Systems and methods for forecasting cybersecurity ratings based on event-rate scenarios

Information

  • Patent Grant
  • 11200323
  • Patent Number
    11,200,323
  • Date Filed
    Thursday, March 21, 2019
    6 years ago
  • Date Issued
    Tuesday, December 14, 2021
    3 years ago
Abstract
Disclosed herein are computer-implemented methods and systems for forecasting security ratings for an entity. The methods and systems can include generating a plurality of simulated instantiations of a security scenario for the entity, in which the security scenario characterized by a plurality of security events associated with at least one event type. The methods and systems can further include determining a security rating for each instantiation of the plurality of instantiations; and generating a forecast cone based on the determined security ratings for the plurality of instantiations. In some examples, for each event type of the at least one event type, the methods and systems can include determining a rate, duration, and/or temporal placement of the security events associated with the event type over a forecasting period.
Description
TECHNICAL FIELD

The following disclosure is directed to methods and systems for forecasting security ratings for an entity and, more specifically, methods and systems for generating a forecast cone of security ratings for instantiations of security scenarios for an entity.


BACKGROUND

Many organizations attempt to manage their cybersecurity risks by evaluating present exposure to cyber threats based on past security events and the present configuration of their information technology systems. Security events can include botnet infections, spam propagation, vulnerable open ports, etc. These attempts assume that the organization will eliminate any vulnerabilities in its systems and have no security events going forward. However, this assumption is unrealistic as many types of the security events are difficult to completely prevent or eliminate.


SUMMARY

Forecasting security ratings for entities by taking into account future security events can aid entities in realistically managing their cybersecurity vulnerabilities. Additionally, forecasts of security ratings can help third parties, such as insurance providers or business partners, in evaluating an organization's exposure to and ability to address cyber threats into the future. Therefore, the systems and methods described herein for forecasting security ratings can aid in the management and prevention of cybersecurity threats to entities.


In one aspect, the disclosure features a computer-implemented method for forecasting security ratings for an entity. The method can include generating a plurality of simulated instantiations of a security scenario for the entity, in which the security scenario characterized by a plurality of security events associated with at least one event type. The method can further include determining a security rating for each instantiation of the plurality of instantiations; and generating a forecast cone based on the determined security ratings for the plurality of instantiations.


Various embodiments of the method can include one or more of following features.


Generating the plurality of simulated instantiations of the security scenario for the entity can include, for each event type of the at least one event type: (i) determining a rate of the security events associated with the event type over a forecasting period; (ii) determining a duration of the security events associated with the event type in the forecasting period; and/or (iii) determining a temporal placement of the security events associated with the event type in the forecasting period. Determining the rate of the security events associated with the event type over the forecasting period can include sampling from a distribution to determine the rate of the security events associated with the event type. The distribution of the rate can be: a normal distribution, a log-normal distribution, a geometric distribution, a Poisson distribution, or a uniform distribution. Determining the duration of the security events associated with the event type in the forecasting period can include sampling from a distribution to determine the duration of the security events associated with the event type. The distribution of the duration can be: a normal distribution, a log-normal distribution, a geometric distribution, a Poisson distribution, or a uniform distribution. Determining the temporal placement of the security events associated with the event type in the forecasting period can include sampling from a distribution to determine the temporal placement of the security events associated with the event type. The distribution of the temporal placement can be: a normal distribution, a log-normal distribution, a geometric distribution, a Poisson distribution, or a uniform distribution.


Determining the security rating for each instantiation of the plurality of instantiations can include assigning a weight to security events of each event type. Determining the security rating for each instantiation of the plurality of instantiations can include generating a ratings time series for the instantiation, the ratings time series forming a security forecast for the instantiation. Generating a forecast cone based on the determined security ratings for the plurality of instantiations can include determining a subset of the security forecasts to generate the forecast cone. An inner band of the forecast cone can be based on a 25th percentile and a 75th percentile of the subset of the security forecasts and an outer band of the forecast cone can be based on a 5th percentile and 95th percentile of the subset of security forecasts.


In another aspect, the disclosure features a system for forecasting security ratings for an entity. The system can include at least one memory storing computer-executable instructions; and at least one processor for executing the instructions storing on the memory. The execution of the instructions can program the at least one processor to perform operations including generating a plurality of simulated instantiations of a security scenario for the entity, the security scenario characterized by a plurality of security events associated with at least one event type; determining a security rating for each instantiation of the plurality of instantiations; and generating a forecast cone based on the determined security ratings for the plurality of instantiations.


Various embodiments of the system can include one or more of the following features.


Generating the plurality of simulated instantiations of the security scenario for the entity can include, for each event type of the at least one event type, (i) determining a rate of the security events associated with the event type over a forecasting period; (ii) determining a duration of the security events associated with the event type in the forecasting period; and/or (iii) determining a temporal placement of the security events associated with the event type in the forecasting period. Determining the rate of the security events associated with the event type over the forecasting period can include sampling from a distribution to determine the rate of the security events associated with the event type. The distribution of the rate can be: a normal distribution, a log-normal distribution, a geometric distribution, a Poisson distribution, or a uniform distribution. Determining the duration of the security events associated with the event type in the forecasting period can include sampling from a distribution to determine the duration of the security events associated with the event type. The distribution of the duration can be: a normal distribution, a log-normal distribution, a geometric distribution, a Poisson distribution, or a uniform distribution. Determining the temporal placement of the security events associated with the event type in the forecasting period can include sampling from a distribution to determine the temporal placement of the security events associated with the event type. The distribution of the temporal placement can be: a normal distribution, a log-normal distribution, a geometric distribution, a Poisson distribution, or a uniform distribution.


Determining the security rating for each instantiation of the plurality of instantiations can include assigning a weight to security events of each event type. Determining the security rating for each instantiation of the plurality of instantiations can include generating a ratings time series for the instantiation, in which the ratings time series forming a security forecast for the instantiation. Generating a forecast cone based on the determined security ratings for the plurality of instantiations can include determining a subset of the security forecasts to generate the forecast cone. The inner band of the forecast cone can be based on a 25th percentile and a 75th percentile of the subset of the security forecasts and an outer band of the forecast cone can be based on a 5th percentile and a 95th percentile of the subset of security forecasts.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a flowchart of an exemplary method for forecasting security ratings for an entity.



FIG. 2A is a plot of an exemplary set of security ratings forecasts for an entity as a function of date on a ratings scale.



FIG. 2B is a plot of an exemplary security ratings forecast cone for the entity of FIG. 2A.



FIG. 2C is a plot of an exemplary set of security ratings forecasts for an entity as a function of date on a ratings scale.



FIG. 2D is a plot of an exemplary security ratings forecast cone for the entity of FIG. 2C.



FIG. 3A is a plot of an exemplary set of security ratings forecasts for an entity as a function of date on a ratings scale.



FIG. 3B is a plot of an exemplary security ratings forecast cone for the entity of FIG. 3A.



FIG. 3C is a plot of an exemplary set of security ratings forecasts for an entity as a function of date on a ratings scale.



FIG. 3D is a plot of an exemplary security ratings forecast cone for the entity of FIG. 3C.



FIGS. 4A-4C illustrate an exemplary user interface for forecasting security ratings for an entity.



FIG. 5 is a block diagram of an example computer system that may be used in implementing the technology described herein.





DETAILED DESCRIPTION


FIG. 1 is a flowchart of an exemplary method 100 for forecasting security ratings for an entity. An entity can be an organization, a company, a nonprofit, a school, a governmental entity, a group of people, etc. In step 102, the system is configured to simulate instantiations of a security scenario attributed to the entity. The security scenario is characterized by the projected occurrence of multiple security events of at least one security event type. Event types can include, for example, botnet infections, peer-to-peer file sharing, spam propagation, a structured query language (SQL) injection, malware, phishing, man-in-the-middle attack, denial-of-service attack, exploit of unpatched software, ransomware, spyware, social engineered trojans, network traveling worms, advanced persistent threats, wiper attacks, data manipulation or destruction, malvertising, rogue software, vulnerable open ports, insecure Internet of Things (IoT) devices, incorrect secure sockets layer (SSL) configurations, etc. It is understood that other event types may be used in simulating the security scenario. The exemplary system may simulate dozens, hundreds, or thousands of instantiations of a security scenario for the entity.


In some embodiments, the system can simulate instantiations of a security scenario for a forecasting period. For example, the forecasting period may be one or more months or one or more years from a present date (or another date). For each type of event in a particular instantiation of a security scenario, the exemplary system can be configured to (i) determine the rate or frequency of the security events of a particular event type over the forecasting period, (ii) determine the duration of the security events of a particular event type in the forecasting period, and/or (iii) determine the temporal placement of the security events of a particular event type during the forecasting period. In determining the rate, the duration, and/or the temporal placement of the security events of a particular event type, the exemplary system can use a probability distribution.


Any probability distribution can be used to determine each of the rate, duration, and/or temporal placement and can include (but is not limited to): a normal distribution, a log-normal distribution, a geometric distribution, a hypergeometric distribution, a Poisson distribution, a uniform distribution, a Bernoulli distribution, a binomial distribution, a negative binomial distribution, an exponential distribution, a gamma distribution, a beta distribution, a Student's t distribution, a Weibull distribution, a chi-squared distribution, etc. For instance, for a particular event type, the system can sample from (i) a normal distribution to determine the rate of the security events, (ii) a geometric distribution to determine the duration of each security event of a particular type, and (iii) a uniform distribution to determine the temporal placement of the security events in the forecasting period. In some embodiments, a joint distribution or a multivariate distribution can be used in simulating instantiations of a security scenario. For example, the rate and duration of a particular type of event may be determined based on a bivariate distribution (e.g., bivariate normal distribution).


In step 104, the system determines a security rating for each instantiation of the security scenario. Examples of determining security ratings for security scenarios can be found in commonly owned U.S. Pat. No. 9,973,524 issued May 15, 2018 and titled “Information Technology Security Assessment System,” the entirety of which is incorporated by reference herein. For example, a security rating can be generated by collecting information about an entity's computer system, e.g., information technology assets that the entity controls, uses, or is affiliated with. Examples of asset ownership include control and operation of an Internet Protocol (IP) network address range or computer services such as web servers residing within that address block. Information about entities also includes relationships such as subsidiaries, affiliates, etc., that describe entity association. External data can be collected and include multiple data types, such as breach disclosures, block lists, configuration parameters, malware servers, reputation metrics, suspicious activity, spyware, white lists, compromised hosts, malicious activity, spam activity, vulnerable hosts, phishing, user behavior, or email viruses. To determine the security rating for an entity, the system aggregates some or all of the collected data. For example, IP addresses are mapped to an entity. IP addresses controlled by the entity can be processed with the following steps:

    • 1. For each IP address, determine a security quality metric called “badness.”
    • 2. Badness is represented as a number between 0 and 1 corresponding to the extent and duration of malicious activity that was reported.
    • 3. For each data source in which the IP address is reported, determine a data source-specific badness score for that IP address.
    • 4. Consolidate the badness score for a given IP address across all data sources by cross-validating data to determine the aggregate badness for that IP address.
    • 5. Aggregate the badness scores of IP addresses from an entity to determine the entity's IP address asset based security quality metric.


