The present invention relates to the extraction of solid particulates from raw slurry material and, in particular, to the extraction of sand from raw slurry material comprising at least water, animal waste, and sand.
Modern animal husbandry operations such as dairy farms often require the handling of relatively large numbers of animals in indoor facilities. For example, cows in a dairy operation are kept at least part of the day in stalls defining a stall resting surface. From a cow's perspective, the stall resting surface should be covered with bedding material that is comfortable to lie on, provide uniform support, be cool in the summer, be non-abrasive, and provide confident footing during reclining and rising maneuvers. From the perspective of the operator of the dairy, bedding material should not be detrimental to the health of the cows or the quality of the milk produced by the cows. Sand has been proven to be advantageous as a bedding material and is commonly used in modern dairy operations.
When used as a bedding material, sand often becomes mixed with manure and possibly other contaminants. When cleaning systems are used to remove manure from a diary facility, raw slurry material is formed containing rinse liquids, liquid manure, solids, sand, and possibly other contaminants. If possible, it is desirable to convert components of the raw slurry mixture to usable materials and/or reuse the components of the raw slurry mixture.
The present invention relates to the removal of particulate material such as sand from raw slurry mixtures so that the sand may be reused. Removal of sand from the raw slurry material further forms a processed slurry (low sand content) that is more appropriate for further processing operations such as extraction of water, composting, and/or digesting.
The present invention may be embodied as a processing system for processing raw slurry material comprising a barrel member, at least one transport member, and at least one separator member. The barrel member defines a processing chamber and at least one intermediate opening. The processing chamber defines a pre-processing portion and a separator portion. The at least one transport member is arranged within the pre-processing portion of the processing chamber. The at least one separator member is arranged within the separator portion of the processing chamber and configured to define at least one separator gap. As the barrel member rotates about a longitudinal axis thereof, the at least one transport member transports at least a portion of the raw slurry material through the pre-processing portion of the processing chamber, and the at least one separator member transports at least a portion of the raw slurry material through the separator portion of the processing chamber.
The present invention may also be embodied as a processing system for processing raw slurry material comprising a barrel member, a continuous helical member, and a plurality of discontinuous helical members. The barrel member defines a processing chamber and at least one intermediate opening. The processing chamber defines a pre-processing portion and a separator portion. The continuous helical member is arranged within the pre-processing portion of the processing chamber. The plurality of discontinuous helical members is arranged within the separator portion of the processing chamber such that the discontinuous helical members define at least one separator gap. As the barrel member rotates about a longitudinal axis thereof, the continuous helical member transports at least a portion of the raw slurry material through the processing chamber, and the plurality of discontinuous helical members transport at least a portion of the raw slurry material through the separator chamber.
The present invention may also be embodied as a method of processing raw slurry material comprises the following steps. A barrel member defining a processing chamber and at least one intermediate opening is provided. At least one transport member is arranged within a pre-processing portion of the processing chamber. At least one separator member is arranged within a separator portion of the processing chamber such that the at least one separator member defines at least one separator gap. The barrel member is rotated such that the at least one transport member transports at least a portion of the raw slurry material through the pre-processing portion of the processing chamber, and the at least one separator member transports at least a portion of the raw slurry material through the separator portion of the processing chamber.
Referring initially to
In general, the support frame 22 supports the processing system relative to the trough system 26 such that slurry material within the trough system 26 is fed into the processing system 24. The drive system 28 rotates at least a portion of the processing system 24 such that particulate material such as sand is extracted from the slurry material fed into and through the processing system 24.
The example support frame 22 defines a surface engaging portion 30, a support portion 32, cradle portions 34, a bearing surface 36, and a motor platform 38. The surface engaging portion 30 defines a reference plane P1, and the support portion 32 defines a support plane P2 that extends at an angle to the reference plane P1 (
The purpose of the support frame 22 is to support the processing system 24 at a particular angle with respect to horizontal and in a desired position with respect to the trough system 26. Any structure that supports one or all of the processing, trough, and/or drive systems 24, 26, and 28 relative to horizontal and with respect to each other as generally described herein may be used in place of the example support frame 22.
The example trough system 26 comprises a main trough 50, an inlet conduit 52, and an upper trough 54. A divider surface 56 separates the main trough 50 from the upper trough 54. A baffle 58 divides the main trough 50 into an inlet portion 50a and a feed portion 50b. The inlet conduit 52 is arranged deposit raw slurry material into the inlet portion 50a. Raw slurry material in the inlet portion 50a must flow down and under the baffle 58 before flowing into the feed portion 50b.
