2009

  • [60] Y. Liang, R. Valenzuela, G. Foschini, D. Chizhik, and A. Goldsmith, “Interference suppression in wireless cellular networks through picocells”, ACSSC, pp. 1041-1045, November 2007

  • [61] A. Papadogiannis, H. J. Bang, D. Gesbert, and E. Hardouin, “Efficient selective feedback design for multicell cooperative networks”, IEEE Trans. On Vehicular Techn., pp. 196-205, vol. 60, n. 1, January 2011

  • [62] I. F. Akyildiz, D. M. Guterrez-Estevez, E. C. Reyes, “The evolution to 4G cellular systems: LTE-Advanced”, Physical communication, Elsevier, pp. 217-244, 2010

  • [63] A. Barbieri, P. Gaal, S. Geirhofer, T. Ji, D. Malladi, Y. Wei, and F. Xue, “Coordinated downlink multi-point communications in heterogeneous cellular networks”, (Qualcomm), Information Theory and App. Workshop, pp. 7-16, February 2012

  • [64] S. Parkvall, E. Dahlman, A. Furuskar, Y. Jading, M. Olsson, S. Wanstedt, and K. Zangi, “LTE-Advanced—evolving LTE towards IMT-Advanced”, (Ericsson) IEEE VTC, pp. 1-5, September 2008

  • [65] R. A. Monziano and T. W. Miller, Introduction to Adaptive Arrays, New York: Wiley, 1980.

  • [66] K. K. Wong, R. D. Murch, and K. B. Letaief, “A joint channel diagonalization for multiuser MIMO antenna systems,” IEEE Trans. Wireless Comm., vol. 2, pp. 773-786, July 2003;

  • [67] R. Chen, R. W. Heath, Jr., and J. G. Andrews, “Transmit Selection Diversity for Unitary Precoded Multiuser Spatial Multiplexing Systems with Linear Receivers,” IEEE Trans. on Signal Proc., vol. 55, no. 3, pp. 1159-1171, March 2007.

  • [68] M. Costa, “Writing on dirty paper,” IEEE Transactions on Information Theory, Vol. 29, No. 3, Page(s): 439-441, May 1983.

  • [69] G. Caire and S. Shamai, “On the achievable throughput of a multiantenna Gaussian broadcast channel,” IEEE Trans. Info. Th., vol. 49, pp. 1691-1706, July 2003.

  • [70] Nihar Jindal & Andrea Goldsmith, “Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels”, IEEE Trans. on Info. Theory, vol. 51, pp. 1783-1794, May 2005

  • [71] M. Tomlinson, “New automatic equalizer employing modulo arithmetic,” Electronics Letters, Page(s): 138-139, March 1971.

  • [72] H. Miyakawa and H. Harashima, “A method of code conversion for digital communication channels with intersymbol interference,” Trans. of the Inst. of Electronic

  • [73] U. Erez, S. Shamai (Shitz), and R. Zamir, “Capacity and lattice-strategies for cancelling known interference,” Proceedings of International Symposium on Information Theory, Honolulu, Hi., November 2000.

  • [74] W. Yu and J. M. Cioffi, “Trellis Precoding for the Broadcast Channel”, IEEE Globecom, vol. 2, pp. 1344-1348, 2001

  • [75] B. M. Hochwald, C. B. Peel, and A. L. Swindlehurst, “A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication—Part I: Channel Inversion and Regularization”, IEEE Trans. On Communications, vol. 53, n. 1, pp. 195-202, January 2005

  • [76] B. M. Hochwald, C. B. Peel, and A. L. Swindlehurst, “A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication—Part II: Perturbation”, IEEE Trans. On Communications, vol. 53, n. 3, pp. 537-544, March 2005

  • [77] S. Perlman and A. Forenza, “Distributed-input distributed-output (DIDO) wireless technology: a new approach to multiuser wireless”, Rearden Labs White Paper, July 2011, http://www.reardenwireless.com/110727-DIDO-A%20New%20Approach%20to%20Multiuser%20Wireless.pdf

  • [78] A. Vance, “Steve Perlman's wireless fix”, Businessweek, July 2011 http://www.businessweek.comimagazine/the-edison-of-silicon-valley-07272011.html

  • [79] M. Lindström (Ericsson), “LTE-Advanced Radio Layer 2 and RRC aspects”, 3GPP TSG-RAN WG2

  • [80] Anritsu, “LTE resource guide”, www.us.anritsu.com

  • [81] 3GPP, “Spatial Channel Model AHG (Combined ad-hoc from 3GPP & 3GPP2)”, SCM Text V6.0, Apr. 22, 2003

  • [82] J. Lee, “Introduction of LTE-Advanced DL/UL MIMO”, Samsung Electronics, September 2009

  • [83] E. Dahlman, S. Parkvall and J. Skold, “4G: LTE/LTE-Advanced for mobile broadband”, Elsevier, 2011

  • [84] J. Syren, “Overview on the 3GPP long term evolution physical layer”, Freescale White Paper, July 2007

  • [85] M. Baker, “LTE-Advanced physical layer”, Alcatel-Lucent, December 2009

  • [86] J. Xu, “LTE-Advanced signal generation and measurements using SystemVue”, Agilent Technologies

  • [87] X. Hou and H. Kayama, “Demodulation reference signal design and channel estimation for LTE-Advanced uplink”, DOCOMO, Adv. in Vehic. Netw. Tech., April 2011

  • [88] D. C. Chu, “Polyphase codes with good periodic correlation properties”, IEEE Trans. Info. custom characterTheory, vol. 18, n. 4, pp. 531-532, July 1972


Claims
  • 1. A multiple antenna system (MAS) with multiuser (MU) transmissions (“MU-MAS”) comprising: a plurality of antennas or wireless transceiver devices (BTSs) distributed throughout a coverage area without cells and without an overlaying macrocell at the same frequency, all sharing the same cell identifier (cell ID);a plurality of wireless user devices (UEs) communicatively coupled to the BTSs; anda spatial processing unit that uses precoding to generate a plurality of waveforms for the BTSs interfering with one another to create a plurality of concurrent non-interfering downlink (DL) or uplink (UL) data links, including control channel links, between the BTSs and the UEs within the same frequency band.
  • 2. A method implemented within a MU-MAS comprising: distributing a plurality of BTSs throughout a coverage area without cells and without an overlaying macrocell at the same frequency, all sharing the same cell ID;communicatively coupling a plurality of UEs to the BTSs; anduses precoding to generate a plurality of waveforms for the BTSs interfering with one another to create a plurality of concurrent non-interfering DL or UL data links, including control channel links, between the BTSs and the UEs within the same frequency band.
  • 3. The system as in claim 1 wherein the MU-MAS is a mobile network.
  • 4. The system as in claim 3 wherein the mobile network is compatible with 3GPP protocols.
  • 5. The system as in claim 1 wherein closed-loop or open-loop precoding methods are employed to create the concurrent non-interfering DL and UL data links.
  • 6. The system as in claim 5 in which a DL or UL reference signal is used to estimate the channel state information (CSI) of each of a plurality of the UEs.
  • 7. The system as in claim 6 in which UL/DL reciprocity is exploited to estimate the CSI.
  • 8. The system as in claim 1 in which the UEs have mobility throughout the coverage area without hand-overs.
  • 9. The method as in claim 2 wherein the MU-MAS is a mobile network.
  • 10. The method as in claim 9 wherein the mobile network is compatible with 3GPP protocols.
  • 11. The method as in claim 2 wherein the MU-MAS creates the concurrent non-interfering DL and UL data links using closed-loop or open-loop precoding.
  • 12. The method as in claim 11 in wherein the MU-MAS uses a DL or UL reference signal to estimate the CSI of each of a plurality of the UEs.
  • 13. The method as in claim 12 wherein the MU-MAS exploits UL/DL reciprocity to estimate the CSI.
  • 14. The method as in claim 2 in which the UEs have mobility throughout the coverage area without hand-overs.
CLAIM TO PRIORITY

This application is a continuation of U.S. patent application Ser. No. 14/086,700, filed Nov. 21, 2013, which application claims the benefit of U.S. Provisional Application No. 61/729,990, entitled, “Systems And Methods For Exploiting Inter-Cell Multiplexing Gain In Wireless Cellular Systems Via Distributed Input Distributed Output Technology”, filed Nov. 26, 2012, which is assigned to the assignee of the present application. This application is herein incorporated by reference in its entirety. This application may be related to the following co-pending U.S. patent applications: U.S. application Ser. No. 13/233,006, entitled “System and Methods for planned evolution and obsolescence of multiuser spectrum” U.S. application Ser. No. 13/232,996, entitled “Systems and Methods to Exploit Areas of Coherence in Wireless Systems” U.S. application Ser. No. 13/464,648, entitled “System and Methods to Compensate for Doppler Effects in Distributed-Input Distributed Output Systems” U.S. Pat. No. 8,542,763, issued Sep. 24, 2013, entitled “Systems And Methods To Coordinate Transmissions In Distributed Wireless Systems Via User Clustering” U.S. application Ser. No. 12/802,988, entitled “Interference Management, Handoff, Power Control And Link Adaptation In Distributed-Input Distributed-Output (DIDO) Communication Systems” U.S. Pat. No. 8,170,081, issued May 1, 2012, entitled “System And Method For Adjusting DIDO Interference Cancellation Based On Signal Strength Measurements” U.S. application Ser. No. 12/802,974, entitled “System And Method For Managing Inter-Cluster Handoff Of Clients Which Traverse Multiple DIDO Clusters” U.S. application Ser. No. 12/802,989, entitled “System And Method For Managing Handoff Of A Client Between Different Distributed-Input-Distributed-Output (DIDO) Networks Based On Detected Velocity Of The Client” U.S. application Ser. No. 12/802,958, entitled “System And Method For Power Control And Antenna Grouping In A Distributed-Input-Distributed-Output (DIDO) Network” U.S. application Ser. No. 12/802,975, entitled “System And Method For Link adaptation In DIDO Multicarrier Systems” U.S. Pat. No. 8,571,086, issued Oct. 29, 2013, entitled “System And Method For DIDO Precoding Interpolation In Multicarrier Systems” U.S. application Ser. No. 12/630,627, entitled “System and Method For Distributed Antenna Wireless Communications” U.S. Pat. No. 7,599,420, issued Oct. 6, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”; U.S. Pat. No. 7,633,994, issued Dec. 15, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”; U.S. Pat. No. 7,636,381, issued Dec. 22, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”; U.S. Pat. No. 8,160,121, issued Apr. 17, 2012, entitled, “System and Method For Distributed Input-Distributed Output Wireless Communications”; U.S. Pat. No. 7,711,030, issued May 4, 2010, entitled “System and Method For Spatial-Multiplexed Tropospheric Scatter Communications”; U.S. Pat. No. 7,418,053, issued Aug. 26, 2008, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”; U.S. Pat. No. 7,885,354, issued Feb. 8, 2011, entitled “System and Method For Enhancing Near Vertical Incidence Skywave (“NVIS”) Communication Using Space-Time Coding.”