      In another example, the system may aggregate “badness” across a set of IP addresses for a particular security risk or event type (see above). The security rating can then be determined for the aggregated set. It is understood that other methods of determining a security rating can be used in the forecasting of security ratings for an entity. Any scale or spectrum can be used to convey a security rating. For example, the scale can be a numerical scale or letter-based scale. The exemplary scale discussed in the following examples ranges from 300 to 800, is for the purpose of illustration, and is not intended to be limiting.


In some embodiments, the simulated instantiations of a security scenario may depend on or be more common depending on the type of entity or entity's industry. For example, for an entity such as a news organization, the system can simulate a security scenario in which the news organization is subject to one or more security events including denial-of-service attacks and malvertising. In some embodiments, the simulated instantiations of a security scenario may depend on a historical record of the entity. For example, if a software providing entity has a history of delaying patching of its software, the system may simulate a security scenario in which the software provider is subject to exploits of the unpatched software. In an exemplary embodiment, the parameters of distributions used in determined rate, duration, and/or temporal placement can depend on the historical record of the entity. For example, a normal distribution may be selected for the duration of an event. The mean and/or standard deviation of the distribution may be selected based on the historical record of the entity.


In some embodiments, in determining weights can be assigned to security events based on historical observations related to the entity. In some embodiments, a user of the system can determine the weights assigned to security events. For example, the banking industry as a whole may be more prone to a type of security event (e.g., phishing), which may cause that security event type to be weighted more in the determining of the security rating for that type of entity. However, if a particular entity of the same type (i.e., a particular bank) has a good track record of preventing phishing, then phishing as a security event may be weighted less.


In some embodiments, determining a security rating for an entity can include generating a ratings time series for the instantiation of the security scenario. Specifically, a security rating for can be determined at consecutive or intermittent time points, resulting in a ratings time series for the instantiation. The ratings time series can form a security forecast for the instantiation of the security scenario.


In step 106, the system generates a forecast cone based on the determined security ratings for the plurality of instantiations. As discussed above, by determining a security ratings of instantiations, a corresponding set of security forecasts are generated. In some embodiments, all of the set of generated security forecasts are used to form a security forecast cone. In some embodiments, a subset of the security forecasts are used to generate the forecast cone.


In some embodiments, generating the forecast cone includes considering a subset of the security forecasts. In some embodiments, an inner band of the forecast cone can be based on an inner subset that is a first subset of the security forecasts and an outer band of the forecast cone can be based on the outer subset that is a second subset of the security forecasts. In some embodiments, the second subset overlaps with the first subset. In some embodiments, the second subset encompasses the first subset. For example, the inner subset may include those forecasts in the 25th to 75th percentile of the overall number of generated security forecasts. The outer subset may include those forecasts in the 5th to 95th percentile of the overall number of generated security forecasts. It is understood that the inner subset may include other percentile ranges, e.g., 20th to 80th percentile or 30th to 70th percentile. The outer subset may include other percentile ranges, e.g., 10th to 90th percentile or 3rd to 97th percentile. In some embodiments, a window function (e.g., a 15 day boxcar window, a 30 day boxcar window, etc.) may be used to produce a visually smoother forecast cone (e.g., similar to those illustrated in FIGS. 2B, 2D, 3B, and 3D).


Security Ratings Forecast Examples

In the examples illustrated in FIG. 2A and FIG. 2C, one hundred (100) security forecasts were generated using the techniques described herein. FIG. 2A is a plot of an exemplary set of security ratings forecasts for Entity A as a function of date 204 on a ratings scale 202. Before time 206, the plot illustrates security ratings 208 based on actual collected data of past security events. After time 206, the plot includes a set of forecasts 210 of security ratings from time 206 into the future. Note that time 206 can be present time or another time that may, for example, depend on user selection. In the specific example illustrated in FIG. 2A, the security forecasts 210 span from May 1, 2018 to Jan. 1, 2020 and the security ratings 202 of the forecasts 210 range from approximately a score of 375 to 460.


The plot of FIG. 2B illustrates a security forecast cone 212 for the security scenario illustrated in FIG. 2A. In some embodiments, the security forecast cone 212 has an inner band 214 and outer band 216. Note that the inner band 214 and outer band 216 represent subsets of the full set of security forecasts of FIG. 2A. In some embodiments, the forecast cone 212 can include a line 218 representing the median (e.g., at the 50th percentile) of the forecast cone 212.


Note that, in the example provided in FIG. 2A, the security scenario for Entity A includes the same or similar security event rate as the previous year. In the example provided in FIG. 2C, the security scenario does not incorporate new security events after time. Thus, the security forecasts 220 have security ratings (between 400 and 475) that are greater than that of security forecasts 210 (between 375 and 460). Likewise, security forecast cone 212 has a lower average security rating relative to the security forecast cone 222. Therefore, inner band 214 has a lower average security rating relative to inner band 224 and outer band 216 has a lower average security rating relative to outer band 226. In exemplary forecast cone 222, the median is represented by line 228. In the examples illustrated in FIGS. 2B and 2D, a 30-day boxcar window was used to create the forecast cone.


In the examples illustrated in FIG. 3A and FIG. 3C, five hundred (500) security forecasts were generated using the techniques described herein. FIG. 3A is a plot of an exemplary set of security ratings forecasts for Entity B as a function of date 204 on a ratings scale 202. Before time 302, the plot illustrates security ratings 304 based on actual collected data of past security events. After time 302, the plot includes a set of forecasts 306 of security ratings from time 302 into the future. Note that time 302 can be present time or another time that may, for example, depend on user selection. In the specific example illustrated in FIG. 3A, the forecasts 306 span from Jul. 1, 2018 to Sep. 1, 2019 and the security ratings 202 of the forecasts 306 range from approximately a score of 590 to 630.


The plot of FIG. 3B illustrates a security forecast cone 308 for the security scenario illustrated in FIG. 3A. In some embodiments, the security forecast cone 308 has an inner band 310 and outer band 312. Note that the inner band 310 and outer band 312 represent subsets of the full set of security forecasts of FIG. 3A. The median of the exemplary forecast cone 308 is represented by line 314.


Note that, in the example provided in FIG. 3A, the security scenario for Entity B includes the same or similar security event rate as the previous year. In the example provided in FIG. 3C, the security scenario includes the same or similar security event rate as the previous month. In this example, the security ratings in the previous month are greater in general than the security ratings in the previous year. Thus, the security forecasts 316 have security ratings (between 600 and 675) that are greater than that of security forecasts 306 (between 590 and 630). Likewise, security forecast cone 308 has a lower average security rating relative to the security forecast cone 316. Therefore, inner band 310 has a lower average security rating relative to inner band 318 and outer band 312 has a lower average security rating relative to outer band 320. In the examples illustrated in FIGS. 3B and 3D, a 15-day boxcar window was used to create the forecast cone.


In some embodiments, some forecast cones have a greater spread over security rating than other forecast cones. For example, forecast cone 308 has a spread 322 that is less than the spread 324. One factor in the different spreads of the cones is the decay rate of past security events of a given event types. In a preferred embodiment, the decay rate may be non-linear (e.g., exponential, logarithmic, etc.). For example, the security event type of file sharing may have a greater decay rate than that of botnet infections.


User Interfaces for Security Ratings Forecasts


FIGS. 4A-4C illustrate an exemplary user interface for forecasting security ratings for an entity (“Entity X”). The user of the user interface may be a representative of the entity itself, a representative of an insurance agency of the entity, a representative of a third party that has some business relationship to the entity, a governmental regulator, etc. FIG. 4A illustrates a first portion 400a of the interface, in which an interactive plot depicts past security ratings 402 and two forecasted security ratings 404, 406. The “improvement” forecast 404 is the result of improvements to the security ratings of the entity by, for example, reducing or preventing security events in the forecasting period (e.g., from approximately September 2017 to approximately October 2019). The “no action” forecast 406 is the result of no reduction or prevention of security events in the forecasting period. Note that the “improvement” forecast 404 shows a visibly significant improvement in security ratings over the “no action” forecast 406.



FIGS. 4B-4C illustrate a second portion 400b and a third portion 400c of the interface in which a security scenario of specific event types are displayed in event type panels (collectively referred to as panels “408”). The event type panels 408 include panel 408a (labelled “SSL Certificates”) which includes information on the number of records indicating insecure certificates; panel 408b (labelled “File Sharing”) which includes information on the number of application and non-application file sharing events; panel 408c (labelled “Botnet Infections”) which includes information on the number of botnet attack or activity events and related duration; panel 408d (labelled “Potentially Exploited”) which includes information on the number of potentially unwanted applications running on computers associated with the entity; and panel 408e (labelled “Open Ports”) which includes information on ports exposed to the Internet. For example, event type panel 408d labelled “Potentially Exploited” describe security events in which the entity's computers may be running potentially unwanted applications. Unwanted applications may allow harmful malware to compromise or take control of the entity's computer systems. The event type panel 408d displays information for the user of the user interface goals for reducing the security event of the particular type (in this example, potential exploitations) and quantitative measures of a status of the entity reaching that goal. Specifically, the system generates a goal 410 based on the historical record of the entity. For example, the goal 410 for reducing botnet infections are as follows:

    • Your goal is to Reduce the Total Number of Events from 115 to 37
      • and
    • to Reduce the Average Duration from 3 to 1.3 days.


In the illustrated embodiment 408d, a first subpanel 412 illustrates the prediction of an estimated resolution date of reducing the number of security events of this type for this entity. In a second subpanel 414, an initial total number of events is represented on a scale to the target number of events for Entity X. In this example, there is an initial count of 115 potential exploitation events for Entity X with a current count of 114 and a target number 37 events. In a third subpanel 416, the initial average duration of the security event is represented on a scale to the target average duration of the security event in days. In this example, potential exploitations have a duration of an average of 3 days initially for Entity X with a current duration of 3 days and a target of 1.3 days. In some embodiments of the open ports panel 408e, an indicator 418 such as “BAD”, “WARN”, or “GOOD” may be displayed to give a quick visual indication to the user the type of open ports associated with the goal. For example, in panel 408e, the center subpanel has an indicator 418 labelled “BAD” to indicate that the “bad”-type open ports should be reduced from 15 to 7 while the right-hand panel includes an indicator 420 labelled “WARN” to indicate that the “warn”-type open ports should be reduced from 7 to 0.