The example drive system 28 comprises a drive shaft 60 (
The example processing structure 40 comprises a barrel member 70, a guide member 72, an auger member 74, a pre-processing member 76, and a plurality (two or more) separator members 78. The example barrel member 70 is an elongate cylinder made of material capable of maintaining this cylindrical shape while supporting the guide member 72, auger member 74, pre-processing member 76, and separator members 78 as will be described below. The example barrel member 70 is made of steel, but other materials such as plastic or composites may be used under certain circumstances.
The barrel member 70 defines both the processing chamber 46 and the processing axis A1. The processing chamber 46 defines a feed portion 80, a pre-processing portion 82, a separator portion 84, and an outlet portion 86.
The pre-processing member 76 and separator members 78 extend into the processing chamber 46 from the interior wall of the barrel member 70. In particular, the pre-processing member 76 extends substantially radially inwardly from the barrel member 70 into part of the feed portion 80 and throughout the pre-processing portion 82 of the processing chamber 46. The example pre-processing member 76 follows a predetermined helical path defined by the diameter of the barrel member 70 and the distance between axially spaced portions of the pre-processing member 76. In the following discussion, each portion or segment of the pre-processing member 76 extending through one rotation along the helical path defines a course. These discrete portions or sections of the pre-processing member 76 may thus be referred to as courses.
The guide member 72 is rigidly secured to an inner edge 76a of the portion of the pre-processing member 76 within the feed portion 80 such that a longitudinal axis of the guide member 72 is aligned with the processing axis A1. The auger member 74 is rigidly secured to the guide member 72 such that the auger member 74 extends from the guide member 72 outside of the processing chamber 46. The example auger member 74 further follows substantially the same predetermined helical path as the pre-processing member 76. A notch 70a is formed in the barrel member 70 to create a path from the feed portion 50b of the main trough 50 into the processing chamber 46 around the auger member 74 and through the pre-processing member 76.
The separator members 78 extend generally radially inwardly from the barrel member 70 and generally follow the predetermined helical path defined by the pre-processing member 76. However, the separator members 78 are spaced from each other along the predetermined helical path and/or deviate from the predetermined helical path such that separator gaps 88 are formed between adjacent separator members 78.
In particular, first and second example separator members 78a and 78b are shown in
Accordingly, the first example separator member 78a is the leading separator member of this pair of separating members and defines a leading edge 90a and a trailing edge 92a. The second example separator member 78b is the trailing separator member in this pair and defines a leading edge 90b and a trailing edge 92b.
Using this terminology,
The example separator members 78 are in the shape of segments of the predetermined helical path but each helical separator member is offset from the predetermined helical path relative to the helical separators adjacent thereto. Another way of forming the separator gaps 88 is to arrange non-helical separator members along the predetermined helical path. Additionally, non-helical separator members may be offset from the predetermined helical path to form the separator gaps 88.
The example processing structure 40 further comprises cleaning blades 94 formed on the outer surface thereof. Main trough outlets 96 are formed in the main trough 50, while upper trough outlets 98 are formed in the upper trough 54.
The first example sand separator system 20 operates as follows. Raw slurry material is forced through the inlet conduit 52 into the inlet portion 50a of the main trough 50. The example sand separator system 20 is designed to process raw slurry material a liquid portion comprising at least rinse liquid, such as water, and manure and a particulate portion comprising particulate material such as sand.
The baffle 58 forces the raw slurry material to flow down to the bottom of the main trough 50 before entering the feed portion 50b of that trough 50. The main trough 50 thus functions like a gravity separator in which heavier particulate material such as sand sinks to the bottom and the liquid portion rises to the top. The flow path under the baffle 58 forces particulate material to flow to a lower portion of the trough 50 before entering the upper trough 54 as will be described in further detail below.
The support frame 22 supports the processing structure 40 such that the feed portion 80 of the processing chamber 46 is within the feed portion 50b of the main trough 50. The auger member 74 extends into the bottom of the main trough 50 with the drive shaft 60 partly within the guide member 72. In particular, the drive shaft 60 is coupled to the guide member 72 such that axial rotation of the drive shaft 60 rotates the guide member 72 about the processing axis A1. And because the guide member 72 supports the auger member 74 and pre-processing member 76, the auger member 74 and pre-processing member 76 also rotate about the processing axis A1. Similarly, the pre-processing member 76 supports the barrel member 70, so the barrel member 70 also rotates about the processing axis A1. And axial rotation of the barrel member 70 causes the separator members 78 also to rotate about the processing axis A1.
