Systems and methods for extracting lipids from wet algal biomass

Information

  • Patent Grant
  • 8865452
  • Patent Number
    8,865,452
  • Date Filed
    Monday, June 15, 2009
    15 years ago
  • Date Issued
    Tuesday, October 21, 2014
    10 years ago
Abstract
Presented herein are exemplary systems and methods for extracting lipids from a wet algal biomass. An exemplary method comprises lysing a wet algal biomass with an insoluble granular lysing agent to create a lysate, creating a lipid-rich phase in the lysate, and separating the lipid-rich phase from the lysate. An exemplary system comprises a lysing station for creating a lysate from a wet algal biomass and a separation station for creating and separating a lipid-rich phase from the lysate. According to further exemplary systems and methods, ultrasound may be used in place of or in addition to a lysing agent to lyse the wet algal biomass.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to extracting lipids from algal biomass, and more particularly to low energy techniques using an insoluble granular lysing agent or ultrasound to extract lipids from wet algal biomass.


2. Description of Related Art


Microalgae differentiate themselves from other single-cell microorganisms in their natural ability to accumulate large amounts of lipids. Because most lipidic compounds have the potential to generate biofuels and renewable energy, there is a need for efficient systems and methods for extracting lipids from wet algal biomass.


SUMMARY OF THE INVENTION

Presented herein are exemplary systems and methods for extracting lipids from a wet algal biomass. An exemplary method comprises lysing a wet algal biomass with an insoluble granular lysing agent to create a lysate, creating a lipid-rich phase in the lysate, and separating the lipid-rich phase from the lysate.


Exemplary methods include using an insoluble granular lysing agent having a grain size dispersion of 10 to 1000 micrometers. In some embodiments, the insoluble granular lysing agent may be sand. In other embodiments, the insoluble granular lysing agent may be chalk, gypsum, or fly ash, for example. In various embodiments, the wet algal biomass is in the presence of an extraction solvent. The extraction solvent may be monophasic and multipolar.


An exemplary system comprises a lysing station for creating a lysate from a wet algal biomass and a separation station for creating and separating a lipid-rich phase from the lysate.


According to further exemplary systems and methods, ultrasound may be used in place of or in addition to a lysing agent to lyse the wet algal biomass.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an exemplary system for extracting lipids from wet algal biomass according to one embodiment; and



FIG. 2 is a diagram showing an exemplary method for extracting lipids from wet algal biomass.





DETAILED DESCRIPTION

Microalgae produce large amounts of lipids. Lipids may be extracted from algal biomass by the use of solvents. For instance, hexane may be used to extract lipids and carotenoids from algal biomass. Acetone and carbon dioxide are other solvents that may be used to extract lipids and carotenoids from algal biomass.


Solvent extraction, however, is generally only effective if the lipid-rich biomass has a low moisture level (below approximately 12%, as measured by the content of water in the total wet algal biomass). Lipids, especially polar lipids, are partially soluble in water, which reduces the hexane extraction efficiency on wet algal biomass. Further, crushing or grinding algal cells in order to expose the intracellular biomass is generally only effective on dry algal biomass. Additionally, dewatering algal biomass by filtration is generally not very effective. Membranes, air flotation, and press, belt or drum filtration typically yield a maximum solid content of 30% (or conversely a moisture content of 70% or above). Reducing this moisture level further may be achieved by drying, which is a complicated and expensive operation that makes the production of lipids and carotenoids from algae very energy inefficient and expensive. The exemplary systems and methods described herein increase the efficiency and decrease the cost of lipid extraction from wet algal biomass.



FIG. 1 shows an exemplary system for extracting lipids from wet algal biomass according to one embodiment. The exemplary system 100 comprises a lysing/ultrasound station 105, a solid separation station 110, a two-phase liquid separation station 115, a polar aqueous phase distillation station 120, a non-polar organic phase distillation station 125, and a lipid station (not shown).


According to one embodiment, the lysing/ultrasound station 105 receives centrifuged algal biomass, polar and non-polar solvents, and a lysing agent. This mixture may be mixed, vortexed, or otherwise agitated to induce cell lysis. According to a further embodiment, cell lysing and solvent mixing take place simultaneously and continuously in a stirred tank. Agitation in the tank may be provided in different ways, including using shaking containers. The tank provides an environment where the solvents may come into effective contact with the lysed algal biomass. In an alternative embodiment, jet mixing or ultrasound may be used to agitate the lysing agent/biomass mixture.