US Referenced Citations (642)
Number Name Date Kind
4003016 Remley Jan 1977 A
4253193 Kennard et al. Feb 1981 A
4564935 Kaplan Jan 1986 A
4771289 Masak Sep 1988 A
5045862 Alden et al. Sep 1991 A
5088091 Schroeder et al. Feb 1992 A
5095500 Tayloe et al. Mar 1992 A
5097485 O'Connor et al. Mar 1992 A
5315309 Rudow et al. May 1994 A
5377183 Dent Dec 1994 A
5400037 East Mar 1995 A
5483667 Faruque Jan 1996 A
5555257 Dent Sep 1996 A
5600326 Yu et al. Feb 1997 A
5661765 Ishizu Aug 1997 A
5742253 Conroy et al. Apr 1998 A
5809422 Raleigh et al. Sep 1998 A
5838671 Ishikawa et al. Nov 1998 A
5872814 McMeekin Feb 1999 A
5983104 Wickman et al. Nov 1999 A
6005516 Reudink et al. Dec 1999 A
6005856 Jensen et al. Dec 1999 A
6014107 Wiesenfarth Jan 2000 A
6041365 Kleinerman Mar 2000 A
6052582 Blasing et al. Apr 2000 A
6061021 Zibell May 2000 A
6061023 Daniel et al. May 2000 A
6067290 Paulraj et al. May 2000 A
6232921 Aiken et al. May 2001 B1
6252912 Salinger Jun 2001 B1
6275738 Kasevich et al. Aug 2001 B1
6308080 Burt et al. Oct 2001 B1
6320853 Wong et al. Nov 2001 B1
6323823 Wong et al. Nov 2001 B1
6330460 Wong et al. Dec 2001 B1
6377782 Bishop et al. Apr 2002 B1
6400761 Smee et al. Jun 2002 B1
6411612 Halford et al. Jun 2002 B1
6421543 Molnar Jul 2002 B1
6442151 H'mimy et al. Aug 2002 B1
6445910 Oestreich Sep 2002 B1
6448937 Aiken et al. Sep 2002 B1
6453177 Wong et al. Sep 2002 B1
6459900 Scheinert Oct 2002 B1
6473467 Wallace et al. Oct 2002 B1
6484030 Antoine et al. Nov 2002 B1
6519478 Scherzer et al. Feb 2003 B1
6611231 Crilly, Jr. et al. Aug 2003 B2
6654590 Boros et al. Nov 2003 B2
6668161 Boros et al. Dec 2003 B2
6684366 Trott et al. Jan 2004 B1
6697644 Scherzer et al. Feb 2004 B2
6718180 Lundh et al. Apr 2004 B1
6718184 Aiken et al. Apr 2004 B1
6760388 Ketchum et al. Jul 2004 B2
6760599 Uhlik Jul 2004 B1
6760603 Scherzer et al. Jul 2004 B1
6763225 Farmine et al. Jul 2004 B1
6771706 Ling et al. Aug 2004 B2
6785341 Walton et al. Aug 2004 B2
6791508 Berry et al. Sep 2004 B2
6794939 Kim et al. Sep 2004 B2
6795413 Uhlik Sep 2004 B1
6799026 Scherzer et al. Sep 2004 B1
6801580 Kadous Oct 2004 B2
6804311 Dabak et al. Oct 2004 B1
6834043 Vook et al. Dec 2004 B1
6836673 Trott Dec 2004 B1
6847832 Wong et al. Jan 2005 B2
6862271 Medvedev et al. Mar 2005 B2
6888795 Gupta et al. May 2005 B2
6888809 Foschini et al. May 2005 B1
6888899 Raleigh et al. May 2005 B2
6895258 Scherzer et al. May 2005 B1
6901062 Scherzer et al. May 2005 B2
6920192 Laroia et al. Jul 2005 B1
6925127 Dent Aug 2005 B1
6956537 Scherzer et al. Oct 2005 B2
6963742 Boros et al. Nov 2005 B2
6970682 Crilly, Jr. et al. Nov 2005 B2
6978150 Hamabe Dec 2005 B2
6996060 Dahlby et al. Feb 2006 B1
7006043 Nalbandian Feb 2006 B1
7013144 Yamashita et al. Mar 2006 B2
7016649 Narasimhan et al. Mar 2006 B1
7020490 Khatri Mar 2006 B2
7027415 Dahlby et al. Apr 2006 B1
7027523 Jalali et al. Apr 2006 B2
7027837 Uhlik et al. Apr 2006 B1
7031336 Scherzer et al. Apr 2006 B2
7031754 Scherzer et al. Apr 2006 B2
7068704 Orr Jun 2006 B1
7072413 Walton et al. Jul 2006 B2
7072693 Farlow et al. Jul 2006 B2
7075485 Song et al. Jul 2006 B2
7079809 Scherzer Jul 2006 B1
7085240 Wu et al. Aug 2006 B2
7095723 Sezgin et al. Aug 2006 B2
7096040 Scherzer et al. Aug 2006 B1
7116723 Kim et al. Oct 2006 B2
7117014 Van Rensburg et al. Oct 2006 B1
7120440 Cho et al. Oct 2006 B2
7139527 Tamaki et al. Nov 2006 B2
7142154 Quilter et al. Nov 2006 B2
7154936 Bjerke et al. Dec 2006 B2
7154960 Liu et al. Dec 2006 B2
7158493 Uhlik et al. Jan 2007 B1
7167684 Kadous et al. Jan 2007 B2
7181167 Onggosanusi et al. Feb 2007 B2
7184492 Dent Feb 2007 B2
7193991 Melpignano et al. Mar 2007 B2
7194006 Wong et al. Mar 2007 B2
7197082 Alexiou et al. Mar 2007 B2
7197084 Ketchum et al. Mar 2007 B2
7197282 Dent et al. Mar 2007 B2
7209511 Dent Apr 2007 B2
7218689 Gupta May 2007 B2
7224942 Dent May 2007 B2
7227855 Barratt et al. Jun 2007 B1
7242724 Alexiou et al. Jul 2007 B2
7242964 Aiken et al. Jul 2007 B1
7248645 Vialle et al. Jul 2007 B2
7248841 Agee et al. Jul 2007 B2
7248879 Walton et al. Jul 2007 B1
7269231 Ding et al. Sep 2007 B2
7272294 Zhou et al. Sep 2007 B2
7299071 Barratt et al. Nov 2007 B1
7310680 Graham Dec 2007 B1
7313403 Gong et al. Dec 2007 B2
7327795 Oprea Feb 2008 B2
7333540 Yee Feb 2008 B2
7336626 Barratt et al. Feb 2008 B1
7339906 Dahlby et al. Mar 2008 B1
7339908 Uhlik et al. Mar 2008 B2
7352774 Uhlik et al. Apr 2008 B2
7352819 Lakshmipathi et al. Apr 2008 B2
7363376 Uhlik et al. Apr 2008 B2
7366202 Scherzer et al. Apr 2008 B2
7366245 Li et al. Apr 2008 B2
7366519 Jason et al. Apr 2008 B2
7369841 Uhlik et al. May 2008 B1
7369876 Lee et al. May 2008 B2
7394858 Sadowsky et al. Jul 2008 B2
7406315 Uhlik et al. Jul 2008 B2
7412212 Hottinen Aug 2008 B2
7418053 Perlman et al. Aug 2008 B2
7430197 Uhlik Sep 2008 B1
7437177 Ozluturk et al. Oct 2008 B2
7450489 Sandhu Nov 2008 B2
7451839 Perlman Nov 2008 B2
7471736 Ding et al. Dec 2008 B2
7486931 Cho et al. Feb 2009 B2
7492743 Uhlik Feb 2009 B2
7499548 Meandzija et al. Mar 2009 B2
7502420 Ketchum Mar 2009 B2
7519011 Petrus et al. Apr 2009 B2
7548752 Sampath et al. Jun 2009 B2
7558575 Losh et al. Jul 2009 B2
7599420 Forenza et al. Oct 2009 B2
7599443 Ionescu et al. Oct 2009 B2
7606192 Uhlik Oct 2009 B2
7609751 Giallorenzi et al. Oct 2009 B1
7616698 Sun et al. Nov 2009 B2
7630337 Zheng et al. Dec 2009 B2
7633944 Chang et al. Dec 2009 B1
7633994 Forenza et al. Dec 2009 B2
7636381 Forenza et al. Dec 2009 B2
7684753 Ionescu et al. Mar 2010 B2
7688789 Pan et al. Mar 2010 B2
7689639 Dent Mar 2010 B2
7719993 Li et al. May 2010 B2
7729316 Uhlik Jun 2010 B2
7729433 Jalloul et al. Jun 2010 B2
7747250 Larsson et al. Jun 2010 B2
7751368 Li et al. Jul 2010 B2
7751843 Butala Jul 2010 B2
7756222 Chen et al. Jul 2010 B2
7801490 Scherzer Sep 2010 B1
7849173 Uhlik Dec 2010 B1
7864663 Dent Jan 2011 B2
7948444 Signell et al. May 2011 B2
7961809 Bourdoux et al. Jun 2011 B2
7978673 Uhlik et al. Jul 2011 B1
7986742 Ketchum et al. Jul 2011 B2
7995973 Dent et al. Aug 2011 B2
8041362 Li et al. Oct 2011 B2
8081944 Li Dec 2011 B2
8086271 Dent Dec 2011 B2
8090320 Dent et al. Jan 2012 B2
8116710 Dent et al. Feb 2012 B2
8126510 Samson et al. Feb 2012 B1
8170081 Forenza et al. May 2012 B2
8260198 Yamaura Sep 2012 B2
8320432 Chockalingam et al. Nov 2012 B1
8428177 Tsai et al. Apr 2013 B2
8451764 Chao et al. May 2013 B2
8482462 Komijani et al. Jul 2013 B2
8548384 Lee et al. Oct 2013 B2
8612619 Guo Dec 2013 B2
8638880 Baldemair et al. Jan 2014 B2
8654815 Forenza Feb 2014 B1
8675768 Xu et al. Mar 2014 B2
8705484 Caire et al. Apr 2014 B2
8731480 Kim et al. May 2014 B2
8787469 Kim et al. Jul 2014 B2
8797970 Xing et al. Aug 2014 B2
8849339 Anto et al. Sep 2014 B2
8902862 Yu et al. Dec 2014 B2
8971380 Forenza et al. Mar 2015 B2
8989155 Forenza et al. Mar 2015 B2
9089002 Abraham Jul 2015 B2
9094180 Zirwas et al. Jul 2015 B2
9179495 Scherzer et al. Nov 2015 B1
9252858 Abbasfar et al. Feb 2016 B2
9307506 Kelly et al. Apr 2016 B1
9331882 Fehri et al. May 2016 B2
9685997 Forenza et al. Jun 2017 B2
9698881 Nammi et al. Jul 2017 B2
10205513 Winters et al. Feb 2019 B1
10277290 Forenza et al. Apr 2019 B2
10349417 Forenza et al. Jul 2019 B2
10637554 Zhu et al. Apr 2020 B2
10749583 Park et al. Aug 2020 B2
10804985 Ge et al. Oct 2020 B2
10985811 Forenza et al. Apr 2021 B2
11190947 Perlman et al. Nov 2021 B2
20010031647 Scherzer et al. Oct 2001 A1
20020027985 Rashid-Farrokhi Mar 2002 A1
20020041575 Karabinis et al. Apr 2002 A1
20020051433 Affes et al. May 2002 A1
20020097705 Sezgin et al. Jul 2002 A1
20020136169 Struhsaker et al. Sep 2002 A1
20020142723 Foschini et al. Oct 2002 A1
20020168017 Berthet et al. Nov 2002 A1
20020177447 Walton et al. Nov 2002 A1
20020181444 Acampora Dec 2002 A1
20020193146 Wallace et al. Dec 2002 A1
20030003863 Thielecke et al. Jan 2003 A1
20030012315 Fan Jan 2003 A1
20030036359 Dent et al. Feb 2003 A1
20030043887 Hudson Mar 2003 A1
20030043929 Sampath Mar 2003 A1
20030045297 Dent Mar 2003 A1
20030048753 Jalali Mar 2003 A1
20030065779 Malik et al. Apr 2003 A1
20030072379 Ketchum Apr 2003 A1
20030092456 Dent May 2003 A1
20030114165 Mills Jun 2003 A1
20030114193 Kavak et al. Jun 2003 A1
20030125026 Tsunehara et al. Jul 2003 A1
20030125040 Walton et al. Jul 2003 A1
20030128658 Walton et al. Jul 2003 A1
20030139196 Medvedev et al. Jul 2003 A1
20030147362 Dick et al. Aug 2003 A1
20030148738 Das et al. Aug 2003 A1
20030156056 Perry Aug 2003 A1
20030161282 Medvedev et al. Aug 2003 A1
20030211843 Song et al. Nov 2003 A1
20030214431 Hager et al. Nov 2003 A1
20030220112 Bugeja Nov 2003 A1
20030235146 Wu et al. Dec 2003 A1
20040009755 Yoshida Jan 2004 A1
20040042556 Medvedev et al. Mar 2004 A1
20040043784 Czaja et al. Mar 2004 A1
20040063450 Uhlik Apr 2004 A1
20040082356 Walton et al. Apr 2004 A1
20040095907 Agee et al. May 2004 A1
20040097197 Juncker et al. May 2004 A1
20040131011 Sandell et al. Jul 2004 A1
20040136349 Walton et al. Jul 2004 A1
20040152480 Willars et al. Aug 2004 A1
20040170430 Gorokhov Sep 2004 A1
20040176097 Wilson et al. Sep 2004 A1
20040179627 Ketchum et al. Sep 2004 A1
20040185909 Alexiou et al. Sep 2004 A1
20040190636 Oprea Sep 2004 A1
20040203347 Nguyen Oct 2004 A1
20040203987 Butala Oct 2004 A1
20040209579 Vaidyanathan Oct 2004 A1
20040252632 Bourdoux et al. Dec 2004 A1
20050003865 Lastinger et al. Jan 2005 A1
20050020237 Alexiou et al. Jan 2005 A1
20050024231 Fincher et al. Feb 2005 A1
20050031047 Maltsev et al. Feb 2005 A1
20050041750 Lau Feb 2005 A1
20050041751 Nir et al. Feb 2005 A1
20050042988 Hoek et al. Feb 2005 A1
20050043031 Cho et al. Feb 2005 A1
20050047515 Walton et al. Mar 2005 A1
20050058217 Sandhu et al. Mar 2005 A1
20050075110 Posti et al. Apr 2005 A1
20050085267 Lemson et al. Apr 2005 A1
20050096058 Warner et al. May 2005 A1
20050101259 Tong et al. May 2005 A1
20050101352 Logothetis et al. May 2005 A1
20050111406 Pasanen et al. May 2005 A1
20050111599 Walton et al. May 2005 A1
20050148368 Scheinert Jul 2005 A1
20050157683 Ylitalo et al. Jul 2005 A1
20050169396 Baier et al. Aug 2005 A1
20050174977 Pedlar et al. Aug 2005 A1
20050186991 Bateman Aug 2005 A1
20050232135 Mukai et al. Oct 2005 A1
20050239406 Shattil Oct 2005 A1
20050259627 Song et al. Nov 2005 A1
20050265273 Karabinis et al. Dec 2005 A1
20050271009 Shirakabe et al. Dec 2005 A1
20050287962 Mehta et al. Dec 2005 A1
20060023803 Perlman et al. Feb 2006 A1
20060032979 Mitchell et al. Feb 2006 A1
20060046658 Cruz et al. Mar 2006 A1
20060050804 Leclair Mar 2006 A1
20060056855 Nakagawa et al. Mar 2006 A1
20060062180 Sayeedi et al. Mar 2006 A1
20060098568 Oh et al. May 2006 A1
20060098754 Kim et al. May 2006 A1
20060146755 Pan et al. Jul 2006 A1
20060159160 Kim et al. Jul 2006 A1
20060159187 Wang et al. Jul 2006 A1
20060165120 Karabinis Jul 2006 A1
20060198461 Hayase Sep 2006 A1
20060199584 Bergstrom et al. Sep 2006 A1
20060203708 Sampath et al. Sep 2006 A1
20060209979 Sandell et al. Sep 2006 A1
20060270359 Karmi et al. Nov 2006 A1
20060281421 Pan et al. Dec 2006 A1
20060287743 Sampath et al. Dec 2006 A1
20060292990 Karabinis et al. Dec 2006 A1
20070004337 Biswas et al. Jan 2007 A1
20070015526 Hansen Jan 2007 A1
20070025464 Perlman Feb 2007 A1
20070054633 Piirainen Mar 2007 A1
20070058590 Wang et al. Mar 2007 A1
20070064823 Hwang et al. Mar 2007 A1
20070066331 Zheng et al. Mar 2007 A1
20070082674 Pedersen et al. Apr 2007 A1
20070086400 Shida et al. Apr 2007 A1
20070093273 Cai Apr 2007 A1
20070093274 Jafarkhani et al. Apr 2007 A1
20070099665 Kim et al. May 2007 A1
20070132653 Weller et al. Jun 2007 A1
20070135125 Kim et al. Jun 2007 A1
20070183362 Mondal et al. Aug 2007 A1
20070206504 Koo et al. Sep 2007 A1
20070211747 Kim Sep 2007 A1
20070220151 Li et al. Sep 2007 A1
20070242782 Han et al. Oct 2007 A1
20070243871 Chen et al. Oct 2007 A1
20070249380 Stewart et al. Oct 2007 A1
20070253508 Zhou et al. Nov 2007 A1
20070254602 Li et al. Nov 2007 A1
20070258531 Chen et al. Nov 2007 A1
20070263736 Yuda et al. Nov 2007 A1
20070280116 Wang et al. Dec 2007 A1
20080013644 Hugl et al. Jan 2008 A1
20080051150 Tsutsui Feb 2008 A1
20080080631 Forenza et al. Apr 2008 A1
20080080635 Hugl et al. Apr 2008 A1
20080089396 Zhang et al. Apr 2008 A1
20080102881 Han et al. May 2008 A1
20080107135 Ibrahim May 2008 A1
20080117961 Han et al. May 2008 A1
20080118004 Forenza et al. May 2008 A1
20080125051 Kim et al. May 2008 A1
20080130790 Forenza et al. Jun 2008 A1
20080132281 Kim et al. Jun 2008 A1
20080165866 Teo et al. Jul 2008 A1
20080181285 Hwang et al. Jul 2008 A1
20080192683 Han et al. Aug 2008 A1
20080192697 Shaheen Aug 2008 A1
20080205538 Han et al. Aug 2008 A1
20080214185 Cho et al. Sep 2008 A1
20080227422 Hwang et al. Sep 2008 A1
20080232394 Kozek et al. Sep 2008 A1
20080233902 Pan et al. Sep 2008 A1
20080239938 Jalloul et al. Oct 2008 A1
20080260054 Myung et al. Oct 2008 A1
20080261587 Lennartson et al. Oct 2008 A1
20080267142 Mushkin et al. Oct 2008 A1
20080268833 Huang et al. Oct 2008 A1
20080292011 Yang Nov 2008 A1
20080317014 Veselinovic et al. Dec 2008 A1
20090010204 Pratt, Jr. et al. Jan 2009 A1
20090023467 Huang et al. Jan 2009 A1
20090034636 Kotecha et al. Feb 2009 A1
20090041148 Li et al. Feb 2009 A1
20090041151 Khan et al. Feb 2009 A1
20090046678 Lee et al. Feb 2009 A1
20090046800 Xu et al. Feb 2009 A1
20090060013 Ashikhmin et al. Mar 2009 A1
20090067402 Forenza et al. Mar 2009 A1
20090069054 Zangi et al. Mar 2009 A1
20090075686 Gomadam et al. Mar 2009 A1
20090086648 Xu et al. Apr 2009 A1
20090086855 Jin et al. Apr 2009 A1
20090097448 Vasudevan et al. Apr 2009 A1
20090135944 Dyer et al. May 2009 A1
20090168914 Chance et al. Jul 2009 A1
20090195355 Mitchell Aug 2009 A1
20090202016 Seong et al. Aug 2009 A1
20090207822 Kim et al. Aug 2009 A1
20090209206 Zou et al. Aug 2009 A1
20090227249 Ylitalo Sep 2009 A1
20090227292 Laroia et al. Sep 2009 A1
20090232245 Lakkis Sep 2009 A1
20090262695 Chen et al. Oct 2009 A1
20090268675 Choi Oct 2009 A1
20090285156 Huang et al. Nov 2009 A1
20090290517 Rao et al. Nov 2009 A1
20090290632 Wegener Nov 2009 A1
20090296650 Venturing et al. Dec 2009 A1
20090316807 Kim et al. Dec 2009 A1
20090318183 Hugl et al. Dec 2009 A1
20100008331 Li et al. Jan 2010 A1
20100034151 Alexiou et al. Feb 2010 A1
20100068999 Bangs et al. Mar 2010 A1
20100080323 Mueck et al. Mar 2010 A1
20100080163 Krishnamoorthi Apr 2010 A1
20100098030 Wang et al. Apr 2010 A1
20100099428 Bhushan et al. Apr 2010 A1
20100119001 Walton et al. May 2010 A1
20100128630 Barak et al. May 2010 A1
20100150013 Hara et al. Jun 2010 A1
20100157861 Na et al. Jun 2010 A1
20100164802 Li et al. Jul 2010 A1
20100172309 Forenza et al. Jul 2010 A1
20100183099 Toda et al. Jul 2010 A1
20100189191 Taoka et al. Jul 2010 A1
20100195527 Gorokhov et al. Aug 2010 A1
20100203887 Kim et al. Aug 2010 A1
20100220679 Abraham et al. Sep 2010 A1
20100227562 Shim et al. Sep 2010 A1
20100232336 Choudhury et al. Sep 2010 A1
20100234071 Shabtay et al. Sep 2010 A1
20100238824 Farajidana et al. Sep 2010 A1
20100238984 Sayana et al. Sep 2010 A1
20100260060 Abraham et al. Oct 2010 A1
20100260103 Guey et al. Oct 2010 A1
20100260115 Frederiksen et al. Oct 2010 A1
20100265842 Khandekar et al. Oct 2010 A1
20100279625 Ko et al. Nov 2010 A1
20100290369 Hui et al. Nov 2010 A1
20100290382 Hui et al. Nov 2010 A1
20100296591 Xu et al. Nov 2010 A1
20100315966 Weigand Dec 2010 A1
20100316154 Park et al. Dec 2010 A1
20100316163 Forenza et al. Dec 2010 A1
20100322176 Chen et al. Dec 2010 A1
20100323611 Choudhury Dec 2010 A1
20110002371 Forenza et al. Jan 2011 A1
20110002410 Forenza et al. Jan 2011 A1
20110002411 Forenza et al. Jan 2011 A1
20110003606 Forenza et al. Jan 2011 A1
20110003607 Forenza et al. Jan 2011 A1
20110003608 Forenza et al. Jan 2011 A1
20110007856 Jang et al. Jan 2011 A1
20110019715 Brisebois Jan 2011 A1
20110038436 Kim et al. Feb 2011 A1
20110044193 Forenza et al. Feb 2011 A1
20110051832 Mergen et al. Mar 2011 A1
20110069638 Ishizu et al. Mar 2011 A1
20110076954 Wee et al. Mar 2011 A1
20110085610 Zhuang et al. Apr 2011 A1
20110086611 Klein et al. Apr 2011 A1
20110090005 Nakayama Apr 2011 A1
20110090840 Lee et al. Apr 2011 A1
20110090885 Safavi Apr 2011 A1
20110105174 Pelletier et al. May 2011 A1
20110111781 Chen et al. May 2011 A1
20110135308 Tarlazzi et al. Jun 2011 A1
20110142020 Kang et al. Jun 2011 A1
20110142104 Coldrey et al. Jun 2011 A1
20110149765 Gorokhov et al. Jun 2011 A1
20110164597 Amini et al. Jul 2011 A1
20110164697 Liao et al. Jul 2011 A1
20110194504 Gorokhov et al. Aug 2011 A1
20110195670 Dakshinamurthy et al. Aug 2011 A1
20110199946 Breit et al. Aug 2011 A1
20110205963 Tang et al. Aug 2011 A1
20110207416 Doi Aug 2011 A1
20110211485 Xu et al. Sep 2011 A1
20110216662 Nie et al. Sep 2011 A1
20110261769 Ji et al. Oct 2011 A1
20110274053 Baik et al. Nov 2011 A1
20110294527 Brueck et al. Dec 2011 A1
20110305195 Forck et al. Dec 2011 A1
20110306381 Jia et al. Dec 2011 A1
20110310987 Lee et al. Dec 2011 A1
20110310994 Ko et al. Dec 2011 A1
20120002743 Cavalcante et al. Jan 2012 A1
20120014415 Su et al. Jan 2012 A1
20120014477 Ko et al. Jan 2012 A1
20120021707 Forrester et al. Jan 2012 A1
20120039419 Maddah-Ali et al. Feb 2012 A1
20120046039 Hagerman et al. Feb 2012 A1
20120051257 Kim et al. Mar 2012 A1
20120051258 Josso Mar 2012 A1
20120054172 Agrawal et al. Mar 2012 A1
20120076023 Ko et al. Mar 2012 A1
20120076028 Ko et al. Mar 2012 A1
20120076042 Chun et al. Mar 2012 A1
20120076236 Ko et al. Mar 2012 A1
20120082038 Xu et al. Apr 2012 A1
20120087261 Yoo et al. Apr 2012 A1
20120087430 Forenza et al. Apr 2012 A1
20120093078 Perlman et al. Apr 2012 A1
20120106388 Shimezawa May 2012 A1
20120108278 Kim et al. May 2012 A1
20120114021 Chung et al. May 2012 A1
20120127977 Copeland et al. May 2012 A1
20120163427 Kim Jun 2012 A1
20120176982 Zirwas Jul 2012 A1
20120188988 Chung et al. Jul 2012 A1
20120218968 Kim et al. Aug 2012 A1
20120224528 Tapia et al. Sep 2012 A1
20120230691 Hui et al. Sep 2012 A1
20120236741 Xu et al. Sep 2012 A1
20120236840 Kim et al. Sep 2012 A1
20120252470 Wong et al. Oct 2012 A1
20120258657 Scheinert Oct 2012 A1
20120275530 Olesen et al. Nov 2012 A1
20120281555 Gao et al. Nov 2012 A1
20120281622 Saban et al. Nov 2012 A1
20120288022 Guey et al. Nov 2012 A1
20120289284 Kuningas Nov 2012 A1
20120300717 Cepeda et al. Nov 2012 A1
20120314570 Forenza Dec 2012 A1
20120314649 Forenza et al. Dec 2012 A1
20120314797 Kummetz et al. Dec 2012 A1
20120328301 Gupta et al. Dec 2012 A1
20130010840 Maddah-Ali et al. Jan 2013 A1
20130028109 Jongren Jan 2013 A1
20130033998 Seo et al. Feb 2013 A1
20130038766 Perlman et al. Feb 2013 A1
20130039168 Forenza et al. Feb 2013 A1
20130039332 Nazar et al. Feb 2013 A1
20130039349 Ebrahimi Tazeh Mahalleh Feb 2013 A1
20130039387 Qu Feb 2013 A1
20130051240 Bhattad Feb 2013 A1
20130058307 Kim et al. Mar 2013 A1
20130064216 Gao Mar 2013 A1
20130077514 Dinan Mar 2013 A1
20130077569 Nam et al. Mar 2013 A1
20130083681 Ebrahimi et al. Apr 2013 A1
20130089009 Li et al. Apr 2013 A1
20130089159 Liu Apr 2013 A1
20130094548 Park Apr 2013 A1
20130114437 Yoo et al. May 2013 A1
20130114763 Park May 2013 A1
20130115986 Mueck et al. May 2013 A1
20130128821 Hooli et al. May 2013 A1
20130142290 Farmanbar et al. Jun 2013 A1
20130170360 Xu et al. Jul 2013 A1
20130188567 Wang et al. Jul 2013 A1
20130195047 Koivisto et al. Aug 2013 A1
20130195086 Xu et al. Aug 2013 A1
20130195467 Schmid et al. Aug 2013 A1
20130208604 Lee Aug 2013 A1
20130208671 Royz et al. Aug 2013 A1
20130242890 He et al. Sep 2013 A1
20130242956 Hall Sep 2013 A1
20130272170 Chatterjee et al. Oct 2013 A1
20130272250 Shimezawa Oct 2013 A1
20130272441 Uyehara et al. Oct 2013 A1
20130273950 Sun et al. Oct 2013 A1
20130286866 Hammarwall Oct 2013 A1
20130286958 Liang et al. Oct 2013 A1
20130286997 Davydov et al. Oct 2013 A1
20130315189 Kim Nov 2013 A1
20130315195 Ko et al. Nov 2013 A1
20130315211 Balan et al. Nov 2013 A1
20130322308 Yu et al. Dec 2013 A1
20130329592 Beale Dec 2013 A1
20130331114 Gormley et al. Dec 2013 A1
20140010197 Wang et al. Jan 2014 A1
20140016556 Shimezawa Jan 2014 A1
20140029490 Kim Jan 2014 A1
20140038619 Moulsley Feb 2014 A1
20140056156 Jongren Feb 2014 A1
20140064206 Bao et al. Mar 2014 A1
20140086209 Su et al. Mar 2014 A1
20140086296 Badic et al. Mar 2014 A1
20140087680 Luukkala et al. Mar 2014 A1
20140094169 Takano Apr 2014 A1
20140112216 Seo et al. Apr 2014 A1
20140113677 Parkvall Apr 2014 A1
20140133435 Forenza et al. May 2014 A1
20140140225 Wala May 2014 A1
20140146756 Sahin et al. May 2014 A1
20140153427 Seo Jun 2014 A1
20140185700 Dong et al. Jul 2014 A1
20140198744 Wang et al. Jul 2014 A1
20140206280 Nilsson et al. Jul 2014 A1
20140219142 Schulz et al. Aug 2014 A1
20140219152 Anto Aug 2014 A1
20140219202 Kim et al. Aug 2014 A1
20140219267 Eyuboglu et al. Aug 2014 A1
20140225788 Schulz et al. Aug 2014 A1
20140226570 Comeau et al. Aug 2014 A1
20140241209 Pollakowski et al. Aug 2014 A1
20140241218 Moshfeghi Aug 2014 A1
20140241240 Kloper et al. Aug 2014 A1
20140245095 Nammi et al. Aug 2014 A1
20140294108 Etkin et al. Oct 2014 A1
20140295758 Pedersen Oct 2014 A1
20140301278 Ghosh Oct 2014 A1
20140301345 Kim et al. Oct 2014 A1
20140301493 Govindswamy et al. Oct 2014 A1
20140307630 Nagata Oct 2014 A1
20140340255 Meerkerk et al. Nov 2014 A1
20140340260 Richards Nov 2014 A1
20140341143 Yang et al. Nov 2014 A1
20140348077 Chen et al. Nov 2014 A1
20140348090 Nguyen et al. Nov 2014 A1
20140348131 Duan et al. Nov 2014 A1
20150003311 Feuersaenger et al. Jan 2015 A1
20150011197 Tarraf et al. Jan 2015 A1
20150016317 Park et al. Jan 2015 A1
20150049689 Seo Feb 2015 A1
20150092416 Potucek et al. Apr 2015 A1
20150098410 Jöngren et al. Apr 2015 A1
20150117392 Hammarwall Apr 2015 A1
20150118369 Hyde et al. Apr 2015 A1
20150131750 Xue May 2015 A1
20150131751 Bayesteh May 2015 A1
20150133126 Liu et al. May 2015 A1
20150270882 Shattil Sep 2015 A1
20150271003 Kuchi et al. Sep 2015 A1
20150296533 Park et al. Oct 2015 A1
20150304855 Perlman et al. Oct 2015 A1
20150305010 Guan et al. Oct 2015 A1
20160013855 Campos et al. Jan 2016 A1
20160061027 Gao et al. Mar 2016 A1
20160094318 Shattil et al. Mar 2016 A1
20160157146 Karabinis Jun 2016 A1
20160248559 Guo et al. Aug 2016 A1
20160302028 Ling et al. Oct 2016 A1
20160302218 Behravan et al. Oct 2016 A1
20160353290 Nammi et al. Dec 2016 A1
20160374070 Ghosh Dec 2016 A1
20190385057 Litichever et al. Dec 2019 A1
20200084673 Ahmadi Mar 2020 A1
Foreign Referenced Citations (157)
Number Date Country
2018200832 Apr 2019 AU
1307842 Sep 1992 CA
2011298 May 1999 CA
2856772 Jan 2006 CA
1256803 Jun 2000 CN
1516370 Jul 2004 CN
1538636 Oct 2004 CN
1703113 Nov 2005 CN
1734972 Feb 2006 CN
1820424 Aug 2006 CN
1898973 Jan 2007 CN
101031129 Sep 2007 CN
101238648 Aug 2008 CN
101291503 Oct 2008 CN
101310454 Nov 2008 CN
101405965 Apr 2009 CN
101442388 May 2009 CN
101536320 Sep 2009 CN
101542938 Sep 2009 CN
101682432 Mar 2010 CN
101873281 Oct 2010 CN
101981826 Feb 2011 CN
102007707 Apr 2011 CN
102185641 Sep 2011 CN
102186541 Sep 2011 CN
102439891 May 2012 CN
102594420 Jul 2012 CN
102948085 Feb 2013 CN
103069903 Apr 2013 CN
103117975 May 2013 CN
103152807 Jun 2013 CN
103797725 May 2014 CN
104025684 Sep 2014 CN
104335625 Feb 2015 CN
1359683 Nov 2003 EP
1392029 Feb 2004 EP
1597842 Nov 2005 EP
2244390 Oct 2010 EP
2252109 Nov 2010 EP
2889957 Jul 2015 EP
2904814 Aug 2015 EP
1597842 Jun 2016 EP
3419188 Dec 2018 EP
2300547 Nov 1996 GB
11-252613 Sep 1999 JP
2001217759 Aug 2001 JP
2002281551 Sep 2002 JP
2002374224 Dec 2002 JP
2003018054 Jan 2003 JP
2003134013 May 2003 JP
2003179948 Jun 2003 JP
2003284128 Oct 2003 JP
2004502376 Jan 2004 JP
2004104206 Apr 2004 JP
2005039822 Feb 2005 JP
2005159448 Jun 2005 JP
2006081162 Mar 2006 JP
2006245871 Sep 2006 JP
2007060106 Mar 2007 JP
2007116686 May 2007 JP
2008-035287 Feb 2008 JP
2009213052 Sep 2009 JP
2009273167 Nov 2009 JP
2009540692 Nov 2009 JP
