The present disclosure relates generally to the field of metal extrusion.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. The work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
Some extrusion applications, such as automotive applications, may require relatively strict tolerances, such as bow and twist tolerances, for substantially complex, multi-void structural extrusions. Traditional extrusion process capabilities may not be capable of meeting certain tolerance requirements. Failure to meet tolerance requirements may result in increased scrap material and higher part costs and/or loss of business altogether due to lack of capabilities. Some traditional correction methods may be cost prohibitive, particularly at high part volumes.
The following presents a simplified summary of the present disclosure in order to provide a basic understanding of some aspects of the disclosure. This summary is not an extensive overview of the disclosure. It is not intended to identify key or critical elements of the disclosure or to delineate the scope of the disclosure. The following summary merely presents some concepts of the disclosure in a simplified form as a prelude to the more detailed description provided below.
In an embodiment, the disclosure describes a method for work piece correction. The method may include providing a work piece and analyzing a geometry of the work piece. Based on the analysis of the geometry of the work piece, the method may include determining an initial design of one or more simulated clamp blocks, and conducting an initial computer-simulated analysis of work piece correction using the initial design of the one or more simulated clamp blocks. The method may include determining whether results of the initial computer-simulated analysis meet predetermined performance criteria. The method may include iteratively repeating one or more additional computer-simulated analyses of the extrusion correction using at least one additional design of the one or more simulated clamp blocks based on the results of previous computer-simulated analysis until a final clamp block design produce results of the computer-simulated analysis that meet the predetermined performance criteria. Based on the results of the computer-simulated analysis meeting the predetermined performance criteria, the method may include manufacturing one or more clamp blocks based on the final clamp block design. The method may include installing the one or more clamp blocks into one or more clamps of a clamping system and applying one or more extrusion corrections to the work piece.
In another embodiment, the disclosure describes a method for fabricating an aluminum alloy work piece. The method may include analyzing a geometry of a work piece design. Based on the analysis of the geometry of the work piece design, the method may include determining a clamp block design of one or more simulated clamp blocks and conducting a computer-simulated analysis of an extrusion correction using the clamp block design of the one or more simulated clamp blocks. The method may include determining whether results of the computer-simulated analysis meet predetermined performance criteria. The method may include extruding an aluminum alloy work piece based on the work piece design and manufacturing one or more clamp blocks based on the clamp block design of the one or more simulated clamp blocks. The method may include installing the one or more clamp blocks into one or more clamps of a clamping system, installing the extruded aluminum alloy work piece into the clamping system, and applying one or more extrusion corrections to the extruded aluminum alloy work piece.
In another embodiment, the disclosure describes a method of correcting an extruded aluminium alloy work piece. The method may include analyzing a geometry of the extruded aluminum alloy work piece, wherein the extruded aluminum alloy work piece may include one or more internal cavities and an exterior surface. Based on the analysis of the geometry of the extruded aluminum alloy work piece, the method may include determining an initial design of one or more simulated internal clamp blocks configured to be received within at least one of the one or more internal cavities and one or more simulated external clamp blocks each configured to abut at least a portion of the exterior surface. The method may include conducting an initial computer-simulated analysis of an extrusion correction using the initial design of the one or more simulated internal clamp blocks and the one or more simulated external clamp blocks, and determining whether results of the initial computer-simulated analysis meet predetermined performance criteria. The method may include iteratively repeating one or more additional computer-simulated analyses of the extrusion correction using at least one additional design of the one or more simulated internal clamp blocks and one or more simulated external clamp blocks based on the results of previous computer-simulated analyses until a final internal clamp block design and external clamp block design produce results of the computer-simulated analysis that meet the predetermined performance criteria. Based on the results of the computer-simulated analysis meeting the predetermined performance criteria, the method may include manufacturing one or more internal clamp blocks based on the final internal clamp block design and one or more external clam blocks based on the final external clamp block design. The method may include installing the one or more external clamp blocks into one or more clamps of a clamping system, loading the extruded aluminum alloy work piece into the clamping system such that the internal clamp blocks are disposed within the one or more internal cavities, and applying one or more extrusion corrections to the extruded aluminum work piece.
