Field of the Invention
Embodiments of the invention are generally related to image-capturing electronic devices having an automatic focus mechanism to automatically adjust focus settings.
Description of the Related Art
Nowadays many kinds of electronic devices are equipped with the ability to capture images. Examples of these electronic devices include digital cameras, mobile phones, media players, media recorders, personal digital assistants (PDAs), tablet personal computers (tablet PCs), laptop computers, etc. For the sake of simplicity, these kinds of electronic devices will be collectively referred to as image-capturing devices in the subsequent disclosure.
These image-capturing devices can use an automatic focus mechanism to automatically adjust focus settings. Automatic focus (hereinafter also referred to as “auto-focus” or “AF”) is a feature of some optical systems that allow them to obtain and, in some systems, maintain a continuous, correct focus on a subject, instead of requiring the operator to manually adjust the camera focus. Automatic focus adjusts the distance between the lens and the image sensor to place the lens at the correct distance for the subject being focused on. The distance between the lens and the image sensor to form a clear image of the subject is a function of the distance of the subject from the camera lens.
Although existing methods and devices for automatically adjust focus setting have been generally adequate for their intended purposes, they have not been entirely satisfactory in all respects. Consequently, it would be desirable to provide a solution for an automatic focus mechanism to get an image with higher image quality.
One of the objectives of the present disclosure is to provide a method for performing an automatic focusing process that uses ultrasound.
According to one aspect of the disclosure, the method includes obtaining a travel time of an ultrasonic signal between an instant that the ultrasonic signal is transmitted by the electronic device and an instant that the ultrasonic signal is received by the electronic device; obtaining either or both of location/position information and environment information of the electronic device; determining a local sound speed according to either or both of the location/position information and the environment information of the electronic device; determining a object distance between the electronic device and an object according to the local sound speed and the travel time; and providing the object distance for focusing the object according to the object distance.
In one embodiment, the obtaining either or both of location/position information and environment information of the electronic device includes receiving location/position information of the electronic device, and obtaining environment information of the electronic device based, at least in part, on the received location/position information of the electronic device.
In one embodiment, the receiving location/position information of the electronic device is performed by one of GPS, WiFi, BT beacon, GSM, GPRS, and WCDMA.
In one embodiment, the environment information includes temperature data, humidity data, pressure data, wind speed data, and/or wind direction data.
In one embodiment, the obtaining environment information of the electronic device based, at least in part, on the received location/position information of the electronic device includes receiving the environment information of the electronic device corresponding to a location or position indicated by the location or the position information, by connecting to the Internet.
In one embodiment, determining the local sound speed includes referring to a local sound speed look-up table containing local sound speeds corresponding to different environmental data values.
In one embodiment, determining the local sound speed includes determining the local sound speed according to a location/position indicated by the received location/position information.
In one embodiment, the method further includes adjusting a frequency and/or amplitude of the ultrasonic signal according to the travel time.
In one embodiment, the method further comprises obtaining one or more first focusing parameters for focusing the electronic device according to the object distance. The focusing parameters may include a number of motor steps or a focal distance.
In one embodiment, obtaining one or more first focusing parameters for focusing the electronic device according to the object distance includes referring to a motor steps look-up table containing motor steps corresponding to different object distances.
Another aspect of the present disclosure provides an electronic device having an automatic focus mechanism to automatically adjust focus settings using ultrasound.
The electronic device can include a sound speed analyzer configured to obtain a local sound speed according to either or both of location/position information and environment information of the electronic device; and an object distance detecting module, configured to obtain a travel time of an ultrasonic signal travelling to and from an object, detect an object distance between the electronic device and the object according to the local sound speed and the travel time of the ultrasonic signal, and provide the object distance for focusing the object according to the object distance.
In one embodiment, the electronic device further includes a transmitter configured to transmit an ultrasonic signal and a receiver configured to receive the ultrasonic signal.
In one embodiment, the object distance detecting module includes a time analyzer configured to calculate the travel time between a transmitted time of the ultrasonic signal and a received time of the ultrasonic signal received by the receiver, and a distance analyzer configured to determine the object distance between the electronic device and the object according to the local sound speed provided by the sound speed analyzer and the travel time provided by the time analyzer.
