This invention relates, in general, to biopharmaceutical materials, preservation methods and systems, and more particularly to systems and methods for freezing, storing and thawing biopharmaceutical materials.
Preservation of biopharmaceutical materials, such as cryopreservation, is important in the manufacture, use, transport, storage and sale of such materials. For example, biopharmaceutical materials are often preserved by freezing between processing steps and during storage. Similarly, biopharmaceutical materials are often frozen and thawed as part of the development process to enhance the quality or to simplify the development process.
When freezing biopharmaceutical materials, the overall quality, and in particular pharmaceutical activity, of the biopharmaceutical materials is desirably preserved, without substantial degradation of the biopharmaceutical materials.
The preservation of biopharmaceutical material, particularly in bulk quantities, often involves placing a container containing liquid biopharmaceutical material in a cabinet freezer, chest freezer or walk-in freezer and allowing the biopharmaceutical material to freeze. Specifically, the container, which is typically one or more liters in volume and may range up to ten or more liters, is often placed on a shelf in the cabinet freezer, chest freezer or walk-in freezer and the biopharmaceutical material is allowed to freeze. These containers may be stainless-steel vessels, plastic bottles or carboys, or plastic bags. They are typically filled with a specified volume to allow for freezing and expansion and then transferred into the freezers at temperatures typically ranging from negative 20 degrees Celsius to negative 70 degrees Celsius or below.
Disposable bulk storage containers such as plastic bags or other flexible containers often are damaged, leading to loss of the biopharmaceutical material. Particularly, the volumetric expansion of the biopharmaceutical materials during freezing could generate excessive pressure in an over filled bag or in a pocket of occluded liquid adjoining the bag material, possibly leading to rupture or damage to the integrity of the bag. Moreover, handling of such disposable containers, such as plastic bags, during freezing, thawing, or transportation of these containers often result in damage thereof, due, for example, to shock, abrasion, impact, or other mishandling events arising from operator errors or inadequate protection of the bags in use.
Similarly, thawing of bulk biopharmaceutical materials may involve removing them from a freezer and allowing them to thaw at room temperature. In certain situations thawing can also lead to product loss. In addition, in certain situations rapid thawing of biopharmaceutical materials may result in less product loss than slower thawing. Further, it may also be desirable to control temperature of the biopharmaceutical materials during a thawing process since exposure of some biopharmaceutical materials to elevated temperatures in certain situations may also lead to product loss. For example, it may be desirable to maintain a thawing biopharmaceutical material at about 0° C. when still in liquid and solid form during thawing thereof. In situations where thawing is desirable it is necessary to protect the biopharmaceutical material from damage which may occur due to impact or rupture to the containers.
Thus, there is a need for systems and methods for freezing, thawing, and storing biopharmaceutical materials, including in bulk quantities, that do not result in loss of biopharmaceutical material, and are repeatable. In addition, there is a need for containers usable for the freezing, thawing and storing of biopharmaceutical materials, including in bulk quantities, which allow the freezing, thawing and transporting of biopharmaceutical materials therein without damage thereto, and which allow for the storage thereof to occur in an organized manner while protecting the biopharmaceutical material.
The present invention provides, in a first aspect, a system for use in freezing, storing and thawing biopharmaceutical materials which includes a holder and a container for holding biopharmaceutical materials therein. The holder has a cavity and the container is received in the cavity. The holder includes a first portion and second portion. The container is received between the first portion and the second portion to connect the container to the holder. The holder includes an interior cradle having a bottom and edges curving upwardly from the bottom. The cradle bounds the cavity. An outer rim is connected to the cradle and separated from the cavity. The bottom includes an inner surface facing the cavity receiving the container and an outer surface. The outer surface is recessed relative to an outer surface of the outer rim.
The present invention provides, in a second aspect, a system for use in freezing, storing and thawing biopharmaceutical materials which includes a container for holding biopharmaceutical materials therein. A holder has a cradle bounding a cavity and the container is received in the cavity. The holder includes a first portion and a second portion forming the cradle and the container is received between the first portion and the second portion to connect the container to the cradle. A support member protrudes from an outer surface of the cradle. The support member structurally supports the cradle and inhibits the deformation of the cradle in response to an expansion of biopharmaceutical material held in the container due to freezing.