As the auger member 74 rotates about the processing axis A1, a leading surface of the auger member 74 acts on the raw slurry material within the main trough 50 to displace this raw slurry material up towards the processing chamber 46. At about the notch 70a formed in the barrel member 70, the raw slurry material displaced by the auger member 74 enters the pre-processing portion 82 of the processing chamber, where the raw slurry material is displaced through the pre-processing portion 82 by a leading surface of the pre-processing member 76.
As the pre-processing member displaces the raw slurry material up along the processing axis A1 through the pre-processing portion of the processing chamber, the particulate portion of the raw slurry material sinks in the liquid portion of the raw slurry material, separating the raw slurry material into a thickened portion and a thinned portion. The thickened portion is relatively close to the inner wall of the barrel member 70, while the thinned portion is away from this inner wall. The thickened portion has a relatively high concentration of particulate material, while the thinned portion has a relatively lower concentration of the particulate material. The concentration of particulate material in the thickened portion increases as the raw slurry material proceeds up through the pre-processing portion 82 of the processing chamber 46.
Towards the lower end of the pre-processing portion 82 of the processing chamber 46, the thinned portion of the raw slurry material flows over the inner edge 76a of the pre-processing member 76 from one course of the pre-processing member 76 back down to the course below. This process begins to concentrate the particulate material within the thickened portion. At some point along the pre-processing portion 82, the thinned portion of the raw slurry material no longer flows over the inner edge 76a.
After this point, the slurry material continues to separate, with the lighter, leading portion thereof being pushed in front (i.e., in the direction opposite the direction of rotation of the barrel member) and the heavier lagging portion behind (i.e., in the direction of rotation of the barrel member).
Accordingly, by the time the raw slurry material reaches the separator portion 84, the slurry material has been thickened and separated into a leading portion and a lagging portion. The leading portion will contain a lower concentration of particulate, while the lagging portion will contain a higher concentration of particulate.
The portion of the material raw slurry material that reaches the outlet portion 86 of the separator chamber comprises a very high proportion of the particulate portion in comparison to the proportion of the particulate material in the raw slurry material entering the feed portion 80.
In addition to separating the particulate portion from the liquid portion of the raw slurry material, the first example sand separating system 20 may be configured to clean the particulate portion and/or dilute the liquid portion. In particular, one or both of the first and second example processing conduits of the first example processing system 24 may be configured to arrange rinse liquids within the processing chamber 46.
In the example processing system 24, the first processing conduit 42 is arranged to deposit a first rinse fluid at a first location 42a within the processing chamber 46. The second processing conduit 44 is arranged to deposit a second rinse fluid at a second location 44a within the processing chamber 46. The processing system 24 may thus be operated without a supplemental rinse fluid, with either the first rinse fluid or the second rinse fluid, or with both the first and second rinse fluids.
Typically, the first location 42a at which the first rinse fluid is introduced is below the second location 44a at which the second rinse fluid. In the example processing system 24, the first location 42a is between the second location 44a and the feed portion 80, approximately at the junction of the pre-processing portion 82 and the separator portion 84. The second location is between the first location 42a and the outlet portion 86 of the processing chamber 46.
In this configuration, the second rinse fluid may be a relatively pure or clean liquid such as water while the first rinse fluid may be a relatively impure fluid that is a byproduct of the stall rinse system. The first rinse fluid will provide a fresh volume of low contaminant liquid material to facilitate separation of the particulate portion from the liquid portion of the raw slurry material. The second rinse fluid will provide a fresh volume of uncontaminated liquid material to rinse contaminants from the particulate portion of the raw slurry material. Additives such as lubricants, defoamers, disinfectants, or the like may be added to one or both of the first and second rinse fluids.
The liquid portion of the raw slurry material flows back down through the processing chamber 46 and collects in the feed portion 50b of the main trough 50. This liquid portion will collect in the upper portion of the main trough 50 and will eventually flow over the divider surface 56, into upper trough 54, and out of the system 20 through the upper trough outlets 98. The main trough outlets 96 allow material to be removed from the bottom of the main trough 50 when necessary.