Note that the user interface illustrating other security scenarios may include other event type panels (or have fewer or greater number of panels). In the example provided in FIGS. 4A-4C, the security scenario included five event types (in panels 408a-408e) in generating forecast in FIG. 4A. In some embodiments, in generating the security scenario, other event types may be held “constant”; in other words, other security events (e.g., spam propagation, malware, etc.) may be assumed to be continuing at a historical rate, duration, and/or temporal placement for the particular entity.


Computer-Based Implementations

In some examples, some or all of the processing described above can be carried out on a personal computing device, on one or more centralized computing devices, or via cloud-based processing by one or more servers. In some examples, some types of processing occur on one device and other types of processing occur on another device. In some examples, some or all of the data described above can be stored on a personal computing device, in data storage hosted on one or more centralized computing devices, or via cloud-based storage. In some examples, some data are stored in one location and other data are stored in another location. In some examples, quantum computing can be used. In some examples, functional programming languages can be used. In some examples, electrical memory, such as flash-based memory, can be used.



FIG. 5 is a block diagram of an example computer system 500 that may be used in implementing the technology described in this document. General-purpose computers, network appliances, mobile devices, or other electronic systems may also include at least portions of the system 500. The system 500 includes a processor 510, a memory 520, a storage device 530, and an input/output device 540. Each of the components 510, 520, 530, and 540 may be interconnected, for example, using a system bus 550. The processor 510 is capable of processing instructions for execution within the system 500. In some implementations, the processor 510 is a single-threaded processor. In some implementations, the processor 510 is a multi-threaded processor. The processor 510 is capable of processing instructions stored in the memory 520 or on the storage device 530.


The memory 520 stores information within the system 500. In some implementations, the memory 520 is a non-transitory computer-readable medium. In some implementations, the memory 520 is a volatile memory unit. In some implementations, the memory 520 is a non-volatile memory unit.


The storage device 530 is capable of providing mass storage for the system 500. In some implementations, the storage device 530 is a non-transitory computer-readable medium. In various different implementations, the storage device 530 may include, for example, a hard disk device, an optical disk device, a solid-date drive, a flash drive, or some other large capacity storage device. For example, the storage device may store long-term data (e.g., database data, file system data, etc.). The input/output device 540 provides input/output operations for the system 500. In some implementations, the input/output device 540 may include one or more of a network interface devices, e.g., an Ethernet card, a serial communication device, e.g., an RS-232 port, and/or a wireless interface device, e.g., an 802.11 card, a 3G wireless modem, or a 4G wireless modem. In some implementations, the input/output device may include driver devices configured to receive input data and send output data to other input/output devices, e.g., keyboard, printer and display devices 560. In some examples, mobile computing devices, mobile communication devices, and other devices may be used.


In some implementations, at least a portion of the approaches described above may be realized by instructions that upon execution cause one or more processing devices to carry out the processes and functions described above. Such instructions may include, for example, interpreted instructions such as script instructions, or executable code, or other instructions stored in a non-transitory computer readable medium. The storage device 530 may be implemented in a distributed way over a network, such as a server farm or a set of widely distributed servers, or may be implemented in a single computing device.


Although an example processing system has been described in FIG. 5, embodiments of the subject matter, functional operations and processes described in this specification can be implemented in other types of digital electronic circuitry, in tangibly-embodied computer software or firmware, in computer hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Embodiments of the subject matter described in this specification can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions encoded on a tangible nonvolatile program carrier for execution by, or to control the operation of, data processing apparatus. Alternatively or in addition, the program instructions can be encoded on an artificially generated propagated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal that is generated to encode information for transmission to suitable receiver apparatus for execution by a data processing apparatus. The computer storage medium can be a machine-readable storage device, a machine-readable storage substrate, a random or serial access memory device, or a combination of one or more of them.


The term “system” may encompass all kinds of apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. A processing system may include special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit). A processing system may include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.


A computer program (which may also be referred to or described as a program, software, a software application, a module, a software module, a script, or code) can be written in any form of programming language, including compiled or interpreted languages, or declarative or procedural languages, and it can be deployed in any form, including as a standalone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program may, but need not, correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.


The processes and logic flows described in this specification can be performed by one or more programmable computers executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).


Computers suitable for the execution of a computer program can include, by way of example, general or special purpose microprocessors or both, or any other kind of central processing unit. Generally, a central processing unit will receive instructions and data from a read-only memory or a random access memory or both. A computer generally includes a central processing unit for performing or executing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Moreover, a computer can be embedded in another device, e.g., a mobile telephone, a personal digital assistant (PDA), a mobile audio or video player, a game console, a Global Positioning System (GPS) receiver, or a portable storage device (e.g., a universal serial bus (USB) flash drive), to name just a few.


Computer readable media suitable for storing computer program instructions and data include all forms of nonvolatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.


To provide for interaction with a user, embodiments of the subject matter described in this specification can be implemented on a computer having a display device, e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying information to the user and a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, or tactile input. In addition, a computer can interact with a user by sending documents to and receiving documents from a device that is used by the user; for example, by sending web pages to a web browser on a user's user device in response to requests received from the web browser.


Embodiments of the subject matter described in this specification can be implemented in a computing system that includes a back end component, e.g., as a data server, or that includes a middleware component, e.g., an application server, or that includes a front end component, e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the subject matter described in this specification, or any combination of one or more such back end, middleware, or front end components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include a local area network (“LAN”) and a wide area network (“WAN”), e.g., the Internet.


The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.


While this specification contains many specific implementation details, these should not be construed as limitations on the scope of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.


Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.


Particular embodiments of the subject matter have been described. Other embodiments are within the scope of the following claims. For example, the actions recited in the claims can be performed in a different order and still achieve desirable results. As one example, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In certain implementations, multitasking and parallel processing may be advantageous. Other steps or stages may be provided, or steps or stages may be eliminated, from the described processes. Accordingly, other implementations are within the scope of the following claims.


Terminology

The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.


The term “approximately”, the phrase “approximately equal to”, and other similar phrases, as used in the specification and the claims (e.g., “X has a value of approximately Y” or “X is approximately equal to Y”), should be understood to mean that one value (X) is within a predetermined range of another value (Y). The predetermined range may be plus or minus 20%, 10%, 5%, 3%, 1%, 0.1%, or less than 0.1%, unless otherwise indicated.


The indefinite articles “a” and “an,” as used in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.” The phrase “and/or,” as used in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.


As used in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.


The use of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof, is meant to encompass the items listed thereafter and additional items.


Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed. Ordinal terms are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term), to distinguish the claim elements.

Claims
  • 1. A computer-implemented method for forecasting security ratings for an entity, the method comprising: generating a plurality of simulated instantiations of a security scenario for the entity, the security scenario characterized by a plurality of security events associated with at least one event type;determining a security rating for each instantiation of the plurality of instantiations, wherein determining the security rating comprises assigning weights to security events of each event type based on (i) historical observations related to the entity and (ii) an industry associated with the entity;generating a security forecast for each instantiation based at least in part on the determined security rating for the respective instantiation; andgenerating a forecast cone based at least in part on the determined security ratings for the plurality of instantiations, wherein the generated forecast cone comprises an inner band based on a first, inner subset of the generated security forecasts and an outer band based on a second, outer subset of the generated security forecasts.
  • 2. The method of claim 1, wherein generating the plurality of simulated instantiations of the security scenario for the entity comprises: for each event type of the at least one event type: determining a rate of the security events associated with the event type over a forecasting period;determining a duration of the security events associated with the event type in the forecasting period; anddetermining a temporal placement of the security events associated with the event type in the forecasting period.
  • 3. The method of claim 2, wherein determining the rate of the security events associated with the event type over the forecasting period comprises: sampling from a distribution to determine the rate of the security events associated with the event type.
  • 4. The method of claim 3, wherein the distribution is selected from the group consisting of: a normal distribution, a log-normal distribution, a geometric distribution, a Poisson distribution, and a uniform distribution.
  • 5. The method of claim 2, wherein determining the duration of the security events associated with the event type in the forecasting period comprises: sampling from a distribution to determine the duration of the security events associated with the event type.
  • 6. The method of claim 5, wherein the distribution is selected from the group consisting of: a normal distribution, a log-normal distribution, a geometric distribution, a Poisson distribution, and a uniform distribution.
  • 7. The method of claim 2, wherein determining the temporal placement of the security events associated with the event type in the forecasting period comprises: sampling from a distribution to determine the temporal placement of the security events associated with the event type.
  • 8. The method of claim 7, wherein the distribution is selected from the group consisting of: a normal distribution, a log-normal distribution, a geometric distribution, a Poisson distribution, and a uniform distribution.
  • 9. The method of claim 1, wherein determining the security rating for each instantiation of the plurality of instantiations comprises: generating a ratings time series for the instantiation, the ratings time series forming the security forecast for the instantiation.
  • 10. The method of claim 1, wherein the inner band of the forecast cone is based on a 25th percentile and a 75th percentile of the subset of the security forecasts and the outer band of the forecast cone is based on a 5th percentile and 95th percentile of the subset of security forecasts.
  • 11. The method of claim 1, further comprising: providing, to a user interface, the generated subset of the generated security forecasts for display.
  • 12. The method of claim 1, wherein determining the security rating further comprises assigning weights to security events of each event type based on a user input.
  • 13. A system for forecasting security ratings for an entity, the system comprising: at least one memory storing computer-executable instructions; andat least one processor for executing the instructions storing on the memory, wherein execution of the instructions programs the at least one processor to perform operations comprising: generating a plurality of simulated instantiations of a security scenario for the entity, the security scenario characterized by a plurality of security events associated with at least one event type;determining a security rating for each instantiation of the plurality of instantiations, wherein determining the security rating comprises assigning weights to security events of each event type based on: (i) historical observations related to the entity and (ii) an industry associated with the entity;generating a security forecast for each instantiation based at least in part on the security rating for the respective instantiation; andgenerating a forecast cone based at least in part on the determined security ratings for the plurality of instantiations, wherein the generated forecast cone comprises an inner band based on a first, inner subset of the generated security forecasts and an outer band based on a second, outer subset of the generated security forecasts.
  • 14. The system of claim 13, wherein generating the plurality of simulated instantiations of the security scenario for the entity comprises: for each event type of the at least one event type: determining a rate of the security events associated with the event type over a forecasting period;determining a duration of the security events associated with the event type in the forecasting period; anddetermining a temporal placement of the security events associated with the event type in the forecasting period.
  • 15. The system of claim 14, wherein determining the rate of the security events associated with the event type over the forecasting period comprises: sampling from a distribution to determine the rate of the security events associated with the event type.
  • 16. The system of claim 15, wherein the distribution is selected from the group consisting of: a normal distribution, a log-normal distribution, a geometric distribution, a Poisson distribution, and a uniform distribution.
  • 17. The system of claim 14, wherein determining the duration of the security events associated with the event type in the forecasting period comprises: sampling from a distribution to determine the duration of the security events associated with the event type.
  • 18. The system of claim 17, wherein the distribution is selected from the group consisting of: a normal distribution, a log-normal distribution, a geometric distribution, a Poisson distribution, and a uniform distribution.
  • 19. The system of claim 14, wherein determining the temporal placement of the security events associated with the event type in the forecasting period comprises: sampling from a distribution to determine the temporal placement of the security events associated with the event type.
  • 20. The system of claim 19, wherein the distribution is selected from the group consisting of: a normal distribution, a log-normal distribution, a geometric distribution, a Poisson distribution, and a uniform distribution.
  • 21. The system of claim 13, wherein determining the security rating for each instantiation of the plurality of instantiations comprises: generating a ratings time series for the instantiation, the ratings time series forming the security forecast for the instantiation.
  • 22. The system of claim 13, wherein the inner band of the forecast cone is based on a 25th percentile and a 75th percentile of the subset of the security forecasts and the outer band of the forecast cone is based on a 5th percentile and a 95th percentile of the subset of security forecasts.
  • 23. The system of claim 13, wherein the operations further comprise: providing, to a user interface coupled to the processor, the generated subset of the generated security forecasts for display.
  • 24. The system of claim 13, wherein determining the security rating further comprises assigning weights to security events of each event type based on a user input.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of and claims priority under 35 U.S.C. § 120 to U.S. Patent Design Application No. 29/666,942, titled “Computer Display with Forecast Graphical User Interface” on Oct. 17, 2018, the entire contents of which are hereby incorporated by reference herein.