The present invention provides, in a third aspect, a system for use in freezing, storing and thawing biopharmaceutical materials which includes a container for holding biopharmaceutical materials therein. A holder has a cradle bounding a cavity and the container is received in the cavity. The holder includes a first portion and a second portion forming the cradle and the container is received between the first portion and the second portion to connect the container to the holder. The holder includes an outer rim connected to the cradle. The outer rim includes a first plurality of outer teeth engageable with a second plurality of outer teeth of a second outer rim of a second holder to stack the holder and the second holder and to inhibit movement between the holder and the second holder.
The present invention provides, in a fourth aspect, a method for use in freezing, storing and thawing biopharmaceutical materials which includes providing a holder having a cavity and the holder having a first portion and a second portion. The holder has an interior cradle having a bottom and edges curving upwardly from the bottom. The cradle portion bounds the cavity. The holder has an outer rim connected to the cradle and separated from the cavity. The bottom includes an inner surface facing the cavity and an outer surface. The outer surface of the bottom is recessed relative to an outer surface of the outer rim. A container for holding biopharmaceutical materials is received in the cavity of the holder and between the first portion and the second portion to connect the container to the holder.
The present invention provides, in a fifth aspect, a method for use in freezing, storing and thawing biopharmaceutical materials which includes providing a holder having a first portion and a second portion forming a cradle bounding a cavity. A container for holding biopharmaceutical materials is received in the cavity of the holder and between the first portion and the second portion to connect the container to the holder. A support member protrudes from an outer surface of the cradle. The support member structurally supports the cradle and inhibits deformation of the cradle in response to an expansion of biopharmaceutical materials held in the container due to freezing.
The present invention provides, in a sixth aspect, a method for use in freezing, storing and thawing biopharmaceutical materials which includes connecting a container for holding biopharmaceutical materials to a holder by receiving the container in a cavity of a cradle of the holder. The cradle is formed by a first portion and a second portion of the holder. A first plurality of outer teeth of an outer rim of the holder is engaged with a second plurality of outer teeth of a second outer rim of a second holder to stack the holder and the second holder and to inhibit movement between the holder and the second holder.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention will be readily understood from the following detailed description of preferred embodiments taken in conjunction with the accompanying drawings in which:
In accordance with the principles of the present invention, systems and methods for freezing, thawing and storing biopharmaceutical materials are provided.
In an exemplary embodiment depicted in
Flexible container 10 may be formed of a laminated film which includes a plurality of layers and may have an interior volume ranging from 0.01-100 liters, (e.g., 0.1-20 L) as depicted in
Container 10 may be adapted to receive and contain frozen and/or liquid biopharmaceutical materials. In an embodiment, the biopharmaceutical materials may comprise protein solutions, protein formulations, amino acid solutions, amino acid formulations, peptide solutions, peptide formulations, DNA solutions, DNA formulations, RNA solutions, RNA formulations, nucleic acid solutions, nucleic acid formulations, antibodies and their fragments, enzymes and their fragments, vaccines, viruses and their fragments, biological cell suspensions, biological cell fragment suspensions (including cell organelles, nuclei, inclusion bodies, membrane proteins, and/or membranes), tissue fragments suspensions, cell aggregates suspensions, biological tissues in solution, organs in solution, embryos in solution, cell growth media, serum, biologicals, blood products, preservation solutions, fermentation broths, and cell culture fluids with and without cells, mixtures of the above and biocatalysts and their fragments.
Container 10 may be configured (e.g., shaped and dimensioned) to be received in, and connected to holder 15 (
For example, holder 15 may include a first portion 115 and a second portion 117 forming a cradle 202 having a cavity 240 when connected to one another. First portion 115 has a bottom 200 and upwardly curving sides 210. Second portion 117 has a bottom 220 and upwardly curving sides 230. Bottom 200, upwardly curving sides 210, bottom 220 and upwardly curving sides 230 form cradle 202 which bounds cavity 240. Container 10 may be received in cavity 240 and may be connected to first portion 115 and/or second portion 117. For example, container 10 may be heat sealed or otherwise connected to first portion 115 and/or second portion 117 to prevent or inhibit separation of container 10 therefrom.
