Systems and methods for flexible route planning

Information

  • Patent Grant
  • 11953328
  • Patent Number
    11,953,328
  • Date Filed
    Tuesday, December 14, 2021
    2 years ago
  • Date Issued
    Tuesday, April 9, 2024
    a month ago
Abstract
Systems, methods, and non-transitory computer readable media are provided for flexible route planning. Locations for a planned movement may be obtained. The locations may include at least a starting location and an ending location. A route for the planned movement may be determined. The route may include at least the starting location and the ending location. A composite cost of using the route may be determined. The composite cost may include at least a temporal cost component and a non-temporal cost component. An interface through which the composite cost is accessible may be provided.
Description
FIELD OF THE INVENTION

This disclosure relates to approaches for flexible route planning.


BACKGROUND

Under conventional approaches, routes between different locations may be provided with expected travel durations. Such conventional approaches may not take non-traditional modes of travel and/or user preference for traveling into consideration.


SUMMARY

Various embodiments of the present disclosure may include systems, methods, and non-transitory computer readable media configured to provide flexible route planning. Various embodiments of the present disclosure may include systems, methods, and non-transitory computer readable media configured to obtain locations for a planned movement. The locations may include at least a starting location and an ending location. A route for the planned movement may be determined. The route may include at least the starting location and the ending location. A composite cost of using the route may be determined. The composite cost may include at least a temporal cost component and a non-temporal cost component. An interface through which the composite cost is accessible may be provided.


In some embodiments, the locations may include one or more intermediate locations. In some embodiments, the route may include multiple modes of motion along the route.


In some embodiments, the temporal cost component may be determined based on a temporal route graph. The temporal cost component may reflect an expected time duration to use the route.


In some embodiments, the non-temporal cost component may be determined based on a two-dimensional non-temporal cost map. The non-temporal cost component may reflect a measure of a characteristic of an environment through which the route travels. The characteristic may include at least one of: a geographic characteristic, a preference characteristic, a difficulty characteristic, or a risk characteristic. These characteristics may be computed as a combination of remote sensing events or manually entered risk factors.


In some embodiments, the interface may enable creation of a new path for the route based on a change to an environment through which the route travels.


These and other features of the systems, methods, and non-transitory computer readable media disclosed herein, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for purposes of illustration and description only and are not intended as a definition of the limits of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

Certain features of various embodiments of the present technology are set forth with particularity in the appended claims. A better understanding of the features and advantages of the technology will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 illustrates an example environment for providing flexible route planning, in accordance with various embodiments.



FIG. 2 illustrates example routes for a planned movement, in accordance with various embodiments.



FIG. 3A illustrates an example two-dimensional non-temporal cost map, in accordance with various embodiments.



FIG. 3B illustrates an example temporal route graph, in accordance with various embodiments.



FIG. 4A illustrates an example interface for flexible route planning, in accordance with various embodiments.



FIG. 4B illustrates an example timeline interface, in accordance with various embodiments.



FIG. 5 illustrates a flowchart of an example method, in accordance with various embodiments.



FIG. 6 illustrates a block diagram of an example computer system in which any of the embodiments described herein may be implemented.





DETAILED DESCRIPTION

A claimed solution rooted in computer technology overcomes problems specifically arising in the realm of computer technology. In various implementations, a computing system may obtain locations for a planned movement (e.g., of one or more entities, such as one or persons/teams/vehicles). The locations may include a starting location and an ending location. In some embodiments, the locations may include one or more intermediate locations (e.g., waypoints).


The computing system may determine a route, including the starting location and the ending location, for the planned movement. Information corresponding to the route may be pushed to or pulled by a user device. The computing system may determine a composite cost of using the route. The computing system can also provide an interface through which the composite cost is accessible.


In some embodiments, the composite cost may include a temporal cost component and a non-temporal cost component. In some embodiments, the cost component may be determined based on a route graph (edge/node weighting). For example, the cost component may reflect an expected time duration to use the route. In some embodiments, the cost component may be determined based on a two-dimensional cost map (e.g., pixel cost). For example, the cost component may reflect a measure of a characteristic of an environment (e.g., geographic characteristic, preference characteristic, difficulty characteristic, risk characteristic) through which the route travels. The characteristic of the environment may be static (e.g., does not change over time) or dynamic (e.g., changes over time). In some embodiments, the characteristic of the environment may exist based on an occurrence of an event. In such embodiments, the cost from the event may be projected (in time and/or space) in the cost map. In some embodiments, a route graph may be re-weighted based on a two-dimensional cost map. Both route graphs and cost maps can be used to compute temporal and non-temporal costs.


In some embodiments, the route may be determined based on a user's selection of one or more paths along the route (e.g., free draw). In some embodiments, the route may include optional paths based on one or more contingencies (e.g., contingencies along the route). In some embodiments, the route may include optional paths based on one or more properties/conditions of the route (e.g., time/season at which the route is used, weather/lighting conditions during which the route is used, etc.).


In some embodiments, the route may provide for coordination of a planned movement of multiple entities (e.g., multiple entities reaching one or more locations at the same time/at particular times). In some embodiments, the route may be randomized to reduce predictability of the route. In some embodiments, the route may include multiple modes of motion (e.g., walking, driving, flying, etc.) along the route.


In some embodiments, sensitivity of the route determination may change along the route (e.g., the first 95% of the route determined using low sensitivity to provide a general route and the last 5% of the route determined using high sensitivity to provide a detailed route). In some embodiments, the interface may enable creation of a new path for the route based on a change to the environment through which the route travels (e.g., installing a ladder to climb a barrier, knocking down a wall/door to create a new opening, etc.).


In some embodiments, the interface may provide for visualization of the temporal and geospatial aspects of the movement along the route. In some embodiments, the interface may provide for different visualization of the temporal cost component and/or the non-temporal cost component of the composite cost.


The approaches disclosed herein enable determination of flexible routes using multiple factors. Multiple temporal and/or non-temporal cost components may be taken into account to determine a route between a starting location and an ending location. The temporal cost component may take into account the duration of time expected to take to traverse the route. Further, the non-temporal cost component may take into account non-temporal characteristics of the route (e.g., geography, user preference, difficulty, risk) to provide multi-dimensional weighting of costs to use the route. Such combination of both temporal and non-temporal costs may provide for determination of cost using a combination of information corresponding to a temporal route graph and information corresponding to a two-dimensional non-temporal cost map. Such provision of flexible routes may be used to plan original routes and/or to plan modified routes (e.g., changes to routes in case of emergency). Such provision of flexible routes may be used to determine routes when one or more edges/nodes of the temporal route graph are unavailable (e.g., road/waypoint inaccessible due to weather).



FIG. 1 illustrates an example environment 100 for providing flexible route planning, in accordance with various embodiments. The example environment 100 may include a computing system 102. The computing system 102 may include one or more processors and memory. The processor(s) may be configured to perform various operations by interpreting machine-readable instructions stored in the memory. The environment 100 may also include one or more datastores that are accessible to the computing system 102 (e.g., via one or more network(s)). In some embodiments, the datastore(s) may include various databases, application functionalities, application/data packages, and/or other data that are available for download, installation, and/or execution.


In various embodiments, the computing system 102 may include a locations engine 112, a route engine 114, a cost engine 116, an interface engine 118, and/or other engines. While the computing system 102 is shown in FIG. 1 as a single entity, this is merely for ease of reference and is not meant to be limiting. One or more components/functionalities of the computing system 102 described herein may be implemented, in whole or in part, within a single computing device or within multiple computing devices.


In various embodiments, the locations engine 112 is configured to obtain information describing locations for a planned movement. A planned movement may refer to an arranged/designed change in a position/physical location of one or more entities. For example, a planned movement may include a future change in a position/physical location of persons, teams, vehicles, and/or other things. Locations for a planned movement may refer to positions/physical locations to/from which one or more of the entities may move. For example, the locations for a planned movement may include at least a starting location and an ending location. In some implementations, the planned movement may include multiple starting locations and/or multiple ending locations. For example, the planned movement may include movement of multiple entities that may start from different starting locations and/or end at different ending locations.


In various embodiments, locations for a planned movement may include one or more locations between the starting location(s) and the ending location(s). Such locations may be referred to as intermediate locations or waypoints. For example, a planned movement may include movement of a vehicle from a starting point to a waypoint and from the waypoint to an ending location. Other locations for a planned movement are contemplated.


In some embodiments, one or more locations may be associated with a time duration. For example, the planned movement may include an entity spending a given amount of time at a starting location, a waypoint, and/or an ending location. For example, the planned movement may have a vehicle moving from the starting point to the waypoint, spending thirty minutes at the way point, and then moving on to the ending location. The locations within the planned movement, an amount of time to be spent at each of the different locations, and/or other information about the planned movement may be recorded (or stored) within an itinerary.


The information describing locations needed for a planned movement may be obtained by the locations engine 112 directly at the computing system 102 (e.g., provided by a user using the computing system 102) or received from another computing device (e.g., provided by a user operating a computing device communicating with the computing system 102). The information describing locations needed for a planned movement may be received by the computing system 102/another computing device in advance and may be retrieved by the locations engine 112 at a later time. For example, information describing locations for a planned movement may be received and stored in memory of the computing system 102. The information is thus available to be loaded by the computing system 102 at a later time. The locations for a planned movement may be received at once or in multiple parts. For example, the locations engine 112 may receive from a user information describing all locations for a planned movement within a single communication. As another example, the locations engine 112 may receive from a user information describing one or more locations for a planned movement within one communication and information describing other location(s) within another communication (e.g., a user enters starting location and an ending location during a certain time, and then enters additional location(s)/makes changes to entered location(s) at another time). Many variations are possible.


In some embodiments, information describing locations for a planned movement may be obtained based on a user's interaction with a user interface. The user interface may enable a user to enter one or more locations for the planned movement. For example, the user interface may include an itinerary interface that can be used to input one or more locations for the planned movement and keep track of the entered locations. The itinerary interface may enable a user to change one or more locations (e.g., add a new location, remove an existing location, modify an existing location to another location) and/or change an order of the locations (e.g., swaps positions between a starting location and an ending location to obtain a reverse route, change in which order waypoints may be visited).