2010016674 Jan 2010 JP
2010021999 Jan 2010 JP
2010068496 Mar 2010 JP
2010-074520 Apr 2010 JP
2010-206794 Sep 2010 JP
2010193189 Sep 2010 JP
2010537577 Dec 2010 JP
2011035912 Feb 2011 JP
2011078025 Apr 2011 JP
2011-097225 May 2011 JP
2011517393 Jun 2011 JP
2011-524117 Aug 2011 JP
2011-176493 Sep 2011 JP
2012-120063 Jun 2012 JP
2012124859 Jun 2012 JP
2012-175189 Sep 2012 JP
2012-521180 Sep 2012 JP
2012-532495 Dec 2012 JP
2013502117 Jan 2013 JP
2013507064 Feb 2013 JP
2013102450 May 2013 JP
2016-513940 May 2016 JP
10-2008-0081698 Sep 2008 KR
10-2009-0132625 Dec 2009 KR
10-2010-0057071 May 2010 KR
20120003781 Jan 2012 KR
10-2012-0024836 Mar 2012 KR
10-2012-0084243 Jul 2012 KR
10-2012-0119175 Oct 2012 KR
10-2018-0061394 Jun 2018 KR
10-2012-0001598 Jan 2021 KR
2330381 Jul 2008 RU
2010110620 Sep 2011 RU
2012121952 Feb 2014 RU
2543092 Feb 2015 RU
201031243 Aug 2010 TW
201112665 Apr 2011 TW
201212570 Mar 2012 TW
201220741 May 2012 TW
WO-9923767 May 1999 WO
0054463 Sep 2000 WO
WO-0201732 Jan 2002 WO
WO-0208785 Jan 2002 WO
WO-02054626 Jul 2002 WO
WO-02093784 Nov 2002 WO
WO-02099995 Dec 2002 WO
WO-03003604 Jan 2003 WO
WO-03084092 Oct 2003 WO
WO-03094460 Nov 2003 WO
WO-03107582 Dec 2003 WO
WO-2004017586 Feb 2004 WO
2004095719 Nov 2004 WO
WO-2005046081 May 2005 WO
WO-2005064871 Jul 2005 WO
WO-2006049417 May 2006 WO
WO-2006063138 Jun 2006 WO
WO-2006078019 Jul 2006 WO
WO-2006110737 Oct 2006 WO
WO-2006113872 Oct 2006 WO
WO-2007024913 Mar 2007 WO
WO-2007027825 Mar 2007 WO
WO-2007046621 Apr 2007 WO
WO-2007114654 Oct 2007 WO
2008119216 Oct 2008 WO
2009026400 Feb 2009 WO
WO-2009099752 Aug 2009 WO
WO-2009125962 Oct 2009 WO
2009151989 Dec 2009 WO
2010019524 Feb 2010 WO
WO-2010017482 Feb 2010 WO
WO-2010067419 Jun 2010 WO
WO-2011018121 Feb 2011 WO
WO-2011099802 Aug 2011 WO
WO-2011100492 Aug 2011 WO
WO-2011116824 Sep 2011 WO
WO-2011155763 Dec 2011 WO
2012000278 Jan 2012 WO
2012007837 Jan 2012 WO
WO-2012001086 Jan 2012 WO
2012024454 Feb 2012 WO
WO-2012044969 Apr 2012 WO
WO-2012058600 May 2012 WO
WO-2012061325 May 2012 WO
2012108807 Aug 2012 WO
WO-2012108976 Aug 2012 WO
WO-2012130071 Oct 2012 WO
WO-2013040089 Mar 2013 WO
WO-2013166464 Nov 2013 WO
WO-2013173809 Nov 2013 WO
2014055294 Apr 2014 WO
2014082048 May 2014 WO
2016037305 Mar 2016 WO
2016057304 Apr 2016 WO
Non-Patent Literature Citations (1119)
Entry
3GPP TR 36.819, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Coordinated multi-point operation for LTE physical layer aspects (Release 11),” Dec. 20, 2011, 69 pages.
Akbudak T., et al., “CoMP in Heterogeneous networks: A Low-Complexity Linear Transceiver Design,” Workshop on Cooperative and Cognitice Mobile Networks, Communications (ICC), 2012 IEEE International Conference on, IEEE, Jun. 10, 2012, pp. 5624-5629.
Besson O., et al., “On parameter estimation of MIMO flat-fading channels with frequency offsets,” IEEE Transactions on Transaction, Signal Processing, see also Acoustics, Speech, and Signal Processing, vol. 51 (3), 2003, pp. 602-613.
Choi J., et al., “Interpolation Based Unitary Precoding for Spatial Multiplexing MIMO-OFDM with Limited Feedback,” Global Telecommunications Conference 2004 (GLOBECOM '04), IEEE, Dec. 3, 2004, pp. 214-218.
Dietrich C B., et al., “Spatial, polarization, and pattern diversity for wireless handheld terminals,” Proc. IEEE Antennas and Prop. Symp, 2001, vol. 49, pp. 1271-1281.
ETSI Reconfigurable Radio Systems: Status and Future Directions on Software Defined Radio and Cognitive Radio Standards, IEEE Communications Magazine, IEEE Service Center, Sep. 2010, vol. 48 (9), pp. 78-86.
Gesbert D., et al., “From Theory to Practice: An Overview of MIMO Space—Time Coded Wireless Systems,” IEEE Journal on Selected Areas in Communications, 2003, vol. 21 (3), pp. 281-302.
Gesbert D., et al., “Multi-Cell MIMO Cooperative Networks: A New Look at Interference,” IEEE Journal on Selected Areas in Communications, Dec. 2010, vol. 28 (9), pp. 1380-1408.
Gesbert D., et al., “Outdoor MIMO Wireless Channels: Models and Performance Prediction,” IEEE Transactions on Communications, 2002, vol. 50 (12), pp. 1926-1934.
Guillaud M., et al., “A Specular Approach to MIMO Frequency selective Channel Tracking and Prediction,” Fifth IEEE Workshop on Signal Processing Advances in Wireless Communications, Jul. 11-14, 2004, pp. 59-63.
Kamata H., et al., “Effects of IQ Imbalance and an Effective Compensation Scheme in the MIMO-OFDM Communication System,” Proceedings of the 2005 Institute of Electronics, Information and Communication General Conference, Mar. 7, 2005, B-5-90, 5 pages.
Kellerman F C., “LDPC OFDM Space-Time Multipath Fading Channel Results,” Proceedings SPIE, Digital Wireless Communications, XP-002672064, Jul. 2003, vol. 5100, pp. 19-30.
Khaled N., et al., “Interpolation Based Multi-Mode Precoding for MIMO-OFDM Systems with Limited Feedback,” IEEE Transactions on Wireless Communications, vol. 6 (3), Mar. 2007, pp. 1003-1013.
Kumagawa S., et al., “A Study of Introducing Distributed Transmit Power Control to Distributed Antenna System,” 2011, 30 pages.
Lee D., et al., “Coordinated Multipoint Transmission and Reception in LTE-Advanced: Deployment Scenarios and Operational Challenges,” IEEE Communications Magazine, Feb. 2012, pp. 148-155.
Pan, et al., “Precoding and Power allocation for Cooperative MIMO systems,” International Conference on Wireless Communications, Networking and Mobile Computing, IEEE, 2006, 4 pages.
Rao R., et al., “I/Q mismatch cancellation for MIMO-OFDM systems In Personal, Indoor and Mobile Radio Communication,” PIMRC, vol. 4, 2004, pp. 2710-2714.
“Reconfigurable Radio Systems (RRS), Radio Base Station (RBS), Software Defined Radio (SDR),” Status Implementations and Costs Aspects Including Future Possibilities, Technical Report, ETSI, No. V1.1.1, 2009, 24 pages.
Samsung: “Discussion on open-loop CoMP schemes”, 3GPP Draft; R1-093377 Open-Loop Comp, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex, France, Aug. 19, 2009, 4 pages.
Huawei, et al., “CoMP Clarification of definitions and TP,” R1-084351, Nov. 10-14, 2008, 3GPP TSG RAN WG1 Meeting #55, 7 pages.
Mitsubishi Electric, “Leakage-based Precoding for CoMP in LTE-A,” 3GPP RAN1#56, R1-090596, Feb. 9-13, 2009, 14 pages.
Panasonic, “Target scenarios for new carrier types,” 3GPP TSG-RAN WGI#72, R1-130684, Jan. 28, 2013-Feb. 1, 2013, 7 pages.
Texas Instruments, “Aspects of Coordinated Multi-Point Transmission for Advanced E-UTRA,” Nov. 11-15, 2008, 3GPP TSG RAN WG1 #55, R1-084444, 5 pages.
Tarighat, et al., “MIMO OFDM receivers for systems with IQ imbalances,” IEEE Trans. Sig. Pro, for orthogonal space-time block codes (OSTBC), 2005, vol. 53, pp. 3583-3596.
Wang Z., et al., “Enhanced downlink MU-Comp schemes for TD-LTE-Advanced,” Wireless Communications and Networking Conference (WCNC), IEEE, 2010, 6 pages.
Zhang H., et al., “Cochannel Interference Mitigation and Cooperative Processing in Downlink Multicell Multiuser MIMO Networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2004 (2), Jul. 2004, pp. 222-235.
Notice of Reasons for Rejection, JP App. No. 2016-234908, dated May 23, 2019, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Notification of Reason for Refusal, KR App. No. 10-2019-7014768, dated Jun. 27, 2019, 10 pages (5 pages of English Translation and 5 pages of Original Document).
Notification of the 1st Substantive requirement, MX App. No. MX/A/2017/002906, dated Sep. 13, 2019, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Office Action and Examination Search Report, CA App. No. 2885817, dated Jul. 16, 2019, 4 pages.
Office Action and Search Report, TW App. No. 107123446, dated Aug. 8, 2019, 27 pages (10 pages of English Translation and 17 pages of Original Document).
Office Action, CA App. No. 2816556, dated May 30, 2019, 3 pages.
Office Action, EP App. No. 13790935, dated Oct. 23, 2019, 8 pages.
Office Action, IL App. No. 241319, dated Nov. 26, 2019, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Office Action, IL App. No. 248265, dated Feb. 26, 2020, 4 pages (2 pages of English Translation and 2 pages of Original Document).
Office Action, JP App. No. 2016-562961, dated Feb. 6, 2020, 7 pages (4 pages of English Translation and 3 pages of Original Document).
Office Action, JP App. No. 2019-039195, dated Jun. 17, 2019, 8 pages (4 pages of English Translation and 4 pages of Original Document).
Office Action, KR App. No. 10-2014-7035524, dated Oct. 21, 2019, 11 pages (6 pages of English Translation and 5 pages of Original Document).
Rusek et al., “Scaling up MIMO: Opportunities and Challenges with Very Large Arrays”, IEEE Signal Proces. Mag., Jan. 2012, vol. 30, No. 1, pp. 1-30.
Second Examination Report, AU App. No. 2017210619, dated May 31, 2019, 4 pages.
Second Office Action and Search Report, CN App. No. 201580007666.2, dated Jul. 30, 2019, 8 pages (4 pages of English Translation and 4 pages of Original Document).
Third Office Action, CN App. No. 201480016091.6, dated Jul. 10, 2019, 5 pages (2 pages of English Translation and 3 pages of Original Document).
U.S. Appl. No. 12/802,976, filed Jun. 16, 2010.
3GPP, “LTE”, downloaded from http://www.3gpp.org/LTE on Aug. 14, 2014, 4 pages.
3GPP Technical Specification Group, “Spatial channel model, SCM-134 text V6.0”, Spatial Channel Model AHG (Combined ad-hoc from 3GPP and 3GPP2), Apr. 2003, pp. 1-45.
3GPP TR 25.876 V7.0.0 (Mar. 2007)., “Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Multiple Input Multiple Output in UTRA; (Release 7)3GPP TR 25.876 v7.0.0 (Mar. 2007),” Mar. 2007, pp. 2-76.
3GPP TR 25.912, “Feasibility Study for Evolved UTRA and UTRAN”, V9.0.0 (Oct. 2009), Oct. 2009, pp. 1-66.
3GPP TR 25.913, “Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN)”, V8.0.0 (Jan. 2009), Jan. 2009, pp. 1-20.
3GPP, TS 36.201, “Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer-General Description (Release 11),” Oct. 2012, pp. 1-14.
3GPP, TS 36.211, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 11),” Oct. 2012, pp. 1-107.
3GPP TS 36.211 V8.7.0 (May 2009), “Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8) 3GPP TS 36.211 V8.7.0 (May 2009),” May 2009, pp. 1-83.
3GPP, TS 36.212, “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 11),” Oct. 2012, pp. 1-80.
3GPP TS 36.212 V9.1.0 Release 9, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding, ETSI TS 136 212 (Apr. 2010), Technical Specification, Apr. 2010, pp. 1-63.
3GPP, TS 36.212.V8.7.0 (May 2009), “Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA): Multiplexing and channel Coding (Release 8) 3GPP, TS 36.212.V8.7.0 (May 2009),” May 2009, 60 pages.
3GPP, TS 36.213, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 11),” Oct. 2012, 145 pages.
3GPP, TS 36.808, “Evolved Universal Terrestrial Radio Access (E-UTRA); Carrier Aggregation (Release 10)”, v10.0.0, Jun. 2012, 28 pages.
3GPP, “UMTS”, Universal Mobile Telecommunications System, downloaded from www.3gpp.org/articleumts on Nov. 17, 2014, 2 pages.
Abbasi N., “Capacity estimation of HF-MIMO systems,” International Conference on Ionospheric Systems and Techniques, 2009, 5 pages.
Adrian K., et al., “Quantum Tagging: Authenticating Location via Quantum Information and Relativistic Signalling Constraints,” 2010, Phys. Rev. A84, 012326 (2011), DOI: 10.1103/PhysRevA.84.012326, arXiv: 1008.2147, 9 pages.
Aggarwal R., et al., “On the Design of Large Scale Wireless Systems,” IEEE Journal of Selected Areas Communications, Jun. 2012, vol. 31 (2), pp. 1-50.
AIRGO—Wireless without Limits—Homepage, http:www.airgonetworks.com, printed on Apr. 9, 2004, 1 page.
Aktas D., et al., “Scaling Results on the Sum Capacity of Cellular Networks with MIMO Links”, IEEE Transactions on Information Theory, 2006, vol. 52, pp. 3264-3274.
Akyildiz I.F., et al., “The Evolution to 4G Cellular Systems: LTE-Advanced,” Physical Communication, Elsevier, 2010, vol. 3 (2010), pp. 217-244.
Alamouti S.M., et al., “A simple transmit diversity technique for wireless communications,” IEEE Journal on Selected Areas in Communications, 1998, vol. 16(8), pp. 1451-1458.
Alrabadi O.N., et al., “Beamforming via Large and Dense Antenna Arrays above a Clutter,” Institute of Electrical and Electronics Engineers Journal on Selected Areas in Communications, 2013, vol. 31 (2), pp. 314-325.
Andersen J. B., et al., “The MIMO Cube—a Compact MIMO Antenna,” IEEE Proceedings of Wireless Personal Multimedia Communications International Symposium, vol. 1, Oct. 2002, pp. 112-114.
Andersen J.B., “Antenna Arrays in Mobile Communications: Gain, diversity, and Channel Capacity.1,” IEEE Antennas and Propagation Magazine, vol. 42 (2), Apr. 2000, pp. 12-16.
Anderson A.L., et al., “Beamforming in large-scale MIMO Multiuser Links Under a Per-node Power Constraint,” Proceedings in International Symposium on Wireless Communication Systems, Aug. 2012, pp. 821-825.
Andrews J.G., “Seven Ways That Hetnet are a Cellular Paradigm Shift,” IEEE Communications Magazine, Mar. 2013, [online], Retrieved from the Internet: http://users.ece.utexas.edu/-jandrews/pubs/And HetNet CommMag2012v3.pdf, pp. 136-144.
Andrews M.R., et al., “Tripling the Capacity of Wireless Communications using Electromagnetic Polarization,” Nature, 2001, vol. 409, pp. 316-318.
Anritsu, “LTE resource guide”, 18 pages, 2009, www.us.anritsu.com.
Araujo D. C., et al., “Channel Estimation for Millimeter-Wave Very-Large MIMO Systems,” EUSPICO 2014, in proceedings, Sep. 1-5, 2014, 5 pages.
Arnau J., et al., “Dissection of Multibeam Satellite Communications with a Large-scale Antenna System Toolbox,” European Wireless 2014 (EW2014), May 14-16, 2014, pp. 548-553.
ArrayComm, “Field-Proven Results,” Improving wireless economics through MAS software, printed on Mar. 28, 2011, www.arraycomm.comserve.phppage=proof, 3 pages.
Artigue C., et al.,“On the Precoder Design of Flat Fading MIMO Systems Equipped with MMSE Receivers: A Large System Approach”, IEEE Trans. Inform. Theory, 2011, vol. 57 (7), pp. 4138-4155.
AT&T, “1946: First Mobile Telephone Call” 1 page, Jun. 17, 1946 [online]. Retrieved from the Internet: http:www.corp.att.comattlabsreputationtimeline46mobile.html.
Baker M., “LTE-Advanced Physical Layer,” Alcatel-Lucent, Dec. 2009, 48 pages.
Barbieri A., et al., “Coordinated Downlink Multi-point Communications in Heterogeneous Cellular Networks”, (Qualcomm), Information Theory and App. Workshop, Feb. 2012, pp. 7-16.
BelAir Networks, “Small cells”, 4 pages, 2007 [online], retrieved from the Internet: http:www.belairnetworks.comsitesdefaultfilesVVP SmallCells.pdf.
Benedetto M.D., et al., “Analysis of the effect of the I/Q baseband Filter mismatch in an OFDM modem,” Wireless personal communications, 2000, pp. 175-186.
Bengtsson E.L., “Ue Antenna Properties and Their Influence on Massive MIMO System Performance,” 2002, 5 pages.
Bengtsson M., “A Pragmatic Approach to Multi-User Spatial Multiplexing,” IEEE, 2002, pp. 130-134.
Bhagavatula R., et al., “Sizing up MIMO Arrays,” IEEE Vehicular Technology Magazine, 2008, vol. 3(4), pp. 31-38.
Bjornson E, et al., Designing Multi-User MIMO for Energy Efficiency: When is Massive MIMO the Answer?, IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, Apr. 2014, 6 pages.
Bjornson E, et al., Massive MIMO and Small Cells: Improving Energy Efficiency by Optimal Soft-Cell Coordination, ICT, 2013, Wireless Communications Symposium, pp. 5442-5447.
Blelloch G.E., “Introduction to Data Compression”, Jan. 31, 2013, pp. 1-55.
Bloomberg BusinessWeek, “Steve Perlman's Wireless Fix”, Aug. 14, 2014, 7 pages [online], Retrieved from the Internet: http://www.businessweek.commagazinethe-edison-of-silicon-valley-07272011.html.
Boche H., et al., “A General Duality Theory for Uplink and Downlink Beamforming”, 2002, vol. 1, pp. 87-91.
Boche H., et al., “Analysis of Different Precoding decoding Strategies for Multiuser Beamforming”, IEEE Vehicular Technology Conference, 2003, vol. 1, pp. 39-43.
Bourdoux A., et al., “Non-reciprocal Transceivers in OFDM/SDMA Systems: Impact and Mitigation”, IEEE, 2003, pp. 183-186.
Brodersen R. et al., “Degrees of Freedom in Multiple Antenna Channels: A Signal Space Approach,” IEEE Transactions on Information Theory, 2005, vol. 51 (2), pp. 523-536.
Bydon, “Silicon Valley Inventor's Radical Rewrite of Wireless”, The Wall Street Journal [online]. [retrieved on Jul. 28, 2011] Retrieved from the Internet: URL: http:blogs.wsj.comdigits20110728silicon-valley-inventors-radical-rewrite-of-wireless, 2 pages.
C. Guthy, W. Utschick, and M.L. Honig, Large System Analysis of Projection Based Algorithms for the MIMO Broadcast Channel, in Proc. of the IEEE Intl Symp. Inform. Theory, Austin, U.S.A., Jun. 2010, 5 pages.
Caire G., et al., “On the Achievable Throughput of a Multiantenna Gaussian Broadcast Channel,” IEEE Transactions on Information Theory, Jul. 23, 2001, vol. 49, pp. 1-46.
Caire, “On Achivable Rates in a Multi-Antenna Broadcast Downlink,” IEEE Transactions on Information Theory, 2003, vol. 49, pp. 1691-1706.
Catreux S., et al., “Adaptive Modulation and MIMO Coding for Broadband Wireless Data Networks,” IEEE Communications Magazine, 2002, vol. 2, pp. 108-115.
Cerato B., et al., Hardware implementation of low-complexity detector for large MIMO, in Proc. IEEE ISCAS'2009, Taipei, May 2009, pp. 593-596.
Cetiner B.A., et al., “Multifunctional Reconfigurable MEMS Integrated Antennas for Adaptive MIMO Systems,” Adaptive Antennas and MIMO Systems for Wireless Systems, IEEE Communications Magazine, vol. 42 (12), Dec. 2004, pp. 62-70.
Cetiner et al., “A Reconfigurable Spiral Antenna for Adaptive MIMO Systems,” EURASIP Journal on Wireless Communications and Networking 2005:3, 382-389, plus International Journal of Digital Multimedia Broadcasting, Special Issue on: Audio Coding, Indexing, and Effects for Broadcasting Applications, Call for Papers Hindawi Publishing Corporation, http://www.hindawi.com, pp. 1, and Special Issue on: Advances in 3DTV: Theory and Practice, Call for Papers Hindawi Publishing Corporation, http://www.hindawi.com, pp. 1.
Chae C B., et al., “Adaptive MIMO Transmission Techniques for Broadband Wireless Communication Systems”, IEEE Communications Magazine, 2010, vol. 48 (5), pp. 112-118.
Chae C B., et al., “Coordinated Beamforming with Limited Feedback in the MIMO Broadcast Channel,” Special Issue on Exploiting Limited Feedback in Tomorrow's Wireless Comm. Networks, IEEE Journal on Selected Areas in Communications, 2008, vol. 26 (8), pp. 1505-1515.
Chandrasekaran S., et al., “Near-Optimal Large-MIMO Detection Using Randomized MCMC and Randomized Search Algorithms,” Proceeding in Institute of Electrical and Electronics Engineers International Conference on Communications, 2011, 5 pages.
Chapter 26—Electromagnetic-Wave Propagation, 1973, pp. 1-32, Reference Data for Radio Engineers, 5th Edition, Howard W. Sams & Co., Inc.
Chen R., et al., “Transmit selection diversity for unitary precoded multiuser spatial multiplexing systems with linear receivers,” IEEE Trans. on Signal Processing, 2005, pp. 1-30.
Chen R., et al., “Transmit Selection Diversity for Unitary Precoded Multiuser Spatial Multiplexing Systems with Linear Receivers,” IEEE Trans. on Signal Processing, 2007, vol. 55 (3), pp. 1159-1171.
Chen R., “Multiuser Space-Time Block Coded MIMO System with Downlink,” IEEE Communications Society, 2004, pp. 2689-2693.
Chockalingam A., “Low-Complexity Algorithms for Large-MIMO Detection,” International Symposium on Communications, Control and Signal Processing, 2010, 6 pages.
Choi J., et al., “Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training with Memory,” IEEE Journal of Selected Topics in Signal Processing on Signal Processing for Large-Scale MIMO Communications, 2013, 13 pages.
Choi J., et al., “Interpolation Based Transmit Beamforming for MIMO-OFDM with Limited Feedback,” IEEE Transactions on Signal Processing, 2005, vol. 53 (11), pp. 4125-4135.
Choi J., et al., “Noncoherent Trellis Coded Quantization: A Practical Limited Feedback Technique for Massive MIMO Systems,” Nov. 8, 2013, pp. 1-14.
Choi L.U., et al., “A transmit preprocessing technique for multiuser MIMO systems using a decomposition approach,” IEEE Trans. Wireless Comm, 2004, vol. 3 (1), pp. 20-24.
Choi W., et al., “Opportunistic space division multiple access with beam selection,” IEEE Trans. on Communications, 2006, pp. 1-23.
Chu D., et al., “Polyphase codes with good periodic correlation properties (corresp.),” IEEE Trans. Inform. Theory, 1972, vol. 18 (4), pp. 531-532.
Chuah C N., et al., “Capacity Scaling in MIMO Wireless Systems under Correlated Fading”, IEEE Trans. Inform. Theory, 2002, vol. 48 (3), pp. 637-650.
Cohn H., et al., “Group-theoretic Algorithms for Matrix Multiplication”, IEEE Symposium on Foundations of Computer Science, 2005, pp. 379-388.
Coopersmith D., et al., “Matrix Multiplication via Arithmetic Progression”, Journal of Symbolic Computation, 1990, vol. 9, pp. 251-280.
Costa, “Writing on Dirty Paper,” IEEE Transactions On Information Theory, 1983, vol. IT-29 (3), pp. 439-441.
Couillet R., et al., “A Deterministic Equivalent for the Analysis of Correlated MIMO Multiple Access Channels,” IEEE Trans. Inform. Theory, 2011, vol. 57 (6), pp. 3493-3514.
Coulson J., et al., “Maximum likelihood synchronization for OFDM using a pilot symbol: analysis.” IEEE Journal on Selected Areas in Communications, 2001, vol. 19 (12), pp. 2495-2503.
Dahlman E., et al., “4G: LTE/LTE-Advanced for Mobile Broadband”, Elsevier, 2011, Cover page, Title page, Copyright page, Table of Contents, 21 pages.
Dai et al., “Reduced-complexity performance-lossless (quasi-)maximum-likelihood detectors for S-QAM modulated MIMO systems,” Electronics Letters, 2013, vol. 49(11), pp. 724-725.
Dai et al., “Reducing the Complexity of Quasi-ML Detectors for MIMO Systems Through Simplified Branch Metric and Accumulated Branch Metric Based Detection,” Communications Letters, 2013, vol. 17(5), pp. 916-919.
Dai X., et al., “Carrier frequency offset estimation for OFDM/SDMA systems using consecutive pilots,” IEEE Proceedings Communications, 2005, vol. 152, pp. 624-632.
Daniel J., “Introduction to public safety: RF Signal Distribution Using Fiber Optics,” 2009, 13 pages, http://www.rfsolutions.com/fiber.pdf.
Datta, et al., “A Hybrid RTS-BP Algorithm for Improved Detection of Large-MIMO M-QAM Signals,” in Proc. IEEE National Conference on Communication, 2011, 6 pages.
Datta et al., “Random-Restart Reactive Tabu Search Algorithm for Detection in Large-MIMO Systems,” IEEE Communications Letters, 2010, vol. 14(12), pp. 1107-1109.
Datta T., et al., “A Novel MCMC Based Receiver for Large-Scale Uplink Multiuser MIMO Systems,” Jan. 2012, 37 pages.
Debbah M., et al., “MIMO Channel Modelling and the Principle of Maximum Entropy,” IEEE Transactions on Information Theory, 2005, vol. 51 (5), pp. 1667-1690.
Degen C., et al., “Performance evaluation of MIMO systems using dual-polarized antennas,” International Conference on Telecommunications, 2003, vol. 2, pp. 1520-1525.
Delfas N., “Mobile Data Wave: Who Dares to Invest, Wins,” Morgan Stanley Research Global, Jun. 13, 2012, pp. 1-62.
Derrick W K et al., “Energy-Efficient Resource Allocation in OFDMA Systems with Large Numbers of Base Station Antennas”, 2011, 30 pages.
Devasirvatham, “Radio Propagation Measurements At 850MHz. 1.7GHz and 4GHz Inside Two Dissimilar Office Buildings,” Electronics Letter, 1990, vol. 26 (7), pp. 445-447.
Devasirvatham, “Time Delay Spread and Signal Level Measurements of 850 MHz Radio Waves in Building Environments,” IEEE Transactions on Antennas and Propagation, 1986, vol. AP-34(11), pp. 1300-1305.
Devasirvatham, “Time Delay Spread Measurements at 850 MHz and 1 7 GHz Inside A Metropolitan Office Building,” Electronics Letters, 1989, vol. 25 (3), pp. 194-196.