An inner rim 30 of first portion 115 may be connected to an outer rim 40 of first portion 115 as depicted in
A protective cavity 45 of holder 15 may be bounded by outer rim 40 which is connected to inner rim 30 as depicted in
First portion 115 and second portion 117 may be connected together via engagement of connecting portion 95 and connecting portion 60. For example, each of connecting portion 60 and connecting portion 95 may include multiple teeth 350 extending upwardly away from bottom 200 and bottom 220, respectively. The teeth on connecting portion 95 and connecting portion 60 may alternate such that they may be inserted into the spaces between opposing teeth to connect (e.g., via interlocking the teeth) first portion 115 to second portion 117. The teeth may alternate continuously around perimeters of connecting portion 95 and connecting portion 60 or clusters of the teeth (e.g., teeth 350) may be intermittent around the perimeters thereof. The interlocking of the teeth of connecting portion 95 and connecting portion 60 may also support a sheer load during an impact or drop to avoid a sheer load being applied to the fasteners or welds connecting first portion 115 and second portion 117 to one another. Container 10 may include openings 12 (e.g., at or near outer edges thereof) to allow teeth to pass therethrough to connect container 10 to holder 15 and to inhibit movement of container 10 relative to holder 15 when the teeth are engaged and clamping portion 50 and connecting surface 90 abut container 10. In one example, the spacing of the teeth or groups of teeth intermittently may allow the connecting portions and/or holding portions (e.g., holding portion 50 and holding portion 90) to hold (e.g., inhibit movement of) the container in the portions of the inner rims between the teeth. In another example, a flange (e.g., flange 11) may be received between connecting portion 95 and connecting portion 60 without teeth 350 thereof passing through the openings (e.g., openings 12) in the container (e.g., container 10).
Bottom 200 and bottom 220 may include a plurality of first openings 201 and a plurality of second openings 221, which may allow heat transfer from an exterior of holder 15 to biopharmaceutical materials held in container 10 in cavity 240 of holder 15. Any number of apertures and any design or placement of the apertures relative to one another on the bottoms may be provided to facilitate such heat transfer while still allowing the bottoms to provide structure/support to a container in cradle 202. Further, the openings may be placed relative to one another and the container may be formed of material such that the container remains offset from the openings (i.e., toward an interior of the cradle) when the biopharmaceutical materials held therein are in a liquid form. The offset of the container's surface from the openings inhibits any potential damage to the container from external hazards which may come near bottom 200 or bottom 220.
Also, bottom 200, bottom 220, sides 210 and sides 230 of cradle 202 may be connected to outer rim 40 by one or more support members or support ribs 300 providing structural support as depicted in
As indicated above, the container (e.g., container 10) may avoid extending into openings 201 and 221 when biopharmaceutical materials held in the container are in a liquid form. Further, the container may also avoid extending into grooves 208 when such biopharmaceutical materials are in a liquid form. Upon the biopharmaceutical materials undergoing a freezing process, the container and biopharmaceutical materials held therein may extend into grooves 208, openings 201, and openings 221. The movement of freezing biopharmaceutical materials into grooves 208, openings 201, and openings 221 provide locations for expansion of the biopharmaceutical materials thereby allowing for less expansion of bottom 200 and bottom 220 in directions away from one another than would otherwise be the case absent the movement of biopharmaceutical materials into these locations.