As another example, the user interface may include a map interface. The map interface may display a view (e.g., satellite map, street map, topographical map, climate map, etc.) of a geographic area. The map interface may enable a user to enter one or more locations (e.g., tagging/clicking on a position within a map as a starting location), change one or more locations (e.g., adding, removing, modifying locations), and/or change an order of locations (e.g., specify in what order the waypoints will be visited). For example, the map interface may enable a user to set points/areas on a map as a starting location, an ending location, and/or one or more waypoints. The map interface may provide functionality that permits a user to identify where the starting location, the ending location, and/or the waypoints are located in the view provided by the map interface.


In various embodiments, the route engine 114 is configured to determine a route for the planned movement. A route for the planned movement may refer to one or more paths/courses that may be used by one or more entities to travel from one or more starting locations to one or more ending locations. For example, a route may include paths/courses to be used by a single entity to move from a starting location to an ending location. As another example, the route may include paths/courses to be used by multiple entities. Such a route may be used to provide for coordination of movement of multiple entities (e.g., coordinate multiple entities reaching one or more locations at the same time/at particular times). A route may be static (does not change with time, conditions, variables, etc.) or may by dynamic (changes with time, conditions, variables, etc.). The route engine may determine a route for the planned movement so that the route includes at least a starting location and an ending location. The route may include other location(s), such as one or more waypoints between the starting location and the ending location.


The route engine 114 may determine the route for the planned movement based on one or more parameters. For example, the route engine 114 may use one or more of a least-cost analysis, a temporal route graph, a two-dimensional non-temporal cost map, a contingency, a route property/condition, free draw, deconfliction, and/or other information to determine the route for the planned movement. A least-cost analysis may include analysis of different paths/courses for the route to determine the path(s)/course(s) that require the least cost to use for traveling. Such analysis may include cost analysis of a single factor (e.g., a time cost of taking a given path/course) or multiple factors (e.g., a time-cost and a non-time cost of taking a given path/course, multiple non-time costs of taking a given path/course). Such analysis may use temporal route graph(s) and/or two-dimensional non-temporal cost map(s).


A temporal route graph may refer to a graph of nodes and edges that represent different times required to use a given path/course. Individual nodes on the graph may represent a location and edges between the nodes may represent the time required to move (or travel) between the locations. In some embodiments, one or more nodes may be associated with a time requirement. For example, a waypoint may be associated with a thirty-minute time period (e.g., an entity using the route is expected to spend thirty minutes at the waypoint before moving on). A temporal route graph may be used to determine an expected time duration needed to use a particular route.


A two-dimensional non-temporal cost map may refer to a rasterized visualization of a non-temporal cost of moving across different points/areas. A non-temporal cost may relate to one or more characteristics of an environment through which a route travels. For example, a two-dimensional non-temporal cost may provide a measure of cost in terms of geographic characteristic, preference characteristic, difficulty characteristic, risk characteristic, and/or other characteristics of the environment through which the route travels. The measure of a cost for moving (or traveling) over a geographic point/area may be represented by a corresponding color/intensity of pixels in the two-dimensional non-temporal cost map. For example, the risk of moving over different points in an area may be reflected using a heat map. In this example, colors/intensities of pixels corresponding to the different points in the area may indicate corresponding amounts of risk associated with traveling over, or along, the different points. Other types of two-dimensional non-temporal cost maps are contemplated. A two-dimensional non-temporal cost map may be used to determine a non-temporal cost of using a particular route.


A least-cost analysis may balance costs of different factors equally or non-equally. For example, one determination of a route may equally balance a time required to take a path/course (determined using a temporal route graph) and a risk/danger of taking the path/course (determined using a two-dimensional non-temporal cost map). As another example, another determination of a route may place more emphasis on (weigh more heavily) a risk/danger of taking a path/course than on a user's preferences for certain paths/courses (e.g., a user preferring to take coastal rather than in-land paths). In some embodiments, a least-cost analysis may include one or more minimum or maximum costs. For example, a least-cost analysis may not allow a route that has more than a certain amount of temporal/non-temporal cost to be determined (e.g., setting maximum limit(s) on an expected time/risk for the route) and/or a least-cost analysis may now allow a route that has less than a certain amount of temporal/non-temporal cost to be determined (e.g., setting minimum limit(s) on an expected time/difficulty for the route). In some embodiments, the weighing of the two-dimensional non-temporal cost map and/or the balancing of factors may be user-controlled. For example, the profile of the two-dimensional non-temporal cost map may be determined by a user's risk/danger profile (e.g., risk/danger adverseness of the user). Other combination/balancing of factors for route determination are contemplated.


Use of contingency for route determination may provide for different routes/paths/courses based on changes in circumstances. The route engine 114 may determine a route with different/optional paths/courses depending on one or more contingencies occurring before or while using the route, such as one or more events/activities (that occur prior to or during usage of the route), one or more route properties/conditions (e.g., different paths/courses based on whether a certain path/course is accessible or not, different paths/courses based lighting/weather conditions during usage of the route), and/or other information for the route. For example, a route may include optional paths/courses based on one or more properties/conditions of the route (e.g., time/season at which the route is used, weather/lighting conditions during which the route is used, etc.). For example, a route may include optional paths/courses based on identities of any entities using the route.


Use of a contingency for route determination may provide for different/optional paths/courses for a single entity or multiple entities. For example, a route may be determined for two entities. In this example, a contingency for the route may provide for a different path/course to be taken by one of the entities based on how the other entity uses the route. As another example, a route may be determined for multiple entities. In this example, a contingency for a route may provide for different paths/courses to be taken by the different entities based on occurrences of one or more events.


Use of free draw for route determination may provide for user customization of the paths/courses in the route. Free draw may refer to a user's own setting of the paths/courses. For example, a user interface may allow a user to draw paths/courses to be used in a route and/or may allow a user to change the paths/courses in the route (e.g., via inserting a new path/course, deleting an existing path/course, modifying an existing path/course). The route may be determined based on a user's selection of one or more particular paths/courses along the route.


Use of deconfliction for route determination may provide for reduction in conflicts (e.g., collision) for a single or multiple entities using the route. For example, deconfliction may be used to route a single entity to different locations within an area (e.g., not visiting the same location more than a certain number of times) and/or to route multiple entities to the same location at the same time (e.g., have two or entities arriving/being at a particular location at the same time) or to different location at the same/different times.


In some embodiments, a route may be randomized to reduce predictability of the route. For example, the route engine 114 may determine a route using one or more randomized parameters to decrease the likelihood that the same route will be used repeatedly. As another example, the route engine 114 may store used routes and compare routes to the used routes to ensure that a particular route (or one or more portions of the route) is not used more than a threshold number of times and/or is not repeated a threshold number of times.


In some embodiments, a route may include multiple modes of motion along the route. For example, the route may include one or more paths/courses (or one or more portions) that are to be traveled using different mode(s) of motion (e.g., walking, driving, riding a train/bus, biking, flying, swimming, etc.) from other paths/courses (or one or more other portions). The usage of different modes of motion may be provided as an option for any entities using the route (e.g., different paths/courses based on the mode of motion used). The mode(s) selected may be determined based on a user-selection (e.g., a user selecting a given mode of motion for a particular portion of a route using a user interface), may be determined based on availability of the modes of motion, and/or based on other information.


In some embodiments, the sensitivity of a route determination may change along the route. The route engine 114 may determine a route using different amount of sensitivity (e.g., using more or less precise temporal/non-temporal cost determinations) along the route. For example, the route engine 114 may determine one portion of the route (e.g., the first 95% of the route) using a low sensitivity to provide a general route and determine another portion of the route (e.g., the remaining 5% of the route) using a high sensitivity to provide a detailed route. Usage of low sensitivity for a portion of the route may provide for cost-savings in resources (e.g., computing resources, planning resources). Such an approach may allow the route engine 114 to develop a route that may be generally followed (e.g., the route provides for the general path/course and/or the mode(s) of motion to be used) for a portion of the route and specifically followed (e.g., the route provides step-by-step instructions on the precise path/course to be used and/or the mode(s) of motion to be used) for another portion of the route. Such an approach may allow the route engine 114 to determine a route using more general factors (e.g., more general temporal route graph/two-dimensional non-temporal cost map) for a portion of the route and more specific factors (e.g., more detailed temporal route graph/two-dimensional non-temporal cost map) for another portion of the route.


In some embodiments, the route engine 114 may determine a route using one or more changes to an environment through which the route travels. For example, an environment through which the route travels may include a barrier that prohibits the use of a road by an entity. The route engine 114 may determine a route that overcomes the barrier, for example, based on a change in the environment. In this example, the route engine 114 may determine a change to the environment that allows the entity to use the road (e.g., installing a ladder to climb the barrier, knocking down a wall/door to create a new opening, etc.). The change(s) to the environment may be received by the route engine 114 based on a user's interaction with an interface (e.g., user interface). In some embodiments, one or more changes in the environment may be provided as an option/contingency in the route determination. For example, the route engine 114 may determine a route that provides for a particular path/course to be used if an environment is changed (e.g., by an entity that is planning on taking the particular path/course, by another entity that is taking another path/course) before or during the use of the route and another path/course to be used if the environment is not changed. For example, the route may include teams of rescuers moving in coordination and one team of rescuers may move along a particular path/course based on a change to the environment (as performed by the team of rescuers or another team of rescuers) and may move along another path/course based on the team of rescuers/another team of rescuers being unable to make the change to the environment (e.g., a team of rescuers unable to knock down a door in their path; a team of rescuers unable to stop a flow of water into a path to be taken by another team of rescuers).


Information corresponding to route(s) determined by the route engine 114 may be stored for future use. For example, a route may be determined in advance of the planned movement such that the route may be used for planning purposes and/or may be viewed during the movement using the route. The stored route may be used by entities for which the route was determined or by other entities. The route may be stored so that another entity that plans on traveling to the same/overlapping location(s) may benefit from the previously determined route. For example, a previously determined route may provide for movement from a location A to a location B. A new route may be determined for movement from the location A to a location C with the previously determined path(s)/course(s) being used for movement from the location A to the location B along with new path(s)/course(s) being determined for movement from the location B to the location C. Other usage of stored routes are contemplated. Many variations are possible.