US Referenced Citations (329)
Number Name Date Kind
5867799 Lang et al. Feb 1999 A
6016475 Miller et al. Jan 2000 A
6745150 Breiman Jun 2004 B1
6792401 Nigro et al. Sep 2004 B1
7062572 Hampton Jun 2006 B1
D525264 Chotai et al. Jul 2006 S
D525629 Chotai et al. Jul 2006 S
7100195 Underwood Aug 2006 B1
7194769 Lippmann et al. Mar 2007 B2
7290275 Baudoin et al. Oct 2007 B2
D604740 Matheny et al. Nov 2009 S
7650570 Torrens et al. Jan 2010 B2
7747778 King et al. Jun 2010 B1
7748038 Olivier et al. Jun 2010 B2
7827607 Sobel et al. Nov 2010 B2
D630645 Tokunaga et al. Jan 2011 S
7971252 Lippmann et al. Jun 2011 B2
D652048 Joseph Jan 2012 S
D667022 LoBosco et al. Sep 2012 S
8370933 Buckler Feb 2013 B1
8429630 Nickolov et al. Apr 2013 B2
D682287 Cong et al. May 2013 S
D688260 Pearcy et al. Aug 2013 S
8504556 Rice et al. Aug 2013 B1
D691164 Lim et al. Oct 2013 S
D694252 Helm Nov 2013 S
D694253 Helm Nov 2013 S
8621621 Burns et al. Dec 2013 B1
8661146 Alex et al. Feb 2014 B2
D700616 Chao Mar 2014 S
8677481 Lee Mar 2014 B1
8775402 Baskerville et al. Jul 2014 B2
8825662 Kingman et al. Sep 2014 B1
D730918 Park et al. Jun 2015 S
9053210 Elnikety et al. Jun 2015 B2
9075990 Yang Jul 2015 B1
D740847 Yampolskiy et al. Oct 2015 S
D740848 Bolts et al. Oct 2015 S
D741351 Kito et al. Oct 2015 S
D746832 Pearcy et al. Jan 2016 S
9241252 Dua et al. Jan 2016 B2
9244899 Greenbaum Jan 2016 B1
9294498 Yampolskiy et al. Mar 2016 B1
D754690 Park et al. Apr 2016 S
D754696 Follett et al. Apr 2016 S
D756371 Bertnick et al. May 2016 S
D756372 Bertnick et al. May 2016 S
D756392 Yun et al. May 2016 S
D759084 Yampolskiy et al. Jun 2016 S
D759689 Olson et al. Jun 2016 S
9372994 Yampolskiy et al. Jun 2016 B1
9373144 Ng et al. Jun 2016 B1
D760782 Kendler et al. Jul 2016 S
9384206 Bono et al. Jul 2016 B1
9401926 Dubow et al. Jul 2016 B1
9407658 Kuskov et al. Aug 2016 B1
9424333 Bisignani et al. Aug 2016 B1
D771695 Yampolskiy et al. Nov 2016 S
D772276 Yampolskiy et al. Nov 2016 S
9501647 Yampolskiy et al. Nov 2016 B2
D773507 Sagrillo et al. Dec 2016 S
D775635 Raji et al. Jan 2017 S
D776136 Chen et al. Jan 2017 S
D776153 Yampolskiy et al. Jan 2017 S
D777177 Chen et al. Jan 2017 S
9560072 Xu Jan 2017 B1
D778927 Bertnick et al. Feb 2017 S
D778928 Bertnick et al. Feb 2017 S
D779512 Kimura et al. Feb 2017 S
D779514 Baris et al. Feb 2017 S
D779531 List et al. Feb 2017 S
D780770 Sum et al. Mar 2017 S
D785009 Lim et al. Apr 2017 S
D785010 Bachman et al. Apr 2017 S
D785016 Berwick et al. Apr 2017 S
9620079 Curtis Apr 2017 B2
D787530 Huang May 2017 S
D788128 Wada May 2017 S
9641547 Yampolskiy et al. May 2017 B2
9646110 Byrne et al. May 2017 B2
D789947 Sun Jun 2017 S
D789957 Wu et al. Jun 2017 S
D791153 Rice et al. Jul 2017 S
D791834 Eze et al. Jul 2017 S
D792427 Weaver et al. Jul 2017 S
D795891 Kohan et al. Aug 2017 S
D796523 Bhandari et al. Sep 2017 S
D801989 Iketsuki et al. Nov 2017 S
D803237 Wu et al. Nov 2017 S
D804528 Martin et al. Dec 2017 S
D806735 Olsen et al. Jan 2018 S
D806737 Chung et al. Jan 2018 S
D809523 Lipka et al. Feb 2018 S
D812633 Saneii Mar 2018 S
D814483 Gavaskar et al. Apr 2018 S
D815119 Chalker et al. Apr 2018 S
D815148 Martin et al. Apr 2018 S
D816105 Rudick et al. Apr 2018 S
D816116 Selassie Apr 2018 S
9954893 Zhao et al. Apr 2018 B1
D817970 Chang et al. May 2018 S
D817977 Kato et al. May 2018 S
D819687 Yampolskiy et al. Jun 2018 S
10044750 Livshits et al. Aug 2018 B2
10079854 Scott et al. Sep 2018 B1
10142364 Baukes et al. Nov 2018 B2
10180966 Lang et al. Jan 2019 B1
10185924 McClintock Jan 2019 B1
10217071 Mo et al. Feb 2019 B2
10230753 Yampolskiy et al. Mar 2019 B2
10230764 Ng et al. Mar 2019 B2
10235524 Ford Mar 2019 B2
10257219 Geil et al. Apr 2019 B1
10305854 Alizadeh-Shabdiz et al. May 2019 B2
10331502 Hart Jun 2019 B1
10339321 Tedeschi Jul 2019 B2
10339484 Pai et al. Jul 2019 B2
10348755 Shavell et al. Jul 2019 B1
10412083 Zou et al. Sep 2019 B2
10469515 Helmsen et al. Nov 2019 B2
10491619 Yampolskiy et al. Nov 2019 B2
10491620 Yampolskiy et al. Nov 2019 B2
10521583 Bagulho Monteiro Pereira Dec 2019 B1
10540374 Singh et al. Jan 2020 B2
D880512 Greenwald et al. Apr 2020 S
20010044798 Nagral et al. Nov 2001 A1
20020083077 Vardi Jun 2002 A1
20020133365 Grey et al. Sep 2002 A1
20020164983 Raviv et al. Nov 2002 A1
20030050862 Bleicken et al. Mar 2003 A1
20030123424 Jung Jul 2003 A1
20030187967 Walsh et al. Oct 2003 A1
20040003284 Campbell et al. Jan 2004 A1
20040010709 Baudoin et al. Jan 2004 A1
20040024859 Bloch et al. Feb 2004 A1
20040098375 DeCarlo May 2004 A1
20040133561 Burke Jul 2004 A1
20040133689 Vasisht Jul 2004 A1
20040193907 Patanella Sep 2004 A1
20040193918 Green et al. Sep 2004 A1
20040199791 Poletto et al. Oct 2004 A1
20040199792 Tan et al. Oct 2004 A1
20040221296 Ogielski et al. Nov 2004 A1
20040250122 Newton Dec 2004 A1
20040250134 Kohler et al. Dec 2004 A1
20050066195 Jones Mar 2005 A1
20050071450 Allen et al. Mar 2005 A1
20050076245 Graham et al. Apr 2005 A1
20050080720 Betz et al. Apr 2005 A1
20050108415 Turk et al. May 2005 A1
20050131830 Juarez et al. Jun 2005 A1
20050138413 Lippmann et al. Jun 2005 A1
20050160002 Roetter et al. Jul 2005 A1
20050234767 Bolzman et al. Oct 2005 A1
20050278726 Cano et al. Dec 2005 A1
20060036335 Banter et al. Feb 2006 A1
20060107226 Matthews et al. May 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060212925 Shull et al. Sep 2006 A1
20060253581 Dixon et al. Nov 2006 A1
20070016948 Dubrovsky et al. Jan 2007 A1
20070067845 Wiemer et al. Mar 2007 A1
20070143851 Nicodemus et al. Jun 2007 A1
20070179955 Croft et al. Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070214151 Thomas et al. Sep 2007 A1
20070282730 Carpenter et al. Dec 2007 A1
20080017526 Prescott et al. Jan 2008 A1
20080033775 Dawson et al. Feb 2008 A1
20080047018 Baudoin et al. Feb 2008 A1
20080091834 Norton Apr 2008 A1
20080140495 Bhamidipaty et al. Jun 2008 A1
20080140728 Fraser et al. Jun 2008 A1
20080162931 Lord et al. Jul 2008 A1
20080172382 Prettejohn Jul 2008 A1
20080175266 Alperovitch et al. Jul 2008 A1
20080208995 Takahashi et al. Aug 2008 A1
20080209565 Baudoin et al. Aug 2008 A2
20080222287 Bahl et al. Sep 2008 A1
20080262895 Hofmeister et al. Oct 2008 A1
20090044272 Jarrett Feb 2009 A1
20090094265 Vlachos et al. Apr 2009 A1
20090125427 Atwood et al. May 2009 A1
20090132861 Costa et al. May 2009 A1
20090161629 Purkayastha et al. Jun 2009 A1
20090193054 Karimisetty et al. Jul 2009 A1
20090216700 Bouchard Aug 2009 A1
20090265787 Baudoin et al. Oct 2009 A9
20090293128 Lippmann et al. Nov 2009 A1
20090299802 Brennan Dec 2009 A1
20090300768 Krishnamurthy et al. Dec 2009 A1
20090319420 Sanchez et al. Dec 2009 A1
20090323632 Nix Dec 2009 A1
20090328063 Corvera et al. Dec 2009 A1
20100017880 Masood Jan 2010 A1
20100042605 Cheng et al. Feb 2010 A1
20100057582 Arfin et al. Mar 2010 A1
20100186088 Banerjee et al. Jul 2010 A1
20100205042 Mun Aug 2010 A1
20100218256 Thomas et al. Aug 2010 A1
20100262444 Atwal et al. Oct 2010 A1
20100275263 Bennett Oct 2010 A1
20100281124 Westman et al. Nov 2010 A1
20100281151 Ramankutty et al. Nov 2010 A1
20110137704 Mitra et al. Jun 2011 A1
20110145576 Bettan Jun 2011 A1
20110185403 Dolan et al. Jul 2011 A1
20110213742 Lemmond et al. Sep 2011 A1
20110219455 Bhagwan et al. Sep 2011 A1
20110231395 Vadlamani et al. Sep 2011 A1
20110239300 Klein et al. Sep 2011 A1
20110296519 Ide et al. Dec 2011 A1
20120036263 Madden et al. Feb 2012 A1
20120089745 Turakhia Apr 2012 A1
20120158725 Molloy et al. Jun 2012 A1
20120166458 Laudanski et al. Jun 2012 A1
20120198558 Liu et al. Aug 2012 A1
20120215892 Wanser et al. Aug 2012 A1
20120255027 Kanakapura et al. Oct 2012 A1
20120291129 Shulman et al. Nov 2012 A1
20130014253 Neou et al. Jan 2013 A1
20130060351 Imming et al. Mar 2013 A1
20130080505 Nielsen et al. Mar 2013 A1
20130086521 Grossele et al. Apr 2013 A1
20130091574 Howes et al. Apr 2013 A1
20130124644 Hunt et al. May 2013 A1
20130124653 Vick et al. May 2013 A1
20130142050 Luna Jun 2013 A1
20130173791 Longo Jul 2013 A1
20130227078 Wei et al. Aug 2013 A1
20130282406 Snyder et al. Oct 2013 A1
20130291105 Yan Oct 2013 A1
20130298244 Kumar et al. Nov 2013 A1