Non-limiting and non-exhaustive embodiments are described in reference to the following drawings. In the drawings, like reference numerals refer to like parts through all the various figures unless otherwise specified.
For a better understanding of the present disclosure, a reference will be made to the following detailed description, which is to be read in association with the accompanying drawings, wherein:
Persons of ordinary skill in the art will appreciate that elements in the figures are illustrated for simplicity and clarity so not all connections and options have been shown to avoid obscuring the inventive aspects. For example, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are not often depicted in order to facilitate a less obstructed view of these various embodiments of the present disclosure. It will be further appreciated that certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. It will also be understood that the terms and expressions used herein are to be defined with respect to their corresponding respective areas of inquiry and study except where specific meaning have otherwise been set forth herein.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, specific exemplary embodiments by which the invention may be practiced. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Among other things, the present invention may be embodied as methods or devices. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. The following detailed description is, therefore, not to be taken in a limiting sense.
Throughout the specification and claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise. The phrase “in one embodiment” as used herein does not necessarily refer to the same embodiment, although it may. Furthermore, the phrase “in another embodiment” as used herein does not necessarily refer to a different embodiment, although it may. Thus, as described below, various embodiments of the invention may be readily combined, without departing from the scope or spirit of the invention.
In addition, as used herein, the term “or” is an inclusive “or” operator, and is equivalent to the term “and/or,” unless the context clearly dictates otherwise. The term “based on” is not exclusive and allows for being based on additional factors not described, unless the context clearly dictates otherwise. In addition, throughout the specification, the meaning of “a,” “an,” and “the” include plural references. The meaning of “in” includes “in” and includes plural references. The meaning of “in” includes “in” and “on.”
The present disclosure describes, in some embodiments, using a unique end-clamping method to correct dimensions and geometries of extruded parts. In some embodiments, the disclosed method may be implemented along with hydraulically driven cylinders to mechanically form (e.g., stretch and/or twist) extrusions resulting in a repeatable and low cost forming method. In some embodiments, the method may help increase accuracy of a part's dimensions and may bring the dimensions of certain extrusions within desired tolerance requirements. This method may be also be used in particularly complex and/or large extrusions that may be used in automotive applications, for example, or other applications that may benefit from relatively large extruded parts with relatively tight tolerances and/or relatively high volumes. Thus, in some embodiments, the disclosure may describe a mechanical calibration and/or correction method that may be applied after an extrusion process to achieve the desired tolerances. In some embodiments, the method may also provide advantages for correcting complex, multi-void structural extrusions.
Other advantages of the disclosed system and methods may include providing precise correction and/or calibration of extruded components in line with the expectations of particular industries or applications, such as the automotive industry. The disclosed system and methods may include efficiencies that will be evident to those skilled in the art, and may accordingly provide for lower costs as compared to traditional methods of providing precision components for certain applications, such as automotive applications.
In some embodiments, the disclosed extrusion correction method may be performed using a clamping system such as that shown in
In some embodiments, the clamping system 50 may include a plurality of internal and external clamp blocks or that may make up a “clamp block set” that may interface with the extrusion work piece 52 as shown in
In some embodiments, the clamp block set 70, 72 may act to transfer tension, torque, and/or moments into the extruded work piece 52 and apply substantially consistent stress and strain across the entirety of extrusion while the part may be twisted or otherwise manipulated to correct its dimensions. The position, size, and shape of the internal and external clamp blocks 70, 72, may help assure that the yield strength limit of the extruded material may be met through the entire length and cross section of the extrusion work piece 52. The internal and external blocks 70, 72 may act to limit the amount that the extruded work piece 52 may be allowed to locally deform, such as in cross section or along the part's length, which may be undesirable in certain applications. In some embodiments, a set of both the external clamp blocks 70 and internal clamp blocks 72 may be removably disposed in the first clamp 60 and the second clamp 62.
Referring to
In some embodiments, the design, shape, and size of the external and internal clamp blocks 70, 72 and their locations with respect to the extrusion work piece 52 may be determined using computational modelling. For example, the geometry of the blocks 70, 72, the work piece 52, and their interface with one another may be modelled and a mesh may be applied for finite element analysis. In some embodiments, material properties of the blocks 70, 72 and the extruded work piece 52 may be input into the model for use during the analysis. Axial tension, rotational torque, and moments may be applied within the model, which may result in an output of the extruded work piece's stress, strain, and deformation.