Information corresponding to route(s) determined by the route engine 114 may be pushed to and/or pulled by a user device. A user device may refer to a computing device through which a user may access the route(s). For example, a user device may include a desktop device (e.g., desktop computer/terminal) or a mobile device (e.g., smartphone, tablet, smartwatch, laptop). The information corresponding to the route(s) may be pushed to and/or pulled by the user device before and/or during the user's usage of the route(s). For example, a route may pulled to the user device based on a user's request for a route to move from location A to location B. During the user's use of the route, the route may be changed (e.g., based on changes in the environment, changes in environmental conditions, changes in movement plans) and the changed route may be pushed to the user device for navigating.


In various embodiments, the cost engine 116 is configured to determine a composite cost of using a route. A composite cost may refer to a combination of two or more costs for using the route. For example, a composite cost may include a temporal cost component and a non-temporal cost component. As another example, a composite cost may include temporal cost component and multiple non-temporal cost components. As another example, a composite cost may include multiple non-temporal cost components. The cost engine 116 may determine a composite cost based on a weighing of cost components. The different cost components may be weighed the same or differently for the composite cost determination. For example, the temporal cost component and the non-temporal cost component may be weighed the same for composite cost determination. As another example, the temporal cost component and the non-temporal cost component may be weighed differently and/or two different non-temporal cost components may be weighed the same or differently (e.g., based on user profile). A composite cost may include other cost components/other combinations of cost components.


A temporal cost component may reflect a time duration expected to be needed to use the route. A temporal cost component may be determined based on a temporal route graph (edge/node weighting). Different temporal route graphs may be used for different entities and/or different modes of travel (e.g., different temporal route graphs for person A versus person B, different temporal route graphs for bus versus train). A temporal cost component may reflect a combination of expected time durations needed to travel between locations (weights of edges between nodes) and expected time durations to be spent at one or more particular location (e.g., weights of nodes).


A non-temporal cost component may reflect a measure of a characteristic of an environment through which the route travels. A non-temporal cost component may be determined based on a two-dimensional non-temporal cost map (e.g., pixel cost). The two-dimensional non-temporal cost map may provide the non-temporal cost of moving over a location based on corresponding colors/intensities of pixels associated with the location in the two-dimensional non-temporal cost map. The characteristic of the environment may include at least one of a geographic characteristic, a preference characteristic, a difficulty characteristic, or a risk characteristic.


A geographic characteristic may refer to one or more characteristics that relates to the geography of an area. For example, geographic characteristics may include an elevation of an area, difficulty traveling in the area (e.g., whether the area is smoothed/paved or rough/rocky, etc.), water current/wind speed of an area, temperature/climate in the area, shade/sunlight in the area, breathability of air in the area, and/or other geographic characteristics. A preference characteristic may refer to one or more characteristics that relate to preferences (e.g., personal preferences) of entities that use the route. For example, preference characteristics may include a preferred mode of travel for an entity, preferred conditions of travel for an entity, a preferred environment of travel for an entity, and/or other preference characteristics. A difficulty characteristic may refer to one or more characteristics that relate to a difficulty of moving (or traveling) within an area. A difficulty characteristic may be general to an area or specific to an entity. For example, different two-dimensional non-temporal cost maps for difficulty of moving within an area may be provided for different entities/types of entities. A risk characteristic may refer to one or more characteristics that relate to risk of moving within an area. A risk characteristic may be general to an area or specific to an entity. For example, different two-dimensional non-temporal cost maps for corresponding risks of moving (or traveling) within an area may be provided for different entities/types of entities.


The characteristic of an environment may be static (e.g., does not change over time) or dynamic (e.g., changes over time). For example, difficulty characteristics for moving within an area may change based on the season, weather conditions, and/or other factors. The risk characteristics for moving within an area may change based on occurrences of one or more events, proximity of particular entities/groups within/near the area, and/or other information. For example, a particular characteristic (e.g., difficulty, risk) of an environment may exist based on an occurrence of an event (e.g., snowfall, landslide, accident). In such embodiments, the non-temporal cost from the event may be projected (in time and/or space) in the non-temporal cost map. For example, the difficulty and/or risk of moving within an area may change based on a recent landslide or an accident (e.g., vehicular accident, power outage, etc.). The non-temporal costs from such events may change (or deteriorate) over time (e.g., disappear in time). The non-temporal costs from such events may be localized (e.g., changes the costs at the event location) or may be spread out to other areas (e.g., changes the costs at nearby locations). The changes in costs from such events may be projected in time and/or space based on one or more propagation/diffusion functions (e.g., linearly, quadratically, over a given duration of time). The changes in costs from such events may be different based on the entities (e.g., risk to civilians increased more than risk to rescuers).


In various embodiments, the interface engine 118 is configured to provide one or more interfaces through which the composite cost is accessible. The interface(s) may include application program interface(s) (APIs) and/or user interface(s). For example, the interface engine 118 may provide one or more APIs that may be used by users/computing systems to access a composite cost for using a particular route. As another example, the interface engine 118 may provide one or more user interfaces (e.g., web user interface accessible through a browser) through which users may view the composite cost for using the particular route. The composite cost may be accessed as a whole and/or in parts. For example, the cost composite cost may include a score (e.g., number and/or letter score) generated based on a combination of a temporal cost component (e.g., time) and a non-temporal cost component (e.g., number and/or letter score). The interface(s) may allow a user to view the score generated based on the combination of the temporal cost and the non-temporal cost and/or view the components costs separately (e.g., the temporal cost and/or the non-temporal cost). For example, a user interface may provide a view of an expected time duration to use the route, expected traffic time to use the route, the expected level of danger in using the route, and/or other information. In some embodiments, one or more portions of the user interface may be viewed using 3D/virtual reality technology. For example, the route may be overlaid over a three-dimensional representation of the environment through which the route travels and the positions of the entities using the route may be displayed in a 3D/virtual reality environment. As another example, the timeline of time required for entities to travel over different portions of the route may be displayed in a 3D/virtual reality environment.


In some embodiments, the composite cost accessible through the interface(s) may be dynamic. That is, the composite cost (and/or the component costs) viewed through the interface(s) may change based on changes in the route (e.g., changes in the paths/courses, changes in the properties/conditions of the route/environment). For example, a user interface may enable a user to change one or more portions (e.g., paths/courses) of the route (e.g., using free draw) and the composite cost (and/or the component costs) shown on the user interface may change (e.g., elevation sent up while danger level went down). Such dynamic views of composite costs may enable users to make changes to the route while viewing the changes in the composite cost and/or the component costs of using the route.


In some embodiments, the interface(s) may provide for visualization of the temporal and geospatial aspects of the movement along the route. That is, the interface(s) may visually show the expected durations needed to use a route (and/or portions of the route) and where the route travels. For example, a user interface may display a map of the area/environment through which the route travels. The route may be graphically displayed (e.g., overlaid) on the map and the times required to travel over different portions of the route may be displayed on a timeline.


In some embodiments, the interface(s) may provide different visualizations of different cost components (e.g., the temporal cost component and/or the non-temporal cost component) of the composite cost. For example, a user interface may display the temporal cost component and the non-temporal cost component differently (e.g., using different colors, font, symbols, shapes, icons) such that components of the composite cost are readily discernable. For example, the values/letters corresponding to the different cost components may be displayed differently and/or portions of the route corresponding to different cost components (e.g., more risky portion of a path/course, an expected delay in travel time) may be displayed differently on the route. For example, a user interface may display different risk levels associated with different portions of the route using different colors while other characteristics associated with different portions of the route may be displayed through other means (e.g., icon, description, dotted vs solid lines, etc.).


The different visualizations of the different cost components of the composite cost may enable the user to better understand the context of the costs (e.g., context of risk/dangers along the path) and/or to plan the movement. For example, based on the visualization of the different cost components, a user may change the route to a configuration with acceptable levels of cost (e.g., minimize risk in using the route, balance the risk of using the route to expected time duration for using the route). As another example, based on the visualization of the different cost components, a user may determine changes in which entities will take which paths/courses. As another example, based on the visualization of the different cost components, a user may be able to oversee the entities using the route to better oversee/coordinate the movement (e.g., alert an entity as to upcoming danger, advise an entity that it is falling behind in schedule/another entity has already reached a particular location and is waiting, etc.).



FIG. 2 illustrates example routes 200 for a planned movement, in accordance with various embodiments. The routes 200 may have been determined by a computing system (such as the computing system 102). The routes 200 may include different routes determined for a starting location 202 and an ending location 204 or may include different paths/courses (e.g., optional paths/courses) for a route between the starting location 202 and the ending location 204.


For example, the routes 200 may include paths/routes 212, 214, 216, 218. The path/route 214 may travel in a straight line between the starting location 202 and the ending location 204. The path/route 212 may travel in a curved line below the path/route 214. The path/route 216 may travel in an angled line above the path/route 214. The path/route 218 may share the beginning portion of the path/route 216 and then branch out in a curve at the end to the ending location 204. One or more of the paths/routes 212, 214, 216, 218 may include one or more intermediate locations (waypoints). Many variations are possible.



FIG. 3A illustrates an example two-dimensional non-temporal cost map 300, in accordance with various embodiments. The two-dimensional non-temporal cost map 300 may include a rasterized visualization of a non-temporal cost of moving across different points/areas (e.g., from a node 302 to a node 306, from the node 306 to a node 304, from the node 302 to the node 304, from the node 302 to a node 308, and from the node 308 to the node 304). The non-temporal cost reflected in the two-dimensional non-temporal cost map 300 may relate to one or more characteristics of an environment through which a route travels. For example, the non-temporal cost may reflect a measure of cost in terms of one or more geographic characteristics, preference characteristics, difficulty characteristics, risk characteristics, and/or other characteristics of the environment through which the route travels. The measure of the cost for moving over a location may be represented by corresponding colors/intensities of pixels in the two-dimensional non-temporal cost map 300 (e.g., pixel cost). The two-dimensional non-temporal cost map 300 may be used to determine a non-temporal cost of using a particular route (e.g., routes 312, 314, 316). Many variations are possible.