Further, a space 600 may extend between exterior surface 205 of bottom 200 and an exterior surface 207 of inner wall 32 of outer rim 40 as depicted in
Outer rim 40 may have a height different than exterior surface 205 of bottom 200 and ribs 300 thereon such that outer rim 40 is raised relative to exterior surface 205 and ribs 300 as depicted in
Further, water and aqueous solutions expand by about ten percent when frozen and such expansion may be non-uniform. In one example, when container 10 is received in cradle 202 the container may be filled with biopharmaceuticals such that cradle 202 may accommodate the expansion due to freezing of the biopharmaceutical materials, i.e., the cradle is not filled with biopharmaceutical materials to its volumetric capacity in a liquid state and instead space exists to allow expansion of the biopharmaceutical materials within cradle 202. Also, in another example bottoms 200 and 220 of cradle 202 may curve inwardly toward one another (i.e., the shape thereof may be concave when viewed from an exterior of cradle 212 as depicted in
Further, the difference in height between each of the outer rims and the exterior surfaces of the bottoms of the holder (i.e., even after freezing of the biopharmaceutical materials) inhibits damage to the biopharmaceutical materials held in container 10, along with container 10 itself. In particular, the bottoms (e.g., bottoms 200 and 220) of the holder may not contact any objects adjacent to holder 15 or abutting holder 15 resulting from such objects instead contacting the outer rim(s), as depicted in
The outer rims (e.g., outer rim 40 and outer rim 80) may also have teeth 450 (
Outer rim 40 may include a bottom end 42 and outer rim 80 may include a top end 82, which may be connected to one another via heat sealing, or some other means of fixedly and/or sealingly connecting the outer rims to one another as depicted in
The outer rims (e.g., outer rim 40 and outer rim 80) and the inner rims (e.g., inner rim 30 and inner rim 70) may include apertures such as a first aperture 420 and a second aperture 410 depicted in
Conduit 13 may be integral (e.g., monolithic relative) to container 10 or it may be connectable to a receiving port (not shown) thereof. For example, conduit 13 could be connected to a receiving port using a fitting placed within the inlet port. Fittings such as those described in U.S. Pat. No. 6,186,932, may be used for the connection of such conduits. Also, fittings which can maintain the sterility of the contents of the container or flexible container may preferably be used. The fittings may be configured in different shapes, such as straight fittings and/or angled fittings including ninety (90) degree elbows, if desired. In another example, conduit 13 may include a filter (not shown) to filter any impurities or other undesirable materials from the biopharmaceutical material. The conduit and/or fittings may be located in protective cavity 45 and/or protective cavity 85, which may protect conduit 13 and the fittings from any damage resulting from impact or stress, such as the impact resulting from a person dropping holder 15 when container 10 is filled with biopharmaceutical materials.
In another example depicted in
In another example depicted in
In another example depicted in
Also, the holders (e.g., holder 15) may preferably be formed of materials configured to support a weight of container 10 and to protect container 10 from being punctured or damaged due to an impact or stress on holder 15. For example, holder 15 may be more rigid than container 10 held therein. Also, the materials forming holder 15 may remain stable and retain their structural properties over a large range of temperatures. Specifically, such materials should retain their load-bearing capacity and exhibit cold crack temperatures no higher than negative 80 degrees Celsius while being resistant to cleaning agents and methods commonly used in biopharmaceutical manufacturing, e.g., sodium hydroxide, sodium hypochloride (e.g., CLOROX), peracetic acid, etc. For example, first portion 115 and second portion 117 of holder 15 could be formed of injection molded plastic or thermo formed plastic, such as PET (e.g., Clear 0.05″ PET) or HDPE (e.g., 0.080″ black unfilled HDPE). Also, holder 15 may be formed of fluoropolymer resin (e.g. TEFLON), machined plastic, stainless steel or any number of other materials including aluminum, polyethylene, polypropylene, polycarbonate, and polysulfone, for example. Further materials may include composite materials such as glass-reinforced plastic, carbon-fiber reinforced resins, or other engineering plastic materials known to offer high strength-to-weight rations and which are serviceable at various temperatures of interest. It will be understood by those skilled in the art that each of first portion 115 and second portion 117 may be monolithic and formed as one piece or may include elements fixedly connected together. In addition, portions 115 and 117 may be constructed as one piece such that the portions 115, 117 may be hinged or otherwise connected together. Further, holder 15 could be formed of a single material (e.g., injection molded plastic) or it could be formed of different materials and connected together. Also, holder 15 may be formed of a material compatible with gamma radiation.
Also, a holder (e.g., holder 15) may be formed, sized and/or dimensioned to receive and support containers of various sizes to provide additional rigidity and support to the container(s), thus facilitating handling, storage, and/or temperature control thereof. For example, container 10 may be pillow shaped and holder 15 may be elliptically shaped.