Devillers B., et al. Mutual coupling effects in multiuser massive MIMO base stations, IEEE Antennas and Propagation Society International Symposium (APSURSI), Jul. 2012, 2 pages.
Dighe, et al., “Analysis of Transmit-Receive Diversity in Rayleigh Fading,” IEEE Transactions on Communications, vol. 51 (4), Apr. 2003, pp. 694-703.
DigitalAir wireless, GeoDesy Laser Links 1.25Gbps Full Duplex, downloaded from URL: http:www.digitalairwireless.comoutdoor-wireless-networkspoint-to-point-wirelesslaser-fso-linksgeodesy-fso-laser-links.html on Oct. 2, 2015, 4 pages.
DigitalAir wireless, Outdoor Wireless, 5 pages, downloaded from http:www.digitalairwireless.com/outdoor-wireless-networks.html on Sep. 29, 2015 on 5 pages.
Ding P., et al., “On the sum rate of channel subspace feedback for multi-antenna broadcast channels,” IEEE Globecom, 2005 vol. 5, pp. 2699-2703.
Discussion Draft, A bill, 112th congress, 1st session, Jul. 12, 2011, House Republicans, Spectrum Innovation Act of 2011, 2011, 55 pages.
Dohler M., et al., “A Step towards MIMO: Virtual Antenna Arrays,” European Cooperation in the Field of Scientific and Technical Research, 2003, 9 pages.
Dong L., et al., “Multiple-input multiple-output wireless communication systems using antenna pattern diversity,” Proceedings of IEEE Globe Telecommunications Conference, 2002, vol. 1, pp. 997-1001.
Dumont J., et al. “On the Capacity Achieving Transmit Covariance Matrices for MIMO Rician Channels: An Asymptotic Approach,” IEEE Transactions on Information Theory, 2010, vol. 56 (3), pp. 1048-1069.
Duplicity J., et al., “MU-MIMO in LTE Systems,” EURASIP Journal on Wireless Communications and Networking, 2011, 10 pages.
Dupuy, et al., “On the Capacity Achieving Covariance Matrix for Frequency Selective MIMO Channels Using the Asymptotic Approach,” IEEE Trans. Inform. Theory, 2010, pp. 2153-2157.
Dupuy, et al., On the Capacity Achieving Covariance Matrix for Frequency Selective MIMO Channels Using the Asymptotic Approach, IEEE Trans. Inform. Theory, 2011, vol. 57 (9), pp. 5737-5753.
Durgin, “Space-Time Wireless Channels”, Prentice Hall Communications Engineering and Emerging Technologies Series, 2003, Upper Saddle River, NJ, Cover page, Title pages, Copyright page, Table of Contents, Preface, 16 pages, USA.
Eklund C., et al., “IEEE Standard 802.16: A Technical Overview of the WirelessMAN Air Interface for Broadband Wireless Access,” IEEE Communications Magazine, Jun. 2002, 12 pages, http://ieee802.org/16/docs/02/C80216-02_05.pdf.
Ekstrom H., et al., “Technical Solutions for the 3G Long-Term Evolution”, IEEE Communications Magazine, 2006, pp. 38-45.
Erceg V., et al., “TGn Channel Models,” IEEE 802.11-03940r4, May 2004, 45 pages.
Ericsson, The evolution of EDGE, Feb. 2007, 18 pages, downloaded from http:www.ericsson.com/res/docs/whitepapersevolution_to_edge.pdf.
ETSI, Mobile Technologies GSM, Retrieved from the Internet: URL: http://www.etsi.org/WebSite/Technologies/gsm.asp on Aug. 14, 2014, 2 pages.
Fakhereddin M.J., et al., “Combined effect of polarization diversity and mutual coupling on MIMO capacity,” Proc. IEEE Antennas and Prop. Symp, 2003, vol. 2, pp. 495-498.
FCC, Broadband action agenda, National Broadband Plan, 2010, pp. 1-8, Retrieved from the Internet: http://www.broadband.gov/plan/national-broadband-plan-action-agenda.pdf.
FCC, Open commission meeting, Sep. 23, 2010, Retrieved from the Internet: http:reboot.fcc.govopen-meetings2010september, 3 pages.
Federal Communications Commission, “Authorization of Spread Spectrum Systems under Parts 15 and 90 of the FCC Rules and Regulations”, Jun. 1985, 18 pages.
Federal Communications Commission, “Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields,” OET Bulletin 65, Ed. 97-01, Aug. 1997, 84 pages.
Fella A., “Adaptive WiMAX Antennas: The promise of higher ROI,” http:www.wimax.comcommentaryspotlightspotlight8-08-2005searchterm=Adlane Fella, printed May 9, 2008, Aug. 8, 2005, 3 pages.
Feng S., et al., “Self-organizing networks (SON) in 3GPP LTE”, Nom or Research, May 2008, pp. 1-15.
Fletcher P.N., et al., “Mutual coupling in multi-element array antennas and its influence on MIMO channel capacity,” IEEE Electronics Letters, 2003, vol. 39 (4), pp. 342-344.
Forax RF-over-fiber Communications Systems, Syntonics, 2011, 2 pages, http://www.syntonicscorp.com/products/products-foraxRF.html.
Forenza A., et al., “Adaptive MIMO Transmission for Exploiting the Capacity of Spatially Correlated Channels,” IEEE Trans. on Veh. Tech, 2007, vol. 56 (2), pp. 619-630.
Forenza A., et al., “Adaptive MIMO transmission scheme: Exploiting the spatial selectivity of wireless channels”, Proceedings Institute of Electrical and Electronics Engineers Vehicular Technology Conference, 2005, vol. 5, pp. 3188-3192.
Forenza A., et al., “Benefit of Pattern Diversity Via 2-element Array of Circular Patch Antennas in Indoor Clustered MIMO Channels,” IEEE Trans. on Communications, 2006, vol. 54 (5), pp. 943-954.
Forenza A., et al., “Impact of Antenna Geometry on MIMO Communication in Indoor Clustered Channels,” Proc. IEEE Antennas and Prop. Symp, 2004, vol. 2, pp. 1700-1703.
Forenza A., et al., “Link Adaptation and Channel Prediction in Wireless OFDM Systems,” Proceeding of IEEE International Midwest Symposium on Circuits and Systems, 2002, pp. 211-214.
Forenza A., et al., “Optimization Methodology for Designing 2-CPAs Exploiting Pattern Diversity in Clustered MIMO Channels”, Institute of Electrical and Electronics Engineers Transactions on Communications, 2008, vol. 56(10), pp. 1748-1759.
Forenza A., et al., “Switching Between OSTBC and Spatial Multiplexing with Linear Receivers in Spatially Correlated MIMO Channels,” IEEE Configuration Guide: Unified Model, 2006, pp. 1-5.
Foschini, et al., “Coordinating multiple antenna cellular networks to achieve enormous spectral efficiency”, Proceedings of the IEEE, Aug. 2006, vol. 153 (4), pp. 548-555.
Foschini, et al., The Value of Coherent Base Station Coordination, Conference on In-formation Sciences and Systems (CISS 2005), Mar. 16-18, 2005, 6 pages.
Foschini G.J., et al., “Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,” IEEE Jour. Select. Areas in Comm, 1999, vol. 17(11), pp. 1841-1852.
Fusco T., et al., “Blind Frequency-offset Estimation for OFDM/OQAM Systems,” IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 2007, vol. 55, pp. 1828-1838.
Gao X., et al., “Linear Pre-Coding Performance in Measured Very-Large MIMO Channels,” IEEE Vehicular Technology, 2011, pp. 1-5.
Garcia C.R., “Channel Model for Train to Train Communication Using the 400 MHz Band,” in Proc. of IEEE Vehicular Technology Conference, 2008, pp. 3082-3086.
Ghogho M., et al., “Training design for multipath channel and frequency offset estimation in MIMO systems,” IEEE Transactions on Signal Processing, 2006, vol. 54 (10), pp. 3957-3965.
Glazunov A.A., et al., “Experimental Characterization of the Propagation Channel along a Very Large Virtual Array in a Reverberation Chamber”, Progress In Electromagnetics Research B, 2014, vol. 59, pp. 205-217.
Goldman D., “Sorry, America: your wireless airwaves are full”, CNN Money, 3 pages, http://money.cnn.com/2012/02/21/technology/spectrum crunch/index.html.
Gopalakrishnan B., et al., “An Analysis of Pilot Contamination on Multi-User MIMO Cellular Systems with Many Antennas,” Proceedings in Signal Processing Advances in Wireless Communications, 2011, pp. 381-385.
Govindasamy S., et al., “Asymptotic Spectral Efficiency of the Uplink in Spatially Distributed Wireless Networks with Multi-Antenna Base Stations,” IEEE Transactions on Communications, 2013, vol. 61(7), pp. 1-13.
GSMA, “GSM technology,” Aug. 14, 2014, Retrieved from the Internet: URL: http:http://www.gsmworld.comtechnologyindex.html, 1 page.
Guey J.C., et al., “Modeling and Evaluation of MIMO Systems Exploiting Channel Reciprocity in TDD Mode,” VTC 2004-Fall, IEEE 60th, Oct. 2004, pp. 4265-4269.
Guillaud M., et al., “A Practical Method for Wireless Channel Reciprocity Exploitation Through Relative Calibration”, IEEE Proceedings Of Sign Processing, Aug. 2005, vol. 1, pp. 403-406.
Gunashekar G., “Investigations into the Feasibility of MIMO Techniques within the HF Band: Preliminary Results,” Radio Science, 2009, 33 pages.
Guthy C., et al., “Large System Analysis of Sum Capacity in the Gaussian MIMO Broadcast Channel”, IEEE J. Sel. Areas Communication, 2013, vol. 31 (2), pp. 149-159.
Guthy, et al., Large System Analysis of the Successive Encoding Successive Allocation Method for the MIMO BC, Proc. of the International ITG Workshop on Smart Antennas, Bremen, Germany, Feb. 2010.
Hachem W., et al., “A New Approach for Mutual Information Analysis of Large Dimensional Multi-Antenna Channels,” IEEE Transactions on Information Theory, 2008, vol. 54(9), pp. 3987-4004.
Hakkarainen A., et al., “Widely-Linear Beamforming and RF Impairment Suppression in Massive Antenna Arrays”, Journal of Communications and Networks, 2013, vol. 15 (4), pp. 383-397.
Hallen H., “Long-Range Prediction of Fading Signals”, Institute of Electrical and Electronics Engineers Signal Processing Magazine, 2000, vol. 17 (3), pp. 62-75.
Haring L., “Residual carrier and sampling frequency synchronization in multiuser OFDM systems,” IEEE 63rd Vehicular Technology Conference, 2006, vol. 4, pp. 1937-1941.
Hazlett et al., “Radio Spectrum for a Hungry Wireless World”, Sep. 22, 2011, 41 pages.
Heath R W., et al., “Antenna Selection for Spatial Multiplexing Systems with Linear Receivers,” IEEE Trans. Comm, 2001, vol. 5, pp. 142-144.
Heath R W., et al., “Switching between diversity and multiplexing in MIMO systems,” IEEE Trans. Comm, 2005, vol. 53 (6), pp. 962-968.
Heath R.W., et al., “Exploiting Limited Feedback in Tomorrow's Wireless Communication Networks,” IEEE Journal on Sel. Areas in Comm., Special Issue on Exploiting Limited Feedback in Tomorrow's Wireless Communication Networks, 2008, vol. 26 (8), pp. 1337-1340.
Heath R.W., et al., “Switching between Multiplexing and Diversity Based on Constellation Distance,” Proc. of Allerton Conf on 208, Comm. Control and Comp, Oct. 4-6, 2000, pp. 212-221.
Hewlett Packard., “GPS and Precision Timing Applications,” Application Note 1272, May 1996, pp. 1-28.
High Frequency Active Auroroal Research Program—Homepage, printed Apr. 9, 2004, http:www.haarp.alaska.edu, 1 page.
Hochwald B., et al., “Multi-Antenna Channel Hardening and its Implications for Rate Feedback and Scheduling”, Institute of Electrical and Electronics Engineers Transactions on Information Theory, Sep. 2004, vol. 50 (9), pp. 1893-1909.
Hochwald B.M., et al., “A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication—Part I: Channel Inversion and Regularization”, Institute of Electrical and Electronics Engineers Transactions on Communications, 2005, vol. 53 (1), pp. 195-202.
Hochwald B.M., et al., “A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication—Part II: Perturbation”, Institute of Electrical and Electronics Engineers Transactions on Communications, 2005, vol. 53 (3), pp. 537-544.
Hong M., et al., “Joint Base Station Clustering and Beamformer Design for Partial Coordinated Transmission in Heterogeneous Networks,” IEEE Journal on Selected Areas in Communications, Nov. 2012, vol. 31 (2), pp. 1-20.
Hosseini K., et al., “Massive MIMO and Small Cells: How to Densify Heterogeneous Networks,” Wireless Communications Symposium, IEEE ICC, 2013, pp. 5442-5447.
Hoydis J., et al., “Iterative Deterministic Equivalents for the Performance Analysis of Communication Systems,” Dec. 18, 2011, pp. 1-43.
Huang Y., et al., “Joint Beamforming and Power Control in Coordinated Multicell: Max-Min Duality, Effective Network and Large System Transition,” IEEE Transactions on Wireless Communications, 2013, pp. 1-14.
Huff G.H., et al., “A Novel Radiation Pattern and Frequency Reconfigurable Single Turn Square Spiral Microstrip Antenna,” IEEE Microwave and Wireless Components Letters, vol. 13 (2), Feb. 2003, pp. 57-59.
Huh H., et al., Achieving “Massive MIMO” Spectral Efficiency with a Not-so-Large Number of Antennas. IEEE Transactions on Wireless Communications, Sep. 2012, vol. 11 (9), pp. 3226-3239.
Huh H., et al., Multi-cell MIMO Downlink with Cell Cooperation and Fair Scheduling: A Large-System Limit Analysis, IEEE Transactions on Information Theory, 2010, vol. 57 (12), pp. 1-29.
IEEE 802.22, “IEEE 802.22 Working Group on Wireless Regional Area Networks”, [online], [retrieved on Aug. 14, 2014], Retrieved from the Internet: URL:http:www.ieee802.org/22/, 1 page.
IntelliCell: A Fully Adaptive Approach to Smart Antennas, ArrayComm, Incorporated, WP-ISA-031502-2.0, 2002, pp. 1-18.
Itu, “ISM Band,” [online], Aug. 14, 2014. Retrieved from the Internet: http://www.itu.int/ITUR/terrestrial/faq/index.html#g013, pp. 1-8.
Jafar S.A., et al., “Channel Capacity and Beamforming for Multiple Transmit and Receive Antennas with Covariance Feedback,” Proc. IEEE Int. Conf. on Comm, Jun. 2001. vol. 7, pp. 2266-2270.
Jafar S.A., et al., “Transmitter Optimization and Optimality of Beamforming for Multiple Antenna Systems,” IEEE Trans Wireless Comm, Jul. 2004, vol. 3, No. 4, pp. 1165-1175.
Jakes W.C., Microwave Mobile Communications, IEEE Press, 1974, Table of Contents, 4 pages.
Jindal N., et al., “Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels”, IEEE Trans. on Information Theory, vol. 51, May 2005, pp. 1783-1794.
Jindal N., et al., “Multi-Antenna Broadcast Channels with Limited Feedback and User Selection,” IEEE Journal on Selected Areas in Communications, 2007, vol. 25(7), pp. 1478-1491.
Jindal N., “MIMO Broadcast Channels with Finite-Rate Feedback,” IEEE Trans. on Info. Theory, 2006, vol. 52, pp. 5045-5060.
Jing J., et al. “A Downlink Max-SINR Precoding for Massive MIMO System,” International Journal of Future Generation Communication and Networking, Jun. 2014, vol. 7 (3), pp. 107-116.
Jorswieck E.A., et al., “Channel Capacity and Capacity-Range of Beamforming in MIMO Wireless Systems under Correlated Fading with Covariance Feedback,” IEEE Transactions on Wireless Communications, Sep. 2004, vol. 3, pp. 1543-1553.
Jose J., “Channel Estimation and Linear Precoding in Multiuser Multiple-Antenna TDD Systems,” IEEE Transactions on Vehicular Technology, 2011, vol. 60 (5), pp. 2102-2116.
Jose J., et al. “Pilot Contamination and Precoding in Multi-cell TDD Systems,” IEEE Transactions on Wireless Communications, 2011, vol. 10 (8), pp. 2640-2651.
Jungnickel V., et al., “Capacity of MIMO systems with closely spaced antennas,” IEEE, 2003, vol. 7 (8), pp. 361-363.
Kang M., et al., “Water-Filling Capacity and Beamforming Performance of MIMO Systems With Covariance Feedback,” IEEE Workshop on Signal Processing Advances in Wireless Communications, Jun. 2003, pp. 556-560.
Kannan T.P., et al., “Separation of Cochannel Signals Under Imperfect Timing and Carrier Synchronization,” IEEE Trans. Veh. Technol, 2001, vol. 50 (1), pp. 79-96.
Karakayali M.K., et al. “Network Coordination for Spectrally Efficient Communications in Cellular Systems,” IEEE Wireless Communications Magazine, 2006, vol. 13 (4), pp. 56-61.
Karakayali M.K., et al., “On the Maximum Common Rate Achievable in a Coordinated Network,” Proceedings of the International Conference on Communications (ICC'06), Mar. 3, 2006, vol. 9, pp. 1-6.
Kayama H., et al., “Demodulation Reference Signal Design and Channel Estimation For LTE-Advanced Uplink,” Advances in Vehicular Networking Technologies, 2011, pp. 418-432.
Kermoal J.P., et al., “A Stochastic MIMO Radio Channel Model with Experimental Validation,” IEEE Journal on Selected Areas in Communications, 2002, vol. 20 (6), pp. 1211-1226.
Knievel C., et al., “On Particle Swarm Optimization for MIMO Channel Estimation”, Article ID 614384, Journal of Electrical and Computer Engineering, 2012, vol. 2012, 10 pages.
Knievel C, Low Complexity Receiver for Large-MIMO Space Time Coded Systems, in Proc. IEEE VTC-Fall'2011, Sep. 2011, 5 pages.
Kouassi B. et al., “Reciprocity-Based Cognitive Transmissions using a MU Massive MIMO Approach”, 2013, pp. 1331-1335.
Kountouris M., et al., “HetNets and Massive MIMO: Modeling, Potential Gains, and Performance Analysis,” in Proc. IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, Sep. 2013, 5 pages.
Krim H., et al., “Two Decades of Array Signal Processing Research,” IEEE Signal Proceedings Magazine, 1996, pp. 67-94.
Krishnan N., et al., “Cellular Systems with Many Antennas: Large System Analysis under Pilot Contamination,” in Proceedings of the 50th Annual Allerton Conference on Communication, Control, and Computing, 2012, pp. 1220-1224.
Kumar K.R., et al. “Asymptotic Performance of Linear Receivers in MIMO Fading Channels,” IEEE Information Theory Workshop, Feb. 19, 2009, 48 pages.
Lang S., et al., “Design and development of a 5.25 GHz software defined wireless OFDM communication platform,” IEEE Communications Magazine, 2004, vol. 42 (6), 7 pages.
Lee C, Network Massive MIMO for Cell-Boundary Users: From a Precoding Normalization Perspective, IEEE Goblecom Workshops, 2012, 5 pages.
Lee J., et al., “A Compressed Analog Feedback Strategy for Spatially Correlated Massive MIMO Systems,” in Proceedings IEEE Vehicular Technology Conference (VTC), Quebec, Canada, Sep. 2012, pp. 1-6.
Lee J., et al., “MIMO Technologies in 3GPP LTE and LTE-Advanced,” EURASIP Journal on Wireless Communications and Networking, 2009, 10 pages.
Lee J., “Introduction of LTE-Advanced DL/UL MIMO,” Samsung Electronics, Sep. 2009, 18 pages.
Lee K., et al., “Frequency-offset estimation for MIMO and OFDM systems using orthogonal training sequences,” IEEE Trans. Veh. Technol, 2007, vol. 56 (1), pp. 146-156.
Li P., et al., Multiple Output Selection—LAS Algorithm in Large MIMO Systems, IEEE Commun., 2010, vol. 14(5), pp. 399-401.
Liang et al., “Asymptotic Performance of MMSE Receivers for Large Systems Using Random Matrix Theory,” IEEE Transactions on Information Theory, 2007, vol. 53(11), pp. 4173-4190.
Liang Y., et al., “Interference Suppression in Wireless Cellular Networks through Picocells,” Annual Conference on Social Studies Communication and Education, 2007, vol. 2007, pp. 1041-1045.
Liang Y., et al., “On the Relationship Between MMSE-SIC and BI-GDFE Receivers for Large Multiple-Input Multiple-Output Channels,” IEEE Transactions on Signal Processing, 2008, vol. 56 (8), pp. 3627-3637.
Liang Y.C., et al., “Block-iterative Generalized Decision Feedback Equalizers (BI-GDFE) for Large MIMO Systems: Algorithm Design and Asymptotic Performance Analysis,” IEEE Transactions on Signal Processing, 2006, vol. 54(6), pp. 2035-2048.
Like deck chairs on the Titanic: why spectrum reallocation won't avert the coming data crunch but technology might keep the wireless industry afloat, Feb. 2012, pp. 705-719.
Lindstrom M., (Ericsson), “LTE-Advanced Radio Layer 2 and RRC Aspects,” 3GPP TSG-RAN WG2, Dec. 17-18, 2009, 38 pages.
Liu G., “Time and frequency offset estimation for distributed multiple-input multiple-output orthogonal frequency division multiplexing system,” Institute of Engineering and Technology Communications, 2010, vol. 4 (6), pp. 708-715.
Love D J., et al., “An Overview of Limited Feedback in Wireless Communication Systems,” Special Issue on Exploiting Limited Feedback in Tomorrow's Wireless Communication Networks, IEEE Journal on Sel. Areas in Comm., 2008, vol. 26 (8), pp. 1341-1365.
Love D J., et al. “Grassmannian Beamforming for Multiple-Input Multiple-Output Wireless Systems”, IEEE Trans. on Info. Theory special issue on MIMO Communication, 2003, vol. 49, pp. 2735-2747.
Lozano A., et al., “Fundamental Limits of Cooperation”, Mar. 2012, 27 pages.
Luise M., et al., “Carrier frequency acquisition and tracking for OFDM systems,” IEEE, 1996, vol. 44(11), pp. 1590-1598.
Luise M., et al., “Low-complexity blind carrier frequency recovery for OFDM signals over frequency-selective radio channels,” IEEE Transactions. Communications, 2002, vol. 50 (7), pp. 1182-1188.
Marek S., “AT&T's Rinne talks about carrier aggregation trials, small cells and more”, Retrieved from the Internet: URL: http:www.fiercebroadbandwireless.comstoryatts-rinne-talks-about-carrieraggregation- trials-small-cells-and-more2012-11-08, 3 pages.
Martinez A.O., et al., “Energy Detection Using Very Large Antenna Array Receivers,” 48th Asilomar Conference on Signals, Systems, and Computers Proceedings, Nov. 2-5, 2014, 5 pages.
Martinez A.O., et al. “Very Large Aperture Massive MIMO: a Measurement Based Study”, Dec. 8, 2014, 6 pages.
Marzetta L.A., et al., “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas,” IEEE Transactions on Wireless Communications, 2010, vol. 9(11), pp. 3590-3600.
Masouros C., et al., “Large-Scale MIMO Transmitters in Fixed Physical Spaces: The Effect of Transmit Correlation and Mutual Coupling”, IEEE Trans. Commun., 2013, vol. 61 (7), pp. 2794-2804.
Matthaiou M., et al. “Sum Rate Analysis of ZF Receivers in Distributed MIMO Systems,” IEEE Journal on Selected Areas in Communications, 2013, vol. 31 (2), pp. 180-191.
Matthaiou M., et al., “Sum Rate Analysis of ZF Receivers in Distributed MIMO Systems with Rayleigh/Lognormal Fading,” 2012 IEEE International Conference on Communications, ICC 2012, Ottawa, Jun. 10-15, pp. 3857-3861.
Mattheijssen P., “Antenna-Pattern Diversity versus Space Diversity for use at Handhelds,” IEEE Trans. on Veh. Technol, 2004, vol. 53 (4), pp. 1035-1042.
Mazrouei-Sebdani M., “Vector Perturbation Precoding and User Scheduling for Network MIMO,” IEEE WCNC, ISBN 978-1-61284-254-7, 2011, pp. 203-208.
McKay M R., et al., “A throughput-based adaptive MIMO BICM approach for spatially-correlated channels,” IEEE to appear in Proc. ICC, 2006, 5 pages.
McKay M R., et al., “Multiplexing/beamforming switching for coded MIMO in spatially correlated channels based on Closed-Form BER Approximations,” IEEE Transactions on Vehicular Technology, 2007, vol. 56 (5), pp. 2555-2567.
McLean J S., et al., “A re-examination of the fundamental limits on the radiation Q of electrically small antennas,” IEEE Transactions on Antennas and Propagation, 1996, vol. 44 (5), pp. 672-676.
MikroTik, “Routerboard,” [online], 2015, 30 pages, Retrieved from the Internet: URL: http:routerboard.com.
MIMO System uses SDMAfor IEEE802.11n, Electronicstalk, 2004, pp. 1-3, http://www.electronicstalk.com/news/ime/ime149.html.
Minn., et al., “A robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Wireless Commun, 2003, vol. 2 (4), pp. 822-839.
Miyakawa H., et al., “A Method of Code Conversion for Digital Communication Channels with Intersymbol Interference,” Transactions of the Institute of Engineers of Japan, vol. 52-A (6), 1969, pp. 272-273.
Mohammed S.K., et al., “A Low-Complexity Precoder for Large Multiuser MISO Systems”, IEEE Vehicular Technology Conference, 2008, pp. 797-801.
Mohammed S.K., et al., “Constant-Envelope Multi-User Precoding for Frequency-Selective Massive MIMO Systems,” IEEE Wireless Communications Letters, 2013, vol. 2(5), pp. 1-10.
Mohammed S.K., et al., “Single-User Beamforming in Large-Scale MISO Systems with Per-Antenna Constant-Envelope Constraints,” IEEE Transactions on Wireless Communications, Sep. 2012, vol. 2012, pp. 3992-4005.
Mohammed S.K., et al., “Per-Antenna Constant Envelope Precoding for Large Multi-User MIMO Systems,” IEEE Transactions on Communications, Jan. 2012, vol. 61(3), pp. 1-24.
Molisch et al., “MIMO Systems with Antenna Selection,” IEEE Microwave Magazine, vol. 5 (1), Mar. 2004, pp. 46-56.
Montgomery B.G., “Analog RF-over-fiber technology, Syntonies LLC,” 2008, pp. 2-51, http:chesapeakebayaoc.orgdocumentsSyntonics_AOC_RF_over-Fiber_19_Jan_08.pdf.
Monziano R. A., et al., “Introduction to Adaptive Arrays,” New York, Wiley, 1980, Table of Contents 21 pages.
Moose P H., et al., “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Trans. Commun, 1994, vol. 42 (10), pp. 2908-2914.
