The present disclosure generally relates to construction, and more specifically to nailing systems and methods.
Trim components, such as trim boards and the like, may be applied to an exterior of a building. Existing methods of attaching trims to a building substrate typically require face nailing, e.g., driving nails through the face of the trims perpendicular to the building substrate. Face nailing of trim boards and the like may undesirably result in relatively low holding power for each nail, requiring a relatively large number of nails to securely fasten the trim to the substrate. Additionally, when nails are driven through the exterior face of a trim, the nail head and/or any associated recess in the trim (e.g., if the nails are countersunk) must be touched up and/or filled with a putty or sealant, and may negatively affect the appearance of the trim.
The systems, methods, and devices described herein address one or more problems as described above and associated with existing construction systems and methods. The systems, methods and devices described herein have innovative aspects, no single one of which is indispensable or solely responsible for their desirable attributes. Without limiting the scope of the claims, the summary below describes some of the advantageous features.
In one embodiment, a nail gun alignment device is described. The nail gun alignment device comprises an attachment section having a proximal end and a distal end, the proximal end coupleable to a safety contact element coupling of a nail gun; a spacing section contiguous with the attachment section at the distal end of the attachment section, the spacing section extending a first distance parallel to a nailing path of the nail gun when the attachment section is coupled to the safety contact element coupling of the nail gun, the spacing section comprising parallel first and second spacing members; an entry location section coupled to a distal end of the spacing section by an entry angle section, the entry angle section defining an obtuse angle θ relative to the spacing section, the entry location section extending a second distance from the distal end of the spacing section, the entry location section comprising parallel first and second entry location members; and a connecting member coupled to a distal end of the entry location section by a terminal angle section, the terminal angle section defining an angle of approximately 90° relative to the entry location section. The nail gun alignment device facilitates angled nailing of a trim board to a building substrate at a nailing angle φ=θ−90° and a nail entry distance y relative to the building substrate, where y is determined by the length of the first and second entry location members.
In some embodiments, the first and second spacing members, the first and second entry location members, and the connecting member comprises a single integrally formed body.
In some embodiments, the nail gun alignment device comprises a metal.
In some embodiments, at least a portion of the nail gun alignment device is coated with a resilient coating.
In some embodiments, θ is between 120° and 150°.
In some embodiments, the first length is between 0.375″ and 0.5″.
In some embodiments, the second length is less than or equal to 1″.
In some embodiments, the nail gun alignment device is further operable as a nail gun safety contact element.
In some embodiments, the proximal end of the attachment section is sized and shaped in accordance with a standardized safety contact element coupling structure corresponding to the nail gun.
In some embodiments, the connecting member rigidly couples the first entry location member and the second entry location member.
In another embodiment, a nail gun alignment device is described. The nail gun alignment device comprises a proximal section coupleable to a safety contact element coupling of a nail gun, and a distal section fixed relative to the proximal section. The distal section comprises a first surface disposed at a preselected angle relative to a nailing path of the nail gun and a second surface disposed orthogonally relative to the first surface. The nail gun alignment device anchors the nailing path at a fixed nail entry distance and a fixed nailing angle relative to a cladding element when the proximal section is coupled to the safety contact element coupling of the nail gun and the distal section is seated within an angle between the cladding element and a building substrate such that the first surface rests against a sidewall of the cladding element and the second surface rests against the building substrate.
In some embodiments, the cladding element comprises a trim board.
