The present invention relates generally to phase/frequency modulators, and more particularly, to an architecture for direct phase/frequency modulation of a phase-locked loop.
Phase modulation schemes are very effective and are therefore widely used in communication systems. A simple example of a phase modulation scheme is quaternary phase shift keying (QPSK).
The I/Q modulator provides a straightforward approach to generating phase-modulated signals that is also suitable for more complex schemes such as wideband Code-Division Multiple Access (CDMA) and Orthogonal Frequency Division Multiplexing (OFDM) systems. It is also possible to generate the phase-modulated signals using a phase-locked loop (PLL). This approach offers reduced circuitry and lower power consumption and, as a result, finds widespread use in narrowband systems. A variation of this approach, known as two-point modulation, introduces direct modulation of the VCO to support wideband phase modulation, which unfortunately requires an accurate VCO gain. This requirement is a difficult task since the VCO gain depends on multiple factors. It would therefore be advantageous to accurately set the gain of the VCO.
A very efficient system for wideband phase modulation is provided. The system includes circuitry for periodically adjusting the gain of a voltage-controlled oscillator (VCO) used in a phase-locked loop (PLL) to synthesize the radio frequency modulated signal.
The foregoing aspects and the attendant advantages of the embodiments described herein will become more readily apparent by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:
a shows a detailed view of a voltage-controlled oscillator;
b shows one embodiment of a VCO tank circuit that includes an auxiliary port to support linear phase/frequency modulation;
a shows circuitry associated with a peak detector circuit;\
b shows circuitry associated with a peak detector circuit that minimizes temperature effects;
c shows an output signal used by a peak detector circuit;
a details the control logic used in the VCO gain KFM adjustment system of
b shows a timing diagram for the control logic of
The PLL 305 uses feedback to minimize the phase difference between a very accurate reference signal and its output (RF) signal. As such, it produces an output signal at a frequency given by
fVCO=NfREF
where fvco is the frequency of the VCO 310 output signal, N is the value of the feedback counter 320, and fREF is the frequency of the reference signal.
The VCO 310 produces an output signal at a frequency set by the control voltage vctrl according to
vout(t)=A cos(ωot+Kvco∫vctrl(t)dt),
where ωo is the free-running frequency of the VCO 310 and Kvco is the gain of the VCO 310. The gain Kvco describes the relationship between the excess phase of the carrier Φout and the control voltage vctrl with
where Kvco is in rads/V. The VCO 310 drives the feedback counter 320, which simply divides the output phase Φout by N.
When the PLL 305 is locked, the phase detector 330 and charge pump 340 generate an output signal iCP that is proportional to the phase difference Δθ between the two signals applied to the phase detector 330. The output signal iCP can therefore be expressed as
where Kpd is in A/radians and Δθ is in radians.
where a zero (e.g., at 1/R1C1) has been added to stabilize the second order system and the capacitor C2 530 has been included to reduce any ripple on the control voltage vctrl. Combining the above relations yields the closed-loop response of the system to an input signal
The value N of the feedback counter 320 sets the output frequency of the PLL 305. Its digital structure restricts N to integer numbers. As a result, the frequency resolution (or frequency step size) of the integer-N PLL 305 is nominally set by fREF. Fortunately, it's possible to dramatically decrease the effective frequency step by manipulating the value of N to yield a non-integer average value. This is the concept of a fractional-N PLL.
where N[x] is the sequence of values of the feedback counter 620. This expands to
N[x]=Nint+n[x],
where Nint is the integer part and n[x] is the fractional part of N[x]. The ΔΣ modulator 660 generates the sequence n[x], that satisfies
where k is the input to the ΔΣ modulator 660 with resolution M. In practice, the order of the ΔΣ modulator 660 dictates the range of n[x].
The ΔΣ modulator 660 introduces quantization noise that appears at the PLL 605 output. The pseudo-random sequence n[x] possessing a quantization error approximately equal to ±½ N or
It follows that the quantization noise spectral density for this error, assuming a uniform distribution, is expressed by
over the frequency range of dc to fREF/2. This quantization noise is advantageously shaped by an Lth order ΔΣ modulator 660 according to
DS(z)=(1−z−1)L.