According to an alternative embodiment, ultrasound may be used in place of the lysing agent. For example, the use of ultrasonic cell disruptor probes may be an effective cell lysis technique. A similar technique includes using a continuous flow-through ultrasonication chamber for lysing cells in an algae slurry.


In various embodiments, the solid separation station 110 receives the mixture of polar and non-polar solvents, lysing agent and lysed algal biomass. At the solid separation station 110, via centrifugation, the lysing agent, lipid-rich solvent mixture, and miscella are each isolated and directed to a different destination. The lipid-rich solvent mixture is sent to the two-phase liquid separation station 115, and the miscella is sent to a solvent recovery station (not shown). The miscella is subject to flash evaporation or similar operation to evaporate the solvents, which are subsequently condensed and recycled to the process.


The two-phase liquid separation station 115, according to one embodiment, pools the lipid-rich solvent mixture received from the solid separation station 110. The lipid-rich solvent mixture is mixed with water at the two-phase liquid separation station 115. The resulting mixture is centrifuged into two portions: an aqueous phase that includes polar solvent, and an organic phase (lipidic fraction) that includes non-polar solvent. The aqueous phase is sent to the polar aqueous phase distillation station 120 and the organic phase is sent to the non-polar organic phase distillation station 125.


At the polar aqueous phase distillation station 120, in various embodiments, the aqueous phase is distilled to recover the polar solvent. At the non-polar organic phase distillation station 125, the organic phase is distilled to recover two portions: the lipidic portion and the non-polar solvent portion. The lipidic portion is sent to the lipid station (not shown). At the lipid station, according one exemplary embodiment, the lipidic portion is heated to evaporate some or all of the remaining solvents within the lipidic portion.



FIG. 2 is a diagram showing an exemplary method 200 for extracting lipids from wet algal biomass.


As a preliminary step, wet algal biomass is centrifuged to increase its solid content to a range of approximately fifteen percent (15%) to thirty percent (30%). According to another exemplary embodiment, membrane filtration is used instead of centrifugation.


At step 210, wet algal biomass is lysed with an insoluble granular lysing agent and/or ultrasound to create a lysate. In various embodiments, the lysing agent is an insoluble granular lysing agent with a grain size dispersion of 10 to 1000 micrometers. The insoluble granular lysing agent may be sand, chalk, gypsum or fly ash. The amount of insoluble granular lysing agent used may be a quantity effective to make the intra-cellular biomass available for contact with the polar and non-polar solvents. The amount of insoluble granular lysing agent may be equivalent to the dry weight of the wet algal biomass.


According to an alternative embodiment, ultrasound may be used in place of the lysing agent. For example, the use of ultrasonic cell disrupter probes may be an effective cell lysis technique. A similar technique includes using a continuous flow-through ultrasonication chamber for lysing cells in an algae slurry.


Additionally, polar and non-polar solvents may be added to the algal biomass-lysing agent mixture to create a slurry. In one exemplary embodiment, the slurry may have a water content ranging between 10% and 90% by weight. The polar solvent may be a ketone, such as acetone, methyl-ethyl ketone or di-ethyl ketone; or an alcohol, such as methanol, ethanol, propanol, butanol, isopropanol; or an alkyl halide such as di-chloro-methane and tri-chloro-ethane; or a furane such as tetra-hydro-furane. The polar solvent, according to another exemplary embodiment, may also be dimethyl ether. In various exemplary embodiments, the non-polar solvents may include hydrocarbons such as propane, butane, pentane, hexane; ethers such as diethyl ether, diisopropyl ether, methyl tert-butyl ether; esters such as ethyl propanoate; or halocarbons such as trichloroethylene etc. Typically, the amount of polar and non-polar solvents required is proportional to the amount of water present in the biomass. In various embodiments, the mixture of polar and non-polar solvents is added in the desired solvent-extractible volume ratio. For instance, 20 to 100 volumes of solvents are usually required to extract one volume of lipids and carotenoids from algal biomass. Then, the mixture of polar and non-polar solvents, lysing agent and algal biomass is vortexed to induce cell lysis. The resulting solids are centrifuged from the vortexed mixture of polar and non-polar solvents, lysing agent and algal biomass. According to one embodiment, the lysing agent, lipid-rich solvent mixture, and miscella are each isolated.