In another embodiment, a method of fastening a trim board to a building substrate is described. The method comprises coupling an alignment guide to a nail gun, the alignment guide comprising an attachment section having a proximal end and a distal end, the proximal end coupleable to a safety contact element coupling of the nail gun; a spacing section contiguous with the attachment section at the distal end of the attachment section, the spacing section extending a first distance parallel to a nailing path of the nail gun when the attachment section is coupled to the safety contact element coupling of the nail gun, the spacing section comprising parallel first and second spacing members; an entry location section coupled to a distal end of the spacing section by an entry angle section, the entry angle section defining an obtuse angle θ relative to the spacing section, the entry location section extending a second distance from the distal end of the spacing section, the entry location section comprising parallel first and second entry location members; and a connecting member coupled to a distal end of the entry location section by a terminal angle section, the terminal angle section defining an angle of approximately 90° relative to the entry location section. The method further comprises positioning the trim board adjacent to the building substrate such that the building substrate and a sidewall of the trim board from an interior angle, positioning the nail gun in proximity to the trim board and the building substrate such that the entry location section and the connecting member seat within the interior angle of the trim board and the building substrate, and actuating the nail gun to drive a nail into the sidewall of the trim board at a nailing angle φ=θ−90° and a nail entry distance y relative to the building substrate, such that a portion of the nail travels through the trim board and into the building substrate.
In some embodiments, positioning the nail gun comprises placing the connecting member against the building substrate and placing the entry location section against the sidewall of the trim board.
In some embodiments, positioning the nail gun further comprises applying a pressure against the nail gun toward the interior angle of the trim board and the building substrate to enable actuation of the nail gun by displacing a muzzle of the nail gun relative to the alignment guide.
In some embodiments, the nailing angle φ is between 30° and 60°.
In some embodiments, the nail entry distance y is between 0.375″ and 0.5″.
In some embodiments, the trim board comprises a second sidewall opposite the sidewall, wherein the building substrate and the second sidewall of the trim board form a second interior angle, and the method further comprises positioning the nail gun in proximity to the trim board and the building substrate such that the entry location section and the connecting member seat within the second interior angle, and actuating the nail gun to drive a second nail into the second sidewall at the nailing angle φ and the nail entry distance y relative to the building substrate.
In some embodiments, the method further comprises installing a cladding element onto the building substrate adjacent to the sidewall of the trim board, and applying a linear sealant along an interface between the cladding element and the sidewall of the trim board, wherein the cladding element has a thickness greater than or equal to y such that the entry location of the nail is disposed between the sealant and the building substrate.
In some embodiments, the first and second spacing members, the first and second entry location members, and the connecting member comprises a single integrally formed body.
Certain embodiments of the present disclosure will now be described, by way of example only, with reference to the accompanying drawings. From figure to figure, the same or similar reference numerals are used to designate similar components of an illustrated embodiment.
Although the present disclosure is described with reference to specific examples, it will be appreciated by those skilled in the art that the present disclosure may be embodied in many other forms. The embodiments discussed herein are merely illustrative and do not limit the scope of the present disclosure.
In the description which follows, like parts are marked throughout the specification and drawings with the same or similar reference numerals. The drawing figures are not necessarily to scale and certain features may be shown exaggerated in scale or in somewhat generalized or schematic form in the interest of clarity and conciseness.
Generally described, this disclosure provides devices and methods for improved installation of trim, such as trim boards or other components, to a building substrate. Trim is typically installed by face nailing trim boards to building substrates. Although angled nailing offers enhanced strength and appearance relative to face nailing, trim typically is not installed with angled nailing techniques because angled nailing is difficult to accomplish consistently and quickly using existing nail gun technology. For example, nail guns typically include a safety contact element that must be depressed in order to drive a nail. The pressure exerted by an operator to depress the safety contact element may cause the nail gun tip to move away from the desired entry location and angle before the nail is driven into the component and/or substrate.
Accordingly, embodiments described herein include alignment devices configured for use with nail guns, such as finish nailers or the like. The alignment devices can be sized and shaped to facilitate repeatable and accurate angled nailing at a desired nailing angle and height above the sheathing or other building substrate to which the trim is being attached. Advantageously, the alignment devices are sized and shaped to stably seat within an angle between a trim board and a building substrate such that a nail gun user can repeatedly drive nails at a regular angle and height through the side of the trim board and into the building substrate to fasten the trim board to the building substrate. Such regular repeated nailing may be accomplished without requiring the user to measure and/or visually determine the height and angle at which the nail will be driven.