In the PLL 605, the feedback counter 620 acts as a digital accumulator and reduces the effects of the ΔΣ modulator 660. That is, the output phase from the feedback counter 620 depends on its previous output phase. The transfer function for the feedback counter 620 is therefore
Combining these terms shows that the output noise of the feedback counter 620 is equal to
n2(f)=erms2(f)[DS(f)]2[P(f)]2,
which yields
This noise seen at the output of the feedback counter 620 is in turn shaped by the transfer function T1(s) of the PLL 605 presented above.
fVCO=fc+Δf(t)=(Nintn[x])fREF,
where Δf(t) is the frequency modulation equal to
and FM is the applied modulation signal. In practice, the modulation is shaped by the response of the PLL 705 described by transfer function T1(s) described above. The response generally limits the bandwidth of the PLL 705 so as to attenuate the quantization noise of the ΔΣ modulator 760. Consequently, this phase/frequency modulation approach supports only narrowband signals.
To overcome the narrow bandwidth limitation, a second high-frequency modulation path is added to the PLL 705 and the VCO 710. The resulting two-point frequency modulation system of
where KFM is the gain of the FM port of the VCO 710 at which the vFM modulating signal is applied. Ideally, the T1(s) and T2(s) expressions combine to yield a constant response, which occurs when
FMfREF=KFMvFM.
The challenge with two-point modulation, and more-specifically direct VCO modulation, is that it requires near-exact control of both the frequency of the VCO 710 and consequently the product KFMvFM because frequency errors produce phase deviations that accumulate with time. Fortunately, the feedback of the PLL 705 reduces frequency errors because the output of the VCO 710 is driven by the feedback of the PLL 705 to
fvco=NfREF+FMfREF
which is also equal to
fVCO=KVCOvctrl+KFMvFM,
where vctrl is an error signal produced by the P/F D 730 and vFM is an FM signal applied to the VCO 710. The error signal vctrl compensates for any gain errors of the VCO 710 within the bandwidth of the integration filter 750. Outside the bandwidth of the PLL 705 the effect of the feedback decreases, which makes setting the gain KFM of the VCO 710 (“VCO gain KFM”) to its designed value a critical operation. Additionally, setting the gain KFM to its designed value ensures that a wider bandwidth can achieve better modulation accuracy. The VCO gain KFM depends heavily on the circuit structure of the VCO 710, which is described in more detail below.
A detailed view of the VCO 710 is shown in
which is set by the resonance of a VCO tank circuit shown in
A VCO tank circuit shown in
The gate-to-bulk voltage VGB applied to each MOSFET device depends on the output signal A sin ωt of the VCO 710, the FM signal vFM, and the common-mode voltage vcm. The symmetric structure of the VCO 710 provides that signals VLO+ and VLO− are differential with
VLO+=A sin ωt & VLO−=−A sin ωt,
where A is the peak signal of each sinusoidal output and ω is the oscillation frequency. It follows then that
VC3=A sin ωt+vFM−vcm & VC4=−A sin ωt+vFM−vcm,
which describe the gate-to-bulk voltages VGB applied to MOSFET devices N3 and N4. The two MOSFET devices N3 and N4 connect back-to-back in the VCO 710, so their individual capacitances behave oppositely.
The modulation signal vFM affects the MOSFET devices N3 and N4 as follows. The devices nominally present a capacitance equal to
As the FM signal vFM moves positive, both MOSFET devices N3 and N4 reach their maximum capacitance values Cmax, so that for a period of time of approximately
the VCO structure in
The capacitance curve 1000 shifts with the amplitude of signal A of the VCO 710 because this signal dynamically biases each accumulation-mode MOSFET device N3 and N4 and sweeps each MOSFET device N3 and N4 through a range of capacitance values. As the amplitude of signal A increases, the sensitivity of the back-to-back MOSFET devices N3 and N4 (e.g., ΔC/ΔvFM) decreases.