In one embodiment, the electronic device further includes a lens unit, comprising lens and a lens driving module configured to move the lens to focus the object according to the object distance.
In one embodiment, the sound speed analyzer includes a positioning unit, configured to receive the location/position information of the electronic device and a sound speed converter, configured to obtain the local sound speed according to the environment information which is obtained at least based on the location/position information.
In one embodiment, the sound speed analyzer further includes a network unit, configured to access to a data base and obtain the environment information from the data base according to the location/position information.
In one embodiment, the positioning unit receives the location/position information by utilizing one or more of GPS, WiFi, BT beacon, GSM, GPRS, and WCDMA.
In one embodiment, the environment information includes temperature data, humidity data, pressure data, wind speed data, and/or wind direction data.
In one embodiment, the object distance detecting module further includes a signal corrector configured to adjust a frequency and/or amplitude of the ultrasonic signal according to the travel time.
In one embodiment, the electronic device further includes an image capturing module, configured to determine a focal distance or a number of motor steps according to the object distance and focus the object using the focal distance or the number of motor steps.
According to another aspect, an electronic device is provided. The electronic device include a time analyzer, configured to obtain a travel time of an ultrasonic signal travelling to and from an object, a positioning unit, configured to receive location/position information of the electronic device, and a sound speed converter, configured to determine a local sound speed according to either or both of the location/position information and environment information of the electronic device, and a distance analyzer, configured to determine an object distance between the electronic device and the object according to the local sound speed and the travel time, and provide the object distance for focusing the object according to the object distance.
In one embodiment, the electronic device further includes a network unit, configured to obtain the environment information of the electronic device based, at least in part, on the received location/position information of the electronic device.
In the embodiments of the disclosure, the focusing can be performed more accurately and more quickly due to utilizing a local sound speed which is varied in different environments where the electronic device is located. The local sound speed may be obtained by referring to a local sound speed look-up table or one or more formulas using environment information such as temperature. The one or more environment information can be obtained by positioning technologies such as GPS in some embodiments, and by positioning technologies in cooperation with network technologies such as Internet in other embodiments. In addition, when the GPS and/or Internet are not available, a local sound speed look-up table can be still calibrated and the auto focus method can be still performed. Consequently, feasibility and accuracy in ultrasound focusing can be greatly improved.
For a more complete understanding of the embodiments, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings.
In the following descriptions, an electronic device of the present disclosure will be explained with reference to embodiments thereof. It should be appreciated that these embodiments are not intended to limit the present invention to any specific environment, applications or particular implementations described in these embodiments. Therefore, the description of these embodiments is only for the purpose of illustration rather than to limit the present invention. Furthermore, the attached drawings may be drawn in a slightly simplified or exaggerated way for ease of understanding; the numbers, shapes and dimensional scales of elements depicted may not be exactly the same as those in practical implementations and are not intended to limit the present invention.
Embodiments of the disclosure provide an automatic focus method and an electronic device utilizing ultrasound. In some embodiments, a local sound speed is obtained in real time for detecting an object distance, which can then be utilized to determine a focal distance or a number of motor steps. Due to different local sound speeds can be used to obtain the focal distance or the number of motor steps for different environments, the focus accuracy may be improved.
In some embodiments, networking technologies such as Internet can be utilized to obtain environment information, which can then be used to obtain the local sound speed. In some embodiments, the environment embodiment information can be obtained based on location/position information. In some embodiments, the location/position information can be obtained by utilizing positioning technologies such as one or more of GPS, WiFi, BT beacon, GSM, GPRS, and WCDMA.
In the embodiment of the present disclosure, the electronic device 1 is equipped with the ability to capture images, at least by the image capturing module 40. To capture an image of an object, a travel time of an ultrasonic signal can be obtained by calculating a time difference between a transmission of the ultrasonic signal from the transmitter 21 and a reception of ultrasonic signal, reflected from the object whose image is to be captured, by the receiver 22. Additionally, environment information associated with a position where the electronic device 1 is located can be obtained by the network unit 32, for example, from a remote data base. This environment information can be utilized to determine a local sound speed for the ultrasonic signal. With the travel time and the local sound speed, a focal distance or a number of motor steps for focusing the object can be determined. The image capturing module 40 is operated accordingly to focus the object using the focal distance or the number of motor steps, and therefore a clear, focused, and sharp image is produced.