FIG. 3B illustrates an example temporal route graph 350, in accordance with various embodiments. The temporal route graph 350 may include a graph of nodes 302, 304, 306, 308 and edges 312A, 312B, 314, 316A, 316B that represent different times (or time-based costs) required to use a given path/course (e.g., the routes 312, 314, 316 shown in FIG. 3A). Individual nodes 302, 304, 306, 308 on the graph may represent a location. For example, the node 302 may represent a starting location and the node 304 may representing an ending location. The node 306 may represent an intermediate location on the route 316 and the node 308 may represent another intermediate location along the route 312. One or more nodes 302, 304, 306, 308 may be associated with a time requirement. For example, the node 308 may be associated with a thirty-minute time period. In this example, an entity using the route is expected to spend thirty minutes at the waypoint before moving on. Individual edges 312A, 312B, 314, 316A, 316B between the nodes 302, 304, 306, 308 may represent the time required to move between the locations. The temporal route graph 350 may be used to determine an expect time duration needed to use a particular route (e.g., routes 312, 314, 316). Many variations are possible.



FIG. 4A illustrates an example user interface 400 for flexible route planning, in accordance with various embodiments. In various embodiments, the user interface 400 may be accessed through a software application running on a computing device (e.g., computers, mobile phones, tablets, etc.) that includes one or more processors and memory. For example, the user interface 400 may be accessible through a web browser. In another example, the user interface 400 may be provided through a data analysis application. In yet another example, the user interface 400 may be provided as a service over a network (e.g., software as a service). Depending on the computing device, a user may be able to interact with the user interface 400 using various input devices (e.g., keyboard, mouse, etc.) and/or touch gestures. The user interface 400 is provided merely as an example and, naturally, the arrangement and configuration of such user interfaces can vary depending on the implementation. Thus, depending on the implementation, the user interface 400 may include additional features and/or alternative features.


The user interface 400 may include a title field 402, a tool set field 404, an itinerary region 406, a display region 408, a timeline region 410, and/or other fields, regions, options. The title field 402 may display a title of the information (e.g., map, objective, area, route) being displayed in the user interface 400. The tool set field 404 may include one or more tools to use and/or change the information displayed in the interface user 400. For example, the tool set field 404 may include a search field that enables a user to search for particular map/object/area/route, data addition/removal field that enables a user to add/remove data (e.g., layer) from the map, export field that enables a user to export a given map/given display of a map, and/or other fields.


The user interface 400 may provide for visualization of temporal and geospatial aspects of the movement along the route. The user interface 400 may provide for different visualization of a temporal cost component and/or a non-temporal cost component of a composite cost for the route.


The itinerary region 406 may display locations within a route, such as a starting location, an ending location, one or more intermediate locations (waypoints), and/or other locations. For example, a starting location may be indicated by an icon/image/line 422, two intermediate locations may be indicated by icons/images/lines 424, 426, and an ending location for a route may be indicated by an icon/image/line 428. The itinerary region 406 may display summary information about the route. The summary information for the route may include information relating to the route, such as a composite cost of using the route and the component costs (e.g., temporal cost component, non-temporal cost component) of using the route, such as expected duration of the route, distance to be traveled, a measure of one or more geographic characteristics, a measure of one or more preference characteristics, a measure of one or more difficulty characteristics, and/or a measure of one or more risk characteristics.


The itinerary region 406 may visually present various information about the route. The itinerary region 406 may use colors, fonts, symbols, shapes, icons, and/or other visual representation to provide information about the route. For example, the use of a particular mode of transportation may be shown with a visual 418. The visual 418 may indicate that the route includes a particular mode of transportation between the second intermediate location (indicated by the icon/image/line 426) and the ending location (indicated by the icon/image/line 428). The itinerary region 406 may include one or more options to set the mode of travel for one or more portions of the route. Other visualizations of information describing routes (e.g., temporal cost, non-temporal cost, mode of travel) are contemplated.


The itinerary region 406 may include options 412, 414, 416A, 416B which a user may select to change the locations along a route. The option 412 may enable a user to enter a location for a route (e.g., enter a new location, change an existing location). The option 414 may enable a user to remove a location from the route. The option 416A may enable a user to enter a new intermediate/starting location for the route. The option 416B may enable a user to enter a new intermediate/ending location for the route. Other options for changing a route using the itinerary region 406 are contemplated.


The display region 408 may display one or more portions of a route. The route may be overlaid over a map and/or other information. The display region 408 may display various information about the route (e.g., icons/shapes/symbols representing numbers/locations of particular objects in the environment, roads, buildings, barriers, environment information, etc.). The display region 408 may display locations within the route, such as a node 452 representing the starting location, nodes 454, 456 representing intermediate locations, and a node 458 representing the ending location. One or more portions of the route may be presented differently to provide different information about the route. For example, portions of routes between the nodes 452, 454, 456, 458 may be displayed using different colors/line types to indicate the mode of transportation for the portion, the temporal cost component for the portion, the non-temporal cost component for the portion, and/or other information about the route. The display region 408 may enable a user to view composite/component costs for a route/portion of a route based on user interaction within the display region 408 (e.g., mouse hovering over a route/portion of a route).


The display region 408 may enable a user to change/determine a route. For example, the display region 408 may enable a user to enter a new location for the route by inserting a location (e.g., starting, intermediate, ending) in the map. The display region 408 may enable a user to determine particular paths/courses to be include within the route (e.g., free draw). The display region 408 may include one or more options to set the mode of travel for one or more portions of the route. Other changes/determinations of a route using the display region 408 are contemplated.


The timeline region 410 may provide one or more timelines for a route. A timeline for a route may visually display temporal aspect of the route in relation to locations within the route. For example, the timeline region 410 may include icons/symbols 432, 434, 436, 438 representing the starting location, the two intermediate locations, and the ending location. The distances between locations in the timeline may each indicate a corresponding amount of time needed to travel between the locations. The length/size of the icons/symbols 434, 436 may indicate an amount of time an entity is expected to stay at the two intermediate locations, respectively. The visual 448 may indicate that the route includes a particular mode of transportation between the second intermediate location (indicated by the icon/symbol 436) and the ending location (indicated by the icon/symbol 438). One or more portions of the route in the timeline region 410 may be presented differently to provide different information about the route. For example, portions of routes between icons/symbols 432, 434, 436, 438 may be displayed using different colors/line types to indicate the mode of transportation for the portion, the temporal cost component for the portion, the non-temporal cost component for the portion, and/or other information about the route. Other visual representation of information relating to the route are contemplated.



FIG. 4B illustrates an example timeline interface 470, in accordance with various embodiments. The timeline interface 470 may be presented within one or more user interfaces for flexible route planning, such as within the user interface 400 (e.g., within the timeline region 410) shown in FIG. 4A. In various embodiments, the timeline interface 470 may be accessed through a software application running on a computing device (e.g., computers, mobile phones, tablets, etc.) that includes one or more processors and memory. For example, the timeline interface 470 may be accessible through a web browser. In another example, the timeline interface 470 may be provided through a data analysis application. In yet another example, the timeline interface 470 may be provided as a service over a network (e.g., software as a service). Depending on the computing device, the user may be able to interact with the timeline interface 470 using various input devices (e.g., keyboard, mouse, etc.) and/or touch gestures. The timeline interface 470 is provided merely as an example and, naturally, the arrangement and configuration of such user interfaces can vary depending on the implementation. Thus, depending on the implementation, the timeline interface 470 may include additional features and/or alternative features.


The timeline interface 470 may provide for a route for movement of multiple entities. For example, the timeline interface 470 may provide for a starting location 472 for a first entity and a second entity, and a starting location 486 for a third entity. The first entity may move from the starting location 472 to a location 474, hold at the location 474 for a pre-determined duration, move to a location 476, and complete the planned movement by moving to an ending location 478. The second entity may move to a location 480, move to a location 482, move to a location 484, hold at the location 484 for a pre-determined duration, and complete the planned movement by moving to the ending location 478. The third entity may move from the starting location 486 to a location 488, move to a location 490, and complete the planned movement by moving to an ending location 492.


The timeline interface 470 may provide for coordination of the planned movement of the multiple entities. For example, the timeline interface 470 may provide for a movement in which the first and second entities begin the movement before the third entity. The planned movement may include the first entity staying at the location 474 before, during, and after the second entity arrives at the location 482 (e.g., the first entity moves into the location 474, holds the position while waiting for the second entity to move into the location 482, and then leave the location 474 after the second entity leaves the location 482). The planned movement may include the first entity arriving at the location 476 and the second entity arriving at the location 484 at approximately the same time, and the second entity staying at the location 484 until the third entity has reached and departed from the location 490. The planned movement may include the first and second entities arriving at the ending location 478 at approximately the same time, and the third entity arriving at the ending location 492 afterwards. Other planned movement of single/multiple entities are contemplated.


The timeline interface 470 may provide for visualization of the usage of the route. For example, locations of one or more entities (e.g., first, second, and third entities) using the route may be overlaid/presented within the timeline interface 470 such that a user (e.g., coordinator) may see whether one or more of the entities are moving on scheduling, moving faster than planned, and/or moving slower than planned. Such visualization of locations of entities using the route along with the visualization of the planned route may enable coordination of the entities on the route. For example, such visualization may assist a coordinator to help the entities get back on schedule (e.g., instruct an entity to slow down to match progress of other entities, instruct an entity to speed up to catch up to other entities).



FIG. 5 illustrates a flowchart of an example method 500, according to various embodiments of the present disclosure. The method 500 may be implemented in various environments including, for example, the environment 100 of FIG. 1. The operations of method 500 presented below are intended to be illustrative. Depending on the implementation, the example method 500 may include additional, fewer, or alternative steps performed in various orders or in parallel. The example method 500 may be implemented in various computing systems or devices including one or more processors.