20130305368 Ford Nov 2013 A1
20130333038 Chien Dec 2013 A1
20130347116 Flores et al. Dec 2013 A1
20140006129 Heath Jan 2014 A1
20140019196 Wiggins et al. Jan 2014 A1
20140108474 David et al. Apr 2014 A1
20140114755 Mezzacca Apr 2014 A1
20140114843 Klein et al. Apr 2014 A1
20140130158 Wang et al. May 2014 A1
20140146370 Banner et al. May 2014 A1
20140189098 MaGill et al. Jul 2014 A1
20140204803 Nguyen et al. Jul 2014 A1
20140237545 Mylavarapu Aug 2014 A1
20140244317 Roberts et al. Aug 2014 A1
20140283068 Call et al. Sep 2014 A1
20140288996 Rence et al. Sep 2014 A1
20140304816 Klein et al. Oct 2014 A1
20140334336 Chen et al. Nov 2014 A1
20140337633 Yang et al. Nov 2014 A1
20150033331 Stern et al. Jan 2015 A1
20150033341 Schmidtler et al. Jan 2015 A1
20150074579 Gladstone et al. Mar 2015 A1
20150081860 Kuehnel et al. Mar 2015 A1
20150156084 Kaminsky et al. Jun 2015 A1
20150180883 Aktas et al. Jun 2015 A1
20150261955 Huang et al. Sep 2015 A1
20150264061 Ibatullin et al. Sep 2015 A1
20150288706 Marshall Oct 2015 A1
20150288709 Singhal et al. Oct 2015 A1
20150310188 Ford et al. Oct 2015 A1
20150310213 Ronen et al. Oct 2015 A1
20150317672 Espinoza et al. Nov 2015 A1
20150347756 Hidayat et al. Dec 2015 A1
20150350229 Mitchell Dec 2015 A1
20150381649 Schultz et al. Dec 2015 A1
20160036849 Zakian Feb 2016 A1
20160065613 Cho et al. Mar 2016 A1
20160119373 Fausto et al. Apr 2016 A1
20160140466 Sidebottom et al. May 2016 A1
20160147992 Zhao et al. May 2016 A1
20160162602 Bradish et al. Jun 2016 A1
20160171415 Yampolskiy et al. Jun 2016 A1
20160173522 Yampolskiy et al. Jun 2016 A1
20160182537 Tatourian et al. Jun 2016 A1
20160189301 Ng et al. Jun 2016 A1
20160191554 Kaminsky Jun 2016 A1
20160205126 Boyer et al. Jul 2016 A1
20160248797 Yampolskiy et al. Aug 2016 A1
20160253500 Alme et al. Sep 2016 A1
20160259945 Yampolskiy et al. Sep 2016 A1
20160337387 Hu et al. Nov 2016 A1
20160344801 Akkarawittayapoom Nov 2016 A1
20160364496 Li Dec 2016 A1
20160373485 Kamble Dec 2016 A1
20170048267 Yampolskiy et al. Feb 2017 A1
20170063901 Muddu et al. Mar 2017 A1
20170142148 Bu Er May 2017 A1
20170161409 Martin Jun 2017 A1
20170236078 Rasumov Aug 2017 A1
20170237764 Rasumov Aug 2017 A1
20170279843 Schultz Sep 2017 A1
20170300911 Alnajem Oct 2017 A1
20170316324 Barrett Nov 2017 A1
20170318045 Johns et al. Nov 2017 A1
20170324766 Gonzalez Granadillo et al. Nov 2017 A1
20170337487 Nock et al. Nov 2017 A1
20180013716 Connell et al. Jan 2018 A1
20180103043 Kupreev et al. Apr 2018 A1
20180123934 Gissing et al. May 2018 A1
20180124110 Hunt et al. May 2018 A1
20180139180 Napchi et al. May 2018 A1
20180157468 Stachura Jun 2018 A1
20180285414 Kondiles et al. Oct 2018 A1
20180322584 Crabtree et al. Nov 2018 A1
20180336348 Ng et al. Nov 2018 A1
20180337938 Kneib et al. Nov 2018 A1
20180337941 Kraning et al. Nov 2018 A1
20180365519 Pollard et al. Dec 2018 A1
20180375896 Wang et al. Dec 2018 A1
20190034845 Mo et al. Jan 2019 A1
20190065545 Hazel et al. Feb 2019 A1
20190079869 Baldi et al. Mar 2019 A1
20190089711 Faulkner Mar 2019 A1
20190098025 Lim Mar 2019 A1
20190124091 Ujiie et al. Apr 2019 A1
20190140925 Pon et al. May 2019 A1
20190141060 Lim May 2019 A1
20190147378 Mo et al. May 2019 A1
20190166152 Steele May 2019 A1
20190215331 Anakata et al. Jul 2019 A1
20190303574 Lamay et al. Oct 2019 A1
20190379632 Dahlberg et al. Dec 2019 A1
20190392252 Fighel Dec 2019 A1
20200053127 Brotherton et al. Feb 2020 A1
20200065213 Poghosyan Feb 2020 A1
20200074084 Dorrans et al. Mar 2020 A1
Foreign Referenced Citations (3)
Number Date Country
3015146 Aug 2017 CA
2017142694 Aug 2017 WO
2019023045 Jan 2019 WO
Non-Patent Literature Citations (223)
Entry
Gilgur, A., Gunn, S., Browning, D., et al. (2015). Percentile-Based Approach to Forecasting Workload Growth Proceedings of CMG'15 Performance and Capacity International Conference by the Computer Measurement Group. Nov. 2015 (Year: 2015).
“About Neo4j,” 1 page.
“Agreed Upon Procedures,” Version 4.0, BITS, The Financial Institution Shared Assessments Program, Assessment Guide, Sep. 2008, 56 pages.
“Amazon Mechanical Turk,” accessed on the internet at https://www.mturk.com/; 7 pages.
“An Executive View ofIT Governance,” IT Governance Institute, 2009, 32 pages.
“Assessing Risk in Turbulent Times,” A Workshop for Information Security Executives, Glassmeyter/McNamee Center for Digital Strategies, Tuck School of Business at Dartmouth, Institute for Information Infrastructure Protection, 2009, 17 pages.
“Assuring a Trusted and Resilient Information and Communications Infrastructure,” Cyberspace Policy Review, May 2009, 76 pages.
“Computer Network Graph,” http://www.opte.org; 1 page.
“Creating Transparency with Palantir,” accessed on the internet at https://www.youtube.com/watch?v=8cbGChfagUA; Jul. 5, 2012; 1 page.
“Gephi (gephi.org),” accessed on the internet at https://web.archive.org/web/20151216223216/https://gephi.org/; Dec. 16, 2015; 1 page.
“Master Security Criteria,” Version 3.0, BITS Financial Services Security Laboratory, Oct. 2001, 47 pages.
“Mile 2 CPTE Maltego Demo,” accessed on the internet at https://www.youtube.com/watch?v=o2oNKOUzP0U; Jul. 12, 2012; 1 page.
“Neo4j (neo4j.com),” accessed on the internet at https://web.archive.org/web/20151220150341/http://neo4j.com:80/developer/ guide-data-visualization/; Dec. 20, 2015; 1 page.
“Palantir Cyber: Uncovering malicious behavior at petabyte scale,” accessed on the internet at https://www.youtube.com/watch?v=_EhYezVO6EE; Dec. 21, 2012; 1 page.
“Palantir.com,” accessed on the internet at http://www.palantir.com/; Dec. 2015; 2 pages.
“Plugging the Right Holes,” Lab Notes, MIT Lincoln Library, Posted Jul. 2008, retrieved Sep. 14, 2010 from http://www.11.miLedufpublicationsflabnotesfpluggingtherightho! . . . , 2 pages.
“Rapid7 Nexpose Vulnerability Scanner,” accessed on the internet at https://www.rapid7.com/products/nexpose/download/, 5 pages.
“Report on Controls Placed in Operation and Test of Operating Effectiveness,” EasCorp, Jan. 1 through Dec. 31, 2008, prepared by Crowe Horwath, 58 pages.
“Shared Assessments: Getting Started,” BITS, 2008, 4 pages.
“Tenable Nessus Network Vulnerability Scanner,” accessed on the internet at https://www.tenable.com/products/nessus/nessus-professional; 13 pages.
“Twenty Critical Controls for Effective Cyber Defense: Consensus Audit,” Version 2.3, Nov. 13, 2009, retrieved on Apr. 9, 2010 from http://www.sans.org/critical-security-controls/print.php., 52 pages.
2009 Data Breach Investigations Report, study conducted by Verizon Business RISK Team, 52 pages.
Application as filed, and pending claims of U.S. Appl. No. 13/240,572 as of Nov. 18, 2015, 45 pages.
Artz, Michael Lyle, “NetSPA: A Network Security Planning Architecture,” Massachusetts Institute of Technology, May 24, 2002, 97 pages.
Bhilare et al., “Protecting Intellectual Property and Sensitive Information in Academic Campuses from Trusted Insiders: Leveraging Active Directory”, SIGUCC, Oct. 2009, 5 pages.
BitSight, “Cyber Security Myths Versus Reality: How Optimism Bias Contributes to Inaccurate Perceptions of Risk”, Jun. 2015, Dimensional Research, pp. 1-9.
Borgatti, et al., “On Social Network Analysis in a Supply Chain Context,” Journal of Supply Chain Management; 45(2): 5-22; Apr. 2009, 18 pages.
Boyer, Stephen, et al., Playing with Blocks: SCAP-Enable Higher-Level Analyses, MIT Lincoln Laboratory, 5th Annual IT Security Automation Conference, Oct. 26-29, 2009, 35 pages.
Browne, Niall, et al., “Shared Assessments Program AUP and SAS70 Frequently Asked Questions,” BITS, 4 pages.
Buckshaw, Donald L., “Use of Decision Support Techniques for Information System Risk Management,” submitted for publication in Wiley's Encyclopedia of Quantitative Risk Assessment in Jan. 2007, 11 pages.
Buehler, Kevin S., et al., “Running with risk,” The McKinsey Quarterly, No. 4, 2003, pp. 40-49.
Carstens, et al., “Modeling Company Risk and Importance in Supply Graphs,” European Semantic Web Conference 2017: The Semantic Web pp. 18-31.
Chu, Matthew, et al., “Visualizing Attack Graphs, Reachability, and Trust Relationships with NAVIGATOR,” MIT Lincoln Library, VizSEC '10, Ontario, Canada, Sep. 14, 2010, 12 pages.