Details of the electronic device 1 in accordance with some embodiments of the disclosure are described below.
In the embodiment, the electronic device 1 includes an object distance detecting module 20, a sound speed analyzer 30, an image capturing module 40 and a processing unit 50. The sound speed analyzer 30 is configured to provide a local sound speed. The object distance detecting module 20 is configured to determine an object distance between an object whose image is to be captured and the electronic device 1 according to the local sound speed provided by the sound speed analyzer 30. The image capturing module 40 is configured to focus the object using a focal distance or a number of motor steps determined by the object distance received from the object distance detecting module, thereby capturing an image of the object. On the other hand, the processing unit 50 is configured to control the operation of either or both of the object distance detecting module 20 and the sound speed analyzer 30. In an alternative embodiment, the processing unit 50 is also configured to control the operation of the image capturing module 40.
In one embodiment of the present disclosure, as shown in
As shown, one embodiment of the object distance detecting module 20 includes a transmitter 21, a receiver 22, a time analyzer 24, and a distance analyzer 26.
The time analyzer 24 is connected to the transmitter 21 and the receiver 22. The transmitter 21 can transmit an ultrasonic signal towards an object, and the receiver can receive the ultrasonic signal reflected from the object. The time analyzer 24 can be configured to calculate a travel time of the ultrasonic signal, which may be between a transmission time of the ultrasonic signal transmitted by the transmitter 21 and a reception time of the ultrasonic signal received by the receiver 22 to be focused.
The distance analyzer 26 is connected to the time analyzer 24 and is configured to receive signal/data indicating the travel time of the ultrasonic signal from the time analyzer 24. In addition, the distance analyzer 26 is also configured to receive signal/data indicating the local sound speed of the ultrasonic signal from the sound speed analyzer. Accordingly, the distance analyzer 26 can calculate the object distance according to the travel time and the local sound speed.
In addition, the object distance detecting module 20 may further includes either or both of a synchronizer 23 and a signal corrector 25. The synchronizer 23 can be connected to the transmitter 21 and the receiver 22 to synchronize the operation of the receiver 22 with the operation of the transmitter 21. For example, the receiver 22 can be operated synchronously with a transmission timing of an ultrasonic signal from the transmitter 21. Additionally or alternatively, the receiver 22 may be synchronized with transmitter 21 to be capable of detecting a particular ultrasonic signal which has the same frequency or magnitude of the ultrasonic signal transmitted by the transmitter 21. On the other hand, the signal corrector 25 can be connected to the transmitter 21 and the receiver 22 and can be configured to adjust the frequency and/or amplitude of the ultrasonic signal transmitted by the transmitter 21.
In the embodiment of the present disclosure, as shown in
As shown, one embodiment of the sound speed analyzer 30 includes a positioning unit 31, a network unit 32, and a sound speed converter 33.
The positioning unit 31 is configured to detect or receive location/position information of the electronic device 1. The positioning unit 31 may receive the location/position information by utilizing any positioning technologies such as one or more of GPS, WiFi, BT beacon, GSM, GPRS, and WCDMA.
On the other hand, the network unit 32 can be connected to the positioning unit 31. In other words, signals/data produced by the positioning unit 31 may be provided to be processed by the network unit 32. The network unit 32, such as a networking chip, obtains the environment information of the electronic device 1 based, at least in part, on the received location/position information of the positioning unit 31. The network unit 32 can utilize various networking technologies such as Internet access, IP telephony and local area networking to obtain the environment information.
The sound speed converter 33 is configured to determine the local sound speed according to environment information, which may include the location/position information and/or other environmental information. In one embodiment, the sound speed converter 33 can determine the local sound speed by referring to one or more look-up tables (which may be implemented in any storage/circuit forms) and/or by determining the local sound speed using one or more formulas (which may be implemented in any storage/circuit forms). In the embodiment, the sound speed converter 33 is connected to the network unit 32 and the distance analyzer 26. Signals/data produced by the network unit 32 can be provided to be processed by the sound speed converter 33. The processing results, indicating the local sound speed, from the sound speed converter 33 are transmitted to the distance analyzer 26 for determining the object distance.