At step 220, a lipid-rich phase is created in the lysate. According to various exemplary embodiments, the pooled lipidic fraction (less the lysing agent) is mixed with water.


At step 230, the lipid-rich phase is separated from the lysate. In one exemplary embodiment, the mixture of the lipidic fraction and water is centrifuged into two portions: an aqueous phase that includes polar solvent and an organic phase (lipidic fraction) that includes non-polar solvent. A liquid-liquid separator may be used to generate the two phases. The aqueous phase is distilled to recover the polar solvent. The organic phase is distilled to recover two portions: the lipidic portion and the non-polar solvent portion. Then the lipidic portion is heated to evaporate some or all of the remaining solvents within the lipidic portion.


EXAMPLE ONE

Fifty milliliters (50 mls) of harvested microalgae liquid culture of a density of about 300 milligrams per liter of ash-free dry biomass is centrifuged in 50 ml conical tubes at 2000 RCF for 15 minutes. The supernatant is discarded and the pellet is covered with a portion of sand, chalk, gypsum or fly ash with a volume approximately equal to that of the cell pellet. 5 ml of solvent mixture is added. The solvent may be methanol: chloroform 2:1, acetone: hexane 2:1, or any similar single phase mixture of solvents of differing polarity that form a single phase when mixed with the wet biomass and are capable of dissolving lipids.


The tube is then vortexed for five minutes to lyse the cells, and centrifuged again for 15 minutes at 2000 RCF. The supernatant is collected and fresh solvent is added to the pellet. The tube is again vortexed and centrifuged. The supernatant is collected and the pellet vortexed again with fresh solvent. After centrifugation a fourth extraction/centrifugation is performed and the 4 supernatants are combined. The lysing agent and the defatted biomass form separate layers in the centrifuge tube which may be separated by scooping the defatted biomass off the top.


The combined supernatants are centrifuged to remove any residual suspended solids. The supernatant is then mixed with 10 mls of water and the mixture is centrifuged for 5 minutes to yield a biphasic system with a dark, pigment rich non-polar solvent layer and a clear water/polar solvent layer. The layers are separated and the non-polar layer is evaporated to dryness under a stream of nitrogen to yield the microalgal lipids.


EXAMPLE TWO

50 mls of harvested microalgae liquid culture of a density between 200 and 3000 milligrams per liter of ash-free dry biomass is centrifuged in 50 ml conical tubes at 2000 RCF for 15 minutes. The supernatant is discarded and the pellet is exposed to a 20 kHz ultrasonic pulse for 3 minutes from a Branson 450 Sonifier. 5 ml of solvent mixture is added. The solvent may be methanol:chloroform 2:1, acetone hexane 2:1, or any similar single phase mixture of solvents of differing polarity that form a single phase when mixed with the wet biomass and are capable of dissolving lipids. The tube is then vortexed for 5 minutes to mix the lysed cells with the solvent, and centrifuged again for 15 minutes at 2000 RCF. The supernatant is collected and fresh solvent is added to the pellet. The tube is again vortexed and centrifuged. The supernatant is collected and the pellet vortexed again with fresh solvent. After centrifugation a fourth extraction/centrifugation is performed and the 4 supernatants are combined. The combined supernatants are centrifuged to remove any residual suspended solids. The supernatant is then mixed with 10 mls of water and the mixture is centrifuged for 5 minutes to yield a biphasic system with a dark, pigment rich non-polar solvent layer and a clear water/polar solvent layer. The layers are separated and the non-polar layer is evaporated to dryness under a stream of nitrogen to yield the microalgal oils.


While various embodiments have been described herein, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the herein-described exemplary embodiments.