At block 502, locations for a planned movement may be obtained. The location may include at least a starting location and an ending location. At block 504, a route for the planned movement may be determined. The route may include at least the starting location and the ending location. At block 506, a composite cost of using the route may be determined. The composite cost may include at least a temporal cost component and a non-temporal cost component. At block 508, an interface may be provided. The composite cost may be accessible through the interface.


Hardware Implementation


The techniques described herein are implemented by one or more special-purpose computing devices. The special-purpose computing devices may be hard-wired to perform the techniques, or may include circuitry or digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or may include one or more hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques. The special-purpose computing devices may be desktop computer systems, server computer systems, portable computer systems, handheld devices, networking devices or any other device or combination of devices that incorporate hard-wired and/or program logic to implement the techniques.


Computing device(s) are generally controlled and coordinated by operating system software, such as iOS, Android, Chrome OS, Windows XP, Windows Vista, Windows 7, Windows 8, Windows Server, Windows CE, Unix, Linux, SunOS, Solaris, iOS, Blackberry OS, VxWorks, or other compatible operating systems. In other embodiments, the computing device may be controlled by a proprietary operating system. Conventional operating systems control and schedule computer processes for execution, perform memory management, provide file system, networking, I/O services, and provide a user interface functionality, such as a graphical user interface (“GUI”), among other things.



FIG. 6 is a block diagram that illustrates a computer system 600 upon which any of the embodiments described herein may be implemented. The computer system 600 includes a bus 602 or other communication mechanism for communicating information, one or more hardware processors 604 coupled with bus 602 for processing information. Hardware processor(s) 604 may be, for example, one or more general purpose microprocessors.


The computer system 600 also includes a main memory 606, such as a random access memory (RAM), cache and/or other dynamic storage devices, coupled to bus 602 for storing information and instructions to be executed by processor 604. Main memory 606 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 604. Such instructions, when stored in storage media accessible to processor 604, render computer system 600 into a special-purpose machine that is customized to perform the operations specified in the instructions.


The computer system 600 further includes a read only memory (ROM) 608 or other static storage device coupled to bus 602 for storing static information and instructions for processor 604. A storage device 610, such as a magnetic disk, optical disk, or USB thumb drive (Flash drive), etc., is provided and coupled to bus 602 for storing information and instructions.


The computer system 600 may be coupled via bus 602 to a display 612, such as a cathode ray tube (CRT) or LCD display (or touch screen), for displaying information to a computer user. An input device 614, including alphanumeric and other keys, is coupled to bus 602 for communicating information and command selections to processor 604. Another type of user input device is cursor control 616, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 604 and for controlling cursor movement on display 612. This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane. In some embodiments, the same direction information and command selections as cursor control may be implemented via receiving touches on a touch screen without a cursor.


The computing system 600 may include a user interface module to implement a GUI that may be stored in a mass storage device as executable software codes that are executed by the computing device(s). This and other modules may include, by way of example, components, such as software components, object-oriented software components, class components and task components, processes, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.


In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, C or C++. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices may be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and may be originally stored in a compressed or installable format that requires installation, decompression or decryption prior to execution). Such software code may be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules or computing device functionality described herein are preferably implemented as software modules, but may be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage.


The computer system 600 may implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 600 to be a special-purpose machine. According to one embodiment, the techniques herein are performed by computer system 600 in response to processor(s) 604 executing one or more sequences of one or more instructions contained in main memory 606. Such instructions may be read into main memory 606 from another storage medium, such as storage device 610. Execution of the sequences of instructions contained in main memory 606 causes processor(s) 604 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions.


The term “non-transitory media,” and similar terms, as used herein refers to any media that store data and/or instructions that cause a machine to operate in a specific fashion. Such non-transitory media may comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 610. Volatile media includes dynamic memory, such as main memory 606. Common forms of non-transitory media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of the same.


Non-transitory media is distinct from but may be used in conjunction with transmission media. Transmission media participates in transferring information between non-transitory media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 602. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.


Various forms of media may be involved in carrying one or more sequences of one or more instructions to processor 604 for execution. For example, the instructions may initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 600 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 602. Bus 602 carries the data to main memory 606, from which processor 604 retrieves and executes the instructions. The instructions received by main memory 606 may retrieves and executes the instructions. The instructions received by main memory 606 may optionally be stored on storage device 610 either before or after execution by processor 604.


The computer system 600 also includes a communication interface 618 coupled to bus 602. Communication interface 618 provides a two-way data communication coupling to one or more network links that are connected to one or more local networks. For example, communication interface 618 may be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 618 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN (or WAN component to communicated with a WAN). Wireless links may also be implemented. In any such implementation, communication interface 618 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.


A network link typically provides data communication through one or more networks to other data devices. For example, a network link may provide a connection through local network to a host computer or to data equipment operated by an Internet Service Provider (ISP). The ISP in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet”. Local network and Internet both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link and through communication interface 618, which carry the digital data to and from computer system 600, are example forms of transmission media.


The computer system 600 can send messages and receive data, including program code, through the network(s), network link and communication interface 618. In the Internet example, a server might transmit a requested code for an application program through the Internet, the ISP, the local network and the communication interface 618.


The received code may be executed by processor 604 as it is received, and/or stored in storage device 610, or other non-volatile storage for later execution.


Each of the processes, methods, and algorithms described in the preceding sections may be embodied in, and fully or partially automated by, code modules executed by one or more computer systems or computer processors comprising computer hardware. The processes and algorithms may be implemented partially or wholly in application-specific circuitry.


The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and sub-combinations are intended to fall within the scope of this disclosure. In addition, certain method or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined in a single block or state. The example blocks or states may be performed in serial, in parallel, or in some other manner. Blocks or states may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.


Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art.


It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.


Engines, Components, and Logic

Certain embodiments are described herein as including logic or a number of components, engines, or mechanisms. Engines may constitute either software engines (e.g., code embodied on a machine-readable medium) or hardware engines. A “hardware engine” is a tangible unit capable of performing certain operations and may be configured or arranged in a certain physical manner. In various example embodiments, one or more computer systems (e.g., a standalone computer system, a client computer system, or a server computer system) or one or more hardware engines of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware engine that operates to perform certain operations as described herein.


In some embodiments, a hardware engine may be implemented mechanically, electronically, or any suitable combination thereof. For example, a hardware engine may include dedicated circuitry or logic that is permanently configured to perform certain operations. For example, a hardware engine may be a special-purpose processor, such as a Field-Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC). A hardware engine may also include programmable logic or circuitry that is temporarily configured by software to perform certain operations. For example, a hardware engine may include software executed by a general-purpose processor or other programmable processor. Once configured by such software, hardware engines become specific machines (or specific components of a machine) uniquely tailored to perform the configured functions and are no longer general-purpose processors. It will be appreciated that the decision to implement a hardware engine mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.


Accordingly, the phrase “hardware engine” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. As used herein, “hardware-implemented engine” refers to a hardware engine. Considering embodiments in which hardware engines are temporarily configured (e.g., programmed), each of the hardware engines need not be configured or instantiated at any one instance in time. For example, where a hardware engine comprises a general-purpose processor configured by software to become a special-purpose processor, the general-purpose processor may be configured as respectively different special-purpose processors (e.g., comprising different hardware engines) at different times. Software accordingly configures a particular processor or processors, for example, to constitute a particular hardware engine at one instance of time and to constitute a different hardware engine at a different instance of time.


Hardware engines can provide information to, and receive information from, other hardware engines. Accordingly, the described hardware engines may be regarded as being communicatively coupled. Where multiple hardware engines exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between or among two or more of the hardware engines. In embodiments in which multiple hardware engines are configured or instantiated at different times, communications between such hardware engines may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware engines have access. For example, one hardware engine may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware engine may then, at a later time, access the memory device to retrieve and process the stored output. Hardware engines may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).


The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented engines that operate to perform one or more operations or functions described herein. As used herein, “processor-implemented engine” refers to a hardware engine implemented using one or more processors.


Similarly, the methods described herein may be at least partially processor-implemented, with a particular processor or processors being an example of hardware. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented engines. Moreover, the one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., an Application Program Interface (API)).


The performance of certain of the operations may be distributed among the processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processors or processor-implemented engines may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the processors or processor-implemented engines may be distributed across a number of geographic locations.


Language

Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.


Although an overview of the subject matter has been described with reference to specific example embodiments, various modifications and changes may be made to these embodiments without departing from the broader scope of embodiments of the present disclosure. Such embodiments of the subject matter may be referred to herein, individually or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single disclosure or concept if more than one is, in fact, disclosed.


The embodiments illustrated herein are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed. Other embodiments may be used and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. The Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.


It will be appreciated that an “engine,” “system,” “data store,” and/or “database” may comprise software, hardware, firmware, and/or circuitry. In one example, one or more software programs comprising instructions capable of being executable by a processor may perform one or more of the functions of the engines, data stores, databases, or systems described herein. In another example, circuitry may perform the same or similar functions. Alternative embodiments may comprise more, less, or functionally equivalent engines, systems, data stores, or databases, and still be within the scope of present embodiments. For example, the functionality of the various systems, engines, data stores, and/or databases may be combined or divided differently.


“Open source” software is defined herein to be source code that allows distribution as source code as well as compiled form, with a well-publicized and indexed means of obtaining the source, optionally with a license that allows modifications and derived works.


The data stores described herein may be any suitable structure (e.g., an active database, a relational database, a self-referential database, a table, a matrix, an array, a flat file, a documented-oriented storage system, a non-relational No-SQL system, and the like), and may be cloud-based or otherwise.


As used herein, the term “or” may be construed in either an inclusive or exclusive sense. Moreover, plural instances may be provided for resources, operations, or structures described herein as a single instance. Additionally, boundaries between various resources, operations, engines, engines, and data stores are somewhat arbitrary, and particular operations are illustrated in a context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within a scope of various embodiments of the present disclosure. In general, structures and functionality presented as separate resources in the example configurations may be implemented as a combined structure or resource. Similarly, structures and functionality presented as a single resource may be implemented as separate resources. These and other variations, modifications, additions, and improvements fall within a scope of embodiments of the present disclosure as represented by the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.


Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred implementations, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed implementations, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.