Morelli M., et al., “An improved frequency offset estimator for OFDM applications,” IEEE Commun. Lett., 1999, vol. 3 (3), pp. 106-109.
Morelli M., et al., “Frequency ambiguity resolution in OFDM systems,” IEEE Commun. Lett, 2000, vol. 4 (4), pp. 134-136.
Morris M. L., et al., “The Impact of Array Configuration on MIMO Wireless Channel Capacity,” Proc. IEEE Antennas and Propagation Symposium, Jun. 2002, vol. 3, pp. 214-217.
Morris M.L., et al., “Network model for MIMO systems with coupled antennas and noisy amplifiers,” IEEE Transactions on Antennas and Propagation, 2005, vol. 53, pp. 545-552.
Motorola, “Long Term Evolution (LTE): A Technical Overview,” 2007, Retrieved from the Internet: http:business.motorola.comexperienceltepdfLTETechnicalOverview.pdf, 15 pages.
Moustakas A., et al., “MIMO Capacity through Correlated Channels in the Presence of Correlated Interferers and Noise: A (Not so) Large N Analysis”, Institute of Electrical and Electronics Engineers Transformations and Information Theory, 2003, vol. 49 (10), pp. 2545-2561.
Moustakas A.L., et al., “Optimizing Multiple-Input Single-Output (MISO) Communication Systems with General Gaussian channels: Nontrivial Covariance and Nonzero Mean”, Institute of Electrical and Electronics Engineers Transactions on Information Theory, 2003, vol. 49, pp. 2770-2780.
Muharar R., et al., “Downlink Beamforming with Transmit-Side Channel Correlation: A Large System Analysis,” in Proc. IEEE International Conference on Communications (ICC), Kyoto, Japan, Jun. 2011, 5 pages.
Muller R., et al., “Vector Precoding for Wireless MIMO Systems and its Replica Analysis,” IEEE J. Sel. Areas Commun, 2008, vol. 26 (3), pp. 530-540.
Muller R.R., et al., “Blind Pilot Decontamination,” IEEE Journal of Selected Topics in Signal Processing on Signal Processing for Large-Scale MIMO Communications, 2013, 31 pages.
Nam J., et al., “Joint Spatial Division and Multiplexing: Realizing Massive MIMO Gains with Limited Channel State Information,” in Proceedings Conference on Information Sciences and Systems, IEEE, Mar. 2012, 6 pages.
Narasimhan, et al., “M-ary Detection and q-ary Decoding in Large-Scale MIMO: A Non-Binary Belief Propagation Approach,” Oct. 16, 2013, 7 pages.
NEC, “Self organizing networks”, White paper, Feb. 2009, 5 pages.
Netsukuku, 8 pages, printed on Sep. 30, 2015, [online], Retrieved from the Internet: URL: http:netsukuku.freaknet.org.
Ngo H.Q., et al., Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems, IEEE Transactions on Communications, May 21, 2012, vol. 61 (4), pp. 1436-1449.
Ngo H.Q., et al., EVD-Based Channel Estimations for Multicell Multiuser MIMO with Very Large Antenna Arrays, IEEE International Conference on Acoustics, Speed and Signal Processing (ICASSP), Kyoto, Japan, Mar. 2012, 5 pages.
Ngo H.Q., et al., Massive MU-MIMO Downlink TDD Systems with Linear Preceding and Downlink Pilots, Proceedings in Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, Illinois, Oct. 2013, 6 pages.
Ngo H.Q., et al., The multicell multiuser MIMO uplink with very large antenna arrays and a finite-dimensional channel, IEEE Transactions Communications, 2013, vol. 61 (6), pp. 2350-2361.
Ngo H.Q., et al., Uplink Performance Analysis of Multicell MU-MIMO Systems with ZF Receivers, Jun. 2012, pp. 1-32.
Nguyen, et al., “Multiuser Transmit Beamforming via Regularized Channel Inversion: A Large System Analysis” IEEE Global Communications Conference, New Orleans, LO, US, Dec. 2008, pp. 1-4.
Nguyen S., et al., “Compressive Sensing-Based Channel Estimation for Massive Multiuser MIMO Systems” in proceeding IEEE WCNC, 2013, 6 pages.
Nguyen S., et al., “Precoding for Multicell Massive MIMO Systems With Compressive Rank-Q Channel Approximation,” 24th IEEE International Symposium, 2013, pp. 1227-1232.
Nicta, “InterfereX”, downloaded Jun. 22, 2015, 3 pages, http://www.interfereX.com.
Nokia Siemens Networks, “2020: Beyond 4g, Radio Evolution for the Gigabit Experience”, White Paper, 2011, www.nokiasiemensnetworks.com, 16 pages.
Oberli C., et al., “Maximum likelihood tracking algorithms for MIMOOFDM, in Communications,” IEEE International Conference on Networking, Jun. 20-24, 2004, vol. 4, pp. 2468-2472.
Oda Y., “Measured Path Loss and Multipath Propagation Characteristics in UHF and Microwave Frequency Bands for Urban Mobile Communications,” IEEE, 2001, pp. 337-341.
Onggosanusi E. N., et al., High Rate Space-Time Block Coded Scheme: Performance and Improvement in Correlated Fading Channels, Proc. IEEE Wireless Comm. and Net. Conf, Mar. 2002, vol. 1, pp. 194-199.
Optimized Markov Chain Monte Carlo for Signal Detection in MIMO Systems: An Analysis of the Stationary Distribution and Mixing Time, Signal Processing, vol. 62, No. 17, Sep. 2014.
Ozgur A., et al., “Spatial Degrees of Freedom of Large Distributed MIMO Systems and Wireless Ad Hoc Networks”, Institute of Electrical and Electronics Engineers Journal on Selected Areas in Communications, 2013, vol. 31 (2), pp. 202-214.
Papadogiannis A., et al. “Efficient Selective Feedback Design for Multicell Cooperative Networks,” Institute of Electrical and Electronics Engineers Transactions on Vehicular Technology, 2010, vol. 60 (1), pp. 196-205.
Papadopoulos H.C., et al., Achieving Large Spectral Efficiencies from MU-MIMO with Tens of Antennas: Location-Adaptive TDD MU-MIMO Design and User Scheduling, in Proc. IEEE Asilomar Conf. on Signals, Systems, and Computers (ACSSC), Pacific Grove, CA, Nov. 2010, pp. 636-643.
Parvall, et al., “LTE Advanced-Evolving LTE Towards IMT-Advanced,” IEEE VTC 2008, 978-1-4244-1722-3/08/$25.00, 5 pages.
Paulraj A., et al., “Introduction to Space-Time Wireless Communications”, 2003, 33 Pages.
Paulraj, “Is OFDMA, MIMO and OS the right stuff for mobile broad-band?” 63 pages, http://www.ieeevtc.org/vtc2005fall/presentations/paulraj.pdf, Sep. 2005.
Payami S., et al., Channel Measurements and Analysis for Very Large Array Systems At 2.6 GHz, in Proc. 6th European Conference on Antennas and Propagation, EuCAP 2012, Prague, Czech Republic, Mar. 26, 2012, 5 pages.
Per-Erik ., et al., “VDSL2: Next Important Broadband Technology”, Ericsson Review No. 1, 2006, pp. 36-47.
Perlman et al., “Distributed-Input Distributed-Output (Dido), Wireless Technology: A New Approach to Multiuser Wireless”, Rearden Labs White Paper, 19 pages, Jul. 2011, Retrieved from the Internet: http://www.reardenwireless.com11 0727-DIDOA %20New%20Approach%20to%20Multiuser%20Wireless.pdf.
Perlman, et al., “Distributed-Input Distributed-Output (Dido), Wireless Technology: A New Approach to Multiuser Wireless,” Retrieved from http://www.rearden.com/DIDO/DiDO White Paper 110727.pdf, Aug. 2011, 19 pages.
Piazza D., et al., “Design and Evaluation of a Reconfigurable Antenna Array for MIMO Systems”, IEEE Transactions on Antennas and Propagation, 2008, vol. 56 (3), pp. 869-881.
Ping-Heng., et al., “Compressive Sensing Based Channel Feedback Protocols for Spatially-Correlated Massive Antenna Arrays”, in Proc. IEEE Wireless Communications and Networking Conference (WCNC 2012), Apr. 2012, pp. 492-497.
Pitarokoilis A. et al., “On the Optimality of Single-Carrier Transmission in Large-Scale Antenna Systems,” IEEE Wireless Commun. Lett., Aug. 2012, vol. 1, No. 4, pp. 276-279.
Pitarokoilis, “Effect of Oscillator Phase Noise on Uplink Performance of Large MU-MIMO Systems,” in Proc. of the 50th Annual Allerton Conference on Communication, Control, and Computing, Oct. 2012, 9 pages.
Pohl V., et al., “Antenna spacing in MIMO indoor channels,” IEEE Proc. Veh. Technol. Conf, 2002, vol. 2, pp. 749-753.
Pollock et al., “Antenna Saturation Effects On MIMO Capacity,” IEEE International Conference on Communications, 2003, vol. 4, pp. 2301-2305.
Proakis J., “Digital Communications Fourth edition,” 2001, pp. 9, Department of Electrical and Computer Engineering, Northeastern University, ISBN 0-07-232111-3, Cover page, Title page, Table of Contents.
Proakis J.G., “Communication System Engineering,” Prentice Hall, Table of Contents, 1994, 11 pages.
Qian, “Partially Adaptive Beamforming for Correlated Interference Rejection”, IEEE Trans. On Sign. Proc., 1995, vol. 43 (2), pp. 506-515.
QIBI, “A Forward Link Performance Study of the 1 xEV-DO Rev. 0 System Using Field Measurements and Simulations,” Lucent Technologies. Retrieved from the Internet: http://www.cdg.org/resources/white%5Fpapers/files/white_papers/files/Lucent%201xEV-DO%20Rev%20O%20Mar%2004.pdf, Mar. 2004, 19 pages.
Qualcomm, “The 1000x Data Challenge, the Latest on Wireless, Voice, Services and Chipset Evolution,” 4G World, Oct. 31, 2012, 61 pages, Submitted as Parts 1-3.
Rao R.M., et al., “Multi-antenna testbeds for research and education in wireless communications,” IEEE Communications Magazine, 2004, vol. 42 (12), pp. 72-81.
Rapajic P., et al., Information Capacity of Random Signature Multiple-Input Multiple Output Channel, IEEE Trans. Commun., 2000, vol. 48 (8), pp. 1245-1248.
Rappaport T., “Wireless Communications Principles and Practice,” 2002, 13 pages, Prentice Hall.
Ravindran N., et al., “MIMO Broadcast Channels with Block Diagonalization and Finite Rate Feedback,” IEEE, ICASSP Apr. 2007, pp. III-13-III-16.
Riegler, et al., “Asymptotic Statistics of the Mutual Information for Spatially Correlated Rician Fading MIMO Channels with Interference”, IEEE Trans. Inform. Theory, 2010, vol. 56 (4), pp. 1542-1559.
Robinson S., “Toward an Optimal Algorithm for Matrix Multiplication,” Nov. 2005, vol. 38 (9), 3 pages.
Ruckus wireless, “Long-range 802.11n (5GHz) Wi-Fi Point-to-Point/Multipoint backhaul,” Sep. 4, 2015, 2 pages, Retrieved from the Internet: URL: http://www.ruckuswireless.com/products/ZoneFlex-outdoor7731.
Rusek, et al., “Scaling up MIMO: Opportunities and Challenges with Very Large Arrays”, IEEE Signal Proces. Mag., Jan. 2012, vol. 30 (1), pp. 1-30.
Rysavy P., “No silver bullets for FCC, NTIA spectrum challenge”, Daily report for executives, Bloomberg BNA, Aug. 2012, pp. 1-4, http://www.rysavy.com/Articles/2012 09 No Spectrum Silver Bullets.pdf.
Saleh A.A.M., et al.,“A Statistical Model for Indoor Multipath Propagation ”, Institute of Electrical and Electronics Engineers Journal on Selected Areas in Communications, 1987, vol. SAC-5 (2), pp. 128-137.
Schafhuber D et al., “MMSE and Adaptive Prediction of Time-Varying Channels for OFDM Systems”, IEEE Trans. Wireless Commun., 2005, vol. 4 (2), pp. 593-602.
Schmidl T.M., et al., “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun, 1997, vol. 45 (12), pp. 1613-1621.
Schubert M., et al., “Joint ‘Dirty Paper’ Pre-Coding and Downlink Beamforming,” Spread Spectrum Techniques and Applications, 2002 IEEE Seventh International Symposium, Dec. 2002, vol. 2, pp. 536-540.
Schuchert S., et al., “A novel I/Q imbalance compensation scheme for the reception of OFDM signals,” IEEE Transaction on Consumer Electronics, 2001, pp. 313-318.
Serpedin E., et al., “Blind channel and carrier frequency offset estimation using periodic modulation precoders,” IEEE Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 2000, vol. 48 (8), pp. 2389-2405.
Sharif M., et al., “On the capacity of MIMO broadcast channel with partial side information,” IEEE Trans. Info. Th, Feb. 2005, vol. 51 (2), pp. 506-522.
Shen Z., et al., “Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization,” IEEE Transactions on Signal Processing, 2005, pp. 1-12.
Shen Z., et al., “Sum capacity of multiuser MIMO broadcast channels with block diagonalization,” IEEE Trans. Wireless Comm, 2005, 5 pages.
Shepard C., Argos: Practical Many-Antenna Base Stations, in Proc. ACM Int. Conf. Mobile Computing and Networking (MobiCom), Aug. 2012, 12 pages.
Shepard C., ArgosV2: A Flexible Many-Antenna Research Platform, Extended Abstract for demonstration in Proc. ACM Int. Conf. Mobile Computing and Networking (MobiCom), Oct. 2013, 3 pages.
Shi K., et al., “Coarse frame and carrier synchronization of OFDM systems: a new metric and comparison,” IEEE Trans. Wireless Commun, 2004, vol. 3 (4), pp. 1271-1284.
Shiu D., et al., “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans. Comm, 2000, vol. 48 (3), pp. 502-513.
Shuangqing Wei., et al., “On the Asymptotic capacity of MIMO Systems with Fixed Length Linear Antenna Arrays,” IEEE International Conference on Communications, 2003, vol. 4, pp. 2633-2637.
Simon, M.K., et al., “Digital Communication Over Fading Channels,” A Unified Approach to Performance Analysis, Wiley Series in Telecommunications and Signal Processing, 2000, 10 pages.
Simon S.H., et al., “Optimizing MIMO Antenna Systems with Channel Covariance Feedback,” IEEE Journal on Selected Areas in Communications, 2003, vol. 2003, pp. 406-417.
Spencer Q H., et al., “Adaptive Antennas and MIMO Systems for Wireless Communications—An Introduction to the Multi-User MIMI Downlink,” IEEE Communications Magazine, 2004, pp. 60-67.
Spencer Q H., et al., “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Sig. Proc, 2004, vol. 52, pp. 461-471.
Srinidhi N., et al., “Layered Tabu Search Algorithm for Large-MIMO Detection and a Lower Bound on ML Performance,” IEEE Trans. Commun, 2010, 5 pages.
Srinidhi N., et al., “Layered Tabu Search Algorithm for Large-MIMO Detection and a Lower Bound on ML Performance”, IEEE Trans. Commun, vol. 59, No. 11, pp. 2955-2963, Nov. 2011.
Stancil D.D., et al., “Doubling wireless channel capacity using co-polarised, co-located electric and magnetic dipoles”, Electronics Letters, 2002, vol. 38 (14), pp. 746-747.
Stanley M., “Mobile Data Wave: Who Dares to Invest, Wins,” Jun. 13, 2012, 23 pages.
Sternad M., et al., “Channel Estimation and Prediction for Adaptive OFDM Downlinks [Vehicular Applications],” in Proceeding IEEE Vehicular Technology Conference, vol. 2, Oct. 2003, pp. 1283-1287.
Stoytchev M., et al., “Compact antenna arrays for MIMO applications,” IEEE Proc. IEEE Antennas and Prop. Symp., 2001, vol. 3, pp. 708-711.
Strangeways H., “Determination Of The Correlation Distance For Spaced Antennas On Multipath HF Links And Implications For Design Of SIMO And MIMO Systems,” School of Electronic and Electrical Engineering, University of Leeds, IEEE First European Conf. on Antennas and Prop., 12 pages.
Strangways H.J., “Investigation of signal correlation for spaced and co-located antennas on multipath HF links and implications for the design of SIMO and MIMO system,” IEEE First European Conf. on Antennas and Propagation (EuCAP 2006), Nov. 2006, pp. 1-6.
Strohmer T., “Application of Time-Reversal with MMSE Equalizer to UWB Communication.” Proc. of IEEE Globecom, 2004, vol. 5, pp. 3123-3127.
Studer C., et al., “PAR-Aware Large-Scale Multi-User MIMO-OFDM Downlink”, IEEE J. Sel. Areas Commun., Sep. 4, 2012, vol. 31 (2), pp. 303-313.
Sulonen K., et al. “Comparison of MIMO Antenna Configurations in Picocell and Microcell Environments,” IEEE Journal on Selected Areas in Communications, 2003, vol. 21 (5), pp. 703-712.
Suraweera H.A., et al., Multi-Pair Amplify-and-Forward Relaying with Very Large Antenna Arrays, Proceedings in IEEE International Conference on Communications (ICC), Budapest, Hungary, Jun. 2013, 7 pages.
Suthisopapan P., et al., “Near Capacity Approaching Capacity of Large MIMO Systems by Non-Binary LDPC Codes and MMSE Detection”, in Proc. of the IEEE International Symposium on Information Theory, Mar. 2012, 7 pages.
Suzuki H., et al., Highly Spectrally Efficient Ngara Rural Wireless Broadband Access Demonstrator, Proceedings in IEEE International Symposium on Communications and Information Technologies (ISCIT), Oct. 2012, 6 pages.
Suzuki H., et al., Large-scale multiple antenna fixed wireless systems for rural areas, Proceedings in IEEE PIMRC, Sep. 2012, 6 pages.
Svac P., et al., Soft-Heuristic Detectors for Large MIMO Systems, IEEE Trans. Signal Processing, 2013, vol. 61 (18), pp. 4573-4586.
Svantesson T., et al., “Analysis of Electromagnetic Field Polarizations in Multiantenna Systems,” IEEE Transactions on Wireless Communications, vol. 3 (2), Mar. 2004, pp. 641-646.
Svantesson T., et al., “On Capacity and Correlation of Multi-Antenna Systems Employing Multiple Polarizations,” IEEE Antennas and Propagation Society, 2002, vol. 3, pp. 202-205.
Takeuchi K., et al. “On an Achievable Rate of Large Rayleigh Block-Fading MIMO Channels with No CSI,” IEEE Transactions on Information Theory, 2011, 47 pages.
Taluja P S., et al., Diversity Limits of Compact Broadband Multi-Antenna Systems, IEEE J. Sel. Areas Communication, 2013, vol. 31 (2), pp. 326-337.
Tang T., et al., “Joint frequency offset estimation and interference cancellation for MIMO-OFDM systems [mobile radio],” 2004 IEEE 60th Vehicular Technology Conference, VTC2004-Fal, 2004, vol. 3, pp. 1553-1557.
Tanumay Datta., et al., “A Novel Monte-Carlo-Sampling-Based Receiver for Large-Scale Uplink Multiuser MIMO Systems,” IEEE Transactions on Vehicular Technology, 2013, vol. 62(7), pp. 3019-3038.
Taricco G., et al., “Asymptotic Mutual Information Statistics of Separately-Correlated Rician Fading MIMO Channels,” IEEE Trans. Inform. Theory, Aug. 2008, vol. 54 (8), pp. 3490-3504.
Tarighat A., et al., “Compensation schemes and performance analysis of IQ imbalances in OFDM receivers,” IEEE Signal Processing, Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 2005, vol. 53, pp. 3257-3268.
Tarokh V., et al., “Space-time block codes from orthogonal designs.” IEEE Trans. Info, 1999, vol. 45, pp. 1456-1467.
Tarokh V., et al., “Space-Time Codes For High Data Rate Wireless Communication: Performance Criterion and Code Construction,” IEEE Transactions on Information Theory, 1998, vol. 44, pp. 744-765.
Teletar I.E., “Capacity of Multi-antenna Gaussian Channels,” European Transactions on Telecommunications, vol. 10, Nov. 1999, pp. 1-28.
Teukolsky S.A., Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, 1992, 949 pages.
The White House, “Presidential Memorandum: Unleashing the Wireless Broadband Revolution”, [retrieved on Jun. 28, 2010] Retrieved from the Internet: URL: http://www.whitehouse.gov/the-press-office/presidential-memorandum-unleashing-wireless-broadband-revolution.
Tomlinson M., “New Automatic Equaliser Employing Modulo Arithmetic,” Electronics Letters, 1971, vol. 7(5/6), pp. 138-139.
Tran L.N., et al. “A Conic Quadratic Programming Approach to Physical Layer Multicasting for Large-Scale Antenna Arrays,” IEEE Signal Processing Letters, Jan. 1, 2014, vol. 21 (1), pp. 114-117.
Truong K.T., et al. “Effects of Channel Aging in Massive MIMO Systems,” Journal of Communications and Networks, Special Issue on Massive MIMO, 2013, vol. 15 (4), pp. 338-351.
Truong K.T., et al., “The Viability of Distributed Antennas for Massive MIMO Systems,” Proceedings of the Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 3-6, 2013, pp. 1318-1323.
Tsakalaki E. P., et al., On the Beamforming Performance of Large-Scale Antenna Arrays , Proc. Loughborough Antennas and Propagation Conference (LAPC), Nov. 12-13, 2012, 4 pages.
Tse D et al., “Diversity-multiplexing tradeoff in multiple-access channels”, IEEE Trans. Info. Th., Mar. 2004, vol. 50 (9), pp. 1859-1874.
Tse et al., “Performance Tradeoffs between Maximum Ratio Transmission and Switched-Transmit Diversity,” in Proc. 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communication, vol. 2, Sep. 2000, pp. 1485-1489.
Tureli U., et al., “OFDM blind carrier offset estimation: Esprit,” IEEE Trans. Commun, 2000, vol. 48 (9), pp. 1459-1461.
Tyler N., et al., “Adaptive antennas: the Calibration Problem”, IEEE Comm. Mag., pp. 114-122, Dec. 2004.
Ubuquiti, “airFiber”, downloaded from http://www.ubnt.com/airfiber on Sep. 4, 2015, 10 pages.
Ubuquiti, “airMAX”, [online], Retrieved from the Internet: http:www.ubnt.comairmax, 2015, 10 pages.
Uthansakul P., et al., MIMO antenna selection using CSI from reciprocal channel, Int. Journal Of Elect. And Info. Eng., 2010, vol. 4 (10), pp. 482-491.
Valkama M., et al., “Advanced methods for I/Q imbalance compensation in communication receivers,” IEEE Transactions On Signal Processing, vol. 49, No. 10, 2001, pp. 2335-2344.
Van B.D. et al.,“Beamforming: A Versatile Approach to Spatial Filtering,” IEEE ASSP Magazine, 1988, pp. 4-24.
Van De Beek J., et al., “ML estimation of time and frequency offset in OFDM systems,” IEEE Transactions, Signal Processing, 1997, vol. 45 (7), pp. 1800-1805.
Vance, “Steve Perlman's wireless fix”, BusinessWeek, Jul. 2011, 10 pages [online], retrieved from the Internet: URL:http://www.businessweek.com/magazine/the-edison-of-silicon-valley-07272011.html.
Vaughan R.G., “On Optimum Combining at the Mobile,” IEEE Transactions on Vehicular Technology, Nov. 1988, vol. 37(4), pp. 181-188.
Vaughn R., et al., “Switched parasitic elements for antenna diversity,” IEEE Transactions on Antennas and Propagation, 1999, vol. 47, pp. 399-405.
Venkatesan et al., “Network MIMO: Overcoming InterCell Interference In Indoor Wireless Systems,” Asilomar Conference on Signals, 2007, vol. 2007, pp. 83-87.
Venkatesan S., et al., “A WiMAX-Based Implementation of Network MIMO for Indoor Wireless Systems,” EURASIP Journal on Advances in Signal Processing, 2009, vol. 2009, 11 pages.
Vieira J., et al., “A flexible 100-antenna testbed for Massive MIMO,” in Proc IEEE Globecom 2014 Workshop—Massive MIMO: From Theory to Practice, Austin, Texas, USA, Dec. 2014, pp. 287-293.
Vishwanath S., “Duality, Achievable Rates, And Sum-Rate Capacity Of Gaussian MIMO Broadcast Channels,” IEEE Trans. Info. Th, 2003, vol. 49 (10), pp. 2658-2668.
Visotsky E., et al., “Space-Time Transmit Precoding with Imperfect Feedback,” IEEE Transactions on Information Theory, 2001, vol. 47, pp. 2632-2639.
Visuri et al. “Colocated Antenna Arrays: Design Desiderata for Wireless Communications,” 2002, vol. 2002, pp. 580-584.
Viswanath P., et al., “Opportunistic beamforming using dump antennas,” IEEE Transactions On Information Theory, 2002, vol. 48, pp. 1277-1294.
Viswanath, “Sum Capacity of the Vector Gaussian Broadcast Channel and Uplink-Downlink Duality,” IEEE Transactions On Information Theory, 2003, vol. 49 (8), pp. 1912-1921.
Wagner et al., “Large System Analysis of Linear Precoding in MISO Broadcast Channels with Limited Feedback,” IEEE Transactions on Information Theory, 2012, vol. 58(7), pp. 4509-4537.
Waldschmidt C., et al., “Compact MIMO-arrays based on polarisation-diversity”, Proc. IEEE Antennas and Prop. Symp., 2003, vol. 2, pp. 499-502.
Waldschmidt C., et al., “Complete RF system model for analysis of compact MIMO arrays,” IEEE Trans. on Vehicular Technologies, 2004, vol. 53, pp. 579-586.
Wallace J W., et al., “Termination-dependent diversity performance of coupled antennas: Network theory analysis,” IEEE Transactions on Antennas and Propagation, 2004, vol. 52, pp. 98-105.
Wallace J.W., et al., “Statistical Characteristics of Measured MIMO Wireless Channel Data and Comparison to Conventional Models,” Proceedings IEEE Vehicular Technology Conference, Oct. 2001, vol. 2 (7-11), pp. 1078-1082.
Wang Z., Performance of Uplink Multiuser Massive MIMO system, International Conference on Acoustics Speech, and Signal Processing, Florence, Italy, Nov. 6, 2013, 5 pages.
Wannstrom J., “Carrier Aggregation Explained,” 3GPP, Jun. 2013, 6 pages, Retrieved from the Internet: URL: http://www.3gpp.org/Carrier-Aggregation-explained.
Warrington et al., “Measurement and Modeling of HF Channel Directional Spread Characteristics for Northerly Path,” Radio Science, RS2006, 2006, vol. 41, pp. 1-13.
Webpass, Buildings online, printed on Sep. 4, 2015, Retrieved from the Internet: http://www.webpass.net/buildings?city=san+francisco&column=address&order=asc, 3 pages.
Weedon W.H., et al., “MEMS—Switched Reconfigurable Antennas,” IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), vol. 3, 2001, pp. 654-657.