Chuvakin, “SIEM: Moving beyond compliance”, RSA White Paper, 2010, 16 pages.
Computer Network Graph—Bees, http://bioteams.com/2007/04/30/visualizing_complex_networks.html, date accessed Sep. 28, 2016, 2 pages.
Computer Network Graph—Univ. of Michigan, http://people.cst.cmich.edu/liao1q/research.shtml, date accessed Sep. 28, 2016, 5 pages.
Crowther, Kenneth G., et al., “Principles for Better Information Security through More Accurate, Transparent Risk Scoring,” Journal of Homeland Security and Emergency Management, vol. 7, Issue 1, Article 37, 2010, 20 pages.
Davis, Lois M., et al., “The National Computer Security Survey (NCSS) Final Methodology,” Technical report prepared for the Bureau of Justice Statistics, Safety and Justice Program, RAND Infrastructure, Safety and Environment (ISE), 2008, 91 pages.
Dillon-Merrill, PhD., Robin L, et al., “Logic Trees: Fault, Success, Attack, Event, Probability, and Decision Trees,” Wiley Handbook of Science and Technology for Homeland Security, 13 pages.
Dun & Bradstreet Corp. Stock Report, Standard & Poor's, Jun. 6, 2009, 8 pages.
Dun & Bradstreet, The DUNSRight Quality Process: Power Behind Quality Information, 24 pages.
Edmonds, Robert, “ISC Passive DNS Architecture”, Internet Systems Consortium, Inc., Mar. 2012, 18 pages.
Equifax Inc. Stock Report, Standard & Poor's, Jun. 6, 2009, 8 pages.
Gundert, Levi, “Big Data in Security—Part III: Graph Analytics,” accessed on the Internet at https://blogs.cisco.com/security/big-data-in-security-part-iii-graph-analytics; Cisco Blog, Dec. 2013, 8 pages.
Hachem, Sara; Toninelli, Alessandra; Pathak, Animesh; Issany, Valerie. Policy-Based Access Control in Mobile Social Ecosystems. 2011 IEEE International Symposium on Policies for Distributed Systems and Networks (POLICY). Http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5976796, 8 pages.
Hacking Exposed 6, S. McClure et al., copyright 2009, 37 pages.
Ingols, Kyle, et al., “Modeling Modern Network Attacks and Countermeasures Using Attack Graphs,” MIT Lincoln Laboratory, 16 pages.
Ingols, Kyle, et al., “Practical Attack Graph Generation for Network Defense,” MIT Lincoln Library, IEEE Computer Society, Proceedings of the 22nd Annual Computer Security Applications Conference (ACSAC'06), 2006, 10 pages.
Ingols, Kyle, et al., “Practical Experiences Using SCAP to Aggregate CND Data,” MIT Lincoln Library, Presentation to NIST SCAP Conference, Sep. 24, 2008, 59 pages.
Jean, “Cyber Security: How to use graphs to do an attack analysis,” accessed on the internet at https://linkurio.us/blog/cyber-security-use-graphs-attack-analysis/; Aug. 2014, 11 pages.
Jin et al, “Identifying and tracking suspicious activities through IP gray space analysis”, MineNet, Jun. 12, 2007, 6 pages.
U.S. Appl. No. 16/405,121, Methods for Using Organizational Behavior for Risk Ratings, filed May 7, 2019.
U.S. Appl. No. 13/240,572 Published as: US2016/0205126, Information Technology Security Assessment System, filed Sep. 22, 2011.
U.S. Appl. No. 16/015,686, Methods for Mapping IP Addresses and Domains to Organizations Using User Activity Data, filed Jun. 22, 2018.
U.S. Appl. No. 16/543,075, Methods for Mapping IP Addresses and Domains to Organizations Using User Activity Data, filed Aug. 16, 2019.
U.S. Appl. No. 16/292,956, Correlated Risk in Cybersecurity, filed Mar. 5, 2019.
U.S. Appl. No. 16/170,680, Systems and Methods for Remote Detection of Software Through Browser Webinjects, filed Oct. 25, 2018.
U.S. Appl. No. 15/954,921, Systems and Methods for External Detection of Misconfigured Systems, filed Apr. 17, 2018.
U.S. Appl. No. 29/666,942, Computer Display With Forecast Graphical User Interface, filed Oct. 17, 2018.
U.S. Appl. No. 16/514,771, Systems and Methods for Generating Security Improvement Plans for Entities, filed Jul. 17, 2019.
U.S. Appl. No. 29/677,306, Computer Display With Corporate Hierarchy Graphical User Interface, filed Jan. 18, 2019.
U.S. Appl. No. 15/216,955, the Office Actions dated Nov. 4, 2016, Mar. 9, 2017, Jun. 6, 2017, Dec. 5, 2017, and Aug. 29, 2018, and the Notice of Allowance dated Feb. 6, 2019.
U.S. Appl. No. 15/239,063, the Office Action dated Mar. 21, 2018 and the Notice of Allowance dated Jan. 14, 2019.
U.S. Appl. No. 16/405,121, the Office Action dated Aug. 1, 2019.
U.S. Appl. No. 13/240,572, the Office Actions dated May 7, 2013, Nov. 21, 2013, Jun. 16, 2014, Feb. 27, 2015, Jun. 3, 2015, Oct. 26, 2015, Mar. 10, 2016, Feb. 13, 2017, and Examiner's Answer to Appeal Brief dated May 16, 2018.
U.S. Appl. No. 15/044,952, the Office Action dated Jul. 8, 2019.
U.S. Appl. No. 29/599,620, now U.S. Pat. No. D. 846,562, the Notice of Allowance dated Nov. 27, 2018.
U.S. Appl. No. 16/015,686, the Office Action dated Nov. 16, 2018 and the Notice of Allowance dated May 10, 2019.
U.S. Appl. No. 15/918,286, the Office Action dated Aug. 7, 2018 and the Notice of Allowance dated Nov. 29, 2018.
U.S. Appl. No. 16/292,956, the Office Action dated Jul. 10, 2019.
U.S. Appl. No. 16/170,680, the Office Action dated Mar. 26, 2019.
U.S. Appl. No. 15/954,921, the Office Actions dated Sep. 4, 2018, Jan. 3, 2019, and Aug. 19, 2019.
Johnson, Eric, et al., “Information Risk and the Evolution of the Security Rating Industry,” Mar. 24, 2009, 27 pages.
Joslyn, et al., “Massive Scale Cyber Traffic Analysis: A Driver for Graph Database Research,” Proceedings of the First International Workshop on Graph Data Management Experience and Systems (GRADES 2013), 6 pages.
KC Claffy, “Internet measurement and data analysis: topology, workload, performance and routing statistics,” accessed on the Internet at http://www.caida.org/publications/papers/1999/Nae/Nae.html., NAE '99 workshop, 1999, 22 pages.
Li et al., “Finding the Linchpins of the Dark Web: a Study on Topologically Dedicated Hosts on Malicious Web Infrastructures”, IEEE, 2013, 15 pages.
Lippmann, Rich, et al., NetSPA: a Network Security Planning Architecture, MIT Lincoln Laboratory, 11 pages.
Lippmann, Richard, et al., “Validating and Restoring Defense in Depth Using Attack Graphs,” MIT Lincoln Laboratory, 10 pages.
Lippmann, RP., et al., “An Annotated Review of Papers on Attack Graphs,” Project Report IA-1, Lincoln Laboratory, Massachusetts Institute of Technology, Mar. 31, 2005, 39 pages.
Lippmann, RP., et al., “Evaluating and Strengthening Enterprise Network Security Using Attack Graphs,” Project Report IA-2, MIT Lincoln Laboratory, Oct. 5, 2005, 96 pages.
Maltego XL, accessed on the Internet at https://www.paterva.com/web7/buy/maltego-clients/maltego-xl.php, 5 pages.
Massimo Candela, “Real-time BGP Visualisation with BGPlay,” accessed on the Internet at https://labs.ripe.net/Members/massimo_candela/real-time-bgp-visualisation- with-bgplay), Sep. 30, 2015, 8 pages.
MaxMind, https://www.maxmind.com/en/about-maxmind, https://www.maxmind.com/en/geoip2-isp-database, date accessed Sep. 28, 20116, 3 pages.
McNab, “Network Security Assessment,” copyright 2004, 55 pages.
Method Documentation, CNSS Risk Assessment Tool Version 1.1, Mar. 31, 2009, 24 pages.
Moradi, et al., “Quantitative Models for Supply Chain Management,” IGI Global, 2012, 29 pages.
Netcraft, www.netcraft.com, date accessed Sep. 28, 2016, 2 pages.
NetScanTools Pro, http://www.netscantools.com/nstpromain.html, date accessed Sep. 28, 2016, 2 pages.
Network Security Assessment, C. McNab, copyright 2004, 13 pages.
Noel, et al., “Big-Data Architecture for Cyber Attack Graphs, Representing Security Relationships in NoSQL Graph Databases,” The MITRE Corporation, 2014, 6 pages.
Nye, John, “Avoiding Audit Overlap,” Moody's Risk Services, Presentation, Source Boston, Mar. 14, 2008, 19 pages.
Pending claims for U.S. Appl. No. 14/021,585, as of Apr. 29, 2016, 2 pages.
Pending claims for U.S. Appl. No. 14/021,585, as of Nov. 18, 2015, 6 pages.
U.S. Appl. No. 13/240,572 and pending claims as of Mar. 22, 2016, 10 pages.
U.S. Appl. No. 13/240,572 as of Oct. 7, 2015, application as filed and pending claims, 45 pages.
U.S. Appl. No. 14/021,585 and pending claims as of Mar. 22, 2016, 2 pages.