Claims
  • 1. A system comprising: one or more processors; anda memory storing instructions that, when executed by the one or more processors, cause the system to perform:obtaining locations for a planned movement of multiple entities, wherein the locations include at least a first starting location associated with a first entity of the multiple entities, a second starting location associated with a second entity of the multiple entities, and an ending location associated with at least one of the first entity or the second entity; anddetermining a route for the planned movement of the multiple entities based on the locations and based on a prospective change in an environment through which the route traverses, wherein the route includes a path through the first starting location, the second starting location, and the ending location, and wherein the prospective change comprises opening a previously blocked or restricted section of the route, the opening of the previously blocked or restricted section comprising a physical entity to traverse the previously blocked or restricted section or an action to open the previously blocked or restricted section.
  • 2. The system of claim 1, wherein the prospective change comprises a previously blocked or prohibited section of the route being opened; and the determination of the route is based on an assumption that the previously blocked or prohibited section of the route is opened and being traversed.
  • 3. The system of claim 1, wherein the instructions further cause the one or more processors to determine a secondary route based on a failure of the prospective change to occur.
  • 4. The system of claim 1, wherein the instructions further cause the one or more processors to determine a cost of using the route, the cost being based on a weather condition, and wherein the determining of the route is based on the cost.
  • 5. The system of claim 4, wherein the cost is further based on an air quality.
  • 6. The system of claim 1, wherein the instructions further cause the one or more processors to determine a cost of using the route, the cost being based on an occurrence of an accident, and wherein the determining of the route is based on the cost.
  • 7. The system of claim 1, wherein the determination of the route is at different levels of specificity at different portions of the route.
  • 8. A method implemented by a computing system including one or more processors and a storage media storing machine-readable instructions, wherein the method is performed using the one or more processors, the method comprising: obtaining locations for a planned movement of multiple entities, wherein the locations include at least a first starting location associated with a first entity of the multiple entities, a second starting location associated with a second entity of the multiple entities, and an ending location associated with at least one of the first entity or the second entity; anddetermining a route for the planned movement of the multiple entities based on the locations and based on a prospective change in an environment through which the route traverses, wherein the route includes a path through the first starting location, the second starting location, and the ending location, and wherein the prospective change comprises opening a previously blocked or restricted section of the route, the opening of the previously blocked or restricted section comprising a physical entity to traverse the previously blocked or restricted section or an action to open the previously blocked or restricted section.
  • 9. The method of claim 8, wherein the prospective change comprises a previously blocked or prohibited section of the route being opened; and the determination of the route is based on an assumption that the previously blocked or prohibited section of the route is opened and being traversed.
  • 10. The method of claim 8, further comprising determining a secondary route based on a failure of the prospective change to occur.
  • 11. The method of claim 8, further comprising determining a cost of using the route, the cost being based on a weather condition, and wherein the determining of the route is based on the cost.
  • 12. The method of claim 11, wherein the cost is further based on an air quality.
  • 13. The method of claim 8, further comprising determining a cost of using the route, the cost being based on an occurrence of an accident, and wherein the determining of the route is based on the cost.
  • 14. The method of claim 8, wherein the determination of the route is at different levels of specificity at different portions of the route.
  • 15. A non-transitory computer readable medium of a computing system comprising instructions that, when executed, cause one or more processors of the computing system to perform: obtaining locations for a planned movement of multiple entities, wherein the locations include at least a first starting location associated with a first entity of the multiple entities, a second starting location associated with a second entity of the multiple entities, and an ending location associated with at least one of the first entity or the second entity; anddetermining a route for the planned movement of the multiple entities based on the locations and based on a prospective change in an environment through which the route traverses, wherein the route includes a path through the first starting location, the second starting location, and the ending location, and wherein the prospective change comprises opening a previously blocked or restricted section of the route, the opening of the previously blocked or restricted section comprising a physical entity to traverse the previously blocked or restricted section or an action to open the previously blocked or restricted section.
  • 16. The non-transitory computer readable medium of claim 15, wherein the prospective change comprises a previously blocked or prohibited section of the route being opened; and the determination of the route is based on an assumption that the previously blocked or prohibited section of the route is opened and being traversed.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/450,898, filed Jun. 24, 2019, which is a continuation of U.S. patent application Ser. No. 15/826,446, filed Nov. 29, 2017, now issued as U.S. Pat. No. 10,371,537, the content of which is incorporated by reference in its entirety into the present disclosure.