Referring now to
In general, the support frame 122 supports the processing system relative to the trough system 126 such that slurry material within the trough system 126 is fed into the processing system 124. The drive system 128 rotates at least a portion of the processing system 124 such that particulate material such as sand is extracted from the slurry material fed into and through the processing system 124.
The example support frame 122 defines a surface engaging portion 130, a support portion 132, a bearing surface 134, a motor platform 136, and brace assembly 138. The surface engaging portion 130 defines a reference plane P1, and the support portion 132 defines a support plane P2 that extends at an angle to the reference plane P1 (
The purpose of the support frame 122 is to support the processing system 124 at a particular angle with respect to horizontal and in a desired position with respect to the trough system 126.
The example trough system 126 comprises a main trough 150, an inlet conduit 152, and an upper trough 154. A divider surface 156 separates the main trough 150 from the upper trough 154. The inlet conduit 152 is arranged deposit raw slurry material into the main trough 150. An outlet conduit 158 allows fluid to flow out of the upper trough 154.
The example drive system 128 comprises a drive motor 160, a drive member 162 such as a belt or chain, a drive surface 164 such as a sprocket, and bearing wheel assemblies 166. The drive motor 160 causes rotation of the processing structure 140 through the drive member 162 and the drive surface 164. The bearing wheel assemblies 166 support the processing structure 140 for rotation about the processing axis A1.
The example processing structure 140 comprises a barrel member 170, a pre-processing member 172, a plurality (two or more) separator members 174, an inlet member 176, and an extension portion 178. The example barrel member 170 is an elongate cylinder made of material capable of maintaining this cylindrical shape while supporting the pre-processing member 172 and separator members 174 as will be described below. The example barrel member 170 is made of steel, but other materials such as plastic or composites may be used under certain circumstances.
The barrel member 170 defines both the processing chamber 146 and the processing axis A1. The processing chamber 146 defines a feed portion 180, a pre-processing portion 182, a separator portion 184, and an outlet portion 186. Part of the pre-processing member 172 extends out of the processing chamber 146 and to define the feed portion of the processing chamber 146. The inlet member 176 is arranged adjacent to the feed portion of the processing chamber 146 and defines an inlet surface that facilitates the entry of the raw slurry material into the processing chamber 146. Part of the last separator member 174 extends out through the outlet opening 186 such that particulate material does not drop back into the separator portion 184 of the processing chamber 146.
The pre-processing member 172 and separator members 174 extend into the processing chamber 146 from the interior wall of the barrel member 170. In particular, the pre-processing member 172 extends substantially radially inwardly from the barrel member 170 into part of the feed portion 180 and throughout the pre-processing portion 182 of the processing chamber 146. The example pre-processing member 172 follows a predetermined helical path defined by the diameter of the barrel member 170 and the distance between axially spaced portions of the pre-processing member 172. In the following discussion, each portion or segment of the pre-processing member 172 extending through one rotation along the helical path defines a course. These discrete portions or sections of the pre-processing member 172 may thus be referred to as courses.
The separator members 174 extend generally radially inwardly from the barrel member 170 and generally follow the predetermined helical path defined by the pre-processing member 172. However, the separator members 174 are spaced from each other along the predetermined helical path and/or deviate from the predetermined helical path such that separator gaps 188 are formed between adjacent separator members 174.
The example processing structure 140 further comprises cleaning blades formed on the outer surface thereof. The upper trough conduit 158 allows fluid to flow out of the upper trough 154.
The second example sand separator system 120 operates in a manner that is generally similar to that of the first example sand separator 20 described above. Raw slurry material is forced through the inlet conduit 152 into the main trough 150. The example sand separator system 120 is designed to process raw slurry material a liquid portion comprising at least rinse liquid, such as water, and manure and a particulate portion comprising particulate material such as sand. The main trough 150 functions like a gravity separator in which heavier particulate material such as sand sinks to the bottom and the liquid portion rises to the top.
The support frame 122 supports the processing structure 140 such that the feed portion 180 of the processing chamber 146 is within the main trough 150. Rotation of the barrel member 170 causes the particulate portion of the raw slurry material to move up through the processing chamber 146 and out of the outlet portion 186. As generally described above, the portion of the material raw slurry material that reaches the outlet portion 186 of the separator chamber comprises a very high proportion of the particulate portion in comparison to the proportion of the particulate material in the raw slurry material entering the feed portion 180.
