The present description relates generally to systems and methods for operating a fuel pump, especially a direct injection fuel pump.
Direct fuel injection (DI) engines provide some advantages over port fuel injection systems. For example, direct fuel injection systems may improve cylinder charge cooling so that engine cylinders may operate at higher compression ratios without incurring undesirable engine knock. Meanwhile, port fuel direct injection (PFDI) engines that include both port injection and direct injection of fuel may advantageously utilize each injection mode. For example, at higher engine loads, fuel may be injected into the engine using direct fuel injection for improved engine performance (e.g., by increasing available torque and fuel economy). At lower engine loads and during engine starting, fuel may be injected into the engine using port fuel injection to provide improved fuel vaporization for enhanced mixing and to reduce engine emissions. Further, port fuel injection may provide an improvement in fuel economy over direct injection at lower engine loads. Further still, noise, vibration, and harshness (NVH) may be reduced when operating with port injection of fuel. In addition, both port injectors and direct injectors may be operated together under some conditions to leverage advantages of both types of fuel delivery or in some instances, differing fuels.
DI engines and PFDI engines include a lift pump (also termed, low pressure pump) that supplies fuel from a fuel tank to a direct injection fuel pump (also termed, a high pressure pump) and, if present, a port injector fuel rail. The direct injection fuel pump may supply fuel at a higher pressure to direct injectors. During operation, one or more hot spots may be formed on a bottom surface of a pump piston within the direct injection fuel pump. As such, fuel may be exposed to the bottom surface of the pump piston when residing within or flowing through a chamber (herein termed a step chamber) formed underneath the bottom surface of the pump piston. Accordingly, fuel may be heated leading to fuel vaporization within the step room. Further, the evaporation of fuel may overheat the step room and may increase a likelihood of the pump piston seizing within a bore of the direct injection fuel pump.
The inventors herein have recognized the above-mentioned issues and identified an approach to at least partly address the above issues. In one example approach, a method for a direct injection fuel pump in an engine may comprise increasing a pressure in a step chamber of the direct injection fuel pump during at least a portion of a pump stroke in the direct injection fuel pump, the pressure increased to higher than an output pressure of a lift pump. Thus, formation of vapor in the step chamber may be reduced.
As an example, a direct injection fuel pump used in DI and/or PFDI engines may include a piston reciprocating in a bore, the piston being driven by a crankshaft in the engines. A compression chamber may be formed on a first side of the piston and a step chamber may be formed on a second side of the piston wherein the first side and the second side are positioned opposite each other. In one example, the compression chamber is formed vertically above a top surface of the pump piston while the step chamber is formed vertically underneath the bottom surface of the pump piston. To reduce fuel vaporization in the step chamber of the direct injection fuel pump, pressure in the step chamber may be increased at least during a portion of a pump stroke. The pump stroke may include either a suction stroke or a compression stroke. Pressure in the step chamber may be increased during the suction stroke by positioning a pressure relief valve upstream of an inlet to the step chamber. Pressure in the step chamber may be increased during the compression stroke by delivering fuel from the compression chamber to the step chamber.
In this way, pump degradation may be reduced. By increasing pressure in the step chamber during at least a part of each suction stroke and compression stroke in the direct injection fuel pump, fuel heating within the step chamber of the direct injection fuel pump may be reduced. Consequently, fuel vaporization within the step room may be diminished leading to enhanced DI fuel pump performance. Overall, durability of the direct injection fuel pump may be extended, and maintenance costs may be decreased.
It should be understood that the summary above is provided to introduce in simplified form a selection of concepts that are further described in the detailed description. It is not meant to identify key or essential features of the claimed subject matter, the scope of which is defined uniquely by the claims that follow the detailed description. Furthermore, the claimed subject matter is not limited to implementations that solve any disadvantages noted above or in any part of this disclosure.
The following description relates to systems and methods for operating a direct injection fuel pump. The direct injection (DI) fuel pump may be included within an engine system, such as the engine shown in
It will be appreciated that in the example port fuel direct injection (PFDI) systems shown in the present disclosure, the direct injectors may be deleted without departing from the scope of this disclosure.
A fuel delivery system for an engine may include multiple fuel pumps for providing a desired fuel pressure to the fuel injectors. As one example, the fuel delivery system may include a lower pressure fuel pump (also termed, lift pump) and a higher pressure (also termed, high pressure or direct injection) fuel pump arranged between a fuel tank and fuel injectors. The higher pressure fuel pump may be coupled upstream of a high pressure fuel rail in a direct injection system to raise a pressure of the fuel delivered to engine cylinders through direct injectors. As will be described further below, the higher pressure pump may also supply fuel to a port injector fuel rail. A solenoid activated inlet check valve, also termed a solenoid activated check valve or spill valve, may be coupled upstream of a compression chamber in the higher pressure (HP) pump to regulate fuel flow into the compression chamber of the high pressure pump. The spill valve is commonly electronically controlled by a controller which may be part of a control system for the engine of the vehicle. Furthermore, the controller may also have a sensory input from a sensor, such as an angular position sensor, that allows the controller to command activation of the spill valve in synchronism with a driving cam that powers the high pressure pump.