Also, it will be understood by one skilled in the art that various holders (e.g., holder 15) may have cradles (e.g., cradle 202) configured (e.g., shaped and dimensioned) to receive various sized containers (e.g., container 10) and to be received in a temperature control unit (e.g., a blast freezer). Although the containers are described herein as flexible containers, the containers may be made of a semi-rigid material such as polyethylene or the like. An example of such a container could include a container similar to a standard plastic milk jug. Containers made of such similar semi-rigid materials may benefit from additional rigidity supplied by attachment (e.g., fixedly or releasably) to a holder, for example. Further, the containers whether formed of a rigid, flexible or semi-rigid material, contain outer surfaces which may contact the interior surfaces of a holder which may include holes and/or may be formed of a material to facilitate heat transfer to and from a container (e.g., container 10) held in such a holder (e.g., holder 15) when the holder is present in a temperature control unit, such as a blast freezer. Further, the outer surfaces of the holder receiving the containers for holding the biopharmaceutical materials may be in contact with air flow in an interior (e.g., interior 500) of a blast freezer or other means of temperature control to cause the cooling and/or heating of the container having the biopharmaceutical materials therein to cause the temperature of the biopharmaceutical materials to be controlled.
In another example, holder 15 may be formed of a foam (e.g., HDPE, EVA), or a more rigid material (e.g., foam or solid) may be utilized with such a foam to form the holder. Also, a container, such as container 10, may be connected to a holder, such as holder 15, by RF welding. In a further example, a container and holder may be separated from one another within cradle 202 by a layer of collapsible dimples (not shown) or ribs (not shown).
The biopharmaceutical material in the containers (i.e., container 10) and holders (e.g., holder 15) described above may thus be cooled or otherwise thermoregulated (e.g., to a subzero temperature) in a temperature control unit, such as a blast freezer providing forced convection, for example. Alternatively, the biopharmaceutical materials may be frozen in a conventional laboratory freezer providing free convention, a plate freezer or via a liquid nitrogen path. When such freezing operation is completed, the containers may be removed from the temperature control unit by removing the containers and the holders, or other support structures which the containers are received in or connected to, for example. The holders or other support structures holding the containers may be stored in a large chiller or freezer with an interior air temperature of about negative 20 degrees Celsius, for example.
A typical process for processing and/or preserving a biopharmaceutical material is described as follows. One or more containers (e.g., container 10) is received in and/or connected to a holder (e.g., holders 15, 515) as depicted in
Further, the above-described containers may be removed from a freezer or other system for storage of the flexible containers and contents thereof at a controlled temperature. These containers having biopharmaceutical material therein may then be received in a temperature control unit (e.g., an interior 500 of a blast freezer) for heating, melting, agitating, mixing and/or thawing the biopharmaceutical material contained in the containers. For example, holder 15 supporting container 10 having frozen biopharmaceutical material therein may be placed in a temperature control unit where its temperature may be controlled (e.g. thawed) by heat transfer plates or air convection (e.g., free or forced air) heating. Also, the biopharmaceutical materials may be thawed in a water bath or in air and ambient temperature. In another example, a thin film heater, such as self-regulating positive temperature coefficient (PTC) heater element, may be incorporated into holder 15 to allow a container held therein to be thawed at a predefined setpoint using only an external voltage source. In addition, holder 15 may be submitted to gentle mixing inside a temperature control unit to accelerate the thawing kinetics and to minimize any solute concentration gradient in the thawed liquid.
From the above description, it will be understood to one skilled in the art that the containers described herein may be adapted for use in holders of various shapes or sizes. Further, the holders may be adapted to receive containers of various shapes or sizes. These holders or support structures may be configured for long or short term storage of the containers containing biopharmaceutical materials in liquid or frozen state, or may be adapted to transport the flexible containers containing biopharmaceutical materials in liquid or frozen state. Further, these holders and containers may be adapted for utilization with materials other than biopharmaceutical materials.
While the invention has been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the scope of the invention as defined in the following claims.