US Referenced Citations (331)
Number Name Date Kind
4899161 Morin, Jr. et al. Feb 1990 A
4958305 Piazza Sep 1990 A
5329108 Lamoure Jul 1994 A
5638280 Nishimura Jun 1997 A
5754182 Kobayashi May 1998 A
5781195 Marvin Jul 1998 A
5781704 Rossmo Jul 1998 A
6061628 Hayashi May 2000 A
6091956 Hollenberg Jul 2000 A
6157747 Szeliski et al. Dec 2000 A
6169552 Endo et al. Jan 2001 B1
6173067 Payton et al. Jan 2001 B1
6178432 Cook et al. Jan 2001 B1
6247019 Davies Jun 2001 B1
6389289 Voce et al. May 2002 B1
6414683 Gueziec Jul 2002 B1
6483509 Rabenhorst Nov 2002 B1
6516268 Ruiz et al. Feb 2003 B2
6529900 Patterson et al. Mar 2003 B1
6631496 Li et al. Oct 2003 B1
6662103 Skolnick et al. Dec 2003 B1
6744434 Kindratenko et al. Jun 2004 B2
6757445 Knopp Jun 2004 B1
6828920 Owen et al. Dec 2004 B2
6847888 Fox et al. Jan 2005 B2
6958753 Abe Oct 2005 B2
6983203 Wako Jan 2006 B1
6985950 Hanson et al. Jan 2006 B1
7036085 Barros Apr 2006 B2
7051291 Sciammarella et al. May 2006 B2
7076741 Miyaki Jul 2006 B2
7133771 Nesbitt Nov 2006 B1
7158878 Rasmussen et al. Jan 2007 B2
7375732 Aguera Y Arcas May 2008 B2
7379811 Rasmussen et al. May 2008 B2
7457706 Melero et al. Nov 2008 B2
7502786 Liu et al. Mar 2009 B2
7519470 Brasche et al. Apr 2009 B2
7529195 Gorman May 2009 B2
7539666 Ashworth et al. May 2009 B2
7546245 Surpin et al. Jun 2009 B2
7558677 Jones Jul 2009 B2
7574428 Leiserowitz et al. Aug 2009 B2
7579965 Bucholz Aug 2009 B2
7617314 Bansod et al. Nov 2009 B1
7620628 Kapur et al. Nov 2009 B2
7663621 Allen et al. Feb 2010 B1
7734410 Tooyama Jun 2010 B2
7791616 Ioup et al. Sep 2010 B2
7805457 Viola et al. Sep 2010 B1
7809703 Balabhadrapatruni et al. Oct 2010 B2
7849031 Stehle et al. Dec 2010 B2
7872647 Mayer et al. Jan 2011 B2
7881861 Kravets Feb 2011 B2
7894984 Rasmussen et al. Feb 2011 B2
7899611 Downs et al. Mar 2011 B2
7920963 Jouline et al. Apr 2011 B2
7945852 Pilskalns May 2011 B1
7962281 Rasmussen et al. Jun 2011 B2
7970240 Chao et al. Jun 2011 B1
8010545 Stefik et al. Aug 2011 B2
8024111 Meadows Sep 2011 B1
8036632 Cona et al. Oct 2011 B1
8065080 Koch Nov 2011 B2
8085268 Carrino et al. Dec 2011 B2
8108141 Ehrlacher Jan 2012 B2
8134457 Velipasalar et al. Mar 2012 B2
8145703 Frishert et al. Mar 2012 B2
8200676 Frank Jun 2012 B2
8214361 Sandler et al. Jul 2012 B1
8214764 Gemmell et al. Jul 2012 B2
8229947 Fujinaga Jul 2012 B2
8230333 Decherd et al. Jul 2012 B2
8290942 Jones et al. Oct 2012 B2
8290943 Carbone et al. Oct 2012 B2
8301464 Cave et al. Oct 2012 B1
8325178 Doyle, Jr. Dec 2012 B1
8368695 Howell et al. Feb 2013 B2
8397171 Klassen et al. Mar 2013 B2
8400448 Doyle, Jr. Mar 2013 B1
8401786 Poppen et al. Mar 2013 B2
8407180 Ramesh et al. Mar 2013 B1
8412234 Gatmir-Motahari et al. Apr 2013 B1
8412707 Mianji Apr 2013 B1
8422825 Neophytou et al. Apr 2013 B1
8452790 Mianji May 2013 B1
8463036 Ramesh et al. Jun 2013 B1
8463537 Mueller Jun 2013 B2
8489331 Kopf et al. Jul 2013 B2
8489641 Seefeld et al. Jul 2013 B1
8498984 Hwang et al. Jul 2013 B1
8508533 Cervelli et al. Aug 2013 B2
8514229 Cervelli et al. Aug 2013 B2
8515207 Chau Aug 2013 B2
8564596 Carrino et al. Oct 2013 B2
8606517 Ehrlacher Dec 2013 B1
8660869 MacIntyre et al. Feb 2014 B2
8706407 Tuukkanen Apr 2014 B2
8719249 Bennett et al. May 2014 B2
8742934 Sarpy, Sr. et al. Jun 2014 B1
8744766 Rakshit Jun 2014 B2
8781169 Jackson et al. Jul 2014 B2
8799799 Cervelli et al. Aug 2014 B1
8805707 Schumann, Jr. et al. Aug 2014 B2
8830322 Nerayoff et al. Sep 2014 B2
8938686 Erenrich et al. Jan 2015 B1
8949164 Mohler Feb 2015 B1
8983494 Onnen et al. Mar 2015 B1
9008888 Gravino Apr 2015 B1
9009177 Zheng et al. Apr 2015 B2
9021384 Beard et al. Apr 2015 B1
9026367 Paek et al. May 2015 B2
9104293 Kornfeld et al. Aug 2015 B1
9104695 Cervelli et al. Aug 2015 B1
9111380 Piemonte et al. Aug 2015 B2
9129219 Robertson et al. Sep 2015 B1
9146125 Vulcano et al. Sep 2015 B2
9253615 Ickman et al. Feb 2016 B2
9280618 Bruce et al. Mar 2016 B1
9304008 Poppen et al. Apr 2016 B2
9360335 Powelson Jun 2016 B1
9547986 Curlander Jan 2017 B1
9607092 Kreitler et al. Mar 2017 B2
9767698 Burke et al. Sep 2017 B2
9784589 Gyenes Oct 2017 B1
10091299 Mian et al. Oct 2018 B2
10133995 Reiss Nov 2018 B1
10220705 Ramanujam Mar 2019 B2
10360705 Cervelli et al. Jul 2019 B2
10563990 Gupta Feb 2020 B1
11199416 Wilczynski et al. Dec 2021 B2
11574213 Proctor Feb 2023 B1
11585672 Dickson Feb 2023 B1
20020116120 Ruiz et al. Aug 2002 A1
20020130867 Yang et al. Sep 2002 A1
20020130906 Miyaki Sep 2002 A1
20030052896 Higgins et al. Mar 2003 A1
20030103049 Kindratenko et al. Jun 2003 A1
20030144868 MacIntyre et al. Jul 2003 A1
20030163352 Surpin et al. Aug 2003 A1
20030225755 Iwayama et al. Dec 2003 A1
20040030492 Fox et al. Feb 2004 A1
20040039498 Ollis et al. Feb 2004 A1
20040098236 Mayer et al. May 2004 A1
20050031197 Knopp Feb 2005 A1
20050034062 Bufkin et al. Feb 2005 A1
20050080769 Gemmell et al. Apr 2005 A1
20050143602 Yada et al. Jun 2005 A1
20050162523 Darrell et al. Jul 2005 A1
20050182502 Iyengar Aug 2005 A1
20050182793 Keenan et al. Aug 2005 A1
20050223044 Ashworth et al. Oct 2005 A1
20050267652 Allstadt et al. Dec 2005 A1
20060026170 Kreitler et al. Feb 2006 A1
20060139375 Rasmussen et al. Jun 2006 A1
20060146050 Yamauchi Jul 2006 A1
20060149596 Surpin et al. Jul 2006 A1
20060184314 Couckuyt Aug 2006 A1
20060200384 Arutunian et al. Sep 2006 A1
20060251307 Florin et al. Nov 2006 A1
20060259527 Devarakonda et al. Nov 2006 A1
20060271277 Hu et al. Nov 2006 A1
20060279630 Aggarwal et al. Dec 2006 A1
20070011150 Frank Jan 2007 A1
20070016363 Huang et al. Jan 2007 A1
20070024620 Muller-Fischer et al. Feb 2007 A1
20070027628 Geelen Feb 2007 A1
20070057966 Ohno et al. Mar 2007 A1
20070078832 Ott et al. Apr 2007 A1
20070115373 Gallagher et al. May 2007 A1
20070150369 Zivin Jun 2007 A1
20070168118 Lappe Jul 2007 A1
20070188516 Ioup et al. Aug 2007 A1
20070208497 Downs et al. Sep 2007 A1
20070208498 Barker et al. Sep 2007 A1
20070258642 Thota Nov 2007 A1
20070293958 Stehle Dec 2007 A1
20070294643 Kyle Dec 2007 A1
20080010605 Frank Jan 2008 A1
20080040684 Crump Feb 2008 A1
20080077642 Carbone et al. Mar 2008 A1
20080082578 Hogue et al. Apr 2008 A1
20080098085 Krane et al. Apr 2008 A1
20080104019 Nath May 2008 A1
20080133579 Lim Jun 2008 A1
20080163073 Becker et al. Jul 2008 A1
20080192053 Howell et al. Aug 2008 A1
20080195417 Surpin et al. Aug 2008 A1
20080223834 Griffiths et al. Sep 2008 A1
20080229056 Agarwal et al. Sep 2008 A1
20080263468 Cappione et al. Oct 2008 A1
20080267107 Rosenberg Oct 2008 A1
20080270468 Mao et al. Oct 2008 A1
20080278311 Grange et al. Nov 2008 A1
20080288306 MacIntyre et al. Nov 2008 A1
20080294678 Gorman et al. Nov 2008 A1
20080301643 Appleton et al. Dec 2008 A1
20090027418 Maru et al. Jan 2009 A1
20090088964 Schaaf et al. Apr 2009 A1
20090100018 Roberts Apr 2009 A1
20090115786 Shimasaki et al. May 2009 A1
20090132921 Hwangbo et al. May 2009 A1
20090132953 Reed, Jr. et al. May 2009 A1
20090144262 White et al. Jun 2009 A1
20090158185 Lacevic et al. Jun 2009 A1
20090171567 Morimoto Jul 2009 A1
20090171939 Athsani et al. Jul 2009 A1
20090172511 Decherd et al. Jul 2009 A1
20090179892 Tsuda et al. Jul 2009 A1
20090187447 Cheng et al. Jul 2009 A1
20090187464 Bai et al. Jul 2009 A1
20090222400 Kupershmidt et al. Sep 2009 A1
20090292626 Oxford Nov 2009 A1
20100036599 Froeberg Feb 2010 A1
20100057716 Stefik et al. Mar 2010 A1
20100063961 Guiheneuf et al. Mar 2010 A1
20100070523 Delgo et al. Mar 2010 A1
20100076968 Boyns et al. Mar 2010 A1
20100106420 Mattikalli et al. Apr 2010 A1
20100162176 Dunton Jun 2010 A1
20100185692 Zhang et al. Jul 2010 A1
20100198684 Eraker et al. Aug 2010 A1
20100199225 Coleman et al. Aug 2010 A1
20100277611 Holt et al. Nov 2010 A1
20100293174 Bennett et al. Nov 2010 A1
20100321399 Ellren et al. Dec 2010 A1
20110022312 McDonough et al. Jan 2011 A1
20110090254 Carrino et al. Apr 2011 A1
20110106429 Poppen May 2011 A1
20110117878 Barash et al. May 2011 A1
20110137766 Rasmussen et al. Jun 2011 A1
20110153368 Pierre et al. Jun 2011 A1
20110161096 Buehler et al. Jun 2011 A1
20110170799 Carrino et al. Jul 2011 A1
20110208724 Jones et al. Aug 2011 A1
20110218934 Elser Sep 2011 A1
20110225198 Edwards et al. Sep 2011 A1
20110238690 Arrasvuori et al. Sep 2011 A1
20110246061 Hayashi Oct 2011 A1
20110270705 Parker Nov 2011 A1
20120066296 Appleton et al. Mar 2012 A1
20120084118 Bai et al. Apr 2012 A1
20120106801 Jackson May 2012 A1
20120123678 Poppen May 2012 A1
20120123806 Schumann, Jr. May 2012 A1
20120136689 Ickman May 2012 A1
20120144335 Abeln et al. Jun 2012 A1
20120158299 Cerecke Jun 2012 A1
20120158527 Cannelongo et al. Jun 2012 A1
20120159363 DeBacker et al. Jun 2012 A1
20120173985 Peppel Jul 2012 A1
20120206469 Hulubei et al. Aug 2012 A1
20120208636 Feige Aug 2012 A1
20120221580 Barney Aug 2012 A1
20120239288 Forutanpour Sep 2012 A1
20120253661 Tuukkanen Oct 2012 A1
20120323888 Osann, Jr. Dec 2012 A1
20130006725 Simanek et al. Jan 2013 A1
20130021445 Cossette-Pacheco et al. Jan 2013 A1
20130057551 Ebert et al. Mar 2013 A1
20130060786 Serrano et al. Mar 2013 A1
20130073377 Heath Mar 2013 A1
20130076732 Cervelli et al. Mar 2013 A1
20130100134 Cervelli et al. Apr 2013 A1
20130101159 Chao et al. Apr 2013 A1
20130132398 Pfeifle May 2013 A1
20130150004 Rosen Jun 2013 A1
20130176321 Mitchell et al. Jul 2013 A1
20130179420 Park et al. Jul 2013 A1
20130254900 Sathish et al. Sep 2013 A1
20130268520 Fisher et al. Oct 2013 A1