Regarding terminology used throughout this detailed description, a high pressure pump, or direct injection fuel pump, may be abbreviated as a HP pump (alternatively, HPP) or a DI fuel pump respectively. As such, DI fuel pump may also be termed DI pump. Accordingly, HPP and DI fuel pump may be used interchangeably to refer to the high pressure direct injection fuel pump. Similarly, a low pressure pump, may also be referred to as a lift pump. Further, the low pressure pump may be abbreviated as LP pump or LPP. Port fuel injection may be abbreviated as PFI while direct injection may be abbreviated as DI. Also, fuel rail pressure, or the value of pressure of fuel within the fuel rail may be abbreviated as FRP. The direct injection fuel rail may also be referred to as a high pressure fuel rail, which may be abbreviated as HP fuel rail. Also, the solenoid activated inlet check valve for controlling fuel flow into the compression chamber of the HP pump may be referred to as a spill valve, a solenoid activated check valve (SACV), electronically controlled solenoid activated inlet check valve, and also as an electronically controlled valve. Further, when the solenoid activated inlet check valve is activated, the HP pump is referred to as operating in a variable pressure mode. Further, the solenoid activated check valve may be maintained in its activated state throughout the operation of the HP pump in variable pressure mode. If the solenoid activated check valve is deactivated and the HP pump relies on mechanical pressure regulation without any commands to the electronically-controlled spill valve, the HP pump is referred to as operating in a mechanical mode or in a default pressure mode (or simply, default mode). Further, the solenoid activated check valve may be maintained in its deactivated state throughout the operation of the HP pump in default pressure mode.
Cylinder 14 can receive intake air via a series of intake air passages 142, 144, and 146. Intake air passages 142, 144, and 146 can communicate with other cylinders of engine 10 in addition to cylinder 14. In some examples, one or more of the intake air passages may include a boosting device such as a turbocharger or a supercharger. For example,
A throttle 162 including a throttle plate 164 may be arranged between intake air passages 144 and 146 of the engine for varying the flow rate and/or pressure of intake air provided to the engine cylinders. As shown in
Exhaust manifold 148 can receive exhaust gases from other cylinders of engine 10 in addition to cylinder 14. Exhaust gas sensor 128 is shown coupled to exhaust passage 158 upstream of emission control device 178. Sensor 128 may be selected from among various suitable sensors for providing an indication of exhaust gas air/fuel ratio such as a linear oxygen sensor or UEGO (universal or wide-range exhaust gas oxygen), a two-state oxygen sensor or EGO (as depicted), a HEGO (heated EGO), a NOx, HC, or CO sensor, for example. Emission control device 178 may be a three way catalyst (TWC), NOx trap, various other emission control devices, or combinations thereof.
Each cylinder of engine 10 may include one or more intake valves and one or more exhaust valves. For example, cylinder 14 is shown including at least one intake poppet valve 150 and at least one exhaust poppet valve 156 located at an upper region of cylinder 14. In some examples, each cylinder of engine 10, including cylinder 14, may include at least two intake poppet valves and at least two exhaust poppet valves located at an upper region of the cylinder.
Intake valve 150 may be controlled by controller 12 via actuator 152. Similarly, exhaust valve 156 may be controlled by controller 12 via actuator 154. During some conditions, controller 12 may vary the signals provided to actuators 152 and 154 to control the opening and closing of the respective intake and exhaust valves. The position of intake valve 150 and exhaust valve 156 may be determined by respective valve position sensors (not shown). The valve actuators may be of the electric valve actuation type or cam actuation type, or a combination thereof. The intake and exhaust valve timing may be controlled concurrently or any of a possibility of variable intake cam timing, variable exhaust cam timing, dual independent variable cam timing or fixed cam timing may be used. Each cam actuation system may include one or more cams and may utilize one or more of cam profile switching (CPS), variable cam timing (VCT), variable valve timing (VVT) and/or variable valve lift (VVL) systems that may be operated by controller 12 to vary valve operation. For example, cylinder 14 may alternatively include an intake valve controlled via electric valve actuation and an exhaust valve controlled via cam actuation including CPS and/or VCT. In other examples, the intake and exhaust valves may be controlled by a common valve actuator or actuation system, or a variable valve timing actuator or actuation system.
Cylinder 14 can have a compression ratio, which is the ratio of volumes when piston 138 is at bottom dead center position or top dead center position. In one example, the compression ratio is in the range of 9:1 to 10:1. However, in some examples where different fuels are used, the compression ratio may be increased. This may happen, for example, when higher octane fuels or fuels with higher latent enthalpy of vaporization are used. The compression ratio may also be increased if direct injection is used due to its effect on engine knock.
In some examples, each cylinder of engine 10 may include a spark plug 192 for initiating combustion. Ignition system 190 can provide an ignition spark to combustion chamber 14 via spark plug 192 in response to spark advance signal SA from controller 12, under select operating modes. However, in some embodiments, spark plug 192 may be omitted, such as where engine 10 may initiate combustion by auto-ignition or by injection of fuel as may be the case with some diesel engines.
In some examples, each cylinder of engine 10 may be configured with one or more fuel injectors for providing fuel thereto. As a non-limiting example, cylinder 14 is shown including fuel injector 166. Fuel injector 166 is shown coupled directly to cylinder 14 for injecting fuel directly therein in proportion to the pulse width of signal FPW-1 received from controller 12 via electronic driver 168. In this manner, fuel injector 166 provides what is known as direct injection (hereafter referred to as “DI”) of fuel into cylinder 14. While
Additionally or alternatively, engine 10 may also include optional fuel injector 170 (shown as a dashed fuel injector). Fuel injector 166 and 170 may be configured to deliver fuel received from fuel system 8. As elaborated later in the detailed description, fuel system 8 may include one or more fuel tanks, fuel pumps, and fuel rails.