Wen C K., et al., “Asymptotic Mutual Information for Rician MIMO-MA Channels with Arbitrary Inputs: A Replica Analysis”, IEEE Trans. Commun., 2010, vol. 58 (10), pp. 2782-2788.
Wen C K., et al., “On the Sum-Rate of Multiuser MIMO Uplink Channels with Jointly-Correlated Rician fading”, IEEE Trans. Commun., 2011, vol. 59 (10), pp. 2883-2895.
Wennestrom et al., “An Antenna Solution for MIMO Channels: The Switched Parasitic Antenna,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, vol. 1, 2001, pp. 159-163.
Wheeler H A., et al., “Small antennas,” IEEE Transactions on Antennas and Propagation, 1975, vol. AP-23 (4), pp. 462-469.
Wi-Fi alliance, homepage, pp. 1-3, printed on Aug. 14, 2014, Retrieved from the Internet: URL: www.wi-fi.org.
Wi-Fi alliance, “Wi-Fi certified makes it Wi-Fi” 2009, http://www.wi-fi.org/files/WFA_Certification_Overview_WP_en.pdf, 1 page.
Wikipedia, 2014, 6 pages [online]. “IS-95” Retrieved from the Internet: URL: http:en.wikipedia.orgwikilS-95.
Wikipedia, Advanced Mobile Phone System. 2014, 6 pages [online]. Retrieved from the Internet: URL: https://en.wikipedia.org/wiki/AdvancedMobilePhoneSystem.
WiMAX forum, 1 page, Aug. 14, 2014 http://www.wimaxforum.org/.
Wired, Has OnLive's Steve Perlman Discovered Holy Grail of Wireless?, Jun. 30, 2011 Retrieved from the Internet: http:www.wired.comepicenter201106perlman-holy-grail-wireless.
Wong I., et al., “Long Range Channel Prediction for Adaptive OFDM Systems,” Proceedings IEEE Asilomar Conf. on Signals, Systems, and Computers, vol. 1,pp. 723-736, Pacific Grove, CA, USA, Nov. 7-10, 2004.
Wong I.C., et al., “Exploiting Spatia-Temporal Correlations in MIMO Wireless Channel Prediction,” Dec. 2006, IEEE GLOBECOM Conference, 5 pages.
Wong, I.C., et al., “Joint Channel Estimation and Prediction for OFDM Systems,” Proceedings in IEEE Global Telecommunications Conference, St. Louis, MO, 2005, pp. 2255-2259.
Wong K., et al., “A Joint-Channel Diagonalization for Multiuser MIMO Antenna Systems,” IEEE Transactions on Wireless Communications, 2003, vol. 2 (4), pp. 773-786.
Wong, “Performance Enhancement of Multiuser MIMO Wireless Communication Systems,” IEEE Transactions On Communications, 2002, vol. 50 (12), pp. 1960-1970.
Wu M., et al., “Approximate Matrix Inversion for High-Throughput Data Detection in the Large-scale MIMO Uplink,” IEEE International Symposium on Circuits and Systems (ISCAS), May 2013, pp. 2155-2158.
Xiao L., et al., “A Comparative Study of MIMO Capacity with Different Antenna Topologies,” IEEE ICCS'02, vol. 1, Nov. 2002, pp. 431-435.
Xu J., “LTE-Advanced Signal Generation and Measurements using SystemVue,” Agilent Technologies, Dec. 23, 2010, 46 pages.
Yang W., et al., “On the Capacity of Large-MIMO Block-Fading Channels,” IEEE Journal on Selected Areas in Communications, Sep. 30, 2012, vol. 31(2), pp. 1-16.
Yin B., et al., “Full-Duplex in Large-Scale Wireless System,” Proceeding of the Asilomar Conference on Signals, Systems and Computers, 2013, 5 pages.
Yin B., et al., “Implementation trade-offs for linear detection in large-scale MIMO systems,” Proceeding Institute of Electrical and Electronics Engineers International Conference on Acoustics Speech, and Signal Processing, 2013, 5 pages.
Yin H., et al., A Coordinated Approach to Channel Estimation in Large-scale Multiple-antenna Systems, IEEE Journal on Selected Areas in Communications, Sep. 2, 2012, vol. 31 (2), pp. 1-10.
Yoo, et al., “Multi-antenna broadcast channels with limited feedback and user selection,” Draft Version, Jun. 8, 2006 of IEEE Journal on Sel. Areas in Communications, vol. 25, Jul. 2007, pp. 1478-1491, 36 pages.
Yoo, “Multi-Antenna Downlink Channels with Limited Feedback and User Selection,” IEEE Journal On Selected Areas In Communications, Sep. 2007, vol. 25 (7), pp. 1478-1491.
Yu, “Sum Capacity of Gaussian Vector Broadcast Channels,” IEEE Transactions On Information Theory, 2004, vol. 50 (9), pp. 1875-1892.
Yu W., et al., “Trellis Precoding for the Broadcast Channel,” IEEE GLOBECOM, 2001, vol. 2, pp. 1344-1348.
Zaidel B., et al., “Vector Precoding for Gaussian MIMO Broadcast Channels: Impact of Replica Symmetry Breaking”, Institute of Electrical and Electronics Engineers Transactions on Information Theory, Mar. 2012, vol. 58 (3), pp. 1413-1440.
Zakhour R., et al., “Min-Max Fair Coordinated Beamforming via Large Systems Analysis,”, in Proc. of the IEEE International Symposium on Information Theory, St. Petersburg, Jul. 2011.
Zamir R ., et al., “Capacity and lattice-strategies for cancelling known interference,” Proceedings of International Symposium on Information Theory, Honolulu, Hawaii, Nov. 2000, pp. 1-32.
Zetterberg P., “Experimental Investigation of TDD Reciprocity based Zero-Forcing Transmit Precoding”, EURASIP, Jun. 2010.
Zhang, “Coordinated Multi-Cell MIMO Systems with Cellular Block Diagonalization,” IEEE, 2007, pp. 1669-1673.
Zhang J., et al., “Hermitian Precoding for Distributed MIMO Systems with Individual Channel State Information,” IEEE Journal on Selected Areas in Communications, 2013, vol. 31 (2), pp. 241-250.
Zhang J., et al. “On Capacity of Large-Scale MIMO Multiple Access Channels with Distributed Sets of Correlated Antennas,” IEEE Journal on Selected Areas in Communications, Sep. 26, 2012, vol. 31 (2), pp. 1-52.
Zhang, “Networked MIMO with Clustered Linear,” IEEE Transactions on Wireless Communications, 2009, vol. 8 (4), pp. 1910-1921.
Zhang R., et al. Eiectromagnetic Lens-focusing Antenna Enabled Massive MIMO, Jun. 6, 2013, pp. 1-7.
Zheng L., et al.. “Diversity and multiplexing: a fundamental tradeoff in multiple antenna channels,” IEEE Trans. Info. Th., 2003, vol. 49 (5), pp. 1073-1096.
Zhou Q., et al., “An Improved LR-aided K-Best Algorithm for MIMO Detection,” in Proc. IEEE International Conference on Wireless Communications and Signal Processing (WCSP), Oct. 2012, 5 pages.
Zhuang X., et al., “Channel models for link and system level simulations,” IEEE 802.16 Broadband Wireless Access Working Group, 2004, 15 pages.
Zogg, “Multipath Delay Spread in a Hilly Region at 210 MHz,” IEEE Transactions on Vehicular Technology, 1987, vol. VT-36 (4), pp. 184-187.
Zou R., et al., “Li Reducing the Complexity of Quasi-Maximum-Likelihood Detectors Through Companding for Coded MIMO Systems,” IEEE Transactions on Vehicular Technology, Mar. 2012, vol. 2012, pp. 1109-1123.
Zyren J., “Overview on the 3GPP Long Term Evolution Physical Layer,” Freescale White Paper, Jul. 2007, 27 pages.
Advisory Action Office Action, U.S. Appl. No. 13/844,355, dated Jul. 17, 2019, 3 pages.
Advisory Action, U.S. Appl. No. 14/611,565, dated Feb. 7, 2020, 3 pages.
Caire et al., “On the achievable throughput of a multiantenna Gaussian broadcast channel,” IEEE Transactions on Information Theory, vol. 49, No. 7, Jul. 2003, pp. 1691-1706.
Communication pursuant to Article 94(3) EPC, EP App. No. 05254757.7, dated Dec. 21, 2018, 4 pages.
Communication pursuant to Article 94(3) EPC, EP App. No. 05254757.7, dated Nov. 11, 2019, 5 pages.
Communication pursuant to Article 94(3) EPC, EP App. No. 10184659, dated Nov. 11, 2019, 5 pages.
Communication pursuant to Article 94(3) EPC, EP App. No. 10184659, dated Dec. 4, 2017, 5 pages.
Communication pursuant to Article 94(3) EPC, EP App. No. 18186156.8, dated Jul. 30, 2019, 5 pages.
Corrected Notice of Allowability, U.S. Appl. No. 15/057,002, dated Jun. 3, 2019, 11 pages.
Decision of Grant, RU App. No. 2016144927, dated Nov. 29, 2019, 8 pages of Original Document Only.
European Search Report and Search Opinion, EP App. No. 17844265.3, dated Feb. 21, 2020, 12 pages.
European Search Report, EP App. No. 19159810.1, dated Sep. 25, 2019, 8 pages.
Examination report, AU App. No. 2018241100, dated Sep. 27, 2019, 2 pages.
Examiner's Report, AU App. No. 2010256510, dated Apr. 16, 2015, 3 pages.
Final Office Action, U.S. Appl. No. 12/802,975, dated Oct. 18, 2019, 21 pages.
Final Office Action, U.S. Appl. No. 13/844,355, dated Jun. 3, 2019, 26 pages.
Final Office Action, U.S. Appl. No. 14/672,014, dated Oct. 2, 2019, 10 pages.
Final Office Action, U.S. Appl. No. 15/682,076, dated Oct. 30, 2019, 26 pages.
Final Office Action, U.S. Appl. No. 14/611,565, dated Dec. 4, 2019, 19 pages.
Final Office Action, U.S. Appl. No. 15/792,610, dated Dec. 16, 2019, 8 pages.
First Examination Report, AU App. No. 2018253582, dated Jun. 3, 2019, 3 pages.
First Examination Report, NZ App. No. 751530, dated Oct. 18, 2019, 3 pages.
First Examination Report, NZ App. No. 757995, dated Nov. 1, 2019, 2 pages.
First Office Action and Search Report, CN App. No. 201580019760.X, dated Jun. 5, 2019, 12 pages (6 pages of English Translation and 6 pages of Original Document).
Fourth Office Action, CN App. No. 201480016091.6, dated Dec. 10, 2019, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Non-Final Office Action, U.S. Appl. No. 13/844,355, dated Aug. 12, 2019, 14 pages.
Non-Final Office Action, U.S. Appl. No. 14/611,565, dated Mar. 25, 2020, 5 pages.
Non-Final Office Action, U.S. Appl. No. 15/340,914, dated Mar. 25, 2020, 15 pages.
Non-Final Office Action, U.S. Appl. No. 16/188,841, dated Jan. 22, 2020, 9 pages.
Non-Final Office Action, U.S. Appl. No. 16/253,028, dated Oct. 18, 2019, 10 pages.
Non-Final Office Action, U.S. Appl. No. 15/340,914, dated Aug. 8, 2019, 13 pages.
Non-Final Office Action, U.S. Appl. No. 15/792,610, dated Apr. 29, 2020, 7 pages.
Non-Final Office Action, U.S. Appl. No. 16/436,864, dated Mar. 4, 2020, 6 pages.
Notice of acceptance, AU App. No. 2017210619, dated Oct. 14, 2019, 4 pages.
Notice of acceptance, AU App. No. 2018201553, dated Nov. 14, 2019, 4 pages.
Notice of Acceptance, AU App. No. 2018253582, dated Nov. 18, 2019, 3 pages.
Notice of Acceptance, NZ App. No. 738000, dated Jun. 4, 2019, 1 page.
Notice of Allowance, CN App. No. 201480016091.6, dated Apr. 24, 2020, 8 pages (3 pages of English Translation and 5 pages of Original Document).
Notice of Allowance, KR App. No. 10-2014-7009876, dated Oct. 4, 2019, 3 pages (1 page of English Translation and 2 pages of Original Document).
Notice of Allowance, KR App. No. 10-2018-7035654, dated Oct. 2, 2019, 4 pages (2 pages of English Translation and 2 pages of Original Document).
Notice of Allowance, TW App. No. 107123446, dated Nov. 20, 2019, 3 pages of Original Document Only.
Notice of Allowance, U.S. Appl. No. 12/802,975, dated Apr. 17, 2020, 12 pages.
Notice of Allowance, U.S. Appl. No. 13/233,006, dated Jul. 12, 2019, 12 pages.
Notice of Allowance, U.S. Appl. No. 13/233,006, dated May 30, 2019, 12 pages.
Notice of Allowance, U.S. Appl. No. 13/844,355, dated Dec. 16, 2019, 2 pages.
Notice of Allowance, U.S. Appl. No. 13/844,355, dated Oct. 21, 2019, 8 pages.
Notice of Allowance, U.S. Appl. No. 15/201,276, dated May 28, 2019, 4 pages.
Notice of Allowance, U.S. Appl. No. 16/253,028, dated Dec. 27, 2019, 10 pages.
Notice of Allowance, U.S. Appl. No. 16/253,028, dated Feb. 25, 2020, 7 pages.
Notice of Allowance, U.S. Appl. No. 16/253,028, dated Mar. 12, 2020, 7 pages.
Advisory Office Action, U.S. Appl. No. 14/611,565, dated Nov. 10, 2020, 3 pages.
Corrected Notice of Allowability, U.S. Appl. No. 16/188,841, dated Oct. 28, 2020, 7 pages.
Corrected Notice of Allowability, U.S. Appl. No. 16/436,864, dated Jul. 22, 2020, 2 pages.
Corrected Notice of Allowance, U.S. Appl. No. 15/792,610, dated Oct. 6, 2020, 4 pages.
Decision of Refusal, JP App. No. 2016-562961, dated Oct. 28, 2020, 5 pages (4 pages of English Translation and 1 page of Original Document).
Decision to grant a European patent, EP App. No. 10156950.7, dated May 8, 2020, 2 pages.
Decision to Grant a Patent, EP App. No. 13790935.4, dated Sep. 24, 2020, 2 pages.
Divisional Notification, CN App. No. 201710491990.7, dated Jul. 13, 2020, 4 pages (2 pages of English Translation and 2 pages of Original Document).
European Search Report and Search Opinion, EP App. No. 17864744.2, dated Aug. 14, 2020, 15 pages.
Examination Report No. 1, AU App. No. 2019203120, dated Jul. 3, 2020, 4 pages.
Examination Report No. 1, AU App. No. 2020200070, dated Sep. 8, 2020, 4 pages.
Examination Report No. 2, NZ App. No. 761315, dated Aug. 5, 2020, 3 pages.
Examination Report No. 3, AU App. No. 2019200838, dated Aug. 4, 2020, 5 pages.
Examiner Report, CA App. No. 2885817, dated Jul. 17, 2020, 5 pages.
Examiner's Report, CA App. No. 2892555, dated Sep. 15, 2020, 2 pages.
Final Office Action, U.S. Appl. No. 14/611,565, dated Sep. 3, 2020, 7 pages.
Final Office Action, U.S. Appl. No. 16/188,841, dated Jul. 7, 2020, 17 pages.
Intention to Grant, EP App. No. 13790935.4, dated Jun. 24, 2020, 8 pages.
Li et al., “MIMO techniques in WiMAX and LTE: a feature overview”, IFFF Communications Magazine, May 2010, pp. 86-92.
Non Final Office Action, U.S. Appl. No. 16/505,593, dated Sep. 10, 2020, 12 pages.
Non-Final Office Action, U.S. Appl. No. 14/672,014, dated Jun. 8, 2020, 11 pages.
Non-Final Office Action, U.S. Appl. No. 15/682,076, dated May 27, 2020, 8 pages.
Non-Final Office Action, U.S. Appl. No. 15/792,610, dated Jan. 13, 2021, 8 pages.
Non-Final Office Action, U.S. Appl. No. 16/578,265, dated May 12, 2020, 8 pages.
Notice of Acceptance, NZ App. No. 751530, dated May 1, 2020, 2 pages.
Notice of Allowance, CA App. No. 2,848,355, dated Apr. 3, 2020, 1 page.
Notice of Allowance, IL App. No. 248265, dated May 7, 2020, 3 pages.
Notice of Allowance, IL App. No. 269145, dated Aug. 23, 2020, 3 pages of Original Document Only.
Notice of Allowance, KR App. No. 10-2015-7014235, dated Oct. 28, 2020, 3 pages (1 pages of English Translation and 2 page of Original Document).
Notice of Allowance, KR. App. No. 10-2014-7035524, dated Oct. 14, 2020, 4 pages (1 page of English Translation and 3 pages of Original Document).
Notice of Allowance, U.S. Appl. No. 15/682,076, dated Jan. 14, 2021, 11 pages.
Notice of Allowance, U.S. Appl. No. 12/802,975, dated Aug. 26, 2020, 14 pages.
Notice of Allowance, U.S. Appl. No. 15/340,914, dated Dec. 2, 2020, 9 pages.
Notice of Allowance, U.S. Appl. No. 15/792,610, dated Oct. 2, 2020, 7 pages.
Notice of Allowance, U.S. Appl. No. 16/188,841, dated Sep. 10, 2020, 9 pages.
Notice of Allowance, U.S. Appl. No. 16/436,864, dated Jun. 11, 2020, 5 pages.
Notice of Final Rejection, KR App. No. 10-2020-7002077, dated Oct. 15, 2020, 8 pages (4 pages of English Translation and 4 pages of Original Document).
Notice of Reasons for Refusal, JP App. No. 2019-074024, dated Aug. 3, 2020, 10 pages (6 pages of English Translation and 4 pages of Original Document).
Notice of Reasons for Refusal, JP App. No. 2019-109413, dated Sep. 10, 2020, 8 pages (5 pages of English Translation and 3 pages of Original Document).
Notification of Reason for Refusal, KR. App. No. 10-2016-7031260, dated Dec. 4, 2020, 12 pages (7 pages of English Translation and 5 pages of Original Document).
Notification of the 2nd Substantive requirement, MX App. No. MX/A/2017/002906, dated Jul. 15, 2020, 10 pages (5 pages of English Translation and 5 pages of Original Document).
Office Action, AU App. No. 2019202296, dated May 12, 2020, 5 pages.
Office Action, CA App. No. 2816556, dated May 19, 2020, 3 pages.
Office Action, EP App. No. 05254757.7, dated Sep. 2, 2020, 5 pages.
Office Action, EP App. No. 10156950.7, dated Dec. 12, 2017, 9 pages.
Office Action, EP App. No. 10156950.7, dated Jan. 7, 2020, 6 pages.
Office Action, EP App. No. 10184659.0, dated Sep. 2, 2020, 5 pages.
Office Action, EP App. No. 12762167.0, dated Sep. 30, 2016, 6 pages.
Office Action, EP App. No. 13784690.3, dated Apr. 15, 2019, 4 pages.
Office Action, EP App. No. 13843203.4, dated Feb. 25, 2019, 6 pages.
Office Action, EP App. No. 13843203.4, dated Mar. 23, 2018, 5 pages.
Office Action, EP App. No. 14770916.6, dated Mar. 13, 2018, 5 pages.
Office Action, EP App. No. 15780522.7, dated Mar. 19, 2020, 6 pages.
Office Action, EP App. No. 18186156.8, dated Jun. 12, 2020, 6 pages.
Office Action, IL App. No. 269145, dated Jun. 16, 2020, 4 pages (2 pages of English Translation and 2 pages of Original Document).
Office Action, IL App. No. 270106, dated May 19, 2020, 8 pages (4 pages of English Translation and 4 pages of Original Document).
Office Action, JP App. No. 2018-222367, dated Jun. 8, 2020, 7 pages (4 pages of English Translation and 3 pages of Original Document).
Office Action, JP App. No. 2019-093904, dated Jul. 6, 2020, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Office Action, KR App. No. 10-2015-7028298, dated Jul. 27, 2020, 14 pages (8 pages of English Translation and 6 pages of Original Document).
Office Action, KR App. No. 10-2015-7029455, dated Jul. 27, 2020, 14 pages (8 pages of English Translation and 6 pages of Original Document).
Office Action, RU App. No. 2019104259, dated Aug. 20, 2020, 14 pages (7 pages of English Translation and 7 pages of Original Document).
Office Action, TW App. No. 108118765, dated Apr. 16, 2020, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Office Action, TW App. No. 108130461, dated Oct. 30, 2020, 16 pages (7 pages of English Translation and 9 pages of Original Document).
Office Action, TW App. No. 108148122, dated Jul. 8, 2020, 19 pages (8 pages of English Translation and 11 pages of Original Document).
Office Action, TW App. No. 109105764, dated Sep. 9, 2020, 47 pages (21 pages of English Translation and 26 pages of Original Document).
Office Action, U.S. Appl. No. 12/802,988, dated Aug. 14, 2013, 26 pages.
Ponnampalam et al. “On DL Precoding for 11ac”, IEEE 802.11-10/01119r0, Mediatek, Sep. 2010, 8 pages.
Qualcomm Incorporated, “Definition of Virtual Antenna Mapping (VAM) and Applicability of S-CPICH Power Accuracy Requirement”, 3GPP TSG-WG4 Meeting 58Ad hoc #1-2011, R4-112408, Apr. 11-15, 2011, 6 pages.
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 12762167.0, Nov. 29, 2017, 8 pages.
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 13784690.3, Jul. 6, 2020, 5 pages.
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 13843203.4, Oct. 21, 2020, 9 pages.
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 13856705.2, Nov. 5, 2018, 7 pages.
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 14779084.4, Nov. 29, 2019, 9 pages.
Supplemental Notice of Allowability, U.S. Appl. No. 12/802,975, dated Oct. 28, 2020, 2 pages.
Supplemental Notice of Allowability, U.S. Appl. No. 15/340,914, dated Jan. 13, 2021, 5 pages.
Supplementary Partial European Search Report and Search Opinion, EP App No. 17864744.2, dated May 13, 2020, 16 pages.
Written Opinion, BR App. No. 112014027631-5, dated Jun. 18, 2020, 4 pages of Original document only.
Written Opinion, BR App. No. 112015022911-5, dated Jul. 22, 2020, 4 pages of Original Document Only.
Written Opinion, BR App. No. 112015023223-0, dated Jul. 22, 2020, 5 pages of Original Document Only.
CMCC, “Discussion on CQI definition for non-PMI/RI reporting”, 3GPP TSG-RAN WG1 #70, R1-123739, Aug. 13-17, 2012, 6 pages.
Decision to Grant, EP App. No. 14770916.6, dated May 28, 2021, 2 pages.
Examination Report, AU App. No. 2020201409, dated Apr. 16, 2021, 6 pages.
Final Office Action, U.S. Appl. No. 14/611,565, dated May 10, 2021, 7 pages.
Intention to Grant, EP App. No. 14770916.6, dated Apr. 28, 2021, 8 pages.
International Search Report and Written Opinion, PCT App. No. PCT/US2021/026431, dated Jun. 29, 2021, 6 pages.
Non-Final Office Action, U.S. Appl. No. 14/611,565, dated Feb. 26, 2021, 11 pages.
Non-Final Office Action, U.S. Appl. No. 14/672,014, dated Feb. 22, 2021, 12 pages.
Non-Final Office Action, U.S. Appl. No. 16/719,169, dated Feb. 4, 2021, 15 pages.
Non-Final Office Action, U.S. Appl. No. 17/234,699, dated Jul. 15, 2021, 9 pages.
Non-Final Office Action, U.S. Appl. No. 17/308,031, dated Jul. 15, 2021, 12 pages.
Non-Final Office Action, U.S. Appl. No. 17/317,856, dated Jul. 19, 2021, 39 pages.
Notice of Allowance, CA App. No. 2816556, dated May 18, 2021, 1 page.
Notice of Allowance, U.S. Appl. No. 16/578,265, dated Jan. 28, 2021, 7 pages.
Notice of Allowance, U.S. Appl. No. 15/340,914, dated Mar. 15, 2021, 4 pages.
Notice of Allowance, U.S. Appl. No. 15/682,076, dated Mar. 24, 2021, 11 pages.
Notice of Allowance, U.S. Appl. No. 15/792,610, dated Jul. 13, 2021, 10 pages.
Notice of Allowance, U.S. Appl. No. 16/578,265, dated Mar. 31, 2021, 7 pages.
Notice of Allowance, U.S. Appl. No. 16/719,169, dated Jun. 17, 2021, 8 pages.
Notice of Allowance, U.S. Appl. No. 16/719,169, dated Jun. 30, 2021, 2 pages.
Notice of Allowance, U.S. Appl. No. 17/234,699, dated Jul. 28, 2021, 7 pages.
Notice of Allowance, U.S. Appl. No. 17/308,031, dated Aug. 4, 2021, 7 pages.
Notice of Reasons for Refusal, JP App. No. 2019-093904, dated May 27, 2021, 5 pages (3 pages of English Translation and 2 pages of Original Document).
Notification of Reason for Refusal, KR App. No. 10-2021-7002823, dated Apr. 14, 2021, 06 pages (03 pages of English Translation and 03 pages of Original Document).
Office Action, CA App. No. 2945987, dated Apr. 13, 2021, 3 pages.
Office Action, CA App. No. 3025857, dated Dec. 8, 2020, 5 pages.
Office Action, EP App. No. 15746217.7, dated Feb. 1, 2021, 10 pages.
Office Action, EP App. No. 17844265.3, dated May 10, 2021, 9 pages.
Office Action, JP App No. 2019-168511, dated Dec. 24, 2020, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Office Action, JP App. No. 2019-238040, dated Feb. 25, 2021, 7 pages (4 pages of English Translation and 3 pages of Original Document).
Second Office Action, CN App. No. 201780066182.4, dated May 7, 2021, 13 pages (9 pages of English Translation and 4 pages of Original Document).
Stevanovic et al., “Smart Antenna Systems for Mobile Communications”, Final Report, Laboratoire d'Electromagnetisme et d'Acoustique, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne Suisse, Jan. 2003, 120 pages.
Yoshida, Susumu, “Coherent Coordinated Multipoint Transmission Techniques for Wireless Distributed Networks”, Kyoto University, Available Online at <www.soumu.go.jp/main_content/000256555.pdf>, 2013, 5 pages (3 pages of English Translation and 2 pages of Original Document).
3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network, Coordinated multi-point operation for LTE physical layer aspects (Release 11)”, 3GPP Draft; Draft36819-B10, 3rd Generation Partnership Project; (3GPP), Dec. 20, 2011, V11.1.0, pp. 1-69.
Allowance Receipt, MX App. No MX/a/2019/010059, dated May 3, 2021, 3 pages (Original Document Only).
Communication pursuant to Article 94(3) EPC, EP App. No. 19189155.5, dated Apr. 9, 2021, 6 pages.
Final Office Action, U.S. Appl. No. 17/317,856, dated Aug. 20, 2021, 33 pages.
Non-Final Office Action, U.S. Appl. No. 17/379,985, dated Aug. 26, 2021, 10 pages.
Notice of Reason for Rejection, KR App. No. 10-2019-7006428, dated Jun. 28, 2021, 20 pages (11 pages of English Translation and 9 pages of Original Document).
Office Action, EP App. No. 15780522.7, dated Jun. 7, 2021, 8 pages.
Samsung, “Discussion on open-loop CoMP schemes”, 3GPP TSG RAN WG1 #58, R1-093377, 3rd Generation Partnership Project, (3GPP), Aug. 24-28, 2009, pp. 1-4.
Search Report and Written Opinion, BR App. No. 112015012165-9, dated Jul. 16, 2021, 8 pages (4 pages of English Translation and 4 pages of Original Document).
Werner, Karl, et al., “LTE-Advanced 8×8 MIMO Measurements in an Indoor Scenario”, Proceedings of ISAP2012, Nagoya, Japan, Oct. 29, 2012, pp. 750-753.
Abandonment from U.S. Appl. No. 13/475,598, dated Feb. 8, 2016, 1 page.
Abandonment from U.S. Appl. No. 14/086,700, dated Dec. 26, 2017, 2 pages.
Advisory Action for U.S. Appl. No. 12/802,989, dated May 4, 2017, 3 pages.
Communication Pursuant to Article 94(3) EPC for Application No. 13790935.4, dated Feb. 4, 2019, 11 pages.
Communication pursuant to Article 94(3) EPC for European Application No. 08798313.6, dated May 2, 2017, 7 pages.
Communication pursuant to Article 94(3) EPC for European Application No. 10156950.7, dated May 9, 2017, 9 pages.