In addition to separating the particulate portion from the liquid portion of the raw slurry material, the second example sand separating system 120 may be configured to clean the particulate portion and/or dilute the liquid portion. In particular, one or both of the first and second example processing conduits of the second example processing system 124 may be configured to arrange rinse liquids within the processing chamber 146.
In the example processing system 124, the first processing conduit 142 is arranged to deposit a first rinse fluid at a first location 142a within the processing chamber 146. The second processing conduit 144 is arranged to deposit a second rinse fluid at a second location 144a within the processing chamber 146. The processing system 124 may thus be operated without a supplemental rinse fluid, with either the first rinse fluid or the second rinse fluid, or with both the first and second rinse fluids.
Typically, the first location 142a at which the first rinse fluid is introduced is below the second location 144a at which the second rinse fluid. In the example processing system 124, the first location 142a is between the second location 144a and the feed portion 180, approximately at the junction of the pre-processing portion 182 and the separator portion 184. The second location is between the first location 142a and the outlet portion 186 of the processing chamber 146.
In this configuration, the second rinse fluid may be a relatively pure or clean liquid such as water while the first rinse fluid may be a relatively impure fluid that is a byproduct of the stall rinse system. The first rinse fluid will provide a fresh volume of low contaminant liquid material to facilitate separation of the particulate portion from the liquid portion of the raw slurry material. The second rinse fluid will provide a fresh volume of uncontaminated liquid material to rinse contaminants from the particulate portion of the raw slurry material. Additives such as lubricants, defoamers, disinfectants, or the like may be added to one or both of the first and second rinse fluids.
The liquid portion of the raw slurry material flows back down through the processing chamber 146 and collects in the main trough 150. This liquid portion will collect in the upper portion of the main trough 150 and will eventually flow over the divider surface 156, into upper trough 154, and out of the system 120 through the upper trough outlet 158.
Referring now to
The example trough system 226 comprises a main trough 250, an inlet conduit 252, and an upper trough 254. A divider surface 256 separates the main trough 250 from the upper trough 254. The inlet conduit 252 is arranged deposit raw slurry material into the main trough 250. An outlet conduit 258 allows fluid to flow out of the upper trough 254. In the example trough system 226, the inlet conduit 252 is arranged such that the main trough 250 is gravity fed. Raw slurry material entering the main trough flows down and around a conical surface defined by the main trough 250 so that the particulate material has time to sink to the bottom of the main trough 250 and be taken in by the processing system 224.
This application U.S. patent application Ser. No. 14/542,951 filed Nov. 17, 2014 is a continuation of U.S. patent application Ser. No. 13/926,640 filed Jun. 25, 2013, now U.S. Pat. No. 8,889,016, which issued on Nov. 18, 2014. U.S. patent application Ser. No. 13/926,640 is a continuation of U.S. patent application Ser. No. 12/917,728 filed Nov. 2, 2010, now U.S. Pat. No. 8,470,183, which issued on Jun. 25, 2013. U.S. patent application Ser. No. 12/917,728 claims priority benefit of U.S. Provisional Application Ser. No. 61/258,467 filed Nov. 5, 2009. The contents of all related applications listed above are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