Optional fuel injector 170 is shown arranged in intake air passage 146, rather than in cylinder 14, in a configuration that provides what is known as port injection of fuel into the intake port upstream of cylinder 14. Optional fuel injector 170 may inject fuel, received from fuel system 8, in proportion to the pulse width of signal FPW-2 received from controller 12 via electronic driver 171. Note that a single electronic driver 168 or 171 may be used for both fuel injection systems, or multiple drivers, for example electronic driver 168 for fuel injector 166 and electronic driver 171 for optional fuel injector 170, may be used, as depicted.
In an alternate example, each of fuel injectors 166 and 170 may be configured as direct fuel injectors for injecting fuel directly into cylinder 14. In another example, each of fuel injectors 166 and 170 may be configured as port fuel injectors for injecting fuel upstream of intake valve 150. In yet other examples, cylinder 14 may include only a single fuel injector that is configured to receive different fuels from the fuel systems in varying relative amounts as a fuel mixture, and is further configured to inject this fuel mixture either directly into the cylinder as a direct fuel injector or upstream of the intake valves as a port fuel injector. In still another example, cylinder 14 may be fueled solely by optional fuel injector 170, or solely by port injection (also termed, intake manifold injection). As such, it should be appreciated that the fuel systems described herein should not be limited by the particular fuel injector configurations described herein by way of example.
Fuel may be delivered by both injectors to the cylinder during a single cycle of the cylinder. For example, each injector may deliver a portion of a total fuel injection that is combusted in cylinder 14. Further, the distribution and/or relative amount of fuel delivered from each injector may vary with operating conditions, such as engine load, knock, and exhaust temperature, such as described herein below. The port injected fuel may be delivered during an open intake valve event, closed intake valve event (e.g., substantially before the intake stroke), as well as during both open and closed intake valve operation. Similarly, directly injected fuel may be delivered during an intake stroke, as well as partly during a previous exhaust stroke, during the intake stroke, and partly during the compression stroke, for example. As such, even for a single combustion event, injected fuel may be injected at different timings from the port and direct injector. Furthermore, for a single combustion event, multiple injections of the delivered fuel may be performed per cycle. The multiple injections may be performed during the compression stroke, intake stroke, or any appropriate combination thereof.
As described above,
Fuel injectors 166 and 170 may have different characteristics. These include differences in size, for example, one injector may have a larger injection hole than the other. Other differences include, but are not limited to, different spray angles, different operating temperatures, different targeting, different injection timing, different spray characteristics, different locations etc. Moreover, depending on the distribution ratio of injected fuel among fuel injectors 170 and 166, different effects may be achieved.
Controller 12 is shown in
The controller 12 receives signals from the various sensors of
First embodiment 200 of the fuel system includes a fuel storage tank 208 for storing the fuel on-board the vehicle, a lower pressure fuel pump (LPP) 212 (herein also referred to as fuel lift pump 212), and a higher pressure fuel pump (HPP) 214 (herein also referred to as direct injection fuel pump 214 or DI pump 214). Fuel may be provided to fuel tank 208 via fuel filling passage 204. In one example, LPP 212 may be an electrically-powered lower pressure fuel pump disposed at least partially within fuel tank 208. LPP 212 may be operated by a controller 202 (e.g., similar to controller 12 of
LPP 212 may be fluidly coupled to a filter (not shown), which may remove small impurities contained in the fuel that could potentially damage fuel handling components. A lift pump (LP) check valve 216, which may facilitate fuel delivery and maintain fuel line pressure, may be positioned downstream of LPP 212 and may be fluidically coupled to LPP 212. Further, LP check valve 216 may allow fuel flow from LPP 212 towards DI fuel pump 214 and may block fuel flow from DI fuel pump 214 to LPP 212. The LP check valve 216 may enable intermittent lift pump operation which can lower electrical power consumption of LPP 212.
A pressure relief valve (not shown) may also be situated within fuel storage tank 208 to limit the fuel pressure in low pressure passage 218 (e.g., the output from lift pump 212). In some embodiments, fuel system 8 may include additional (e.g., a series) of check valves fluidically coupled to low pressure fuel pump 212 to impede fuel from leaking back upstream of the valves. In this context, upstream flow refers to fuel flow traveling from first fuel rail 250 towards LPP 212 while downstream flow refers to the nominal fuel flow direction from the LPP towards the HPP 214 and thereon to the fuel rail(s).
Fuel lifted by LPP 212 may be supplied at a lower pressure into low pressure passage 218. Here onwards, a first portion of fuel may flow past node 224 through first check valve 244 into step room passage 242. Thereon, the first portion of fuel may flow into step chamber 226 of HP pump 214. A second portion of fuel may flow past node 224 into pump passage 254 and thereon into an inlet 203 of compression chamber 238 of HPP 214. HPP 214 may then deliver at least a part (or all) of the second portion of fuel into first fuel rail 250 coupled to one or more fuel injectors of a first group of injectors 252 (herein also referred to as a first injector group). First group of injectors 252 may be configured as direct injectors 252. As such, direct injectors 252 may deliver fuel directly into cylinders of engine 210.