Claims
  • 1. A method comprising: lysing a wet algal biomass with an insoluble granular lysing agent to create a lysate;creating a lipid-rich phase in the lysate; andseparating the lipid-rich phase from the lysate.
  • 2. The method of claim 1, wherein the insoluble granular lysing agent has a grain size dispersion of 10 to 1000 micrometers.
  • 3. The method of claim 1, wherein the insoluble granular lysing agent is sand.
  • 4. The method of claim 1, wherein the insoluble granular lysing agent is chalk.
  • 5. The method of claim 1, wherein the insoluble granular lysing agent is gypsum.
  • 6. The method of claim 1, wherein the insoluble granular lysing agent is fly ash.
  • 7. The method of claim 1, wherein the wet algal biomass is in the presence of an extraction solvent.
  • 8. The method of claim 7, wherein the extraction solvent is monophasic and multipolar.
US Referenced Citations (104)
Number Name Date Kind
1926780 Lippincott Sep 1933 A
2730190 Brown Jan 1956 A
2766203 Brown Oct 1956 A
3175687 Jones Mar 1965 A
3468057 Buisson Sep 1969 A
3897000 Mandt Jul 1975 A
3962466 Nakabayashi Jun 1976 A
4003337 Moore Jan 1977 A
4159944 Erickson et al. Jul 1979 A
4253271 Raymond Mar 1981 A
4267038 Thompson May 1981 A
4341038 Bloch et al. Jul 1982 A
4365938 Warinner Dec 1982 A
4535060 Comai Aug 1985 A
4658757 Cook Apr 1987 A
5105085 McGuire et al. Apr 1992 A
5130242 Barclay Jul 1992 A
5180499 Hinson et al. Jan 1993 A
5244921 Kyle et al. Sep 1993 A
5275732 Wang et al. Jan 1994 A
5338673 Thepenier et al. Aug 1994 A
5478208 Kasai et al. Dec 1995 A
5527456 Jensen Jun 1996 A
5539133 Kohn et al. Jul 1996 A
5567732 Kyle et al. Oct 1996 A
5658767 Kyle Aug 1997 A
5661017 Dunahay et al. Aug 1997 A
5668298 Waldron Sep 1997 A
5776349 Guelcher et al. Jul 1998 A
6117313 Goldman et al. Sep 2000 A
6143562 Trulson et al. Nov 2000 A
6166231 Hoeksema Dec 2000 A
6372460 Gladue et al. Apr 2002 B1
6524486 Borodyanski et al. Feb 2003 B2
6579714 Hirabayashi et al. Jun 2003 B1
6736572 Geraghty May 2004 B2
6750048 Ruecker et al. Jun 2004 B2
6768015 Luxem et al. Jul 2004 B1
6831040 Unkefer et al. Dec 2004 B1
7381326 Haddas Jun 2008 B2
7582784 Banavali et al. Sep 2009 B2
7767837 Elliott Aug 2010 B2
7868195 Fleischer et al. Jan 2011 B2
7883882 Franklin et al. Feb 2011 B2
8088614 Vick et al. Jan 2012 B2
8404473 Kilian et al. Mar 2013 B2
8569530 Hippler et al. Oct 2013 B2
20030199490 Antoni-Zimmermann et al. Oct 2003 A1
20040121447 Fournier Jun 2004 A1
20040161364 Carlson Aug 2004 A1
20040262219 Jensen Dec 2004 A1
20050048474 Amburgey Mar 2005 A1
20050064577 Berzin Mar 2005 A1
20050164192 Graham et al. Jul 2005 A1
20050170479 Weaver et al. Aug 2005 A1
20050260553 Berzin Nov 2005 A1
20050273885 Singh et al. Dec 2005 A1
20060045750 Stiles Mar 2006 A1
20060101535 Forster et al. May 2006 A1
20060122410 Fichtali et al. Jun 2006 A1
20060166343 Hankamer et al. Jul 2006 A1
20070102371 Bhalchandra et al. May 2007 A1
20080118964 Huntley et al. May 2008 A1
20080120749 Melis et al. May 2008 A1
20080155888 Vick et al. Jul 2008 A1
20080160591 Willson et al. Jul 2008 A1
20080160593 Oyler Jul 2008 A1
20080194029 Hegemann et al. Aug 2008 A1
20080268302 McCall Oct 2008 A1
20080275260 Elliott Nov 2008 A1
20080293132 Goldman et al. Nov 2008 A1
20090011492 Berzin Jan 2009 A1
20090029445 Eckelberry et al. Jan 2009 A1
20090081748 Oyler Mar 2009 A1
20090148931 Wilkerson et al. Jun 2009 A1
20090151241 Dressler et al. Jun 2009 A1
20090162919 Radaelli et al. Jun 2009 A1
20090234146 Cooney et al. Sep 2009 A1
20090317857 Vick et al. Dec 2009 A1
20090317878 Champagne et al. Dec 2009 A1