U.S. Appl. No. 14/021,585 as of Oct. 7, 2015 and application as filed, 70 pages.
U.S. Appl. No. 14/944,484 and pending claims as of Mar. 22, 2016, 4 pages.
U.S. Appl. No. 61/386,156.
Application as filed and pending claims for U.S. Appl. No. 13/240,572 as of Apr. 29, 2016, 46 pages.
Application as filed and pending claims for U.S. Appl. No. 14/944,484 as of Apr. 29, 2016, 4 pages.
Paxson, Vern, “How the Pursuit of Truth Led Me to Selling Viagra,” EECS Department, University of California, International Computer Science Institute, Lawrence Berkeley National Laboratory, Aug. 13, 2009, 68 pages.
Proposal and Award Policies and Procedures Guide, Part I—Proposal Preparation & Submission Guidelines GPG, The National Science Foundation, Feb. 2009, 68 pages.
Provos et al., “The Ghost in the Browser Analysis of Web-based Malware”, 2007, 9 pages.
Rare Events, Oct. 2009, JASON, The MITRE Corporation, Oct. 2009, 104 pages.
Report to the Congress on Credit Scoring and Its Effects on the Availability and Affordability of Credit, Board of Governors of the Federal Reserve System, Aug. 2007, 304 pages.
RFC 1834, https://tools.ietf.org/html/rfc1834, date accessed Sep. 28, 2016, 7 pages.
RFC 781, https://tools.ietf.org/html/rfc781, date accessed Sep. 28, 2016, 3 pages.
RFC 950, https://tools.ietf.org/html/rfc950, date accessed Sep. 28, 2016, 19 pages.
RFC 954, https://tools.ietf.org/html/rfc954, date accessed Sep. 28, 2016, 5 pages.
SamSpade Network Inquiry Utility, https://www.sans.org/reading-room/whitepapers/tools/sam-spade-934, date accessed Sep. 28, 2016, 19 pages.
SBIR Phase I: Enterprise Cyber Security Scoring, CyberAnalytix, LLC, http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=I013603, Apr. 28, 2010, 2 pages.
Security Warrior, Cyrus Peikari, Anton, Chapter 8: Reconnaissance, 6 pages.
Snort Intrusion Monitoring System, http://archive.oreilly.com/pub/h/1393, date accessed Sep. 28, 2016, 3 pages.
Srivastava, Divesh; Velegrakis, Yannis. Using Queries to Associate Metadata with Data. IEEE 23rd International Conference on Data Engineering. Pub. Date: 2007. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4221823, 3 pages.
Stone-Gross, Brett, et al., “FIRE: Finding Rogue Networks,” 10 pages.
Taleb, Nassim N., et al., “The Six Mistakes Executives Make in Risk Management,” Harvard Business Review, Oct. 2009, 5 pages.
The CIS Security Metrics vI.0.0, The Center for Internet Security, May 11, 2009, 90 pages.
The Fair Credit Reporting Act (FCRA) of the Federal Trade Commission (FTC), Jul. 30, 2004, 86 pages.
The Financial Institution Shared Assessments Program, Industry Positioning and Mapping Document, BITS, Oct. 2007, 44 pages.
Wagner, et al., “Assessing the vulnerability of supply chains using graph theory” Int. J. Production Economics 126 (2010) 121-129.
Wikipedia, https://en.wikipedia.org/wiki/Crowdsourcing, date accessed Sep. 28, 2016, 25 pages.
U.S. Appl. No. 15/216,955 U.S. Pat. No. 10,326,786 Published as: US2016/0330231, Methods for Using Organizational Behavior for Risk Ratings, filed Jul. 22, 2016.
U.S. Appl. No. 15/239,063 U.S. Pat. No. 10,341,370 Published as: US2017/0093901, Security Risk Management, filed Aug. 17, 2016.
U.S. Appl. No. 16/015,686 U.S. Pat. No. 10,425,380 Published as: US2018/0375822, Methods for Mapping IP Addresses and Domains to Organizations Using User Activity Data, filed Jun. 22, 2018.
U.S. Appl. No. 16/292,956 Patented as: US2019/0297106, Correlated Risk in Cybersecurity, filed Mar. 5, 2019.
U.S. Appl. No. 15/954,921 Published as: US2019/0319979, Systems and Methods for External Detection of Misconfigured Systems, filed Apr. 17, 2018.
U.S. Appl. No. 16/583,991, Systems and Methods for Network Asset Discovery and Association Thereof With Entities, filed Sep. 26, 2019.
U.S. Appl. No. 16/543,075, the Notice ot Allowance dated Sep. 25, 2019.
U.S. Appl. No. 16/292,956, the Office Action dated Jul. 10, 2019 and the Notice of Allowance dated Oct. 31, 2019.
U.S. Appl. No. 16/170,680, the Office Action dated Mar. 26, 2019 and the Notice of Allowance dated Aug. 27, 2019.
Williams, Leevar, et al., “An Interactive Attack Graph Cascade and Reachability Display,” MIT Lincoln Laboratory, 17 pages.
Williams, Leevar, et al., “GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool,” MIT Lincoln Library, VizSEC 2009, pp. 44-59.
Seneviratne et al., “SSIDs in the Wild: Extracting Semantic Information from WiFi SSIDs” HAL archives-ouvertes.fr, HAL Id: hal-01181254, Jul. 29, 2015, 5 pages.
Search Query Report form IP.com (performed Apr. 27, 2020).
Camelo et al., “CONDENSER: A Graph-Based Approach for Detecting Botnets,” AnubisNetworks R&D, Amadora, Portugal, 8 pages.
Camelo, “Botnet Cluster Identification,” Sep. 2014, 2 pages.
Azman, Mohamed et al. Wireless Daisy Chain and Tree Topology Networks for Smart Cities. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber= 8869252 (Year: 2019).
Basinya, Evgeny A.; Yushmanov, Anton A. Development of a Comprehensive Security System. 2019 Dynamics of Systems, Mechanisms and Machines (Dynamics). https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8944700 (Year: 2019).
Luo, Hui; Henry, Paul. A Secure Public Wireless LAN Access Technique That Supports Walk-Up Users. GLOBECOM '03. IEEE Global Telecommunications Conference. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber= 1258471 (Year: 2003).
Seigneur et al., A Survey of Trust and Risk Metrics for a BYOD Mobile Worker World: Third International Conference on Social Eco-Informatics, 2013, 11 pages.
U.S. Appl. No. 15/271,655 Published as: US2018/0083999, Self-Published Security Risk Management, filed Sep. 21, 2016.
U.S. Appl. No. 15/377,574 U.S. Pat. No. 9,705,932, Methods and Systems for Creating, De-duplicating, and Accessing Data Using an Object Storage System, filed Dec. 13, 2016.
U.S. Appl. No. 14/021,585 U.S. Pat. No. 9,438,615 Published as: US2015/0074579, Security Risk Management, filed Sep. 9, 2013.
U.S. Appl. No. 15/216,955 Published as: US2016/0330231, Methods for Using Organizational Behavior for Risk Ratings, filed Jul. 22, 2016.
U.S. Appl. No. 15/239,063 Published as: US2017/0093901, Security Risk Management, filed Aug. 17, 2016.
U.S. Appl. No. 16/405,121 Published as: US2019/0260791, Methods for Using Organizational Behavior for Risk Ratings, filed May 7, 2019.
U.S. Appl. No. 17/025,930 Published as: US 2021-0006581 A1, Methods for Using Organizational Behavior for Risk Ratings, filed Sep. 18, 2020.
U.S. Appl. No. 13/240,572 U.S. Pat. No. 10,805,331 Published as: US2016/0205126, Information Technology Security Assessment System, filed Sep. 22, 2011.
U.S. Appl. No. 14/944,484 U.S. Pat. No. 9,973,524 Published as: US2016/0323308, Information Technology Security Assessment System, filed Nov. 18, 2015.
U.S. Appl. No. 15/142,677 U.S. Pat. No. 9,830,569 Published as: US/2016/0239772, Security Assessment Using Service Provider Digital Asset Information, filed Apr. 29, 2016.
U.S. Appl. No. 15/134,845 U.S. Pat. No. 9,680,858, Annotation Platform for a Security Risk System, filed Apr. 21, 2016.
U.S. Appl. No. 15/044,952 Published as: US2017/0236077, Relationships Among Technology Assets and Services and the Entities Responsible for Them, filed Feb. 16, 2016.
U.S. Appl. No. 15/089,375 U.S. Pat. No. 10,176,445 Published as: US2017/0236079, Relationships Among Technology Assets and Services and the Entities Responsible for Them, filed Apr. 1, 2016.
U.S. Appl. No. 29/598,298 U.S. Pat. No. D. 835,631, Computer Display Screen With Graphical User Interface, filed Mar. 24, 2017.
U.S. Appl. No. 29/598,299 U.S. Pat. No. D. 818,475, Computer Display With Security Ratings Graphical User Interface, filed Mar. 24, 2017.
U.S. Appl. No. 29/599,622 U.S. Pat. No. D. 847,169, Computer Display With Security Ratings Graphical User Interface, filed Apr. 5, 2017.
U.S. Appl. No. 29/599,620 U.S. Pat. No. D. 846,562, Computer Display With Security Ratings Graphical User Interface, filed Apr. 5, 2017.
U.S. Appl. No. 16/015,686 U.S. Pat. No. 10,425,380, Methods for Mapping IP Addresses and Domains to Organizations Using User Activity Data, filed Jun. 22, 2018.