It is noted that in some embodiments or cases, the network unit 32 may not operable or may not be implemented. In such embodiments, the sound speed converter 33 may obtain the local speed sound according to the location/position information directly received from the positioning unit 31, or according to environment information provided by the electronic device 1 itself, such as a temperature sensor implemented in the electronic device 1.
In other words, in different embodiments, the sound speed converter 33 may obtain the local speed sound according to the either or both of location/position information directly received from the positioning unit 31 and environment information which may be obtained by the network unit 32 or other components of the electronic device 1.
In one embodiment of the present disclosure, as shown in
As shown in
The driving circuit 43 can obtain the object distance from the distance analyzer 26 and determine focusing parameters such as a focal distance or a number of motor steps. The driving circuit 43 may include a motor steps converter which can obtain the focal distance or the number of the motor steps according to the object distances. In one embodiment, the driving circuit can determine the focal distance or the number of motor steps by referring to one or more look-up tables (which may be implemented in any storage/circuit forms) and/or by determining the focal distance or the motor steps using one or more formulas (which may be implemented in any storage/circuit forms).
The lens unit 41 may include one or more optical lenses, which may be arranged along one or more optical axes. The lens driving module 42 is configured to drive the lens unit 41 to move according to the focal distance/number of motor steps determined by the driving circuit 43. The lens driving module 42 may include a stepper motor, a voice coil motor, or any other like actuating module.
The image sensor 44 may include a charged-coupled device (CCD) sensor or a complementary metal oxide semiconductor (CMOS) sensor or the like to record the intensity of light as variable charges. The image processor 45 is configured to process and analyze the signals output from the image sensor 44.
As shown in
The method 60 may begin with an operation 61, in which a travel time of an ultrasonic signal to and from an object to be focused can be obtained. The travel time may be between a first point in time of the ultrasonic signal transmitted by the electronic device 1 and a second point in time of the ultrasonic signal received by the electronic device 1. Referring to
In one embodiment of the present disclosure, a signal adjusting process is performed to improve the distance measuring accuracy. In the signal correcting process, an object distance between the electronic device 1 and the object can be roughly estimated according to the travel time. And the frequency and/or amplitude of the ultrasonic signal transmitted by the transmitter 21 can then be adjusted according to the estimated object distance to be focused. Specifically, when the detected object distance is relatively large, the ultrasonic signal can be adjusted to have a higher frequency and/or a lower amplitude, such that the ultrasonic signal can be transmitted to a more distant place. On the contrary, when the detected object distance is short, the ultrasonic signal can be adjusted to have a lower frequency and/or a higher amplitude, such as to improve the spatial resolution.
In one embodiment, to adjust a suitable frequency and/or amplitude of the ultrasonic signal for the estimated object distance, the signal corrector 25 may refer to a frequency look-up table LUT1. The frequency look-up table LUT1 may be stored in a memory unit or implemented with any storage/circuit forms and may record suitable frequencies and/or amplitudes of an ultrasonic signal corresponding to different travel times.
In operation 62, location/position information of the electronic device 1 is received. In the embodiment, the positioning unit 31 is configured to receive location/position information of the electronic device 1. The location/position information may include latitude and longitude coordinates and a height of a location/position of the electronic device 1.
In operation 63, environment information of the electronic device 1 is obtained based on the received location/position information of the electronic device 1 obtained in operation 62. The environment information may comprise temperature data, humidity data, pressure data, wind speed data, and/or wind direction data, and/or other meteorological variables, which may be obtained from a weather observation station. Taking
In operation 64, a local sound speed is determined according to the environment information obtained in operation 64. Taking the embodiments of
Alternatively, the sound speed converter 33 can determine the local sound speed by utilizing one or more formulas such as an equation V=340+0.6*(T−15), in which V is the local sound speed, and T is the temperature of the position where the electronic device 1 is located. Any formulas suitable for converting the one or more environment values to the local sound speed can be employed as required by different designs and is not limited in the disclosure.