20090317904 Vick et al. Dec 2009 A1
20090325270 Vick et al. Dec 2009 A1
20100022393 Vick Jan 2010 A1
20100068772 Downey Mar 2010 A1
20100151540 Gordon et al. Jun 2010 A1
20100183744 Weissman et al. Jul 2010 A1
20100196995 Weissman et al. Aug 2010 A1
20100210003 King et al. Aug 2010 A1
20100210832 Kilian et al. Aug 2010 A1
20100260618 Parsheh et al. Oct 2010 A1
20100261922 Fleischer et al. Oct 2010 A1
20100314324 Rice et al. Dec 2010 A1
20100327077 Parsheh et al. Dec 2010 A1
20100330643 Kilian et al. Dec 2010 A1
20100330658 Fleischer et al. Dec 2010 A1
20110041386 Fleischer et al. Feb 2011 A1
20110070639 Pandit et al. Mar 2011 A1
20110072713 Fleischer et al. Mar 2011 A1
20110136212 Parsheh et al. Jun 2011 A1
20110196163 Fleischer et al. Aug 2011 A1
20110197306 Bailey et al. Aug 2011 A1
20110300568 Parsheh et al. Dec 2011 A1
20110313181 Thompson et al. Dec 2011 A1
20130274490 Hippler et al. Oct 2013 A1
Foreign Referenced Citations (9)
Number Date Country
352013 Aug 2013 IN
09-024362 Jan 1997 JP
2004300218 Oct 2004 JP
2008280252 Nov 2008 JP
2004106238 Dec 2004 WO
2008060571 May 2008 WO
WO 2009037683 Mar 2009 WO
200982696 Jul 2009 WO
WO2011053867 May 2011 WO
Non-Patent Literature Citations (50)
Entry
Hedenskog, G., et al., Investigatin of some Methods for Increasing the Digestibility in Vitro of Microalgae, 1969, Biotechnology and Bioengineering, vol. XI, pp. 37-51.
Santin-Montanaya, I. Optimal growth of Dunaliella primolecta in axenic conditions to assay herbicides, Chemosphere, 66, Elsevier 2006, pp. 1315-1322.
Felix, R. Use of the cell wall-less alga Dunaliella bioculata in herbicide screening tests, Annals of Applied Biology, 113, 1988, pp. 55-60.
Janssen, M. Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles, Enzyme and Microbial Technology, 29, 2001, pp. 298-305.
Saenz, M.E. Effects of Technical Grade and a Commercial Formulation of Glyphosate on Algal Population Growth, Bulletin of Environmental Contamination Toxicology, 1997, pp. 638-644.
Janseen et al., “Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency,. scale-up, and future prospects,” Biotechnology and Bioengineering, vol. 81, No. 2, p. 193-210, Jan. 20, 2003, Entire document, especially: Fig 4, p. 198 [online]. Retrieved from the Internet on [Oct. 5, 2010]. Retrieved from: <URL: http://onlinelibrary.wiley.com/doi/10.1002/bit.10468/pdf.
Strzepek et al., “Photosynthetic architecture differs in coastal and oceanic diatoms,” Nature vol. 431, p. 689-692, Oct. 7, 2004. Entire document, especially: abstract, p. 689, col. 2; p. 691, Table 1 [online] Retrieved from the Internet on [Oct. 5, 2010]. Retrieved from: <URL: http://www.nature.com/nature/journal/v431/n7009/pdf/nature09254.pdf.
Zitelli et al., “Mass cultivation of Nannochloropsis sp. in annular reactors,” Journal of Applied Phycology vol. 15, p. 107-113, Mar. 2003, Entire document, especially: abstract; p. 110, col. 1-2 [online]. Retrieved from the Internet on [Oct. 5, 2010]. Retrieved from: <URL: http://www.springerlink.com/content/v77772k1mp081775/fulltext.pdf.
Csogor et al., “Light distribution in a novel photobioreactor—modeling for optimization,” Journal of Applied Phycology, vol. 13, p. 325-333, May 2001, Entire document, especially: Fig 2, p. 327; Table 1, p. 327; Fig 7, p. 330 [online]. Retrieved from the Internet on [Oct. 5, 2010]. Retrieved from: <URL: http://www.springerlink.com/content/p77j66g3j2133522/fulltext.pdf.
Kureshy, et al. “Effect of Ozone Treatment on Cultures of Nannochloropsis oculata, Isochrysis galbana, and Chaetoceros gracilis.” Journal of the World Aquaculture Society, Dec. 1999, vol. 30, No. 4, pp. 437-480; p. 473, Abstract; p. 475, “Nannochloropsis oculata” Section; p. 476, Table 1; p. 476, Table 2; p. 479, left column, para 2.