It will be noted that pressure in pump passage 254 may be the same as pressure in low pressure passage 218. There may be no additional components or passages than those depicted in
The quantities of the first portion of fuel and the second portion of fuel may vary based on pump strokes in the HPP 214 as well as engine conditions. As mentioned above, the first portion of fuel may flow into step chamber 226 of HPP 214. Specifically, the first portion of fuel received via low pressure passage 218 may flow past node 224 and through first check valve 244 fluidically coupled along step room passage 242 into step chamber 226 (also termed herein as step room 226). First check vale 244 is biased to block flow from step chamber 226 towards low pressure passage 218 but allows flow from node 224 towards step chamber 226.
First pressure relief valve 246 may be fluidically coupled in a relief passage 262 such that first pressure relief valve 246 is arranged parallel to first check valve 244. First pressure relief valve 246 may include a ball and spring mechanism that seats and seals at a specified pressure differential, for example. The pressure differential set-point at which first pressure relief valve 246 may be configured to open and allow flow may assume various suitable values; as a non-limiting example the set-point may be 5 bar. As situated, first pressure relief valve 246 may allow fuel flow from step chamber 226 towards low pressure passage 218 when a pressure of the fuel flow exceeds the pressure setting of first pressure relief valve 246.
While the first fuel rail 250, also termed direct injector fuel rail 250, is shown dispensing fuel to four fuel injectors of the first injector group 252, it will be appreciated that first fuel rail 250 may dispense fuel to any suitable number of fuel injectors. As one example, first fuel rail 250 may dispense fuel to one fuel injector of first injector group 252 for each cylinder of the engine 210. As depicted, each cylinder of engine 210 may receive fuel at higher pressure from the first fuel rail via at least one direct injector of the first injector group 252. Engine 210 may be similar to example engine 10 of
Controller 202 can individually actuate each of the direct injectors 252 via a first injection driver 206. The controller 202, the first injection driver 206, and other suitable engine system controllers can comprise a control system. While the first injection driver 206 is shown external to the controller 202, it should be appreciated that in other examples, the controller 202 can include the first injection river 206 or can be configured to provide the functionality of the driver 206. Controller 202 may include additional components not shown, such as those included in controller 12 of
HPP 214 may be an engine-driven, positive-displacement pump. HPP 214 may be mechanically driven by the engine in contrast to the motor driven LPP 212. HPP 214 includes a pump piston 220, a pump compression chamber 238 (herein also referred to as compression chamber 238), and step room 226 (also referred to as step chamber 226). Piston stem 228 (also termed piston rod 228) of pump piston 220 receives a mechanical input from the engine crank shaft or cam shaft via driving cam 232, thereby operating the HPP according to the principle of a cam-driven single-cylinder pump. Thus, HPP 214 may be driven by the engine 210. A sensor (not shown) may be positioned near cam 232 to enable determination of the angular position of the cam (e.g., between 0 and 360 degrees), which may be relayed to controller 202. Pump piston 220 includes a piston top 221 and a piston bottom 223. The step room 226 and compression chamber 238 may include cavities positioned on opposing sides of the pump piston. For example, step room 226 may be a cavity formed underneath piston bottom 223 (also termed bottom surface 223) while compression chamber 238 may be a cavity formed above piston top 221 (also termed, top surface 221).
In one example, driving cam 232 may be in contact with piston rod 228 of the DI pump 214 and may be configured to drive pump piston 220 from bottom-dead-center (BDC) position to top-dead-center (TDC) position and vice versa, thereby creating the motion (e.g., reciprocating motion) necessary to pump fuel through compression chamber 238. Driving cam 232 includes four lobes and completes one rotation for every two engine crankshaft rotations. A return spring (not shown) keeps the piston rod 228 in contact with the driving cam or the cam's roller follower. A two-spring system may be used where one spring keeps the cam's roller follower in contact with the driving cam and a second much lighter spring keeps the pump piston in contact with the roller follower (or push rod).
Pump piston 220 reciprocates up and down within bore 234 of DI pump 214 to pump fuel. DI fuel pump 214 is in a compression stroke when pump piston 220 is traveling in a direction that reduces the volume of compression chamber 238. In other words, HPP 214 is in the compression stroke when a volume of step room 226 is increasing. Conversely, DI fuel pump 214 is in a suction or intake stroke when pump piston 220 is traveling in a direction that increases the volume of compression chamber 238. Said another way, DI fuel pump 214 is in the suction stroke when the volume of the step room 226 is decreasing. As such, the DI pump experiences compression strokes (also termed, delivery strokes) and suction strokes (also termed, intake strokes) as pump strokes in the DI fuel pump.
HPP 214 utilizes a solenoid activated check valve 236 (also termed as, fuel volume regulator, magnetic solenoid valve, spill valve, digital inlet valve, etc.) to vary the effective pump volume (e.g., duty cycle) of each pump stroke. As one example, a DI fuel pump duty cycle (also termed, duty cycle of the DI pump) may refer to a fractional amount of a full DI fuel pump volume to be pumped. Solenoid activated check valve 236 (SACV 236) is positioned, as shown in
As such, SACV 236 may be configured to regulate the mass (or volume) of fuel compressed in the compression chamber of the direct injection fuel pump. In one example, controller 202 may adjust a closing timing of the SACV to regulate the mass of fuel compressed. For example, a late closing of the SACV relative to piston compression (e.g., volume of compression chamber is decreasing) may reduce the amount of fuel mass ingested into compression chamber 238 since more of the fuel displaced from the compression chamber 238 can flow through the SACV 236 before it closes. In contrast, an early closing of the SACV 236 relative to piston compression may increase the amount of fuel mass delivered from the compression chamber 238 to the pump outlet 205 (and thereon to the first fuel rail 250) since less of the fuel displaced from the compression chamber 238 can flow (in reverse direction) through the electronically controlled check valve 236 before it closes. The opening and closing timings of the SACV may be coordinated with respect to stroke timings of the direct injection fuel pump.