In the case that the network unit 32 is not able to access the Internet or is not implemented, the sound speed converter 33 can obtain the local speed sound directly by using the positioning data values obtained from the positioning unit 31. In one embodiment, a temperature sensor is implemented in the electronic device 2, which can provide a current temperature to the sound speed converter 33 to obtain the local sound speed by referring to a local sound speed look-up table LUT2 or using one or more formulas. In another embodiment, the sound speed converter 33 may refer to not only to a local sound speed look-up table LUT2 but also an environment value look-up table, both of which may be stored in a memory unit or any storage/circuit forms. The environment value look-up table may record long-term environment values such as average temperatures corresponding to different positions such as different altitudes or cities. On the other hand, the local sound speed look-up table LUT2 may record local sound speeds corresponding to different environment data values such as temperature values. By referring to the two look-up tables, the sound speed converter 33 may obtain the local sound speed corresponding to the environment values.
In operation 65, an object distance between the electronic device 1 and the object to be focused can be determined according to the local sound speed and the travel time. Taking embodiments of
In operation 66, the object distance can be provided for focusing the object according to the object distance. In the focusing, one or more focusing parameters for focusing the object are determined according to the object distance. The focusing parameters may include a number of motor steps or a focal distance. Taking embodiments of
In one embodiment, the driving circuit 43 can determine the focusing parameters by referring to a motor steps look-up table LUT3, which may be stored in a memory unit or implemented with any storage/circuit forms. The motor steps look-up table LUT3 may record different number of motor steps corresponding to different object distances. A number of motor steps corresponding to the object distance can therefore be obtained from the motor steps look-up table LUT3 and provided to the lens driving module 42 to control the lens focal length and/or the lens focus position of lens unit 41. Once the object is focused, subsequent image capturing procedures for the object can be performed by the image sensor 44 and an image processor 45. In another embodiment, the driving circuit 43 can calculate the focusing parameters by using one or more formulas according to the object distance obtained in operation 65.
It is noted that in some occasions, the local sound speed look up table LUT3 may be calibrated if required. This calibration may also be performed when the speed analyzer 30 cannot obtain required information. For example, the calibration may be performed in some occasions that the positioning unit 31 is not able to receive location/position information and that the network unit 32 is not able to access the Internet.
As mentioned, the auto-focus 70 may be performed when the sound speed look-up table is required to be calibrated or the positioning unit 31 is not able to receive location/position information and that the network unit 32 is not able to access the Internet, the method 60 may not be performed to complete the focusing process. In this case, the system of the electronic device 1 utilizes the method 70 to calibrate the local sound speed look up table. In addition, the system can further focus an object by using the calibrated local sound speed look up table.
The method 70 can begin with an operation 71, in which a substitute auto-focus process is performed, for example, by a conventional/contrast focusing method. Accordingly, a focal distance or a number of motor steps can be obtained in arranging a position of the lens. The image capturing module 40 can drive the lens back and forth along the optical length to search for the best focus position.
For example, in the substitute auto-focus process, the image processor 45 may analyze the signal of each pixel that produced by the image sensor 44 and the lens driving module 42 can move the lens unit 41 to different positions according to the analysis until a desired intensity difference between adjacent pixels is achieved.
In operation 72, an estimated object distance between the electronic device 1 and the reference object is determined. In the embodiment, an estimated object distance corresponding to the number of motor steps obtained in operation 71 can be obtained by referring to the motor steps look-up table LUT3. The operations 71 and 72 are reverse operations of operations 65 and 66.
In operation 73, a travel time of an ultrasonic signal is obtained. The travel time can be between a first point in time of the ultrasonic signal transmitted by the electronic device 1 and a second point in time of the ultrasonic signal, reflected from the reference object, received by the electronic device 1. The operation 73 may be performed in a similar way to the operation 61 and details will not be repeated for the purpose of brevity.