This application is a continuation of U.S. Ser. No. 14/886,748 filed Oct. 19, 2015, entitled “SYSTEMS AND METHODS FOR FREEZING, STORING AND THAWING BIOPHARMACEUTICAL MATERIALS”, which is a divisional of U.S. Ser. No. 13/167,484 filed on Jun. 23, 2011, entitled “SYSTEMS AND METHODS FOR FREEZING, STORING AND THAWING BIOPHARMACEUTICAL MATERIALS”, issued as U.S. Pat. No. 9,161,527 on Oct. 20, 2015, which is a divisional of U.S. Ser. No. 11/963,106, filed on Dec. 21, 2007 entitled “SYSTEMS AND METHODS FOR FREEZING, STORING AND THAWING BIOPHARMACEUTICAL MATERIALS”, published as US 2009-0158755 A1 on Jun. 25, 2009, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2633006 | Taylor | Mar 1953 | A |
2722111 | Taylor | Nov 1955 | A |
2794570 | Downs | Jun 1957 | A |
3133677 | Bertels | May 1964 | A |
3244311 | Lawson | Apr 1966 | A |
3265254 | Carter et al. | Aug 1966 | A |
3586097 | Bender et al. | Jun 1971 | A |
3875754 | Faust et al. | Apr 1975 | A |
3986506 | Garber et al. | Oct 1976 | A |
4018911 | Lionetti et al. | Apr 1977 | A |
4079529 | Jennen et al. | Mar 1978 | A |
4211267 | Skovgaard | Jul 1980 | A |
4251995 | Pert et al. | Feb 1981 | A |
4315409 | Prentice et al. | Feb 1982 | A |
4317665 | Prentice | Mar 1982 | A |
4327799 | Scheiwe et al. | May 1982 | A |
4365629 | Pert et al. | Dec 1982 | A |
4460365 | Ganshirt et al. | Jul 1984 | A |
4470264 | Morris | Sep 1984 | A |
4474016 | Winchell | Oct 1984 | A |
4482585 | Ohodaira et al. | Nov 1984 | A |
4491225 | Baillod | Jan 1985 | A |
4565073 | Lavender | Jan 1986 | A |
4783042 | Folkmar | Nov 1988 | A |
4811465 | Folkmar | Mar 1989 | A |
4869398 | Colvin et al. | Sep 1989 | A |
4903827 | Phelps et al. | Feb 1990 | A |
4982858 | Von Holdt | Jan 1991 | A |
4993579 | Burchett | Feb 1991 | A |
4994021 | Smith et al. | Feb 1991 | A |
5168725 | Margolin | Dec 1992 | A |
5181394 | Schea, III et al. | Jan 1993 | A |
5197601 | Sterett | Mar 1993 | A |
5249684 | Sterett | Oct 1993 | A |
5250044 | Irr et al. | Oct 1993 | A |
5309723 | Thomas et al. | May 1994 | A |
5332114 | Sano et al. | Jul 1994 | A |
5361906 | Sterett | Nov 1994 | A |
5364385 | Harms et al. | Nov 1994 | A |
5390791 | Yeager | Feb 1995 | A |
5397022 | Schäfer | Mar 1995 | A |
5405000 | Hagedon et al. | Apr 1995 | A |
5431496 | Balteau et al. | Jul 1995 | A |
5435142 | Silber | Jul 1995 | A |
5465865 | Coombes | Nov 1995 | A |
5507904 | Fisher et al. | Apr 1996 | A |
5560403 | Balteau et al. | Oct 1996 | A |
5564279 | Thomas et al. | Oct 1996 | A |
5613622 | Surrena et al. | Mar 1997 | A |
D385943 | Voelker | Nov 1997 | S |
5756193 | Yamamoto et al. | May 1998 | A |
5769235 | Keach et al. | Jun 1998 | A |
5863715 | Rajotte et al. | Jan 1999 | A |
5935848 | Sputtek et al. | Aug 1999 | A |
5988422 | Vallot | Nov 1999 | A |
5996427 | Masek et al. | Dec 1999 | A |
6076457 | Vallot | Jun 2000 | A |
6146124 | Coelho et al. | Nov 2000 | A |
6186932 | Vallot | Feb 2001 | B1 |
6232115 | Coelho et al. | May 2001 | B1 |
6298991 | Tsai | Oct 2001 | B1 |
6302327 | Coelho et al. | Oct 2001 | B1 |
6371643 | Saad et al. | Apr 2002 | B2 |
6378314 | Clark | Apr 2002 | B1 |
6453683 | Wisniewski et al. | Sep 2002 | B1 |