Communication pursuant to Article 94(3) EPC from foreign counterpart European Application No. 10156954, dated Jan. 25, 2017, 5 pages.
Communication Pursuant to Article 94(3) EPC from foreign counterpart European Application No. 13784690.3, dated Aug. 23, 2018, 6 pages.
Communication pursuant to Article 94(3) EPC from foreign counterpart European Application No. 13856705.2, dated Jul. 18, 2017, 5 pages.
Communication under rule 71(3) EPC from foreign counterpart European Application No. 08798313.6, dated Oct. 24, 2017, 8 pages.
Corrected Notice of Allowance from U.S. Appl. No. 13/797,984, dated Feb. 8, 2018, 4 pages.
Decision of Grant a Patent from foreign counterpart Japanese Application No. 2016120928, dated Apr. 10, 2017, 6 pages.
Decision of Grant from foreign counterpart Japanese Patent Application No. 2015-510498, dated Jun. 14, 2017, 6 pages.
Decision of Grant from foreign counterpart Russian Patent Application No. 2014151216, dated Jan. 31, 2017, 18 pages.
Decision of Refusal from foreign counterpart Japanese Patent Application No. 2014530763, dated Dec. 19, 2016, 6 pages.
Decision of Refusal from foreign counterpart Korean Patent Application No. 2010-7006265, dated Apr. 23, 2015, 2 pages.
Decision to Grant a Patent from foreign counterpart Japanese Patent Application No. 2017-082862, dated Dec. 10, 2018, 7 pages.
Decision to Grant a patent from foreign counterpart Japanese Patent Application No. 2017-110950, dated Nov. 15, 2017, 6 pages.
European Search Report for Application No. 10156954.9-2411, dated Sep. 2, 2010, 5 pages.
Examination Report from counterpart Australian Patent Application No. AU2014200745, dated Sep. 25, 2015, 3 pages.
Examination Report from foreign counterpart Australian Patent Application No. 2016219662, dated Sep. 9, 2016, 2 pages.
Examination Report from foreign counterpart New Zealand Patent Application No. 622137, dated Dec. 21, 2016, 3 pages.
Examination Report No. 1 from Foreign Counterpart Australian Patent Application No. 2012308632, dated Oct. 11, 2016, 3 pages.
Examination report No. 1 from foreign counterpart Australian Patent Application No. 2015248161, dated Jul. 2, 2018, 5 pages.
Examination Report No. 2 from Foreign Counterpart Australian Patent Application No. 2012308632, dated Jun. 6, 2017, 5 pages.
Examination report No. 4 from foreign counterpart Australian Patent Application No. 2013347803, dated Jan. 25, 2018, 6 pages.
Examiner's Report from foreign counterpart Australian Patent Application No. 2013256044, dated May 9, 2016, 2 pages.
Examiner's Report from foreign counterpart Canadian Patent Application No. 2539333, dated Dec. 4, 2012, 15 pages.
Examiner's Report from foreign counterpart Canadian Patent Application No. 28656772, dated Jan. 7, 2016, 3 pages.
Examiner's Report from foreign counterpart Canadian Patent Application No. CN2695799, dated Apr. 1, 2015, 4 pages.
Extended European Search Report for Application No. 08798313.6, dated Nov. 14, 2012, 10 pages.
Extended European Search Report for Application No. 10156950.7, dated Jun. 11, 2012, 10 pages.
Extended European Search Report for Application No. 10184659.0, dated Nov. 29, 2012, 8 pages.
Extended European Search Report for Application No. 11838640.8, dated May 31, 2017, 15 pages.
Extended European Search Report for Application No. 13843203.4, dated Feb. 15, 2016, 8 pages.
Extended European Search Report for Application No. 13856705.2, dated Mar. 2, 2016, 10 pages.
Extended European Search Report for Application No. 14770916.6, dated Jan. 24, 2017, 12 pages.
Extended European Search Report for Application No. 14779084.4, dated Sep. 29, 2016, 8 pages.
Extended European Search Report for Application No. 15746217.7, dated Jan. 22, 2018, 18 pages.
Extended European Search Report for Application No. 18186156.8, dated Nov. 26, 2018, 7 pages.
Extended European Search Report for Application No. EP05254757, dated Sep. 13, 2005, 9 pages.
Extended European Search Report for Application No. EP13790935.4, dated Dec. 1, 2015, 9 pages.
Extended European Search Report for Application No. 15780522.7, dated Feb. 6, 2018, 13 pages.
Extended Search Report from counterpart European Patent Application No. EP13784690.3, dated Nov. 23, 2015, 4 pages.
Final Office Action from foreign counterpart Japanese Application No. 2005223345, dated May 12, 2011, 9 Pages.
Final Office Action from U.S. Appl. No. 14/086,700, dated Oct. 14, 2016, 11 pages.
Final Office Action from U.S. Appl. No. 10/817,731, dated Jul. 9, 2008, 21 pages.
Final Office Action from U.S. Appl. No. 10/817,731, dated Sep. 11, 2009, 36 pages.
Final Office Action from U.S. Appl. No. 12/630,627, dated Apr. 2, 2013, 23 pages.
Final Office Action from U.S. Appl. No. 12/630,627, dated Oct. 20, 2011, 13 pages.
Final Office Action from U.S. Appl. No. 12/802,958, dated Apr. 15, 2015, 24 pages.
Final Office Action from U.S. Appl. No. 12/802,958, dated Apr. 29, 2016, 33 pages.
Final Office Action from U.S. Appl. No. 12/802,958, dated Jun. 7, 2017, 18 pages.
Final Office Action from U.S. Appl. No. 12/802,958, dated Jun. 25, 2013, 48 pages.
Final Office Action from U.S. Appl. No. 12/802,974, dated Aug. 1, 2014, 23 pages.
Final Office Action from U.S. Appl. No. 12/802,974, dated Nov. 30, 2015, 22 pages.
Final Office Action from U.S. Appl. No. 12/802,975, dated Aug. 4, 2014, 40 pages.
Final Office Action from U.S. Appl. No. 12/802,975, dated Dec. 14, 2015, 26 pages.
Final Office Action from U.S. Appl. No. 12/802,975, dated Dec. 22, 2016, 29 pages.
Final Office Action from U.S. Appl. No. 12/802,988, dated Aug. 2, 2013, 13 pages.
Final Office Action from U.S. Appl. No. 12/802,988, dated Feb. 8, 2017, 13 pages.
Final Office Action from U.S. Appl. No. 12/802,988, dated Jan. 13, 2016, 11 pages.
Final Office Action from U.S. Appl. No. 12/802,988, dated Jan. 22, 2018, 11 pages.
Final Office Action from U.S. Appl. No. 12/802,988, dated Oct. 21, 2014, 13 pages.
Final Office Action from U.S. Appl. No. 12/802,988, dated Sep. 5, 2012, 8 pages.
Final Office Action from U.S. Appl. No. 12/802,989, dated Aug. 25, 2015, 24 pages.
Final Office Action from U.S. Appl. No. 12/802,989, dated Jun. 12, 2014, 17 pages.
Final Office Action from U.S. Appl. No. 12/802,989, dated Nov. 2, 2016, 14 pages.
Final Office Action from U.S. Appl. No. 12/802,989, dated Nov. 27, 2012, 12 pages.
Final Office Action from U.S. Appl. No. 13/232,996, dated Apr. 11, 2017, 149 pages.
Final Office Action from U.S. Appl. No. 13/232,996, dated Jul. 31, 2013, 12 pages.
Final Office Action from U.S. Appl. No. 13/232,996, dated Mar. 21, 2018, 20 pages.
Final Office Action from U.S. Appl. No. 13/232,996, dated Nov. 12, 2015, 14 pages.
Final Office Action from U.S. Appl. No. 13/232,996, dated Oct. 23, 2014, 15 pages.
Final Office Action from U.S. Appl. No. 13/233,006, dated Dec. 19, 2017, 114 pages.
Final Office Action from U.S. Appl. No. 13/233,006, dated Feb. 18, 2014, 18 pages.
Final Office Action from U.S. Appl. No. 13/233,006, dated Nov. 5, 2015, 10 pages.
Final Office Action from U.S. Appl. No. 13/233,006, dated Oct. 12, 2016, 10 pages.
Final Office Action from U.S. Appl. No. 13/464,648, dated Aug. 1, 2013, 10 pages.
Final Office Action from U.S. Appl. No. 13/475,598, dated Aug. 27, 2014, 30 pages.
Final Office Action from U.S. Appl. No. 13/797,950, dated Aug. 24, 2017, 74 pages.
Final Office Action from U.S. Appl. No. 13/797,950, dated Feb. 2, 2016, 65 pages.
Final Office Action from U.S. Appl. No. 13/797,971, dated Oct. 9, 2015, 52 pages.
Final Office Action from U.S. Appl. No. 13/797,984, dated Sep. 29, 2016, 13 pages.
Final Office Action from U.S. Appl. No. 13/797,984, dated Aug. 20, 2015, 15 pages.
Final Office Action from U.S. Appl. No. 13/844,355, dated Aug. 12, 2015, 20 pages.
Final Office Action from U.S. Appl. No. 13/844,355, dated Dec. 15, 2016, 23 pages.
Final Office Action from U.S. Appl. No. 13/844,355, dated Feb. 7, 2018, 24 pages.
Final Office Action from U.S. Appl. No. 14/023,302, dated Mar. 2, 2015, 5 pages.
Final Office Action from U.S. Appl. No. 14/086,700, dated Sep. 2, 2015, 9 pages.
Final Office Action from U.S. Appl. No. 14/611,565, dated Jun. 16, 2016, 22 pages.
Final Office Action from U.S. Appl. No. 14/611,565, dated Oct. 25, 2017, 25 pages.
Final Office Action from U.S. Appl. No. 14/672,014, dated Oct. 16, 2017, 9 pages.
Final Office Action from U.S. Appl. No. 15/181,383, dated Jan. 11, 2018, 8 pages.
Final Office Action with partial English translation for Japanese Patent Application No. 2005223345, dated Feb. 18, 2014, 23 pages.
First Exam Report from foreign counterpart New Zealand Application No. 701567, dated Feb. 3, 2016, 4 pages.
First Exam Report from foreign counterpart New Zealand Application No. 701691, dated Feb. 10, 2016, 4 pages.
First Exam Report from foreign counterpart New Zealand Patent Application No. 717370, dated Apr. 8, 2016, 2 pages.
First Examination Report from foreign counterpart Australian Patent Application No. 2014248533, dated Mar. 1, 2017, 5 pages.
First Examination Report from foreign counterpart New Zealand Application No. 729017, dated Jun. 30, 2017, 3 pages.
First Examination Report from foreign counterpart New Zealand Patent Application No. 728719, dated May 31, 2017, 4 pages.
First Examination Report mailed for counterpart Australian Patent Application No. AU2011323559, dated Sep. 30, 2015, 3 pages.
First Examination Report mailed for foreign counterpart New Zealand Patent Application No. 622137, dated Aug. 28, 2014, 2 pages.
First Office Action and Search Report from foreign counterpart Chinese Patent Application No. 201210466082X, dated Apr. 3, 2015, 26 pages.
First Office Action and Search report from foreign counterpart Chinese Patent Application No. 201380026522.2, dated Mar. 27, 2017, 20 pages.
First Office Action and Search Report from foreign counterpart Chinese Patent Application No. 201580007666.2, dated Jan. 11, 2019, 13 pages.
First Office Action and Search Report from foreign counterpart Taiwan Application No. 100139880, dated Feb. 26, 2016, 27 pages.
First Office Action for counterpart Japan Patent Application No. JP2014264325, dated Nov. 12, 2015, 4 pages.
First Office Action from counterpart China Patent Application No. 200880102933.4, dated Dec. 7, 2012, 20 pages.
First Office Action from European Patent Application No. 05254757.7, dated Dec. 3, 2012, 6 pages.
First Office Action from foreign counterpart European Patent Application No. 12762167.0, dated Jan. 4, 2016, 4 pages.
First Office Action from foreign counterpart European Patent Application No. 201380035543.0, dated Feb. 15, 2016, 8 pages.
First Office Action from foreign counterpart Korean Patent Application No. 10-2015-7033311, dated Feb. 16, 2016, 12 pages.
First Office Action from foreign counterpart Mexican Patent Application No. MXa2014013795, dated Nov. 1, 2016, 3 pages.
First Office Action from foreign counterpart Mexican Patent Application No. MXa2014013795, dated Oct. 30, 2015, 7 pages.
First Office Action from foreign counterpart Russian Patent Application No. 2011131821, dated Jun. 26, 2015, 8 pages.
First Office Action from foreign counterpart Taiwan Patent Application No. 102117728, dated Aug. 9, 2016, 11 pages.
First Office Action dated Apr. 24, 2015 for foreign counterpart Mexican Patent Application No. MX/a/2014/002900, dated Apr. 24, 2015, 3 pages.
First Office Action Report for counterpart Chinese Patent Application No. 201310407419.4, dated Nov. 20, 2015, 8 pages.
Further Examination Report from foreign counterpart New Zealand Application No. 701567, dated Aug. 24, 2016, 6 pages.
Further Examination Report from foreign counterpart New Zealand Application No. 701691, dated Sep. 26, 2016, 3 pages.
Further Examination Report from foreign counterpart New Zealand Patent Application No. 717370, dated Aug. 3, 2017, 4 pages.
Further Examination Report (Postponed Acceptance) from foreign counterpart New Zealand Patent Application No. 728719, dated Jan. 31, 2018, 2 pages.
International Preliminary Report On Patentability and Written Opinion for Application No. PCT/US2013/071749, dated Jun. 4, 2015, 7 pages.
International Preliminary Report On Patentability and Written Opinion for Application No. PCT/US2014/025102, dated Sep. 24, 2015, 10 pages.
International Preliminary Report On Patentability and Written Opinion for Application No. PCT/US2014/025108, dated Sep. 24, 2015, 8 pages.
International Preliminary Report On Patentability and Written Opinion for Application No. PCT/US2014/025123, dated Sep. 24, 2015, 10 pages.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2015/014511, dated Aug. 18, 2016, 5 pages.
International Preliminary Report on Patentability for Application No. PCT/US06/41009, dated Apr. 23, 2008, 4 pages.
International Preliminary Report on Patentability for Application No. PCT/US11/58663, dated May 7, 2013, 26 pages.
International Preliminary Report on Patentability for Application No. PCT/US2005/11033, dated Jun. 3, 2008, 7 pages.
International Preliminary Report on Patentability for Application No. PCT/US2008/073780, dated Mar. 4, 2010, 10 pages.
International Preliminary Report on Patentability for Application No. PCT/US2012/054937, dated Mar. 27, 2014, 13 pages.
International Preliminary Report on Patentability for Application No. PCT/US2013/039580, dated Nov. 4, 2014, 7 pages.
International Preliminary Report on Patentability for Application No. PCT/US2013/041726, dated Nov. 18, 2014, 6 pages.
International Preliminary Report on Patentability for Application No. PCT/US2015/023436, dated Oct. 27, 2016, 6 pages.
International Preliminary Report on Patentability for Application No. PCT/US2017/047963, dated Mar. 7, 2019, 8 pages.
International Preliminary Report On Patentability from foreign counterpart PCT/US2013/061493, dated Apr. 16, 2015, 7 pages.
International Search Report and the Written Opinion for Application No. PCT/US15/14511, dated May 18, 2015, 7 pages.
International Search Report and the Written Opinion for Application No. PCT/US2013/061493, dated Dec. 6, 2013, 9 pages.
International Search Report and Written opinion for Application No. PCT/US 06/41009, dated May 24, 2007, 6 Pages.
International Search Report and Written opinion for Application No. PCT/US05/11033, dated May 2, 2008, 10 pages.
International Search Report and Written Opinion for Application No. PCT/US13/41726, dated Jul. 16, 2013, 7 pages.
International Search Report and Written Opinion for Application No. PCT/US2008/073780, dated Nov. 19, 2008.
International Search Report and Written Opinion for Application No. PCT/US2012/054937, dated Apr. 2, 2013, 17 pages.
International Search Report and Written Opinion for Application No. PCT/US2013/039580, dated Aug. 20, 2013, 12 pages.
International Search Report and Written opinion for Application No. PCT/US2014/025105, dated Jul. 14, 2014, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/025108, dated Sep. 19, 2014, 10 Pages.
International Search Report and Written Opinion for Application No. PCT/US2015/023436, dated Aug. 19, 2015, 10 pages.
International Search Report and Written Opinion for Application No. PCT/US2017/047963, dated Nov. 3, 2017, 9 pages.
International Search Report and Written Opinion for Application No. PCT/US2017/058291, dated Mar. 8, 2018, 12 pages.
International Search Report and Written opinion for International Application No. PCT/US2013/071749, dated Apr. 8, 2014, 9 pages.
International Search Report and Written opinion for International Application No. PCT/US2014/025102, dated Jul. 18, 2014, 11 pages.
International Search Report and Written opinion for International Application No. PCT/US2014/025123, dated Jul. 18, 2014, 11 pages.
International Search Report and Written Opinion for PCT Application No. PCT/US 11/58663, dated Mar. 29, 2012, 33 pages.
Letter Restarting Period for Response from U.S. Appl. No. 13/233,006, dated Apr. 15, 2016, 9 pages.
Non-Final Office Action from U.S. Appl. No. 10/817,731, dated Jan. 4, 2008, 14 pages.
Non-Final Office Action from U.S. Appl. No. 10/817,731, dated Jan. 21, 2009, 23 pages.
Non-Final Office Action from U.S. Appl. No. 10/817,731, dated Mar. 15, 2010, 26 pages.
Non-Final Office Action from U.S. Appl. No. 10/817,731, dated May 18, 2007, 16 pages.
Non-Final Office Action from U.S. Appl. No. 10/902,978, dated Apr. 10, 2008, 8 pages.
Non-Final Office Action from U.S. Appl. No. 10/902,978, dated Nov. 6, 2007, 11 pages.
Non-Final Office Action from U.S. Appl. No. 11/256,478, dated Sep. 19, 2008, 14 pages.
Non-Final Office Action from U.S. Appl. No. 11/894,362, dated Oct. 29, 2008, 17 pages.
Non-Final Office Action from U.S. Appl. No. 11/894,394, dated Oct. 28, 2008, 13 pages.
Non-Final Office Action from U.S. Appl. No. 11/894,540, dated Apr. 29, 2009, 8 pages.
Non-Final Office Action from U.S. Appl. No. 11/894,540, dated Oct. 29, 2008, 13 pages.
Non-Final Office Action from U.S. Appl. No. 12/143,503, dated Dec. 9, 2010, 15 pages.
Non-Final Office Action from U.S. Appl. No. 12/630,627, dated Aug. 22, 2012, 23 pages.
Non-Final Office Action from U.S. Appl. No. 12/630,627, dated Mar. 16, 2011, 5 pages.
Non-Final Office Action from U.S. Appl. No. 12/637,643, dated Jun. 7, 2012, 25 pages.
Non-Final Office Action from U.S. Appl. No. 12/637,643, dated Sep. 23, 2011, 18 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,958, dated Aug. 13, 2015, 22 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,958, dated Jan. 16, 2018, 118 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,958, dated Jun. 23. 2014, 24 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,958, dated Nov. 4, 2016, 19 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,958, dated Nov. 21, 2012, 17 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,974, dated Apr. 24, 2015, 27 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,974, dated Aug. 1, 2013, 35 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,974, dated Dec. 19, 2012, 7 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,975, dated Aug. 1, 2013, 27 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,975, dated Aug. 14, 2013, 26 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,975, dated Dec. 19, 2012, 16 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,975, dated Jul. 1, 2016, 21 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,975, dated May 7, 2015, 25 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,975, dated Sep. 14, 2017, 23 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,988, dated Apr. 12, 2013, 45 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,988, dated Apr. 17, 2012, 10 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,988, dated Aug. 15, 2016, 19 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,988, dated Jun. 26, 2015, 17 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,988, dated Mar. 24, 2014, 11 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,988, dated Sep. 15, 2017, 11 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,989, dated Jun. 14, 2012, 10 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,989, dated Mar. 30, 2016, 35 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,989, dated Nov. 25, 2014, 17 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,989, dated Nov. 26, 2013, 27 pages.
Non-Final Office Action from U.S. Appl. No. 13/232,996, dated Apr. 11, 2013, 23 pages.
Non-Final Office Action from U.S. Appl. No. 13/232,996, dated Jun. 20, 2016, 30 pages.
Non-Final Office Action from U.S. Appl. No. 13/232,996, dated Jun. 24, 2015, 15 pages.
Non-Final Office Action from U.S. Appl. No. 13/232,996, dated Mar. 21, 2014, 9 pages.
Non-Final Office Action from U.S. Appl. No. 13/232,996, dated Sep. 21, 2017, 15 pages.
Non-Final Office Action from U.S. Appl. No. 13/233,006, dated Apr. 16, 2013, 8 pages.
Non-Final Office Action from U.S. Appl. No. 13/233,006, dated Apr. 28, 2017, 10 pages.
Non-Final Office Action from U.S. Appl. No. 13/233,006, dated Jun. 4, 2015, 12 pages.
Non-Final Office Action from U.S. Appl. No. 13/233,006, dated Sep. 12, 2013, 6 pages.
Non-Final Office Action from U.S. Appl. No. 13/233,006, dated Sep. 24, 2014, 9 pages.
Non-Final Office Action from U.S. Appl. No. 13/233,006, dated Apr. 1, 2016, 9 pages.
Non-Final Office Action from U.S. Appl. No. 13/461,682, dated Feb. 25, 2014, 37 pages.
Non-Final Office Action from U.S. Appl. No. 13/464,648, dated Feb. 12, 2013, 12 pages.
Non-Final Office Action from U.S. Appl. No. 13/464,648, dated Feb. 14, 2014, 11 pages.
Non-Final Office Action from U.S. Appl. No. 13/475,598, dated Dec. 30, 2013, 16 pages.
Non-Final Office Action from U.S. Appl. No. 13/475,598, dated Mar. 23, 2015, 14 pages.
Non-Final Office Action from U.S. Appl. No. 13/633,702, dated Dec. 17, 2013, 21 pages.
Non-Final Office Action from U.S. Appl. No. 13/797,950, dated Jan. 11, 2017, 65 pages.
Non-Final Office Action from U.S. Appl. No. 13/797,950, dated May 11, 2015, 61 pages.
Non-Final Office Action from U.S. Appl. No. 13/797,971, dated May 11, 2015, 52 pages.
Non-Final Office Action from U.S. Appl. No. 13/797,971, dated Oct. 4, 2016, 56 pages.
Non-Final Office Action from U.S. Appl. No. 13/797,984, dated Feb. 28, 2017, 13 pages.
Non-Final Office Action from U.S. Appl. No. 13/797,984, dated Jan. 14, 2016, 14 pages.
Non-Final Office Action from U.S. Appl. No. 13/797,984, dated Jan. 29, 2015, 15 pages.
Non-Final Office Action from U.S. Appl. No. 13/844,355, dated Apr. 18, 2016, 21 pages.
Non-Final Office Action from U.S. Appl. No. 13/844,355, dated Jan. 8, 2015, 23 pages.
Non-Final Office Action from U.S. Appl. No. 13/844,355, dated Jun. 30, 2017, 159 pages.
Non-Final Office Action from U.S. Appl. No. 14/023,302, dated Jul. 17, 2014, 37 pages.
Non-Final Office Action from U.S. Appl. No. 14/023,302, dated Jun. 11, 2015, 8 pages.
Non-Final Office Action from U.S. Appl. No. 14/086,700, dated Apr. 2, 2015, 12 pages.
Non-Final Office Action from U.S. Appl. No. 14/086,700, dated Mar. 4, 2016, 10 pages.
Non-Final Office Action from U.S. Appl. No. 14/086,700, dated May 25, 2017, 12 pages.
Non-Final Office Action from U.S. Appl. No. 14/156,254, dated Sep. 11, 2014, 44 pages.
Non-Final Office Action from U.S. Appl. No. 14/611,565, dated Apr. 4, 2019, 35 pages.
Non-Final Office Action from U.S. Appl. No. 14/611,565, dated Aug. 31, 2015, 21 pages.
Non-Final Office Action from U.S. Appl. No. 14/611,565, dated Mar. 14, 2017, 23 pages.
Non-Final Office Action from U.S. Appl. No. 14/672,014, dated Dec. 30, 2016, 7 pages.
Non-Final office action from U.S. Appl. No. 15/057,002, dated Oct. 23, 2017, 60 pages.
Non-Final Office Action from U.S. Appl. No. 15/181,383, dated May 22, 2017, 48 pages.
Non-Final Office Action from U.S. Appl. No. 15/201,276, dated Jan. 25, 2018, 77 pages.
Non-Final Office Action from U.S. Appl. No. 15/201,276, dated Mar. 1, 2017, 107 pages.
Non-Final Office Action from U.S. Appl. No. 15/340,914, dated Apr. 25, 2018, 15 pages.
Non-Final Office Action from U.S. Appl. No. 15/340,914, dated Jul. 21, 2017, 114 pages.
Non-Final Office Action from U.S. Appl. No. 15/616,817, dated Nov. 1, 2017, 14 pages.
Non-final Office Action from U.S. Appl. No. 13/844,355, dated Mar. 21, 2019, 31 pages.
Notice of Acceptance from Foreign Counterpart Australian Patent Application No. 2012308632, dated Sep. 13, 2017, 4 pages.
Notice of Acceptance from foreign counterpart Australian Patent Application No. 2013327697, dated Feb. 15, 2017, 4 pages.
Notice of Acceptance from foreign counterpart Australian Patent Application No. 2014248533, dated Jun. 28, 2017, 4 pages.
Notice of Acceptance from foreign counterpart Australian Patent Application No. 20160219662, dated May 5. 2017, 3 pages.
Notice of Acceptance from foreign counterpart Australian Patent Application No. AU20140200745, dated Sep. 19, 2016, 3 page.
Notice of Acceptance from foreign counterpart New Zealand Patent Application No. 610463, dated Aug. 5, 2015, 1 page.