20130279757 Kephart Oct 2013 A1
20130282723 Petersen et al. Oct 2013 A1
20130339891 Blumenberg et al. Dec 2013 A1
20140005941 Paek Jan 2014 A1
20140176606 Narayan et al. Jun 2014 A1
20140218400 O'Toole et al. Aug 2014 A1
20140236462 Healey Aug 2014 A1
20140282093 Burke Sep 2014 A1
20140333651 Cervelli et al. Nov 2014 A1
20140337772 Cervelli et al. Nov 2014 A1
20140361899 Layson Dec 2014 A1
20140372498 Mian Dec 2014 A1
20150029176 Baxter et al. Jan 2015 A1
20150032366 Man Jan 2015 A1
20150100907 Erenrich et al. Apr 2015 A1
20150106170 Bonica Apr 2015 A1
20150120176 Curtis Apr 2015 A1
20150186821 Wang et al. Jul 2015 A1
20150187036 Wang et al. Jul 2015 A1
20150187100 Berry et al. Jul 2015 A1
20150312323 Peterson Oct 2015 A1
20150338233 Cervelli et al. Nov 2015 A1
20150338852 Ramanujam Nov 2015 A1
20150339928 Ramanujam Nov 2015 A1
20150379413 Robertson et al. Dec 2015 A1
20160069694 Tao Mar 2016 A1
20160109251 Thakur Apr 2016 A1
20160109252 Caine Apr 2016 A1
20160142964 Todasco May 2016 A1
20160203422 Demarchi Jul 2016 A1
20160223348 Witte Aug 2016 A1
20160229404 Byun Aug 2016 A1
20160273930 Wada Sep 2016 A1
20160298974 Newlin Oct 2016 A1
20160298977 Newlin Oct 2016 A1
20160334233 Baverstock Nov 2016 A1
20160379486 Taylor Dec 2016 A1
20170167882 Ulloa Paredes Jun 2017 A1
20170169373 Roulland Jun 2017 A1
20170192437 Bier Jul 2017 A1
20170213273 Dietrich Jul 2017 A1
20170262790 Khasis Sep 2017 A1
20170268891 Dyrnaes Sep 2017 A1
20170276507 Zacharenko Sep 2017 A1
20170300049 Seally Oct 2017 A1
20170314939 Carter Nov 2017 A1
20170314948 Racah Nov 2017 A1
20170314949 Rovik Nov 2017 A1
20170337813 Taylor Nov 2017 A1
20170370738 Park Dec 2017 A1
20180143027 Schlesinger May 2018 A1
20180143649 Miao May 2018 A1
20180188065 Brooks Jul 2018 A1
20180211541 Rakah Jul 2018 A1
20180211545 Smartt Jul 2018 A1
20180211546 Smartt Jul 2018 A1
20180259976 Williams Sep 2018 A1
20190042857 Endo Feb 2019 A1
20190113927 Englard Apr 2019 A1
20190147736 Camp May 2019 A1
Foreign Referenced Citations (18)
Number Date Country
2012216622 Apr 2013 AU
102013222023 Jan 2015 DE
0763201 Mar 1997 EP
2575107 Apr 2013 EP
2858014 Apr 2015 EP
2963595 Jan 2016 EP
2516155 Jan 2015 GB
2012778 Nov 2014 NL
624557 Aug 2014 NZ
9532424 Nov 1995 WO
0009529 Feb 2000 WO
0198925 Dec 2001 WO
2004057268 Jul 2004 WO
2005013200 Feb 2005 WO
2008064207 May 2008 WO
2009061501 May 2009 WO
2009123975 Oct 2009 WO
2011058507 May 2011 WO
Non-Patent Literature Citations (46)
Entry
“A First Look: Predicting Market Demand for Food Retail using a Huff Analysis,” TRF Policy Solutions, Jul. 2012, p. 30.
“Andy Turner's GISRUK 2012 Notes” <https://docs.google.com/document/d/1cTmxg7mVx5gd89lqbICYvCEnHA4QAivH4- I4WpyPsqE4/edit?pli=1> printed Sep. 16, 2013 in 15 pages.
“HunchLab: Heat Map and Kernel Density Calculation for Crime Analysis,” Azavea Journal, printed from www.azavea.com/blogs/newsletter/v4i4/kernel-density-capabilities-added-to- -hunchlab/ on Sep. 9, 2014, 2 pages.
Barnes et al., “Viewshed Analysis”, GIS-ARC/Info 2001, <www.evsc.virginia.edu/.about.jhp7e/evsc466/student_pres/Rounds.pdf.
Carver et al., “Real-Time Visibility Analysis and Rapid Viewshed Calculation Using a Voxel-Based Modelling Approach,” GISRUK 2012 Conference, Apr. 11-13, Lancaster UK, Apr. 13, 2012, p. 6.
Chen et al., “Bringing Order to the Web: Automatically Categorizing Search Results,” CHI 2000, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 1-6, 2000, The Hague, The Netherlands, pp. 145-152.
Definition “Identify”, downloaded Jan. 22, 2015, 1 page.
Definition “Overlay”, downloaded Jan. 22, 2015, 1 page.
Dramowicz, Ela, “Retail Trade Area Analysis Using the Huff Model,” Directions Magazine, Jul. 2, 2005 in 10 pages, http://www.directionsmag.com/articles/retail-trade-area-analysis-using-th- e-huff-model/123411.
Ghosh, P., “A Solution of Polygon Containment, Spatial Planning, and Other Related Problems Using Minkowski Operations,” Computer Vision, Graphics, and Image Processing, 1990, vol. 49, pp. 1-35.
GIS-NET 3 Public _ Department of Regional Planning. Planning & Zoning Information for Unincorporated LA County. Retrieved Oct. 2, 2013 from http://gis.planning.lacounty.gov/GIS-NET3_Public/Viewer.html.
Gorr et al., “Crime Hot Spot Forecasting: Modeling and Comparative Evaluation”, Grant 98-1J-CX-K005, May 6, 2002, 37 pages.
Griffith, Daniel A., “A Generalized Huff Model,” Geographical Analysis, Apr. 1982, vol. 14, No. 2, pp. 135-144.
Haralick et al., “Image Analysis Using Mathematical Morphology,” Pattern Analysis and Machine Intelligence, IEEE Transactions, Jul. 1987, vol. PAMI-9, No. 4, pp. 532-550.
Hibbert et al., “Prediction of Shopping Behavior Using a Huff Model Within a GIS Framework,” Healthy Eating in Context, Mar. 18, 2011, p. 16.
Huang et al., “Systematic and Integrative Analysis of Large Gene Lists Using David Bioinformatics Resources,” Nature Protocols, 4.1, 2008, 44-57.
Huff et al., “Calibrating the Huff Model Using ArcGIS Business Analyst,” ESRI, Sep. 2008, p. 33.
Huff, David L., “Parameter Estimation in the Huff Model,” ESRI, ArcUser, Oct.-Dec. 2003, pp. 34-36.
Ipbucker, C., “Inverse Transformation for Several Pseudo-cylindrical Map Projections Using Jacobian Matrix,” ICCSA 2009, Part 1 LNCS 5592, pp. 553-564.
Levine, N., “Crime Mapping and the Crimestat Program,” Geographical Analysis, 2006, vol. 38, pp. 41-56.
Liu, Tianshun, “Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA,” Papers in Resource Analysis, 2012, vol. 14, pp. 8.
Mandagere, Nagapramod, “Buffer Operations in GIS,” <http://www-users.cs.umn.edu/.about.npramod/enc_pdf.pdf> retrieved Jan. 28, 2010, p. 7.
Map Builder, “Rapid Mashup Development Tool for Google and Yahoo Maps!” <http:/web.archive.org/web/20090626224734/http://www.mapbuilder.net/&- gt; printed Jul. 20, 2012 in 2 pages.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.bing.com.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.google.com.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.yahoo.com.
Murray, C., Oracle Spatial Developer's Guide—6 Coordinate Systems (Spatial Reference Systems), <http://docs.oracle.com/cd/B28359_01/appdev.111/b28400.pdf>, Jun. 2009.
Open Street Map, “Amm's Diary: Unconnected ways and other data quality issues,” http://www.openstreetmap.org/user/amm/diary printed Jul. 23, 2012 in 3 pages.
POI Editor, “How to: Create Your Own Points of Interest,” <http://www.poieditor.com/articles/how_tocreate_your_own_points_of_interest/> printed Jul. 22, 2012 in 4 pages.
Pozzi et al., “Vegetation and Population Density in Urban and Suburban Areas in the U.S.A.” Third International Symposium of Remote Sensing of Urban Areas Istanbul, Turkey, Jun. 2002, p. 8.
Qiu, Fang, “3d Analysis and Surface Modeling”, <http://web.archive.org/web/20091202221925/http://www.utsa.edu/Irsg/Te- aching/EES65 13/08-3D.pdf> printed Sep. 16, 2013 in 26 pages.
Reddy et al., “Under the hood of GeoVRML 1.0,” SRI International, Proceedings of the fifth symposium on Vurtual Reality Modeling Language (Web3D-VRML), New York, NY, Feb. 2000, pp. 23-28.<http://pdf.aminer.org/000/648/038/under_the_hood_of_geovrml.pdf>.
Reibel et al., “Areal Interpolation of Population Counts Using Pre-classi_ed Land Cover Data,” Population Research and Policy Review, 2007, vol. 26, pp. 619-633.
Reibel, M., “Geographic Information Systems and Spatial Data Processing in Demography: a Review,” Population Research and Policy Review, 2007, vol. 26, pp. 601-618.
Rizzardi et al., “Interfacing U.S. Census Map Files with Statistical Graphics Software: Application and Use in Epidemiology,” Statistics in Medicine, Oct. 1993, vol. 12, No. 19-20, pp. 1953-1964.
Snyder, “Map Projections—A Working Manual,” U.S. Geological Survey Professional paper 1395, United States Government Printing Office, Washington: 1987, pp. 11-21 and 60-70.
Sonris, “Using the Area of Interest Tools,” <http://web.archive.org/web/20061001053327/http://sonris-www.dnr.state- .la.us/gis/instruct_files/tutslide12> printed Jan. 3, 2013 in 1 page.
Tangelder et al., “Freeform Shape Matching Using Minkowski Operations,” The Netherlands, Jun. 1996, p. 12.
Thompson, Mick, “Getting Started with GEO,” Getting Started with GEO, Jul. 26, 2011.
Valentini et al., “Ensembles of Learning Machines”, M. Marinaro and R. Tagliaferri (Eds.): WIRN VIETRI 2002, LNCS 2486, pp. 3-20.
VB Forums, “Buffer a Polygon,” Internet Citation, <http://www.vbforums.com/showthread.php7198436-Buffer-a-Polygon>, Specifically Thread #1, #5 & #11 retrieved on May 2, 2013, p. 8.
Vivid Solutions, “JTS Topology Suite: Technical Specifications,” <http://www.vividsolutions.com/jts/bin/JTS%20Technical%20Specs.pdf> Version 1.4, 2003, p. 36.
Wikipedia, “Douglas_Peucker-Algorithms,” <http://de.wikipedia.org/w/index.php?title=Douglas-Peucker-Algorithmus-&oldid=91846042> printed Jul. 2011, pp. 2.
Wikipedia, “Ramer_Douglas_Peucker Algorithm,” <http://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_al- - gorithm> printed Jul. 2011, p. 3.
Wongsuphasawat et al., “Visual Analytics for Transportation Incident Data Sets,” Transportation Research Record 2138, 2009, pp. 135-145.
Woodbridge, Stephen, “[geos-deyel] Polygon simplification,” <http://lists.osgeo.org/pipermail/geos-deyel/2011-May/005210.html> dated May 8, 2011, p. 3.
Related Publications (1)
Number Date Country
20220099447 A1 Mar 2022 US
Continuations (2)
Number Date Country
Parent 16450898 Jun 2019 US
Child 17550519 US
Parent 15826446 Nov 2017 US
Child 16450898 US