U.S. Appl. No. 16/543,075 U.S. Pat. No. 10,554,619, Methods for Mapping IP Addresses and Domains to Organizations Using User Activity Data, filed Aug. 16, 2019.
U.S. Appl. No. 16/738,825 U.S. Pat. No. 10,893,021, Methods for Mapping IP Addresses and Domains to Organizations Using User Activity Data, filed Jan. 9, 2020.
U.S. Appl. No. 17/146,064, Methods for Mapping IP Addresses and Domains to Organizations Using User Activity Data, filed Jan. 11, 2021.
U.S. Appl. No. 15/918,286 U.S. Pat. No. 10,257,219, Correlated Risk in Cybersecurity, filed Mar. 12, 2018.
U.S. Appl. No. 16/292,956 U.S. Pat. No. 10,594,723, Correlated Risk in Cybersecurity, filed May 5, 2019.
U.S. Appl. No. 16/795,056 U.S. Pat. No. 10,931,705 Published as: 2020-0195681 A1, Correlated Risk in Cybersecurity, filed Feb. 19, 2020.
U.S. Appl. No. 16/170,680 U.S. Pat. No. 10,521,583, Systems and Methods for Remote Detection of Software Through Browser Webinjects, filed Oct. 25, 2018.
U.S. Appl. No. 16/688,647 U.S. Pat. No. 10,776,483 Published as: US 2020-0134174 A1, Systems and Methods for Remote Detection of Software Through Browser Webinjects, filed Nov. 19, 2019.
U.S. Appl. No. 15/954,921 U.S. Pat. No. 10,812,520 Published as: US 2019-0319979 A1, Systems and Methods for External Detection of Misconfigured Systems, filed Apr. 17, 2018.
U.S. Appl. No. 17/014,495 Published as: US 2020-0404017 A1, Systems and Methods for External Detection of Misconfigured Systems, filed Sep. 8, 2020.
U.S. Appl. No. 16/549,764, Systems and Methods for Inferring Entity Relationships via Network Communications of Users or User Devices, filed Aug. 23, 2019.
U.S. Appl. No. 16/787,650 U.S. Pat. No. 10,749,893, Systems and Methods for Inferring Entity Relationships via Network Communications of Users or User Devices, filed Feb. 11, 2020.
U.S. Appl. No. 16/583,991 U.S. Pat. No. 10,848,382, Systems and Methods for Network Asset Discovery and Association Thereof With Entities, filed Sep. 26, 2019.
U.S. Appl. No. 29/666,942 U.S. Pat. No. D. 892,135, Computer Display With Graphical User Interface, filed Oct. 17, 2018.
U.S. Appl. No. 16/514,771 U.S. Pat. No. 10,726,136, Systems and Methods for Generating Security Improvement Plans for Entities, filed Jul. 17, 2019.
U.S. Appl. No. 29/677,306, Computer Display With Corporate Hierarchy Graphical User Interface Computer Display With Corporate Hierarchy Graphical User Interface, filed Jan. 18, 2019.
U.S. Appl. No. 16/775,840 U.S. Pat. No. 10,791,140, Systems and Methods for Assessing Cybersecurity State of Entities Based on Computer Network Characterization, filed Jan. 29, 2020.
U.S. Appl. No. 16/779,437 U.S. Pat. No. 10,791,140, Systems and Methods for Rapidly Producing Security Ratings, filed Jan. 31, 2020.
U.S. Appl. No. 17/039,675 U.S. Pat. No. 10,893,067, Systems and Methods for Rapidly Generating Security Ratings, filed Jan. 31, 2020.
U.S. Appl. No. 17/119,822, Systems and Methods for Cybersecurity Risk Mitigation and Management, filed Dec. 11, 2020.
U.S. Appl. No. 16/802,232 U.S. Pat. No. 10,764,298, Systems and Methods for Improving a Security Profile of an Entity Based on Peer Security Profiles, filed Feb. 26, 2020.
U.S. Appl. No. 16/942,452, Systems and Methods for Improving a Security Profile of an Entity Based on Peer Security Profiles, filed Jul. 29, 2020.
U.S. Appl. No. 29/725,724, Computer Display With Risk Vectors Graphical User Interface, filed Feb. 26, 2020.
U.S. Appl. No. 29/736,641, Computer Display With Peer Analytics Graphical User Interface, filed Jun. 2, 2020.
U.S. Appl. No. 17/039,675, Systems and Methods for Determining Asset Importance in Security Risk Management, filed Sep. 30, 2020.
U.S. Appl. No. 15/271,655, the Office Actions dated Feb. 21, 2017 and Aug. 18, 2017.
U.S. Appl. No. 15/377,574, now U.S. Pat. No. 9,705,932, the Office Action dated Mar. 2, 2017 and the Notice of Allowance dated Jun. 1, 2017.
U.S. Appl. No. 14/021,585, now U.S. Pat. No. 9,438,615, the Office Action dated Mar. 11, 2016 and the Notice of Allowance dated Aug. 9, 2016.
U.S. Appl. No. 15/216,955, now U.S. Pat. No. 10,326,786, the Office Actions dated Nov. 4, 2016, Mar. 9, 2017, Jun. 6, 2017, Dec. 5, 2017, and Aug. 29, 2018, and the Notice of Allowance dated Feb. 6, 2019.
U.S. Appl. No. 15/239,063, now U.S. Pat. No. 10,341,370, the Office Action dated Mar. 21, 2018 and the Notice of Allowance dated Jan. 14, 2019.
U.S. Appl. No. 16/405,121, the Office Action dated Aug. 1, 2019 and Nov. 21, 2019.
U.S. Appl. No. 13/240,572, the Office Actions dated Nov. 21, 2013, Jun. 16, 2014, Feb. 27, 2015, Jun. 3, 2015, Oct. 26, 2015, Mar. 10, 2016 Feb. 13, 2017 and the Notice of Allowance dated Jun. 1, 2020.
U.S. Appl. No. 14/944,484, now U.S. Pat. No. 9,973,524, the Office Actions dated Mar. 11, 2016, Jul. 5, 2016, and Jan. 17, 2017 and the Notice of Allowance dated Oct. 20, 2017.
U.S. Appl. No. 15/142,677, now U.S. Pat. No. 9,830,569, the Office Actions dated Jul. 26, 2016, and Apr. 24, 2017 and the Notice of Allowance dated Oct. 11, 2017.
U.S. Appl. No. 15/134,845, now U.S. Pat. No. 9,680,858, the Office Actions dated Jul. 19, 2016 and Jan. 26, 2017, and the Notices of Allowance dated Apr. 27, 2017 and May 9, 2017.
U.S. Appl. No. 15/044,952, the Office Action dated Jul. 8, 2019, Feb. 21, 2020, and Sep. 30, 2020.
U.S. Appl. No. 15/089,375, now U.S. Pat. No. 10,176,445, the Office Actions dated Sep. 9, 2016, May 17, 2017, and Nov. 17, 2017 and the Notice of Allowance dated Aug. 9, 2018.
U.S. Appl. No. 29/598,298, now U.S. Pat. No. D. 835,631, the Notice of Allowance dated Aug. 15, 2018.
U.S. Appl. No. 29/598,299, now U.S. Pat. No. D. 818,475, the Notice of Allowance dated Jan. 2, 2018.
U.S. Appl. No. 29/599,622, now U.S. Pat. No. D. 847,169, the Notice of Allowance dated Dec. 11, 2018.
U.S. Appl. No. 29/599,620, now U.S. Pat. No. D. 846,562, the Office Action dated May 3, 2018, the Notice of Allowance dated Nov. 27, 2018.
U.S. Appl. No. 16/015,686, now U.S. Pat. No. 10,425,380, the Office Action dated Nov. 16, 2018 and the Notice of Allowance dated May 10, 2019.
U.S. Appl. No. 16/543,075, the Notice of Allowance dated Sep. 25, 2019.
U.S. Appl. No. 16/738,825, the Office Actions dated Jul. 8, 2019 and Feb. 21, 2020.
U.S. Appl. No. 15/918,286, now U.S. Pat. No. 10,257,219, the Office Action dated Aug. 7, 2018 and the Notice of Allowance dated Nov. 29, 2018.
U.S. Appl. No. 16/292,956, the Office Action dated Jul. 10, 2019 and the Notices of Allowance dated Jan. 8, 2020 and Jan. 27, 2020.
U.S. Appl. No. 16/795,056, the Office Action dated May 1, 2020.
U.S. Appl. No. 16/170,680, the Office Action dated Mar. 26, 2019; the Notices of Allowance dated Oct. 29, 2019 and Aug. 27, 2019.
U.S. Appl. No. 16/688,647, the Office Action dated Jan. 29, 2020; the Notice of Allowance dated May 12, 2020.
U.S. Appl. No. 17/000,135, the Office Action dated Feb. 2, 2021.
U.S. Appl. No. 15/954,921, the Office Actions dated Sep. 4, 2018, Jan. 3, 2019, Aug. 19, 2019, and Dec. 5, 2019; Advisory Action dated Mar. 3, 2020.
U.S. Appl. No. 16/787,650, the Notice of Allowance dated Apr. 7, 2020.
U.S. Appl. No. 16/583,991, the Office Action dated Jan. 13, 2020.
U.S. Appl. No. 29/666,942, the Notice of Allowance dated Apr. 30, 2020.
U.S. Appl. No. 16/360,641, the Office Action dated Aug. 7, 2019, Feb. 20, 2020 and Sep. 4, 2020.
U.S. Appl. No. 16/514,771, the Office Action dated Dec. 4, 2019; the Notice of Allowance dated Mar. 18, 2020.
U.S. Appl. No. 16/922,673, the Office Action dated Jan. 22, 2021.
U.S. Appl. No. 16/775,840, the Notice of Allowance dated May 19, 2020.
U.S. Appl. No. 16/779,437, the Notices of Allowance dated Aug. 12, 2020, Oct. 26, 2020 and Nov. 9, 2020.
U.S. Appl. No. 16/802,232, the Notice of Allowance dated Apr. 24, 2020.
U.S. Appl. No. 16/942,452, the Office Action dated Oct. 23, 2020.
U.S. Appl. No. 29/736,641, the Office Action dated Mar. 3, 2021.
U.S. Appl. No. 17/039,675, the Notice of Allowance dated Feb. 3, 2021.
U.S. Appl. No. 16/884,607, the Office Action dated Jan. 25, 2021.
Related Publications (1)
Number Date Country
20200125734 A1 Apr 2020 US
Continuation in Parts (1)
Number Date Country
Parent 29666942 Oct 2018 US
Child 16360641 US