Notice of Acceptance from foreign counterpart New Zealand Patent Application No. 717370, dated Jan. 10, 2018, 1 page.
Notice of Allowance from U.S. Appl. No. 13/797,984, dated Jan. 17, 2018, 146 pages.
Notice of Allowance and Search Report from foreign counterpart Taiwan Patent Application No. 102134408, dated Feb. 17, 2017, 9 pages.
Notice of Allowance for Patent from foreign counterpart Korean Patent Application No. 10-2017-7002596, dated Feb. 27, 2019, 3 pages.
Notice of Allowance from counterpart Mexican Patent Application No. MX/a/2014/002900, dated Nov. 26, 2015, 4 pages. Translation attached.
Notice of Allowance from counterpart U.S. Appl. No. 12/917,257, dated Dec. 6, 2012, 8 pages.
Notice of Allowance from foreign counterpart Australian Patent Application No. 2011323559, dated May 13, 2016, 2 pages.
Notice of Allowance from foreign counterpart Canadian Patent Application No. 2695799, dated Feb. 9, 2016, 1 page.
Notice of Allowance from foreign counterpart Canadian Patent Application No. P14906, dated Jun. 1, 2015, 1 page.
Notice of Allowance from foreign counterpart Korean Patent Application No. 2015-7002560, dated Feb. 4, 2016, 2 Pages.
Notice of Allowance from U.S. Appl. No. 12/802,976, dated Mar. 14, 2011, 9 pages.
Notice of Allowance from U.S. Appl. No. 13/232,996, dated Oct. 12, 2016, 5 pages.
Notice of Allowance from U.S. Appl. No. 10/817,731, dated Sep. 30, 2010, 6 pages.
Notice of Allowance from U.S. Appl. No. 10/902,978, dated Apr. 16, 2008, 7 pages.
Notice of Allowance from U.S. Appl. No. 10/902,978, dated Jun. 27, 2008, 7 pages.
Notice of Allowance from U.S. Appl. No. 11/256,478, dated Jan. 26, 2010, 9 pages.
Notice of Allowance from U.S. Appl. No. 11/256,478, dated Jul. 30, 2009, 9 pages.
Notice of Allowance from U.S. Appl. No. 11/256,478, dated Oct. 29, 2009, 16 pages.
Notice of Allowance from U.S. Appl. No. 11/894,362, dated Mar. 23, 2009, 10 pages.
Notice of Allowance from U.S. Appl. No. 11/894,362, dated Nov. 10, 2009, 5 pages.
Notice of Allowance from U.S. Appl. No. 11/894,362, dated Sep. 3, 2009, 12 pages.
Notice of Allowance from U.S. Appl. No. 11/894,394, dated Jul. 30, 2009, 14 pages.
Notice of Allowance from U.S. Appl. No. 11/894,394, dated Jun. 26, 2009, 7 pages.
Notice of Allowance from U.S. Appl. No. 11/894,394, dated Mar. 6, 2009, 11 pages.
Notice of Allowance from U.S. Appl. No. 11/894,540, dated Nov. 9, 2009, 5 pages.
Notice of Allowance from U.S. Appl. No. 11/894,540, dated Sep. 14, 2009, 13 pages.
Notice of Allowance from U.S. Appl. No. 12/143,503, dated Apr. 11, 2011, 9 pages.
Notice of Allowance from U.S. Appl. No. 12/143,503, dated Aug. 18, 2011, 12 pages.
Notice of Allowance from U.S. Appl. No. 12/143,503, dated Dec. 9, 2011, 11 pages.
Notice of Allowance from U.S. Appl. No. 12/630,627, dated Sep. 25, 2013, 11 pages.
Notice of Allowance from U.S. Appl. No. 12/637,643, dated Jan. 17, 2013, 11 pages.
Notice of Allowance from U.S. Appl. No. 12/802,938, dated Apr. 4, 2013, 16 pages.
Notice of Allowance from U.S. Appl. No. 12/802,938, dated Dec. 6, 2012, 37 pages.
Notice of Allowance from U.S. Appl. No. 12/802,938, dated May 24, 2013, 10 pages.
Notice of Allowance from U.S. Appl. No. 12/802,938, dated Sep. 19, 2012, 8 pages.
Notice of Allowance from U.S. Appl. No. 12/802,974, dated Sep. 29, 2016, 5 pages.
Notice of Allowance from U.S. Appl. No. 12/802,974, dated Feb. 28, 2017, 15 pages.
Notice of Allowance from U.S. Appl. No. 12/802,974, dated Jun. 30, 2017, 89 pages.
Notice of Allowance from U.S. Appl. No. 12/802,974, dated Oct. 4, 2017, 17 pages.
Notice of Allowance from U.S. Appl. No. 12/802,974, dated Sep. 13, 2016, 43 pages.
Notice of Allowance from U.S. Appl. No. 12/802,976, dated Apr. 14, 2011, 16 pages.
Notice of Allowance from U.S. Appl. No. 12/802,976, dated Aug. 22, 2011, 8 pages.
Notice of Allowance from U.S. Appl. No. 12/802,976, dated Dec. 9, 2011, 11 pages.
Notice of Allowance from U.S. Appl. No. 12/802,976, dated Nov. 29, 2010, 7 pages.
Notice of Allowance from U.S. Appl. No. 12/802,989, dated Jun. 27, 2017, 121 pages.
Notice of Allowance from U.S. Appl. No. 12/917,257, dated May 31, 2013, 12 Pages.
Notice of Allowance from U.S. Appl. No. 13/232,996, dated Oct. 26, 2016, 4 pages.
Notice of Allowance from U.S. Appl. No. 13/233,006, dated Apr. 3, 2019, 19 pages.
Notice of Allowance from U.S. Appl. No. 13/461,682, dated Oct. 2, 2014, 10 pages.
Notice of Allowance from U.S. Appl. No. 13/464,648, dated Apr. 24, 2015, 23 pages.
Notice of Allowance from U.S. Appl. No. 13/464,648, dated Aug. 14, 2015, 21 pages.
Notice of Allowance from U.S. Appl. No. 13/464,648, dated Aug. 25, 2015, 4 pages.
Notice of Allowance from U.S. Appl. No. 13/464,648, dated Feb. 23, 2016, 15 pages.
Notice of Allowance from U.S. Appl. No. 13/464,648, dated Jan. 9, 2015, 11 pages.
Notice of Allowance from U.S. Appl. No. 13/464,648, dated Nov. 30, 2015, 12 pages.
Notice of Allowance from U.S. Appl. No. 13/464,648, dated Sep. 19, 2014, 5 pages.
Notice of Allowance from U.S. Appl. No. 13/475,598, dated Feb. 14, 2017, 41 pages.
Notice of Allowance from U.S. Appl. No. 13/475,598, dated Oct. 19, 2015, 29 pages.
Notice of Allowance from U.S. Appl. No. 13/633,702, dated Jan. 6, 2015, 27 pages.
Notice of Allowance from U.S. Appl. No. 13/633,702, dated Aug. 15, 2014, 11 pages.
Notice of Allowance from U.S. Appl. No. 13/797,971, dated Jan. 29, 2018, 15 pages.
Notice of Allowance from U.S. Appl. No. 13/797,971, dated May 4, 2017, 8 pages.
Notice of Allowance from U.S. Appl. No. 13/797,971, dated Oct. 18, 2017, 144 pages.
Notice of Allowance from U.S. Appl. No. 13/797,984, dated Oct. 19, 2017, 10 pages.
Notice of Allowance from U.S. Appl. No. 14/023,302, dated May 17, 2016 5 pages.
Notice of Allowance from U.S. Appl. No. 14/023,302, dated Oct. 9, 2015, 5 pages.
Notice of Allowance from U.S. Appl. No. 14/023,302, dated Apr. 27, 2016, 3 pages.
Notice of Allowance from U.S. Appl. No. 14/023,302, dated Feb. 5, 2016, 27 pages.
Notice of Allowance from U.S. Appl. No. 14/086,700, dated Feb. 28, 2018, 5 pages.
Notice of Allowance from U.S. Appl. No. 14/156,254, dated Feb. 26, 2016, 21 pages.
Notice of Allowance from U.S. Appl. No. 14/156,254, dated Jul. 8, 2015, 7 pages.
Notice of Allowance from U.S. Appl. No. 14/156,254, dated Mar. 12, 2015, 5 pages.
Notice of Allowance from U.S. Appl. No. 14/156,254, dated Nov. 3, 2015, 29 pages.
Notice of Allowance from U.S. Appl. No. 15/201,276, dated Nov. 27, 2017, 7 pages.
Notice of Allowance from U.S. Appl. No. 15/616,817, dated Apr. 25, 2018, 10 pages.
Notice of Allowance from U.S. Appl. No. 13/232,996, dated Mar. 20, 2019, 10 pages.
Notice of Allowance from U.S. Appl. No. 15/181,383, dated Mar. 20, 2019, 10 pages.
Notice of Allowance mailed for U.S. Appl. No. 12/917,257, dated Feb. 15, 2013, 18 pages.
Notice of Grant from foreign counterpart China Patent Application No. 201210464974.6, dated Jul. 1, 2015, 3 pages.
Notice of Reasons for Rejection from foreign counterpart Japanese Patent Application No. 20150510498, dated Sep. 26, 2016, 21 pages.
Notice of Reasons for Rejection from foreign counterpart Japanese Patent Application No. 2016-234908, dated Nov. 22, 2018, 10 pages.
Notice of Reasons for Rejection from foreign counterpart Korean Patent Application No. 10-2014-7009876, dated Mar. 25, 2019, 11 pages.
Notice to File a Response from foreign counterpart Korean Patent Application No. 10-2018-7035654, dated Dec. 14, 2018, 10 pages.
Notification for Granting Patent Right from foreign counterpart Chinese Patent Application No. 201180061132.X, dated Apr. 6, 2017, 6 pages.
Notification of Reasons for Refusal from foreign counterpart Japanese Patent Application No. 2017-112639, dated Aug. 13, 2018, 4 pages.
Notification on Grant of Patent Right for Invention from foreign counterpart Chinese Patent Application No. 201210466082.X, dated Jan. 26, 2017, 3 pages.
Office Action and Search Report from foreign counterpart Chinese Patent Application No. CN201380035543, dated Jan. 3, 2017, 22 pages.
Office Action and Search Report from foreign counterpart Russian Patent Application No. 2014148791/28(078479), dated Apr. 13, 2017, 14 pages.
Office Action and Search Report from foreign counterpart Russian Patent Application No. 2015143188/07, dated Dec. 15, 2017, 13 pages.
Office Action and Search Report from foreign counterpart Taiwan Patent Application No. 105143637, dated Jan. 19, 2018, 12 pages.
Office Action and Search Report from foreign counterpart Taiwan Patent Application No. 103107541, dated Dec. 6, 2017, 15 pages.
Office Action for foreign counterpart China Patent Application No. 20051008867.1, dated Oct. 26, 2010, 4 pages.
Office Action from foreign counterpart Australian Patent Application No. 2004203336, dated Jun. 5, 2009, 2 pages.
Office Action from foreign counterpart Canada Patent Application No. 2514383, dated Jul. 26, 2012, 3 pages.
Office Action from foreign counterpart China Patent Application No. 200510088676, dated Jan. 25, 2011, 8 pages.
Office Action from foreign counterpart China Patent Application No. 200510088676.1, dated Mar. 20, 2009, 24 pages.
Office Action from foreign counterpart China Patent Application No. 200510088676.1, dated Feb. 5, 2010, 18 pages.
Office Action from foreign counterpart China Patent Application No. 201180061132.X, dated May 27, 2015, 6 pages.
Office Action from foreign counterpart China Patent Application No. 201180061132.X, dated Oct. 10, 2016, 11 pages.
Office Action from foreign counterpart Israel Patent Application No. 235518, dated Apr. 7, 2019, 2 pages.
Office Action from foreign counterpart Japan Patent Application No. 2013-537753, dated Sep. 7, 2015, 9 pages.
Office Action from foreign counterpart Japanese Patent Application No. 2007-506302, dated Jan. 11, 2011, 5 pages.
Office Action from foreign counterpart Japanese Patent Application No. 2012-057351, dated Jul. 1, 2013, 6 pages.
Office Action from foreign counterpart Japanese Patent Application No. 2012-057351, dated Mar. 10, 2014, 2 pages.
Office Action from foreign counterpart Japanese Patent Application No. 2013-156855, dated Apr. 22, 2015, 6 pages.
Office Action from foreign counterpart Japanese Patent Application No. 2014-140413, dated Jun. 27, 2015, 6 pages.
Office Action from foreign counterpart Japanese Patent Application No. 20150162819, dated Oct. 3, 2016, 6 pages.
Office Action from foreign counterpart Japanese Patent Application No. 2016-550718, dated Jan. 10, 2019, 4 pages.
Office Action from foreign counterpart Korean Patent Application No. 1020107006265, dated Jul. 29, 2014, 10 pages.
Office Action from foreign counterpart Korean Patent Application No. 20050070079, dated Jul. 29, 2011, 3 pages.
Office Action from foreign counterpart Korean Patent Application No. 2015-7002560, dated May 21, 2015, 10 pages.
Office Action from foreign counterpart Mexican Patent Application No. MX/a/2014/002900, dated May 25, 2015, 7 pages.
Office Action from foreign counterpart Mexican Patent Application No. MX/a/2014/013377, dated Mar. 22, 2016, 20 pages.
Office Action from foreign counterpart Mexican Patent Application No. MX/a/2014/013377, dated Nov. 30, 2017, 4 pages.
Office Action from foreign counterpart Mexican Patent Application No. Mx/a/2015/002992, dated Nov. 8, 2016, 4 pages.
Office Action from foreign counterpart New Zealand Patent Application No. 610463, dated Jan. 22, 2014, 2 pages.
Office Action from foreign counterpart Russian Patent Application No. 2014151216, dated Sep. 30, 2016, 12 pages.
Office Action from foreign counterpart Russian Patent Application No. 2016144927, dated Dec. 21, 2016, 6 pages.
Office Action from foreign counterpart Taiwan Application No. 100139880, dated Jan. 26, 2017, 7 pages.
Office Action from Foreign Counterpart Taiwan Patent Application No. 094125985, dated Jan. 6, 2012, 7 pages.
Office Action from foreign counterpart Taiwan Patent Application No. 101133865, dated Oct. 28, 2016, 5 pages.
Office Action from foreign counterpart Taiwan Patent Application No. 102116145, dated Mar. 31, 2017, 7 pages.
Office Action from foreign counterpart Taiwan Patent Application No. 102117728, dated Nov. 29, 2016, 6 pages.
Partial Supplementary European Search Report for Application No. 15780522.7, dated Oct. 20, 2017, 7 pages.
Preliminary Report On Patentability and Written Opinion for Application No. PCT/US2014/025105, dated Sep. 24, 2015, 10 pages.
Rejection Decision from foreign counterpart Japanese Patent Application No. JP2014264325, dated Oct. 3, 2016, 7 pages.
Requirement for Restriction/Election from U.S. Appl. No. 15/792,610, dated Jun. 11, 2018, 6 pages.
Second Office Action and Search Report from foreign counterpart Chinese Patent Application No. 201180061132.X dated Mar. 11, 2016, 11 pages.
Second Office Action and Search report from foreign counterpart Chinese Patent Application No. 201280044869.5, dated Jan. 17, 2017, 19 pages.
Second Office Action from foreign counterpart Mexican Patent Application No. MX/a/2014/013795, dated Feb. 3, 2016, 7 pages.
Communication pursuant to Article 94(3) EPC for Application No. EP13856705.2, dated Mar. 13, 2018, 6 pages.
Corrected Notice of Allowance from U.S. Appl. No. 13/797,950, dated Nov. 13, 2018, 16 pages.
Corrected Notice of Allowance from U.S. Appl. No. 13/797,984, dated Apr. 5, 2018, 12 pages.
Decision to grant a European patent pursuant to Article 97(1) EPC for Application No. 11838640.8, dated Feb. 7, 2019, 2 pages.
Examination report from foreign counterpart Indian Patent Application No. 3496/CHENP/2013, dated Oct. 29, 2018, 7 pages.
Final Office Action from U.S. Appl. No. 13/233,006, dated Nov. 13, 2018, 9 pages.
Final Office Action from U.S. Appl. No. 13/844,355, dated Feb. 21, 2019, 34 pages.
Final Office Action from U.S. Appl. No. 15/340,914, dated Jan. 3, 2019, 67 pages.
Final Office Action from U.S. Appl. No. 12/802,975, dated Jun. 22, 2018, 27 pages.
Final Office Action from U.S. Appl. No. 14/611,565, dated Oct. 25, 2018, 20 pages.
Final Office Action from U.S. Appl. No. 15/057,002, dated Jul. 16, 2018, 13 pages.
First Examination Report from foreign counterpart Australian Patent Application No. AU2017245425, dated May 9, 2018, 9 pages.
First Examination Report from foreign counterpart New Zealand Application No. 742186, dated Jun. 28, 2018, 4 pages.
First Examination Report from foreign counterpart New Zealand Application No. 743604, dated Jul. 10, 2018, 5 pages.
First Office Action and Search Report from foreign counterpart Chinese Patent Application No. 201480016091.6, dated Apr. 25, 2018, 17 pages.
Non-Final Office Action from U.S. Appl. No. 14/611,565, dated Apr. 19, 2018, 141 pages.
Non-Final Office Action from U.S. Appl. No. 12/802,975, dated Jan. 14, 2019, 112 pages.
Non-Final Office Action from U.S. Appl. No. 15/682,076, dated Jan. 28, 2019, 20 pages.
Non-Final Office Action from U.S. Appl. No. 15/792,610, dated Apr. 18, 2019, 147 pages.
Non-Final Office Action from U.S. Patent Appiication No. U.S. Appl. No. 13/233,006, dated Jul. 11, 2018, 29 pages.
Non-Final Office Action from U.S. Appl. No. 15/181,383, dated Jun. 25, 2018, 7 pages.
Notice of Allowance from U.S. Appl. No. 12/802,988, dated Sep. 25, 2018, 96 pages.
Notice of Allowance from U.S. Appl. No. 13/232,996, dated Jan. 9, 2019, 11 pages.
Notice of Allowance from U.S. Appl. No. 14/086,700, dated Sep. 28, 2018, 21 pages.
Notice of Allowance from U.S. Appl. No. 15/057,002, dated Apr. 16, 2019, 11 pages.
Notice of Allowance from U.S. Appl. No. 15/181,383, dated Jan. 25, 2019, 87 pages.
Notice of Allowance from U.S. Appl. No. 15/201,276, dated Jan. 23, 2019, 29 pages.
Notice of Allowance from U.S. Appl. No. 12/802,988, dated Nov. 15, 2018, 11 pages.
Notice of Acceptance from foreign counterpart New Zealand Patent Application No. 729017, dated Jun. 28, 2018, 1 page.
Notice of Allowance from U.S. Appl. No. 13/797,950, dated Aug. 2, 2018, 23 pages.
Notice of Allowance from U.S. Appl. No. 14/086,700, dated May 18, 2018, 21 pages.
Notice of Allowance from U.S. Appl. No. 15/201,276, dated Oct. 11, 2018, 5 pages.
Notice of Allowance from U.S. Appl. No. 15/616,817, dated Jun. 26, 2018, 131 pages.
Notice of Allowance from U.S. Appl. No. 15/616,817, dated Oct. 22, 2018, 21 pages.
Notice of Allowance from U.S. Appl. No. 13/797,950, dated Apr. 16, 2018, 117 pages.
Notice of Reasons for Rejection from foreign counterpart Japanese Patent Application No. 2016-501744, dated Mar. 5, 2018, 15 pages.
Office Action and Search Report from foreign counterpart Russian Patent Application No. 2016144927/08(072072), dated Oct. 30, 2018, 12 pages.
Office Action from foreign counterpart Taiwan Patent Application No. 103107541, dated Sep. 28, 2018, 7 pages.
Requirement for Restriction/Election from U.S. Appl. No. 15/792,610, dated Nov. 29, 2018, 7 pages.
Communication pursuant to Article 94(3) EPC for Application No. 10184659.0, dated Dec. 21, 2018, 4 pages.
Corrected Notice of Allowance from U.S. Appl. No. 14/086,700, dated Nov. 8, 2018, 104 pages.
Examination report No. 1 from foreign counterpart Australian Patent Application No. 2015214278, dated Jun. 5, 2018, 4 pages.
Non-Final Office Action from U.S. Appl. No. 13/232,996, dated Nov. 5, 2018, 36 pages.
Non-Final Office Action from U.S. Appl. No. 13/844,355, dated Aug. 27, 2018, 39 pages.
Non-Final Office Action from U.S. Appl. No. 14/672,014, dated Jun. 14, 2018, 129 pages.
Notice of Allowancefrom U.S. Appl. No. 15/057,002, dated Dec. 19, 2018, 68 pages.
Office Action from foreign counterpart Israel Patent Application No. 248265, dated Oct. 25, 2018, 6 pages.
Office Action from foreign counterpart Israel Patent Application No. 253541, dated Nov. 29, 2018, 4 pages.
Notice of Allowancefrom U.S. Appl. No. 12/802,958, dated Sep. 19, 2018, 22 pages.
Supplemental Notice of Allowance from U.S. Appl. No. 12/802,958, dated Dec. 3, 2018, 11 pages.
Summons to attend oral proceedings pursuant to rule 115(1) EPC for Application No. 10156954.9, mailed Jan. 30, 2019, 8 pages.
Supplementary European Search Report for Application No. EP05733294 dated Apr. 5, 2012, 4 pages.
Supplementary Partial European Search Report for Application No. EP11838640.8, dated Mar. 2, 2017, 13 pages.
Supplementary Partial European Search Report for Application No. EP14770916, dated Oct. 21, 2016, 6 pages.
Third Office Action from foreign counterpart Chinese Patent Application No. 201280044869.5, dated Aug. 31, 2017, 15 pages.
Third Office Action from foreign counterpart Mexican Patent Application No. MX/a/2014/013795 dated Jul. 27, 2016, 6 pages.
International Preliminary Report on Patentability for Application No. PCT/US2017/058291, dated May 9, 2019, 7 pages.
Office Action and Examination Search Report from foreign counterpart Canadian Patent Application No. 2904981, dated May 3, 2019, 6 pages.
Office Action from foreign counterpart Chinese Patent Application No. 201380061515.6, dated Apr. 23, 2019, 2 pages.
Non-Final Office Action, U.S. Appl. No. 14/611,565, dated Nov. 5, 2021, 7pages.
Non-Final Office Action, U.S. Appl. No. 17/100,875, dated Nov. 9, 2021, 10 pages.
Non-Final Office Action, U.S. Appl. No. 17/361,252, dated Oct. 20, 2021, 10 pages.
Non-Final Office Action, U.S. Appl. No. 17/498,666, dated Dec. 29, 2021, 22 pages.
Non-Final Office Action, U.S. Appl. No. 17/541,809, dated Feb. 8, 2022, 9 pages.
Notice of Allowance, U.S. Appl. No. 14/672,014, dated Sep. 23, 2021, 11 pages.
Notice of Allowance, U.S. Appl. No. 15/792,610, dated Nov. 3, 2021, 2 pages.
Notice of Allowance, U.S. Appl. No. 15/792,610, dated Oct. 26, 2021, 2 pages.
Notice of Allowance, U.S. Appl. No. 16/719,169, dated Sep. 16, 2021, 2 pages.
Notice of Allowance, U.S. Appl. No. 17/317,856, dated Oct. 1, 2021, 2 pages.
Notice of Allowance, U.S. Appl. No. 17/317,856, dated Sep. 9, 2021, 8 pages.
Notice of Allowance, U.S. Appl. No. 17/317,856, dated Sep. 23, 2021, 8 pages.
Notice of Allowance, U.S. Appl. No. 17/361,252, dated Nov. 18, 2021, 14 pages.
Notice of Allowance, U.S. Appl. No. 17/379,985, dated Dec. 15, 2021, 7 pages.
Notice of Allowance, U.S. Appl. No. 17/541,809, dated Mar. 15, 2022, 5 pages.
Office Action, EP App. No. 19159810.1, dated Oct. 4, 2021, 7 pages.
Office Action, TW App. No. 110125850, dated Dec. 16, 2021, 7 pages (4 pages of English Translation and 3 pages of Original Document).
Written Opinion, BR App. No. 112014028207, dated Jul. 21, 2021, 10 pages (5 pages of English Translation and 5 pages of Original document).
Decision of Refusal, JP App. No. 2019-093904, dated Feb. 7, 2022, 4 pages (2 pages of English Translation and 2 pages of Original Document).
Final Office Action, U.S. Appl. No. 14/611,565, dated Jul. 12, 2022, 12 pages.
Final Office Action, U.S. Appl. No. 17/498,666, dated Apr. 22, 2022, 17 pages.
Non-Final Office Action, U.S. Appl. No. 17/498,666, dated Aug. 18, 2022, 7 pages.
Notice of Allowance, U.S. Appl. No. 17/100,875, dated Apr. 22, 2022, 8 pages.
Notice of Allowance, U.S. Appl. No. 17/100,875, dated Aug. 10, 2022, 9 pages.
Notice of Allowance, U.S. Appl. No. 17/586,765, dated Apr. 7, 2022, 7 pages.
Notice of Allowance, U.S. Appl. No. 17/586,765, dated Jul. 27, 2022, 7 pages.
Notice of Final Rejection, KR App. No. 10-2015-7028298, dated Mar. 14, 2022, 8 pages (4 pages of English Translation and 4 pages of Original Document).
Office Action, EP App. No. 05254757.7, dated Apr. 21, 2022, 6 pages.
Office Action, EP App. No. 10184659, dated Apr. 21, 2022, 6 pages.
Office Action, MX App. No. MX/A/2019/001966, dated Mar. 16, 2022, 5 pages of original document only.
Examination Search Report, CA App. No. 2945987, dated Jan. 27, 2023, 3 pages.
Intention to Grant, EP App. No. 05254757.7, dated Mar. 1, 2023, 6 pages.
Intention to Grant, EP App. No. 10184659, dated Mar. 1, 2023, 6 pages.
International Preliminary Report on Patentability, PCT App. No. PCT/US2021/026431, dated Oct. 20, 2022, 5 pages.
Non Final Office Action, U.S. Appl. No. 17/528,811, dated Oct. 26, 2022, 14 pages.
Non-Final Office Action, U.S. Appl. No. 14/611,565, dated Jan. 4, 2023, 13 pages.
Non-Final Office Action, U.S. Appl. No. 17/224,977, dated Feb. 22, 2023, 7 pages.
Non-Final Office Action, U.S. Appl. No. 17/946,856, dated Mar. 17, 2023, 12 pages.
Non-Final Office Action, U.S. App. No. 17/948,193, dated Nov. 22, 2022, 23 pages.
Non-Final Office Action, U.S. Appl. No. 18/109,207, dated Apr. 25, 2023, 15 pages.
Notice of Acceptance, AU App. No. 2017350850, dated Aug. 10, 2022, 4 pages.
Notice of Allowance, U.S. Appl. No. 17/498,666, dated Oct. 13, 2022, 7 pages.
Notice of Allowance, U.S. Appl. No. 17/498,666, dated Sep. 29, 2022, 10 pages.
Notice of Allowance, U.S. App. No. 17/948, 193, dated Dec. 21, 2022, 5 pages.
Office Action and Search Report, CN App. No. 201780052444.1, dated Sep. 20, 2022, 20 pages (11 pages of English Translation and 9 pages of Original Document).
Office Action, EP App. No. 15746217.7, dated Jan. 26, 2023, 6 pages.
Office Action, EP App. No. 17864744.2, dated Oct. 27, 2022, 9 pages.
Office Action, IL App. No. 272481, dated Nov. 9, 2022, 6 pages (3 pages of English Translation and 3 pages of Original Document).
Office Action, TW App. No. 111124746, dated Mar. 15, 2023, 3 pages (Only English Translation).
Srinidhi et al., “Layered Tabu Search Algorithm for Large-MIMO Detection and a Lower Bound on ML Performance,” IEEE Trans. Commun, 2010, 5 pages.
Notice of Allowance, U.S. Appl. No. 17/532,941, dated Jun. 28, 2023, 2 pages.
Notice of Allowance, U.S. Appl. No. 17/532,967, dated Jun. 28, 2023, 2 pages.
Notice of Allowance, U.S. Appl. No. 17/946,856, dated Sep. 6, 2023, 8 pages.
Related Publications (1)
Number Date Country
20190104433 A1 Apr 2019 US
Provisional Applications (1)
Number Date Country
61729990 Nov 2012 US
Continuations (1)
Number Date Country
Parent 14086700 Nov 2013 US
Child 16208895 US