683826 | Wells | Oct 1901 | A |
832191 | Holzer | Oct 1906 | A |
992629 | Akins | May 1911 | A |
1347724 | Ernst | Jul 1920 | A |
1658040 | Cohn | Feb 1928 | A |
1993214 | Hass | Mar 1935 | A |
2066479 | MacIsaac | Jan 1937 | A |
2278525 | Rich et al. | Apr 1942 | A |
2630906 | Philipp | Mar 1953 | A |
2680602 | Nelson et al. | Jun 1954 | A |
2747741 | Jacobson | May 1956 | A |
2982411 | Fontein | May 1961 | A |
3007518 | Simpson | Nov 1961 | A |
3333700 | Coleman | Aug 1967 | A |
3527668 | Kusters et al. | Sep 1970 | A |
3606945 | Watson et al. | Sep 1971 | A |
3730887 | Suzuki et al. | May 1973 | A |
3736111 | Gardner et al. | May 1973 | A |
3736120 | Tempe | May 1973 | A |
3761237 | Jeffreys | Sep 1973 | A |
3772144 | Carlsmith et al. | Nov 1973 | A |
3773659 | Carlson et al. | Nov 1973 | A |
3865727 | Baker et al. | Feb 1975 | A |
3886063 | Friesz | May 1975 | A |
3971720 | Swanson et al. | Jul 1976 | A |
3982499 | Frankl | Sep 1976 | A |
4062779 | Nakamura et al. | Dec 1977 | A |
4097379 | Shelstad | Jun 1978 | A |
4121539 | Moore | Oct 1978 | A |
4160724 | Laughton | Jul 1979 | A |
4192745 | Hood | Mar 1980 | A |
4193206 | Maffet | Mar 1980 | A |
4285816 | Lee | Aug 1981 | A |
4303523 | Ruppnig | Dec 1981 | A |
4310424 | Fremont et al. | Jan 1982 | A |
4315821 | Climenhage | Feb 1982 | A |
4324659 | Titoff | Apr 1982 | A |
4364831 | Burns et al. | Dec 1982 | A |
4382857 | Laughlin | May 1983 | A |
4395331 | Andersson | Jul 1983 | A |
4416764 | Gikis et al. | Nov 1983 | A |
4460470 | Reimann | Jul 1984 | A |
4507202 | Nord et al. | Mar 1985 | A |
4608157 | Graves | Aug 1986 | A |
4701266 | Janka et al. | Oct 1987 | A |
4849105 | Borchert | Jul 1989 | A |
4880530 | Frey | Nov 1989 | A |
5022989 | Put | Jun 1991 | A |
5030348 | Bengt | Jul 1991 | A |
5041223 | Johansson et al. | Aug 1991 | A |
5098572 | Faup et al. | Mar 1992 | A |
5133872 | Baldwin et al. | Jul 1992 | A |
5275728 | Koller | Jan 1994 | A |
5290451 | Koster et al. | Mar 1994 | A |
5372713 | Huber | Dec 1994 | A |
5409610 | Clark | Apr 1995 | A |
5466189 | Deutsch et al. | Nov 1995 | A |
5472472 | Northrop | Dec 1995 | A |
5507396 | Hauch | Apr 1996 | A |
5524796 | Hyer | Jun 1996 | A |
5531898 | Wickham | Jul 1996 | A |
5587073 | Zittel | Dec 1996 | A |
5728297 | Koller | Mar 1998 | A |
5817241 | Brayboy | Oct 1998 | A |
5885461 | Tetrault et al. | Mar 1999 | A |
5894936 | Sanders et al. | Apr 1999 | A |
5910243 | Bruke | Jun 1999 | A |
5950839 | Wedel | Sep 1999 | A |
6039874 | Teran et al. | Mar 2000 | A |
6044980 | Houle | Apr 2000 | A |
6077548 | Lasseur et al. | Jun 2000 | A |
6083386 | Lloyd | Jul 2000 | A |
6096201 | Bruke | Aug 2000 | A |
6105536 | DeWaard | Aug 2000 | A |
6109450 | Grunenwald et al. | Aug 2000 | A |
6136185 | Sheaffer | Oct 2000 | A |
6190566 | Kolber | Feb 2001 | B1 |
6193889 | Teran et al. | Feb 2001 | B1 |
6227379 | Nesseth | May 2001 | B1 |
6231631 | Suzuki | May 2001 | B1 |
6245121 | Lamy et al. | Jun 2001 | B1 |
6346240 | Moore, Jr. | Feb 2002 | B1 |
6355167 | Wensauer | Mar 2002 | B1 |
6375844 | Ehrlich | Apr 2002 | B1 |
6387267 | Kantardjieff | May 2002 | B1 |
6398959 | Teran et al. | Jun 2002 | B1 |
6443094 | DeWaard | Sep 2002 | B1 |