In some embodiments, an alignment device includes a spacing section having a length that determines the spacing between the muzzle of the nail gun and the nail entry point, an entry angle section that determines the angle at which the nail will be driven, and an entry location section that determines the height at which the nail will be driven. Accordingly, the muzzle spacing, nailing angle, and entry location achieved by the alignment devices can each be independently selected during manufacturing by altering or selecting a length or angle of the corresponding section of the alignment device. In some embodiments, the alignment device may be configured to facilitate toe nailing and/or skew nailing.
Moreover, the present disclosure provides alignment devices compatible with a wide range of commercially available nail guns. The alignment devices can include an attachment section customized to fit a desired model of nail gun, and it will be appreciated that the attachment sections of any of the alignment devices disclosed herein may be manufactured and/or customized to fit a particular nail gun model.
In one embodiment, an alignment device for a nail gun includes a proximal end and a distal end, the proximal end being sized and shaped to removably couple the alignment device to the nail gun, the distal end being bent at an angle substantially supplementary to the angle formed by the trim sidewall and substrate surface.
In one embodiment, the distal end of the alignment device comprises two exterior surfaces arranged at an angle to each other. In use, the first exterior surface is configured to contact and apply a force to the substrate surface while the second exterior surface is configured to contact and apply a force to the trim sidewall.
In one embodiment, an arm extending from the distal end is oriented at an angle relative to the distal end of the device. The arm in conjunction with the distal end of the device places the nail gun head in a position that would allow insertion of a nail at the desired angle and depth.
These and other advantages of various embodiments will be apparent from the description that follows.
In existing face nailing techniques, a nail 30, such as a finish nail or the like, is driven through the exterior surface 14 of the trim board 10 substantially perpendicular to the exterior surface 14 such that the tip 34 of the nail 30 penetrates through the interior surface 12 and into the building substrate 20 through the exterior surface 22 of the building substrate 20. The nail 30 may be driven until the head 32 of the nail 30 is near the exterior surface 14, for example, slightly above the exterior surface 14, flush or level with the exterior surface 14, or slightly indented and/or countersunk beyond the exterior surface 14 within the trim board 10. In various embodiments, the tip 34 may be disposed within the building substrate 20, or may extend beyond the rear surface 24 into a space or additional substrate behind the building substrate 20, depending, for example, on the length of the nail 30, the thickness of the trim board 10 between the interior surface 12 and the exterior surface 14, and/or the thickness of the building substrate 20 between the exterior surface 22 and the interior surface 24. For example, finish nails used to face nail a trim to a plywood or oriented strand board sheathing may be long enough to extend through the interior surface 24.
When a trim board 10 is attached to a building substrate, the trim board 10 may experience an outward force 40 due to wind load, suction pressure, or other outward load directed away from the building substrate 20. Each nail 30 of a face nailed trim board 10 as shown in
As an alternative to face nailing, angled nailing can provide a more robust attachment method for a trim board 10.
The advantages of angled nailing will become apparent with reference to
Accordingly, when an outward force 40 is applied to the angle nailed trim board 10, the outward force 40 is opposed by parallel components (e.g., the components perpendicular to the building substrate 20 and parallel to the outward force 40) of both a substrate friction force 42 between the building substrate 20 and the nail 30b, and a substrate normal force 44 between the building substrate 20 and the nail 30b. The substrate friction 42 is directed along the nail 30b and is generally proportional to the substrate normal force 44. For example, the substrate friction 42 may be defined by the equation Ff=μFN+f, where Ff is the substrate friction force 42, μ is the coefficient of friction between the building substrate 20 and the nail 30b, FN is the substrate normal force 44, and f is a friction constant associated with the nail 30b. Accordingly, the trim board 10 will not be moved from its fastened position unless the total tributary outward force 40 is greater than the sum of the substrate friction 42 and the substrate normal force 44.