A lift pump fuel pressure sensor 222 may be positioned along low pressure passage 218 between lift pump 212 and HPP 214. In this configuration, readings from sensor 222 may be interpreted as indications of the fuel pressure of lift pump 212 (e.g., the outlet fuel pressure of the lift pump). Readings from sensor 222 may be used to assess the operation of various components in first embodiment 200 of the fuel system, to determine whether sufficient fuel pressure is provided to higher pressure fuel pump 214 so that the higher pressure fuel pump ingests liquid fuel and not fuel vapor, and/or to reduce the average electrical power supplied to lift pump 212. As such, the lift pump 212 may be operated at a lower power setting (e.g., minimum power setting) desired for providing liquid fuel and not fuel vapors to the HPP 214. Further, the LPP 212 may provide fuel at a lower pressure (e.g., sufficient to overcome fuel vapor pressure) to each of the compression chamber 238 and the step chamber 226 of DI pump 214. Fuel supplied by the LPP 212 may be pressurized further by the DI pump 214. By operating the lift pump at the lower power setting which provides fuel slightly above fuel vapor pressure, power consumption may be reduced and fuel economy may be improved. Further still, the DI pump may increase the pressure of the fuel received by the LPP 212 as will be described in the embodiments below. As such, the LPP may be maintained operational at a lower power setting throughout engine operation while the DI pump ensures desired pressurization of fuel being delivered to the first fuel rail 250 and, if present, a port injector fuel rail.
First fuel rail 250 (also termed, direct injector fuel rail 250 or DI fuel rail) includes a first fuel rail pressure sensor 282 for providing an indication of fuel rail pressure (FRP) in first fuel rail 250 to the controller 202. An engine speed sensor 284 can be used to provide an indication of engine speed to the controller 202. The indication of engine speed can be used to identify the speed of higher pressure fuel pump 214, since the DI fuel pump 214 is mechanically driven by the engine 210, for example, via a crankshaft or camshaft.
First fuel rail 250 is fluidically coupled to pump outlet 205 of HPP 214 (also termed, outlet 205 of compression chamber 238) via outlet fuel passage 278. An outlet check valve 274 and an outlet pressure relief valve 272 may be positioned between the pump outlet 205 of the HPP 214 and the first fuel rail 250. In the depicted example, outlet check valve 274 may be provided in outlet fuel passage 278 to reduce or prevent back-flow of fuel from first fuel rail 250 into DI fuel pump 214. In addition, outlet pressure relief valve 272, arranged parallel to outlet check valve 274 in bypass passage 276, may reduce the pressure in outlet fuel passage 278, downstream of HPP 214 and upstream of first fuel rail 250. For example, outlet pressure relief valve 272 may limit the pressure in outlet fuel passage 278 to 200 bar. Outlet check valve 274 allows fuel to flow from the outlet 205 of compression chamber 238 into first fuel rail 250 while blocking reverse flow from first fuel rail 250 to pump outlet 205.
First pressure relief valve 246 allows fuel flow out of step room 226 toward the LPP 212 when pressure between first pressure relief valve 246 and step chamber 226 is greater than a predetermined pressure (e.g., 5 bar). For example, during a suction stroke in DI pump 214, fuel in the step room 226 may be pushed out through step room passage 242 and may flow through first pressure relief valve 246 when pressure is greater than the pressure relief set-point of first pressure relief valve 246. Accordingly, pressure in the step chamber 226 rises to greater than that of the pressure relief set-point of the first pressure relief valve 246 during the suction stroke. For example, if first pressure relief valve 246 has a pressure relief setting of 5 bar, the pressure in step chamber 226 becomes 8 bar because the pressure relief setting of 5 bar is added to the 3 bar of lift pump pressure. In another example, output pressure of the lift pump may be 5 bar. Herein, step chamber pressure during the suction stroke may become 10 bar. As such, pressure in the step chamber is increased to higher than the output pressure of the lift pump 212 during the suction strokes. Thus, first pressure relief valve 246 may be biased to regulate pressure in step chamber 226 to a regulation pressure of a combination of lift pump output pressure and relief setting of the first pressure relief valve 246.
Further, first pressure relief valve 246 may regulate pressure in step chamber 226, particularly during the suction stroke of the DI pump, to a single substantially constant pressure (e.g., regulation pressure±0.5 bar) based on relief setting of first pressure relief valve 246 (e.g., 5 bar). Specifically, pressure in the step room 226 is increased during the suction stroke of the DI pump 214 relative to the output pressure of the low pressure pump 212. In one example, pressure in the step room increases towards (e.g., at) the beginning of the suction stroke. In another example, step room pressure may be at the regulation pressure before midpoint of the suction stroke. Herein, pressurization of the step room may occur at the beginning of the suction stroke and be maintained until an end of the suction stroke.
Thus, by incorporating first pressure relief valve 246 as shown in the first embodiment 200 of the fuel system, a self-pressurizing step chamber is obtained. Specifically, the step chamber may have a pressure greater than lift pump output pressure during at least one of the two strokes (e.g., compression stroke and suction stroke) in the DI pump 214. As such, pressure in step chamber 226 may be greater than the output pressure of lift pump 212 during the suction stroke of the DI pump 214.