In practice, the capacitance curve 1000 for each MOSFET device N3 and N4 shifts with temperature as shown in chart 1100 of
Even if the sensitivity of the back-to-back MOSFET devices N3 and N4 remains constant, the VCO gain KFM may still change, as explained in the following. The VCO 710 oscillates at the resonant frequency of the VCO tank circuit shown in
where CT is the total tank capacitance less the variable capacitance ΔC. The frequency step Δf due to a change in a MOSFET device capacitance ΔC is approximately equal to
for small values of ΔC. The frequency step Δf simplifies to
which can then be rewritten as
Δf=2π2LfC3ΔC,
showing that Δf changes as the third power of fC. Consequently, setting the VCO gain KFM accurately is a challenging task.
FMfREF=αKFMvFM.
The value of α is calculated using a calibration system 1380 shown in
where ΔfOUT is the difference between output frequencies fVCO1 and fVCO2 at two vFM inputs. Each of the output frequencies fVCO1 and fVCO2 is measured by
where N is the number of cycles of the VCO 1310 during a fixed measurement period and R is the number of cycles of the reference signal. During operation of the calibration system 1380, a zero-phase restart signal initiates the R counter 1381 and N counter 1385 at the same time. Since the VCO 1310 operates independently of and at a higher frequency than the reference signal, the operation of the restart signal introduces an error in the frequency measurement of the output frequencies fVCO1 and fVCO2 equal to
where ΔN represents an uncertainty associated with the N counter 1385 and the VCO 1310. The error ΔfVCO is also compounded by the read operation of the N counter 1385 at the end of the measurement period, because at least a portion of the N counter 1385 is integrated with the PLL 1305 and is therefore not designed to stop instantly, nor is it designed to transfer its contents readily. Consequently, the uncertainty ΔN and the measurement error ΔfVCO increases.
The accuracy of the above technique described with respect to
The calibration approach described above operates off-line (e.g., with a transmitter powered off), and occurs regularly in half duplex systems, but occurs infrequently in full duplex systems. Consequently, another calibration approach is needed to measure KFM and adjust a accordingly.
where β is a scaling factor that depends on the measurement from the SCC 1493.
a-b depict circuitry associated with the peak detector 1491. The peak detector 1491 is associated with an RF detector circuit shown in
where iD1, μ, COX, W, L, and VT are all well-known parameters associated with the transistor N1, VB is the gate bias voltage, vdet is the output voltage developed across capacitor C1, and vIN has an amplitude κA, where κ is a fixed coupling factor.
The peak detector 1491 is configured to achieve equilibrium, where the average current flowing through transistor N1 is IB. Achieving equilibrium requires that the voltage held by capacitor C1 tracks the positive peaks of the coupled VCO output signal which is shown in the graph provided by
VOUT=vdet−VREF,
corresponds to κA and changes proportional to A.
In several embodiments, the peak detector 1491 can be eliminated if a feedback loop (not shown) exists to control the amplitude of the VCO output signal. Nevertheless, in several embodiments the VCO 1410 is designed to minimize amplitude changes of the VCO output signal.
where T corresponds to the period of time that the constant bias current IB charges CMOS, the voltage-dependent capacitance of the MOSFET device, from an initial voltage Vinitial. As a result, the voltage developed across the MOSFET device sweeps from Vinitial to VC similar to the way the VCO signal develops across the MOSFET device in the VCO circuit shown in
The innovative system described herein addresses a critical issue associated with two-point phase/frequency modulation systems. It advantageously ensures that the gain of the direct VCO modulation path is set properly and constant.
Those skilled in the art can readily recognize that numerous variations and substitutions may be made in the invention, its use and its configuration to achieve substantially the same results as achieved by the embodiments described herein. Accordingly, there is no intention to limit the invention to the disclosed exemplary forms. Many variations, modifications and alternative constructions fall within the scope and spirit of the disclosed invention as expressed in the claims.