6517526 | Tamari | Feb 2003 | B1 |
6550966 | Saad et al. | Apr 2003 | B1 |
6619481 | Merrell et al. | Sep 2003 | B2 |
6631616 | Wisniewski et al. | Oct 2003 | B2 |
6635414 | Wisniewski | Oct 2003 | B2 |
6659132 | Smith et al. | Dec 2003 | B2 |
6670175 | Wang et al. | Dec 2003 | B2 |
6684646 | Voute et al. | Feb 2004 | B2 |
6698213 | Voute et al. | Mar 2004 | B2 |
6729369 | Neas et al. | May 2004 | B2 |
6764482 | Keilman et al. | Jul 2004 | B2 |
6769231 | Danby | Aug 2004 | B2 |
6786054 | Voute et al. | Sep 2004 | B2 |
6808675 | Coelho et al. | Oct 2004 | B1 |
6889839 | Rosten et al. | May 2005 | B1 |
6945056 | Brown et al. | Sep 2005 | B2 |
6996995 | Voute et al. | Feb 2006 | B2 |
7137261 | Brown et al. | Nov 2006 | B2 |
7225949 | Kubo et al. | Jun 2007 | B2 |
20010043763 | Saad et al. | Nov 2001 | A1 |
20020121527 | Good | Sep 2002 | A1 |
20030017066 | Danby et al. | Jan 2003 | A1 |
20030198406 | Bibbo et al. | Oct 2003 | A1 |
20040031273 | Lanctot | Feb 2004 | A1 |
20040096126 | Danby et al. | May 2004 | A1 |
20040107150 | Neas et al. | Jun 2004 | A1 |
20040144799 | Danby et al. | Jul 2004 | A1 |
20040144800 | Danby et al. | Jul 2004 | A1 |
20040221897 | Schubmehl et al. | Nov 2004 | A1 |
20040254560 | Coelho et al. | Dec 2004 | A1 |
20050183976 | Brothers | Aug 2005 | A1 |
20060112717 | Walton | Jun 2006 | A1 |
20060237341 | McDade | Oct 2006 | A1 |
20070084222 | Voute et al. | Apr 2007 | A1 |
20070125098 | Voute et al. | Jun 2007 | A1 |
20070209960 | Leoncavallo et al. | Sep 2007 | A1 |
20070240432 | Voute et al. | Oct 2007 | A1 |
20090158755 | Cutting et al. | Jun 2009 | A1 |
20110247349 | Cutting et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
3142521 | Nov 1987 | DE |
4308383 | Mar 1993 | DE |
4433147 | Mar 1996 | DE |
29703691 | Mar 1997 | DE |
10003102 | Jan 2002 | DE |
0718212 | Jun 1996 | EP |
1112946 | Jul 2001 | EP |
1302410 | Apr 2003 | EP |
2449429 | Feb 1980 | FR |
2887335 | Dec 2006 | FR |
2046081 | Feb 1979 | GB |
54111998 | Sep 1979 | JP |
2003205016 | Jul 2003 | JP |
2005193013 | Jul 2005 | JP |
9009184 | Jan 1990 | WO |
9200881 | Jan 1992 | WO |
9623703 | Aug 1996 | WO |
02092462 | Nov 2002 | WO |
03037082 | May 2003 | WO |
03086269 | Oct 2003 | WO |
2007104047 | Sep 2007 | WO |
Entry |
---|
International Search Report for corresponding International Application No. PCT/US2008/087728, filed Dec. 19, 2008, completed on Feb. 11, 2010, and dated Mar. 3, 2010. |
Written Opinion of the International Searching Authority for corresponding International Application No. PCT/US2008/087728, filed Dec. 19, 2008, completed on Feb. 11, 2010, and dated Mar. 3, 2010. |
Delta T (Pharma Logistic): “Total Temperature Security—Catalogue 2006”, Internet Citation, Apr. 27, 2006 (Apr. 27, 2006); XP002567985, retrieved from the internet: URL:http://www.deltat.de/home.html. |
Number | Date | Country | |
---|---|---|---|
20160195218 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13167484 | Jun 2011 | US |
Child | 14886748 | US | |
Parent | 11963106 | Dec 2007 | US |
Child | 13167484 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14886748 | Oct 2015 | US |
Child | 15071399 | US |