Regulating the pressure in the step chamber 226 allows a pressure differential to form between the piston top 221 and the piston bottom 223. The pressure in the compression chamber 238 is at the pressure of the outlet of the low pressure pump (e.g., 3 bar) during the suction stroke while the pressure in the step chamber is at pressure relief valve regulation pressure (e.g., 8 bar, based on relief setting of first pressure relief valve 246 being 5 bar). The pressure differential allows fuel to seep from the piston bottom to the piston top through the clearance between the piston and the bore, thereby lubricating HPP 214. Further, the piston-bore interface in HPP 214 may be cooled due to fuel seepage past the clearance between the piston and the bore of HPP 214. Thus, during at least the suction stroke of direct injection fuel pump 214, lubrication is provided to the pump. During the compression stroke, pressure in the step room 226 drops to a pressure at or about the output pressure of the lift pump 212. In the first example embodiment 200 of the fuel system, pressure in the compression chamber during the compression stroke may vary between output pressure of the lift pump and a desired pressure in the first fuel rail 250, based on the position of the SACV 236.
Lubrication of DI pump 214 may occur when a difference in pressure exists between compression chamber 238 and step room 226. This difference in pressures may also contribute to pump lubrication when controller 202 deactivates solenoid activated check valve 236. As such, while the direct injection fuel pump is operating, flow of fuel therethrough ensures sufficient pump lubrication and cooling. However, during conditions when direct injection fuel pump operation is not requested, such as when no direct injection of fuel is requested, the direct injection fuel pump may be sufficiently lubricated at least during a part of the pump stroke, e.g. during the suction stroke.
As such, fuel flow into compression chamber 238 during the suction stroke in the DI pump 214 may include flowing fuel from LPP 212 via low pressure passage 218, past node 224, into pump passage 254, through SACV 236 into compression chamber 238. Further, fuel may exit the step chamber 226 during the suction stroke via step room passage 242, past step node 248 into relief passage 262 through first pressure relief valve 246 into low pressure passage 218. During the compression stroke, fuel from LPP 212 may flow past node 224 into step room 226 via step room passage 242 and through first check valve 244. Further, if SACV 236 is de-energized to the pass-through mode, fuel may exit the compression chamber during the compression stroke through the SACV 236 into pump passage 254 towards LPP 212. Once the SACV is energized to close, the compression stroke builds fuel pressure in the compression chamber 238 as fuel exits the compression chamber 238 via outlet check valve 274 towards first fuel rail 250.
Referring now to
Operating sequence 500 includes time plotted along the horizontal axis and time increases from the left to the right of the horizontal axis. Operating sequence 500 depicts pump piston position at plot 502, a spill valve (e.g., SACV 236) position at plot 504, compression chamber pressure at plot 506, and step chamber pressure at plot 508. Pump piston position may vary between the top dead center (TDC) and bottom-dead-center (BDC) positions of pump piston 220 as indicated by plot 502. For the sake of simplicity, the spill valve position of plot 504 is shown in
Prior to t1, a suction stroke may be coming to an end. Pressure in the step chamber may be at the regulation pressure that may be a total of the pressure of the lift pump and the pressure relief set-point of the first pressure relief valve in
At t1, pump piston may be at the BDC position (plot 502) and the spill valve (e.g., SACV 236) is de-energized and open to allow fuel to flow out of compression chamber 238 as a compression stroke begins. Thus, at t1, the pump piston commences a compression stroke as pump piston moves towards TDC. Since the spill valve is open, pressure in the compression chamber may substantially be at the output pressure of the LPP (line 503). Further, fuel in the compression chamber may be ejected towards the LPP 212 when the spill valve is open. Specifically, fuel may be pushed by pump piston backwards through SACV 236, through pump passage 254 into low pressure passage 218 towards the lift pump 212. The spill valve may be open during the compression stroke if fuel flow to the direct injector fuel rail is not desired. Pressure in the step chamber reduces to that of the output pressure of the lift pump (line 507) at t1 and remains at LPP pressure through the compression stroke between t1 and t3.
At t2, the spill valve may be energized into the closed position and fuel flow through the SACV 236 may be terminated. Herein, the SACV may be energized in response to an indication of desired fuel flow into the direct injector fuel rail. Specifically, a desired volume of fuel may be trapped within the compression chamber of the DI fuel pump. As pump piston continues towards TDC, compression chamber pressure rises sharply towards fuel rail pressure. The fuel rail pressure may be a desired fuel rail pressure in the DI fuel rail. Between the energizing of solenoid spill valve 236 at t2 and attaining TDC position at t3, the remaining fuel (or trapped volume) in compression chamber 238 is pressurized and sent through outlet check valve 274. The amount of fuel pressurized between time t2 and TDC position at t3 may be dependent on the commanded fractional trapping volume. In the example shown, solenoid spill valve 236 is energized to close about halfway through the compression stroke of the pump piston (halfway between BDC and TDC). Accordingly, the trapping volume (and duty cycle) commanded may be 50%. In other examples, trapping volume may be smaller (e.g., 15%). In yet other examples, commanded duty cycles may be higher (e.g., 75%).
Between t2 and t3, a differential pressure exists between the compression chamber and the step chamber since the step room is at a pressure similar to the lift pump pressure while pressure in the compression chamber is higher than the lift pump pressure, as depicted. Accordingly, fuel may leak past the piston-bore interface in the DI pump from the compression chamber into the step chamber. Further, lubrication and cooling of the piston-bore interface in the DI pump may occur during a portion of the compression stroke in the DI pump.