NCBI entry EE109892 (Jul. 27, 2006) [Retrieved from the Internet on Oct. 19, 2009; <http://www.ncbi/nlm.nih.gov/nucest/EE109892?ordinalpos=1&itool=EntrezSystem2.PEntrez.Sequence.Sequence—ResultsPanel.Sequence—RVDocSum>].
Knuckey et al., “Production of Microalgal Concentrates by Flocculation and Their Assessment as Aquaculture Feeds,” Acquacultural Engineering 35 (2006) 300-313.
Grima et al., “Recovery of Microalgal Biomass in Metabolites: Process Options and Economics,” Biotechnology Advances 20 (2003) 491-515.
Lee et al. Isolation and Characterization of a Xanthophyll Aberrant Mutant of the Green Alga Nannochloropsis oculata Marine Biotechnology vol. 8, 238-245 (2006) (p. 239 col. 1 para 1; p. 239 col. 2 para 4; p. 240 col. 1 para 2; p. 242 col. 2 para 2; p. 241 Table 1, Fig 2; p. 242 Table 2).
Berberoglu et al. Radiation characteristics of Chlamydomonas reinhardtii CC125 and itstruncated chlorophyll antenna transformants tla1, tlaX and tla1-CW+. International Journal of Hydrogen Energy.2008 vol. 33 pp. 6467-6483, especially the abstract.
Ghirardi et al. Photochemical apparatus organization in the thylakoid membrane of Hordeum vulgare wild type and chlorophyll b-less chlorine f2 mutant. Biochimica et Biophysica Acta (BBA)—Bioenergetics. vol. 851, Issue 3, Oct. 8, 1986, pp. 331-339 (abstract only).
Steinitz et al. A mutant of the cyanobacterium Plectonema boryanum resistant to photooxidation. Plant Science Letters. vol. 16, Issues 2-3, Oct. 1979, pp. 327-335 (abstract only).
Koller et al. Light Intensity During Leaf Growth Affects Chlorophyll Concentration and CO2 Assimilation of a Soybean Chlorophyll Mutant. Crop Sci. 1974. vol. 14 pp. 779-782 (abstract only).
Shikanai et al. Identification and Characterization of Arabidopsis Mutants with Reduced Quenching of Chlorophyll Fluorescence. Plant and Cell Physiology, 1999, vol. 40, No. 11. pp. 1134-1142 (abstract only).
Loury, Maurice Chem. Abstr., Method for rapid conversion of fats to methyl esters, Revue Francaise des Corps Gras (1967), 14 (6), 383-9. (NPL 0009).
Cravotto et al., Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves, Ultrasonics Sonochemistry 15:898-9002 (2008). (NPL 0011).
Endo et al. “Inactivation of Blasticidin S by Bacillus cereus II. Isolation and Characterization of a Plasmid, pBSR 8, from Bacillus cereus,” The Journal of Antibiotics 41 (2): 271-2589-2601. (NPL 0015).
Hallmann et al., “Genetic Engineering of the Multicellular Green Alga Volvox: A Modified and Multiplied Bacterial Antibiotic Resistance Gene as a Dominant Selectable Marker” The Plant Journal 17(1): 99-109 (Jan. 1999). (NPL 0020).
Kindle et al. “Stable Nuclear Transformation of Chlamydomonas Using the Chlamydomonas Gene for Nitrate Reductase” The Journal of Cell Biology 109 (6, part 1): 2589-2601. (NPL 0024).
Prein et al. “A Novel Strategy for Constructing N-Terminal Chromosomal Fusions to Green Fluorescent Protein in the Yeast Saccharomyces cerevisiae” FEBS Letters 485 (2000) 29-34 (NPL 0034).
Schiedlmeier et al., “Nuclear Transformation of Volvox carteri” Proceedings of the National Academy of Sciences USA 91(11): 5080-5084 (May 1994). (NPL 0039).
Wendland et al. “PCR-Based Methods Facilitate Targeted Gene Manipulations and Cloning Procedures” Curr.Gen. (2003) 44:115-123 (NPL 0046).
Hallmann et al., “Genetic Engineering of the Multicellular Green Alga Volvox: A Modified and Multiplied Bacterial Antibiotic Resistance Gene as a Dominant Selectable Marker” The Plant Journal 17(1): 99-109 (Jan. 1999).