Moreover, referring again to
Although angled nailing provides a more secure attachment method for trim, angled nailing of exterior trim to a building substrate can be difficult, tedious, and/or inexact using existing methods. For example, exterior trim is frequently installed using nail guns. When using a nail gun, the insertion location and angle are generally determined visually by positioning of the nail gun. In the case of face nailing, such approximation may provide sufficient accuracy where the nail is to be driven substantially perpendicularly through a relatively wide exterior face of a trim board. However, it may be difficult to reliably nail trim with angled fasteners using a nail gun because greater precision of the nail insertion location and angle. For example, in the configuration shown in
The attachment section 150 is configured to secure the alignment device 100 to a nail gun. In some embodiments, the alignment device 100 can be used in place of, and may be configured to function as, a pressure-activated safety lever, push lever, safety contact, or other contact element of various commercially available nail guns. Accordingly, the orientation, size, shape, and/or relative spacing of the first attachment member 150a and the second attachment member 150b may be selected to be compatible with a particular model of nail gun to be used. For example, the attachment section 150 may be sized and shaped to comply with one or more industry, manufacturer, and/or product-specific standard contact element attachment structures. Thus, as shown in
The spacing section 160 between the attachment section 150 and the entry angle section 165 provides for a separation along the nailing path 101 between the nail gun and the nail entry location. The spacing section 160 is generally defined by a length x of the first and second spacing members 160a, 160b. The length x of the spacing section 160 can be selected, for example, based on requirements of the nail gun, to achieve clearance between the nail gun and the trim or building substrate, and/or to provide a sufficient distance between the trim and the nail gun for safe and/or proper operation. In some embodiments, the length of the spacing section 160 can be, for example, between 0.25″ and 1 inch, between 0.375″ and 0.5″, or other suitable range. In one particular example, the length of the spacing section can be approximately 0.469″.
The entry angle section 165 between the spacing section 160 and the entry location section 170 provides for a desired nailing angle φ, as defined and described with reference to
The entry location section 170 between entry angle section 165 and the terminal angle section 175 provides for a desired distance y between the nail entry location and the building substrate, as defined and described with reference to
The terminal angle section 175 and connecting member 180 are provided to connect and fix the various first members 150a, 160a, 165a, 170a relative to the various second members 150b, 160b, 165b, 170b. Connection between the various first members 150a, 160a, 165a, 170a and second members 150b, 160b, 165b, 170b provides additional dimensional stability to the alignment device 100 and allows the alignment device 100 to remain as a single piece when not attached to a nail gun. Additionally, the terminal angle section 175 and connecting member 180 form an angled portion of the alignment device 100 that can be seated within the junction of a building substrate and a trim board to stabilize the alignment device 100 and an attached nail gun for nail driving. For example, a terminal angle section having an angle of approximately 90° may be suitable for installing trim boards having a substantially rectangular cross section, as such trim boards form an interior angle of approximately 90° at their junction with an adjacent building substrate. Angles other than 90° may be suitable for installing trim boards having a trapezoidal or parallelogrammatic cross section. The length of the connecting member 180 may be selected as desired to provide stability for the guide device 100 and/or a nail gun coupled to the guide device 100. For example, in some embodiments, the connecting member 180 may extend to a maximum distance of approximately 0.3″, 0.425″, 0.5″, 0.75″, or another suitable distance from the terminal angle section 175.
The alignment device 100 may be made from any suitably rigid material. For example, the alignment device 100 may comprise a metal, such as steel, aluminum, brass, or other metals or alloys. In some embodiments, the alignment device 100 may comprise one or more plastics, polymeric materials, composite materials, or the like. In further embodiments, the alignment device 100 may comprise an integrally formed metal structure at least partially covered in a resilient coating, such as a plastic coating, a rubberized coating, a paint, a polymeric material, a composite material, or the like. For example, in some embodiments the spacing section 160, the entry angle section 165, the entry location section 170, the terminal angle section 175, and the connecting member 180 may be covered in a rubberized or other coating, while the attachment section 150 may comprise a bare or non-coated metal to provide for secure attachment to a nail gun.