At t3, the compression stroke ends as the pump piston is at TDC and a subsequent suction stroke commences in the DI pump as the pump piston begins traveling towards BDC. At t3, the spill valve may be de-energized to conserve electrical energy. Whether energized or not, the spill valve may open to allow fresh fuel to enter the compression chamber. Accordingly, pressure in the compression chamber reduces to that of the lift pump output pressure. The step chamber, however, witnesses a rapid increase in pressure as the pump piston moves towards BDC expelling fuel from the step chamber 226 towards the low pressure passage 218 of
At t4, the suction stroke ends as the pump piston reaches BDC and a subsequent compression stroke may ensue as the pump piston begins travel towards TDC from BDC. The subsequent compression stroke may be performed in default mode of the HPP as the spill valve is maintained de-energized and open throughout the compression stroke between t4 and t5 (plot 504). Accordingly, each of the compression chamber and the step chamber may be at similar pressures e.g. lift pump output pressure. During the compression stroke between t4 and t5, there may be no appreciable pressure difference across the pump piston.
The compression stroke in the default mode of the HPP ends at t5 and a suction stroke may follow as the pump piston commences travel from TDC towards BDC. The spill valve is open and the compression chamber pressure remains substantially at (e.g., within 5% of) the LPP output pressure. However, as in the previous suction stroke (between t3 and t4), pressure in the step room rises to that of the regulation pressure (line 505) which is higher than LPP output pressure (line 507). Thus, lubrication of the piston-bore interface occurs during the suction stroke between t5 and t6.
The pump piston reaches BDC at t6 at the end of the suction stroke and begins the subsequent compression stroke. At t6, a 100% duty cycle may be commanded to the DI pump such that the spill valve is energized at the start of the compression stroke allowing substantially 100% of the fuel in the compression chamber to be trapped, and delivered to the direct injector fuel rail 250. Accordingly, spill valve is closed at t6 and compression chamber pressure increases significantly as the compression stroke begins. The step room, on the other hand, may have a lower pressure as fuel is drawn into the step chamber from the lift pump. Specifically, the step room may now be at a similar pressure as the output pressure of the low pressure pump 212. The difference in pressures between the compression chamber and the step chamber enables lubrication of the piston-bore interface in the DI pump. The ensuing suction stroke after t7 may be similar to the suction strokes between t3 and t4, and between t5 and t6.
Thus, the step room may be provided a positive pressure that is higher than lift pump output pressure during the suction stroke. As shown in
Turning now to
Specifically, second embodiment 300 enables a default pressure in the compression chamber 238 of the DI pump 314 by positioning a second pressure relief valve 326 biased to regulate pressure in the compression chamber of the DI pump 314. Further, fuel at the default pressure may be provided to the DI fuel rail 250, when desired.
As such, DI fuel pump 314 of
Second check valve 344 may be coupled in parallel with second pressure relief valve 326. Second pressure relief valve 326 may be fluidically coupled to second relief passage 362 at a location upstream of SACV 236. As such, each of second check valve 344 and second pressure relief valve 326 may be fluidically coupled to compression chamber 238 of DI pump 314. Second pressure relief valve 326 allows fuel flow out of SACV 236 towards the low pressure fuel pump 212 when pressure between second pressure relief valve 326 and SACV 236 is greater than a predetermined pressure (e.g., 10 bar). The predetermined pressure may be a pressure relief set-point of second pressure relief valve 326. When SACV 236 is deactivated (e.g., not electrically energized), SACV 236 operates in the pass-through mode and second pressure relief valve 326 regulates pressure in compression chamber 238 to a single regulation pressure based on relief setting of second pressure relief valve 326.
To elaborate, when SACV 236 is in the pass-through mode and pump piston 220 is traveling towards TDC position, reflux fuel may exit compression chamber 238 towards node 348. Since second check valve 344 blocks fuel flow towards low pressure passage 218, reflux fuel may then enter second relief passage 362 from node 348. Herein, reflux fuel may flow through second pressure relief valve 326 towards low pressure passage 218 only when pressure of the fuel exceeds the relief pressure setting of the second pressure relief valve 326.
An effect of this regulation method is that the compression chamber 238 and direct injector fuel rail 250 is regulated to approximately the pressure relief setting of second pressure relief valve 326. This regulation may occur during the compression stroke when the SACV is in pass-through mode. Thus, if second pressure relief valve 326 has a pressure relief setting of 10 bar, the compression chamber pressure (and fuel rail pressure in first fuel rail 250) becomes 13 bar because the 10 bar of the second pressure relief valve 326 is added to 3 bar of lift pump pressure. Thus, compression chamber pressure during the compression stroke may be higher than lift pump pressure. In this way, the fuel pressure in compression chamber 238 may be regulated during the compression stroke of direct injection fuel pump 314.
It will be noted that pressure in pump passage 254 may be different and dissimilar from that in the low pressure passage 218 during certain portions of the pump strokes. For example, during the compression stroke, the presence of second check valve 344 and second pressure relief valve 326 may cause a different pressure (e.g., higher) than that in the low pressure passage 218.
Similar to first embodiment 200 of
In this way, each of the compression chamber and the step chamber may be pressurized by their respective pressure relief valves. Specifically, the compression chamber may be pressurized during the compression stroke while the step room is pressurized (e.g., increase in positive pressure) during the suction stroke.