The present application claims priority under 35 U.S.C. 119(e) to U.S. provisional application No. 60/848,604 entitled “Kfm Adjustment,” filed on Sep. 28, 2006. This application relates to and incorporates by reference U.S. Pat. No. 6,985,703, entitled, “Direct Synthesis Transmitter,” issued on Jan. 10, 2006, U.S. Pat. No. 6,774,740, entitled, “System for Highly Linear Phase Modulation,” issued on Aug. 10, 2004, U.S. Pat. No. 7,061,341, entitled, “System for Highly Linear Phase Modulation,” issued on Jun. 13, 2006, U.S. patent application Ser. No. 11/369,897, entitled, “Linear Wideband Phase Modulation System,” filed on Mar. 5, 2006, and U.S. patent application Ser. No. 11/337,965 “System for Digital Calibration of Phase-Locked Loops,” filed on Jan. 23, 2006.
Number | Name | Date | Kind |
---|---|---|---|
4263560 | Ricker | Apr 1981 | A |
4430627 | Machida | Feb 1984 | A |
4769588 | Panther | Sep 1988 | A |
4816772 | Klotz | Mar 1989 | A |
4926135 | Voorman | May 1990 | A |
4965531 | Riley | Oct 1990 | A |
5006818 | Koyama et al. | Apr 1991 | A |
5015968 | Podell et al. | May 1991 | A |
5030923 | Arai | Jul 1991 | A |
5289136 | DeVeirman et al. | Feb 1994 | A |
5331292 | Worden et al. | Jul 1994 | A |
5399990 | Miyake | Mar 1995 | A |
5491450 | Helms et al. | Feb 1996 | A |
5508660 | Gersbach et al. | Apr 1996 | A |
5548594 | Nakamura | Aug 1996 | A |
5561385 | Choi | Oct 1996 | A |
5581216 | Ruetz | Dec 1996 | A |
5625325 | Rotzoll et al. | Apr 1997 | A |
5631587 | Co et al. | May 1997 | A |
5648744 | Prakash et al. | Jul 1997 | A |
5677646 | Entrikin | Oct 1997 | A |
5739730 | Rotzoll | Apr 1998 | A |
5767748 | Nakao | Jun 1998 | A |
5818303 | Oishi et al. | Oct 1998 | A |
5834987 | Dent | Nov 1998 | A |
5862465 | Ou | Jan 1999 | A |
5878101 | Aisaka | Mar 1999 | A |
5880631 | Sahota | Mar 1999 | A |
5939922 | Umeda | Aug 1999 | A |
5945855 | Momtaz | Aug 1999 | A |
5949286 | Jones | Sep 1999 | A |
5990740 | Groe | Nov 1999 | A |
5994959 | Ainsworth | Nov 1999 | A |
5999056 | Fong | Dec 1999 | A |
6011437 | Sutardja et al. | Jan 2000 | A |
6018651 | Bruckert et al. | Jan 2000 | A |
6031425 | Hasegawa | Feb 2000 | A |
6044124 | Monahan et al. | Mar 2000 | A |
6052035 | Nolan et al. | Apr 2000 | A |
6057739 | Crowley et al. | May 2000 | A |
6060935 | Shulman | May 2000 | A |
6091307 | Nelson | Jul 2000 | A |
6100767 | Sumi | Aug 2000 | A |
6114920 | Moon et al. | Sep 2000 | A |
6163207 | Kattner et al. | Dec 2000 | A |
6173011 | Rey et al. | Jan 2001 | B1 |
6191956 | Foreman | Feb 2001 | B1 |
6204728 | Hageraats | Mar 2001 | B1 |
6211737 | Fong | Apr 2001 | B1 |
6229374 | Tammone, Jr. | May 2001 | B1 |
6246289 | Pisati et al. | Jun 2001 | B1 |
6255889 | Branson | Jul 2001 | B1 |