6470828 | Townsend et al. | Oct 2002 | B1 |
6663782 | Morse et al. | Dec 2003 | B2 |
6890429 | Herring, Sr. | May 2005 | B2 |
6908554 | Jackson | Jun 2005 | B2 |
6997135 | DeWaard | Feb 2006 | B1 |
7001512 | Newsome | Feb 2006 | B1 |
7005068 | Hoffland | Feb 2006 | B2 |
7051962 | Whitsel et al. | May 2006 | B2 |
7067065 | Schloss | Jun 2006 | B2 |
7255223 | Schaer et al. | Aug 2007 | B2 |
7258238 | Raghupathy | Aug 2007 | B2 |
7306731 | DeWaard | Dec 2007 | B1 |
7631595 | DeWaard | Dec 2009 | B1 |
7964105 | Moss | Jun 2011 | B2 |
7972517 | Miller | Jul 2011 | B1 |
7987770 | Klump et al. | Aug 2011 | B2 |
7987778 | DeWaard | Aug 2011 | B1 |
8142667 | DeWaard | Mar 2012 | B2 |
8201495 | DeWaard | Jun 2012 | B2 |
8470183 | DeWaard | Jun 2013 | B2 |
8889016 | DeWaard | Nov 2014 | B2 |
8926846 | DeWaard | Jan 2015 | B2 |
20010013497 | Kolber | Aug 2001 | A1 |
20020020677 | Noll | Feb 2002 | A1 |
20020079266 | Ainsworth et al. | Jun 2002 | A1 |
20020084227 | Sower | Jul 2002 | A1 |
20020086077 | Noller et al. | Jul 2002 | A1 |
20030057160 | Williams et al. | Mar 2003 | A1 |
20040074835 | Yoshimoto et al. | Apr 2004 | A1 |
20040154988 | Sheets, Sr. | Aug 2004 | A1 |
20040159608 | Hoffland | Aug 2004 | A1 |
20060266676 | Bossen | Nov 2006 | A1 |
20060273048 | Doyle et al. | Dec 2006 | A1 |
20070289917 | Mylin et al. | Dec 2007 | A1 |
20090090679 | DeWaard | Apr 2009 | A1 |
20100112632 | Dewaard | May 2010 | A1 |
20110036769 | Homma et al. | Feb 2011 | A1 |
20110100930 | DeWaard | May 2011 | A1 |
20110198268 | DeWaard | Aug 2011 | A1 |
20110253227 | DeWaard | Oct 2011 | A1 |
20110309039 | DeWaard | Dec 2011 | A1 |
20120000863 | DeWaard | Jan 2012 | A9 |
20120031856 | Courtemanche et al. | Feb 2012 | A1 |
20120132734 | DeWaard | May 2012 | A1 |
20120138515 | DeWaard | Jun 2012 | A1 |
20120247927 | Marchesini | Oct 2012 | A1 |
20140083957 | DeWaard | Mar 2014 | A1 |
20150008193 | DeWaard | Jan 2015 | A1 |
20150122747 | DeWaard | May 2015 | A1 |
20160121339 | DeWaard | May 2016 | A1 |
Number | Date | Country |
---|---|---|
2336838 | Jun 2001 | CA |
2690420 | Jul 2010 | CA |
2719630 | May 2011 | CA |
2732065 | Aug 2011 | CA |
2737609 | Oct 2011 | CA |
2764679 | Jul 2012 | CA |
201150915 | Nov 2008 | CN |
4042167 | Jul 1991 | DE |
4239083 | Jun 1993 | DE |
4337890 | May 1994 | DE |
4143376 | Dec 1994 | DE |
0126655 | Nov 1984 | EP |
0565268 | Oct 1993 | EP |
1327470 | Jul 2003 | EP |
5626697 | Mar 1981 | JP |
0985122 | Mar 1997 | JP |
434014 | Jul 1984 | SE |
9507744 | Mar 1995 | WO |
Entry |
---|
Accent Manufacturing, “TFSS 60 Sand Trap,” Brochure found on Website http://www.accentmanufacturing.com/sand-separator.html, 4 pages. |
Daritech, Inc., “EYS Separator” Brochure, Jun. 2008, 2 pages. |
Daritech, Inc., “EYS Separator” Brochure, May 2008, 4 pages. |
Daritech, Inc., “Roller Press” Brochure, Feb. 2010, 2 pages. |
Daritech, Inc., “Roller Press” Brochure, Sep. 2008, 1 page. |
McLanahan Agricultural Systems, “Sand Solutions” Brochure, 8 pages. |
Parkson Corporation, “Parkson Sand Saver,” found on Website http://www.henkhuizenga.com/parsonsandseparator.htm, 27 pages. |
USPTO, “U.S. Appl. No. 13/351,214 OA,” Jun. 2, 2014, 41 pages. |
USPTO, Non-Final Office Action, U.S. Appl. No. 14/590,899, Jul. 11, 2016, 52 pages. |
Number | Date | Country | |
---|---|---|---|
20150083672 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61258467 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13926640 | Jun 2013 | US |
Child | 14542951 | US | |
Parent | 12917728 | Nov 2010 | US |
Child | 13926640 | US |