In one example use of the disclosed system, a 6xxx aluminium alloy profile was measured for stability of spring back and other parameters. The work piece was twisted to 2 degrees nominal and 0.8% lineal stretch. In the test, the work piece exhibited consistent axial and torsional spring back, and consistent linear deformation over the length, which confirmed prior computer simulation analysis, such as the analysis shown and described in
In some embodiments, the detailed clamp block geometry may be specific to each component, but may generally contain several consistent features. The clamp blocks may generally be made from steel, aluminium, or composite material, but other suitable materials may be used in other embodiments. As described above, the clamp blocks may be formed to include machined or extruded surface contours to match the extrusion work piece being corrected. In some embodiments, the clamp blocks may include lead-in chamfers for ease of assembly. For example, in some embodiments, the edges of the internal clamp blocks may be chamfered to provide for easier insertion into the internal cavities of the work piece. As shown in the figures, in some embodiments, the external and internal clamp blocks may include pinholes or otherwise be tapped, dovetailed, etc., to provide for removable mechanical joining of the clamp blocks to each respective clamp in the clamping system. In some embodiments, the clamp blocks may include a series of serrated surfaces to aid in gripping the extrusion work piece to apply tension, moments, torque, etc. For example, surfaces on the external clamp blocks that may contact surfaces of the extrusion work piece may include ridges or other serrated surfaces to provide grip. In some embodiments, the clamp blocks may include tapered sides that may allow for a taper locking mechanism to removably secure the clamp blocks to the clamps. In some embodiments, the clamp blocks may be made from single piece or multi-piece construction, or a combination of both. In some embodiments, multi-piece construction may serve as a collapsing mandrel for ease of disengaging from the extrusion work piece after manipulation of the work piece may be completed.
Once the optimal design for the clamp blocks has been identified via computer simulation, at 210, the method may include fabricating or otherwise creating the modeled clamp blocks for use in the clamping system. It is contemplated herein that one of a variety of suitable fabrication methods may be used to create the clamp blocks, such as die casting, sand casting, milling, forging, injection molding, etc. In some embodiments, the clamp blocks may include pinholes or other mechanisms for establishing a mechanical connection with the clamps of the clamping system. At 212, the method may include installing the clamp blocks onto the clamps of the clamping system, such as by fitting the pinholes onto pins on the hydraulic clamps, and/or inserting internal clamp blocks into internal cavities of the work piece, if any. At 214, the method may include securing the work piece in the clamp blocks and applying corrections to the work piece to bring the work piece dimensions within desired tolerances. In some embodiments, at 216, the method may include testing the work piece to determine whether certain predetermined parameters regarding tolerance, stretch, strain, twist, or other properties are within predetermined thresholds. For example, some testing may include measuring the dimensions of the work piece to confirm that those dimensions meet the desired tolerances for the particular work piece design and/or customer or application limitations. Some testing may include measuring the work piece's stress, strain, and deformation, for example, to determine that the levels and distribution of such parameters may be within predetermined thresholds. At 218, if the work piece does not pass one or more of these tests, the method may include refining the clamp block design in view of the work piece geometry and any shortcomings identified in the testing step. Additional simulations may then be run at 206 with the redefined clamp block design in a similar manner as described above.
The foregoing description and drawings merely explain and illustrate the invention and the invention is not limited thereto. While the specification is described in relation to certain implementation or embodiments, many details are set forth for the purpose of illustration. Thus, the foregoing merely illustrates the principles of the invention. For example, the invention may have other specific forms without departing from its spirit or essential characteristic. The described arrangements are illustrative and not restrictive. To those skilled in the art, the invention is susceptible to additional implementations or embodiments and certain of these details described in this application may be varied considerably without departing from the basic principles of the invention. It will thus be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and, thus, within its scope and spirit.
This application claims priority to U.S. Provisional Application No. 63/149,843, filed Feb. 16, 2021, the disclosure of which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63149843 | Feb 2021 | US |