6259321 | Song et al. | Jul 2001 | B1 |
6288609 | Brueske et al. | Sep 2001 | B1 |
6298093 | Genrich | Oct 2001 | B1 |
6333675 | Saito | Dec 2001 | B1 |
6370372 | Molnar et al. | Apr 2002 | B1 |
6392487 | Alexanian | May 2002 | B1 |
6404252 | Wilsch | Jun 2002 | B1 |
6476660 | Visocchi et al. | Nov 2002 | B1 |
6515553 | Filiol et al. | Feb 2003 | B1 |
6559717 | Lynn et al. | May 2003 | B1 |
6560448 | Baldwin et al. | May 2003 | B1 |
6571083 | Powell, II et al. | May 2003 | B1 |
6577190 | Kim | Jun 2003 | B2 |
6583671 | Chatwin | Jun 2003 | B2 |
6583675 | Gomez | Jun 2003 | B2 |
6639474 | Asikainen et al. | Oct 2003 | B2 |
6664865 | Groe et al. | Dec 2003 | B2 |
6670861 | Balboni | Dec 2003 | B1 |
6674331 | McDowell | Jan 2004 | B2 |
6683509 | Albon et al. | Jan 2004 | B2 |
6693977 | Katayama et al. | Feb 2004 | B2 |
6703887 | Groe | Mar 2004 | B2 |
6711391 | Walker et al. | Mar 2004 | B1 |
6724235 | Costa et al. | Apr 2004 | B2 |
6734736 | Gharpurey | May 2004 | B2 |
6744319 | Kim | Jun 2004 | B2 |
6751272 | Burns et al. | Jun 2004 | B1 |
6753738 | Baird | Jun 2004 | B1 |
6763228 | Prentice et al. | Jul 2004 | B2 |
6774740 | Groe | Aug 2004 | B1 |
6777999 | Kanou et al. | Aug 2004 | B2 |
6781425 | Si | Aug 2004 | B2 |
6795843 | Groe | Sep 2004 | B1 |
6798290 | Groe et al. | Sep 2004 | B2 |
6801089 | Costa et al. | Oct 2004 | B2 |
6845139 | Gibbons | Jan 2005 | B2 |
6856205 | Groe | Feb 2005 | B1 |
6870411 | Shibahara et al. | Mar 2005 | B2 |
6870430 | Nakamura et al. | Mar 2005 | B2 |
6917791 | Chadwick | Jul 2005 | B2 |
6940356 | McDonald, II et al. | Sep 2005 | B2 |
6943600 | Craninckx | Sep 2005 | B2 |
6975687 | Jackson et al. | Dec 2005 | B2 |
6985703 | Groe et al. | Jan 2006 | B2 |
6990327 | Zheng et al. | Jan 2006 | B2 |
7062248 | Kuiri | Jun 2006 | B2 |
7065334 | Otaka et al. | Jun 2006 | B1 |
7088979 | Shenoy et al. | Aug 2006 | B1 |
7123102 | Uozumi et al. | Oct 2006 | B2 |
7142062 | Vaananen et al. | Nov 2006 | B2 |
7148764 | Kasahara et al. | Dec 2006 | B2 |
7171170 | Groe et al. | Jan 2007 | B2 |
7215215 | Hirano et al. | May 2007 | B2 |
20020071497 | Bengtsson et al. | Jun 2002 | A1 |
20020135428 | Gomez | Sep 2002 | A1 |
20020193009 | Reed | Dec 2002 | A1 |
20030078016 | Groe et al. | Apr 2003 | A1 |
20030092405 | Groe et al. | May 2003 | A1 |
20030118143 | Bellaouar et al. | Jun 2003 | A1 |
20030197564 | Humphreys et al. | Oct 2003 | A1 |
20040017862 | Redman-White | Jan 2004 | A1 |
20040051590 | Perrott et al. | Mar 2004 | A1 |
20050073371 | Brett et al. | Apr 2005 | A1 |
20050093631 | Groe | May 2005 | A1 |
20050099232 | Groe et al. | May 2005 | A1 |
20060003720 | Lee et al. | Jan 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
60848604 | Sep 2006 | US |