Molnar et al., “Highly Specific Gene Silencing by Artificial MicroRNAs in the Unicellular Agla Chlamydomonas reinhardtii,” Plant Jour. ePub Jan. 17, 2009, vol. 58, No. 1, pp. 157-164 (Abstract Only).
Chen et al., “Conditional Production of a Functional Fish Growth Hormone in the Transgenic Line of Nannochloropsis oculata (Eustigmatophyceae),” J. Phycol. Jun. 2008, vol. 44, No. 3, pp. 768-776.
Nelson et al., “Targeted Disruption of NIT8 Gene in Chlamydomonas reinhardtii.” Mol. Cell. Bio. Oct. 1995, vol. 15, No. 10, pp. 5762-5769.
Ben-Amotz, Ami. “Large-Scale Open Algae Ponds,” presented at the NREL-AFOSR Joint Workshop on Algal Oil for Get Fuel Production in Feb. 2008.
Ebeling et al., “Design and Operation of a Zero-Exchange Mixed-Cell Raceway Production System,” 2nd Int'l Sustainable Marine Fish Culture Conference and Workshop, Oct. 2005.
Ebeling et al., “Mixed-Cell Raceway: Engineering Design Criteria, Construction, and Hydraulic Characterization,” North American Journal of Aquaculture, 2005, 67: 193-201 (abstract only).
Labatut et al., “Hydrodynamics of a Large-Scale Mixed-Cell Raceway (MCR): Experimental Studies,” Aquacultural Engineering vol. 37, Issue 2, Sep. 2007, pp. 132-143.
Kizilisoley et al., “Micro-Algae Growth Technology Systems,” Presented by Selim Helacioglu, Soley Institute, 2008.
Dunstan et al., “Changes in the Lipid Composition and Maximisation of the Polyunsaturated Fatty Acid Content of Three Microalgae Grown in Mass Culture,” Journal of Applied Phycology, 5, pp. 71-83, 1993.
Carvalheiro et al., “Hemicellulose Biorefineries: A Review on Biomass Pretreatments,” Journal of Scientific & Industrial Research, vol. 67, Nov. 2008, pp. 849-864.
Lotero et al., “Synthesis of Biodiesel via Acid Catalysis,” Ind. Eng. Chem. Res., 2005, pp. 5353-5363.
Gouveia et al., “Microalgae as a raw material for biofuels production,” J. Ind. Microbiol. Biotechnol, 2009, vol. 36, 269-274.
International Search Report and Written Opinion of the International Searching Authority mailed Jan. 6, 2011 for Application No. PCT/US2010/054861, filed Oct. 29, 2010.
Chen et al., “Subcritical co-solvents extraction of lipid from wet microalgae pastes of Nannochloropsis sp.,” Eur. J. . Lipid Sci. Technol., vol. 114, 2012, pp. 205-212.
Wang et al., “Lipid and Biomass Distribution and Recovery from Two Microalgae by Aqueous and Alcohol Processing,” Journal of the American Oil Chemists' Society, vol. 38, Issue 2, Jul. 2011, pp. 335-345.
Pitipanapong et al., “New approach for extraction of charantin from Momordica charantia with pressurized liquid extraction,” Separation and Purification Technology, vol. 52, Issue 3, Jan. 2007.
International Search Report and Written Opinion of the International Searching Authority mailed Feb. 5, 2009 for Application No. PCT/US2008/087722, filed Dec. 19, 2008.
Examination Report mailed Aug. 15, 2013 in Australian Application No. 2010313246 filed Oct. 29, 2010.
Second Examination Report mailed Dec. 17, 2013 in Australian Application No. 2010313246 filed Oct. 29, 2010.
Lubian, L. M., “Concentrating Cultured Marine Microalgae with Chitosan.” Aquaculture Engineering, 8, 257-265 (1989).
Divakaran, R. & Sivasankara Pillai, VN, “Flocculation of Algae Using Chitosan.” Journal of Applied Phycology, 14, 419-422 (2002).
Farid, M. S., Shariati, A., Badakhshan, A., & Anvaripour, B., “Using Nano-Chitosan for Harvesting Microalga Nannochloropsis sp.” Bioresource Technology, 131, 555-559 (2013).
Related Publications (1)
Number Date Country
20100317088 A1 Dec 2010 US