In operation 74, a local sound speed look-up table is calibrated according to the estimated object distance obtained in operation 72 and the travel time obtained in operation 73. For example, an estimated sound speed can be determined by equation of De=Ve*T, in which De is the estimated object distance, and Ve is the estimated sound speed, and T is the travel time of the ultrasonic signal. In addition, an environment value such as a current temperature can be also detected by the electronic device 1. Afterwards, the local sound speed look-up table LUT2 is calibrated according to the estimated sound speed and the current temperature.
Once the local sound speed look-up table LUT2 is calibrated, subsequent focusing processes can be performed by using ultrasound rather than by the substitute autofocus process in operation 71. In the embodiment, the subsequent focusing processes using ultrasound include operations 75, 76, and 77.
In operation 75, a travel time of an ultrasonic signal can be obtained. The travel time may be between a first point in time of the ultrasonic signal transmitted by the electronic device 1 and a second point in time of the ultrasonic signal, reflected from another object, received by the electronic device 1 is obtained. The another object can be the same or different from a reference object which has been focused in the substitute autofocus process in operation 71. In the embodiment, details of the operation 75 may be similar to the operation 61 and are omitted here for the purpose of brevity. However, the disclosure should not be limited thereto.
In operation 76, a local sound speed can be determined according to the calibrated local sound speed look-up table. Details of operation 76 can be referred to operations 61-64, thus omitted here for brevity.
In operation 77, an estimated object distance between the electronic device 1 and the object to be focused is determined. Details of operation 77 can be referred to operation 65, thus omitted here for brevity.
In operation 78, the object distance is provided for focusing the object according to the object distance. In the focusing, one or more focusing parameters for focusing the object to be focused according to the estimated object distance are determined. Details of operation 78 can be referred to operation 66, thus omitted here for brevity.
With these operations, the substitute auto-focus process can be performed once only for calibrating the local sound speed look-up table and the auto focus method using ultrasound can be still performed in an environment even without Internet access.
In the embodiment of present disclosure, differences between the electronic device 1′ and the electronic device 1 includes the electronic device 1′ includes two receivers 22a and 22b for receiving reflected ultrasonic signal reflected from the object to be focused. The two receivers 22a and 22b may be positioned in two opposite sides of the transmitter 21 and each at a distance X from the transmitter 21.
in which τ is the travel time between a transmission of the ultrasonic signal from the transmitter 21 and a receiving of the ultrasonic signal reflected from the object by one of the two receivers 22a and 22b, X is a distance between the transmitter 21 and one of the two receivers 22a and 22b, θ is an included angle between the object and the normal axis, and c is local sound speed determined by the operations 62-64 of
An embodiment of the disclosure also provides a non-transitory storage medium or a computer-readable recording medium. The non-transitory storage medium records at least one program instruction or program code. After being loaded into an electronic device with a screen, the at least one program instruction or program code is executed to carry out the method provided by each embodiment described above.
For example, after the at least one program instruction or program code in the computer-readable recording medium is loaded into the electronic device 1 illustrated in
Various functional components or blocks have been described herein. As will be appreciated by persons skilled in the art, the functional blocks will preferably be implemented through circuits (either dedicated circuits, or general purpose circuits, which operate under the control of one or more processors and coded instructions), which will typically comprise transistors that are configured in such a way as to control the operation of the circuity in accordance with the functions and operations described herein. As will be further appreciated, the specific structure or interconnections of the transistors will typically be determined by a compiler, such as a register transfer language (RTL) compiler. RTL compilers operate upon scripts that closely resemble assembly language code, to compile the script into a form that is used for the layout or fabrication of the ultimate circuitry. Indeed, RTL is well known for its role and use in the facilitation of the design process of electronic and digital systems.
In the embodiments of the disclosure, the focusing can be performed more accurately and more quickly due to utilizing a local sound speed which is varied in different environments where the electronic device is located. The local sound speed may be obtained by referring to a local sound speed look-up table or one or more formulas using environment information such as temperature. The one or more environment information can be obtained by positioning technologies such as GPS in some embodiments, and by positioning technologies in cooperation with network technologies such as Internet in other embodiments. In addition, when the GPS and/or Internet are not available, a local sound speed look-up table can be still calibrated and the auto focus method can be still performed. Consequently, feasibility and accuracy in ultrasound focusing can be greatly improved.
While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.