As described with reference to
The nail gun 200 is configured to store one or more nails within the magazine 295. An uppermost nail within the magazine 295 can be driven by an actuating means (e.g., pneumatic pressure, a solenoid, an explosive powder, electromagnetic force generator, or the like) within the body 285. Driving of the nail can be caused by a user holding the handle 290 and depressing the trigger 292. Typically, nail guns may require that both a contact element and the trigger be depressed to drive a nail, for example, as a safety interlock to prevent the firing of a nail when the nail gun is not positioned against a substrate for nailing. Thus, the alignment device 100 may function both to align the nail driving location and as a safety contact element. For example, the nail gun 200 can be capable of driving a nail when the alignment device 100 is displaced toward the body 285 of the nail gun along the nail driving axis parallel to the spacing section 160. Advantageously, the angled configuration of the spacing section 160 relative to the entry location section 170 and the spacing member 180 maintains the same entry location and nailing angle regardless of how far the alignment device 100 is displaced parallel to the spacing section 160 to allow the nail gun 200 to drive the nail.
With reference to
The process begins in the configuration depicted in
The process continues to the configuration depicted in
The process continues to the configuration depicted in
After the first nail 330a is driven into the trim board 310 and building substrate 320, the process continues to the configuration depicted in
The process continues to the configuration depicted in
With reference to
In
As shown in
Certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as any subcombination or variation of any subcombination.
Moreover, while methods may be depicted in the drawings or described in the specification in a particular order, such methods need not be performed in the particular order shown or in sequential order, and that all methods need not be performed, to achieve desirable results. Other methods that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional methods can be performed before, after, simultaneously, or between any of the described methods. Further, the methods may be rearranged or reordered in other implementations. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products. Additionally, other implementations are within the scope of this disclosure.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include or do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.
Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
Although making and using various embodiments are discussed in detail below, it should be appreciated that the description provides many inventive concepts that may be embodied in a wide variety of contexts. The specific aspects and embodiments discussed herein are merely illustrative of ways to make and use the systems and methods disclosed herein and do not limit the scope of the disclosure. The systems and methods described herein may be used for mounting of trim boards to building substrates and are described herein with reference to this application. However, it will be appreciated that the disclosure is not limited to this particular field of use.
Some embodiments have been described in connection with the accompanying drawings. The figures are drawn to scale, but such scale should not be limiting, since dimensions and proportions other than what are shown are contemplated and are within the scope of the disclosed inventions. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.
While a number of embodiments and variations thereof have been described in detail, other modifications and methods of using the same will be apparent to those of skill in the art. Accordingly, it should be understood that various applications, modifications, materials, and substitutions can be made of equivalents without departing from the unique and inventive disclosure herein or the scope of the claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/631,320, filed Feb. 15, 2018, entitled “SYSTEMS AND METHODS FOR FASTENING A COMPONENT TO A BUILDING SUBSTRATE,” which is hereby incorporated by reference in its entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4787145 | Klicker | Nov 1988 | A |
6199736 | Musarella | Mar 2001 | B1 |
7032796 | Lin | Apr 2006 | B1 |
7306052 | Vahabi-Nejad | Dec 2007 | B2 |
7320422 | Schell | Jan 2008 | B2 |
8556148 | Schell | Oct 2013 | B2 |
8661694 | Bijsterveldt | Mar 2014 | B2 |
8752744 | Okouchi | Jun 2014 | B2 |
9522464 | Segura | Dec 2016 | B2 |
20040178240 | Bauer | Sep 2004 | A1 |
20160354904 | Dicaire | Dec 2016 | A1 |
20190337142 | Hays | Nov 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20190247989 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62631320 | Feb 2018 | US |