Turning now to
Operating sequence 600 includes time plotted along the horizontal axis and time increases from the left to the right of the horizontal axis. Operating sequence 600 depicts pump piston position at plot 602, a spill valve (e.g., SACV 236) position at plot 604, compression chamber pressure at plot 606, and step chamber pressure at plot 608. Pump piston position may vary between the top-dead-center (TDC) and bottom-dead-center (BDC) positions of pump piston 220 as indicated by plot 602. For the sake of simplicity, the spill valve position of plot 604 is shown in
Similar to operating sequence 500 of
Operating sequence 600 illustrates pressurizing the step room (e.g., increasing positive pressure in the step room of DI pump 314) to the regulation pressure of the step room (line 607), such as the combined pressure of the pressure relief set-point of first pressure relief valve 246 and the lift pump pressure, during each of the three suction strokes. As depicted, the increase in pressure in the step room occurs immediately after each suction stroke begins, and the step room may be pressurized throughout each suction stroke. The compression chamber receives fuel from the LPP 212 during each suction stroke and is therefore, at the LPP pressure during each suction stroke.
Pressure in the compression chamber is at the regulation pressure of the compression chamber (line 603) throughout the second compression stroke since the spill valve is in pass-through mode the entire duration. In the third compression stroke, pressure in the compression chamber is higher than the regulation pressure since the spill valve is closed through the entire duration. Specifically, compression chamber pressure may reach a desired fuel rail pressure for the first fuel rail 250. In the first compression stroke, compression chamber pressure is at the regulation pressure while the spill valve is open, but once the spill valve is closed, compression chamber pressure rises to higher than the regulation (or default) pressure. The step room may be at substantially (e.g., within 5% of) the lift pump pressure through each of the compression strokes.
Thus, in the second embodiment 300 of the fuel system including DI pump 314, a pressure differential may exist across the pump piston during each pump stroke (e.g., each compression stroke and each suction stroke). During the compression stroke, the compression chamber has a higher pressure than the step room (whether spill valve is open or closed), and during the suction stroke, the step room has a higher pressure than the compression chamber. Specifically, a difference in pressure is produced between the compression chamber and the step chamber during each compression stroke and suction stroke in the DI pump. The differential pressure across the pump piston enables a leak flow of fuel in the piston-bore interface allowing lubrication and cooling of the piston-bore interface of the DI pump through all pump strokes in DI pump 314. Further, similar to the first embodiment 200, the step room may be provided a positive pressure during each suction stroke. By pressurizing the step room to a pressure higher than the output pressure of the lift pump, fuel vaporization may be diminished. Further still, by pressurizing the step room by using a pressure relief valve (e.g., first pressure relief valve 246), the pressure in the step room may be controlled (e.g., limited) to reduce leaks at the seal of the step room. The lift pump can be operated at a lower power setting and may not be used to pump a higher pressure to the step room. Herein, the step room may self-pressurize via the pressure relief valve.
An example method for operating a high pressure fuel pump in an engine may, thus, comprise regulating a pressure in a step chamber of the high pressure fuel pump to a single pressure during a suction stroke, the pressure greater than an output pressure of a low pressure pump supplying fuel to the direct injection fuel pump. The pressure in the step chamber may be regulated by a first pressure relief valve (such as, first pressure relief valve 246 of
Thus, an example system may comprise an engine including a cylinder, a direct injection fuel pump including a piston, a compression chamber, a step chamber arranged below a bottom surface of the piston, a cam for moving the piston, and a solenoid activated check valve (Such as SACV 236) positioned at an inlet of the compression chamber of the direct injection fuel pump, a lift pump fluidically coupled to each of the compression chamber and the step chamber of the direct injection fuel pump, a first pressure relief valve (such as first pressure relief valve 246) fluidically coupled to the step chamber of the direct injection fuel pump, the first pressure relief valve biased to regulate pressure in the step chamber, a second pressure relief valve (such as second pressure relief valve 326 of
The step chamber may be pressurized during a suction stroke in the direct injection fuel pump, wherein the step chamber is pressurized to a pressure higher than an output pressure of the lift pump during the suction stroke in the direct injection fuel pump (as shown in operating sequence 600 between t3 and t4, for example). The step chamber may substantially be, e.g., within 5%, at the output pressure of the lift pump during a compression stroke in the direct injection fuel pump (as shown in operating sequence 600 between t4 and t5, for example). The compression chamber may be pressurized during the compression stroke in the direct injection fuel pump, wherein the compression chamber is pressurized to a pressure higher than the output pressure of the lift pump during the compression stroke in the direct injection fuel pump (as shown in operating sequence 600 between t4 and t5, for example). The compression chamber may be pressurized during the compression stroke when the solenoid activated check valve is open and/or closed. The example system may also include a controller with computer-readable instructions stored on non-transitory memory for adjusting a status of the solenoid activated check valve to regulate pressure in the direct injector fuel rail (such as at t2 and t6 in operating sequence 600). The controller may include instructions for closing the solenoid activated check valve to increase pressure in the compression chamber of the direct injection fuel pump to higher than a setting of the second pressure relief valve based on a desired fuel rail pressure in the direct injector fuel rail (such as at t2 and at t6 in operating sequence 600).
Referring now to
Third embodiment 400 of the fuel system includes DI pump 414 which may experience enhanced circulatory flow of fuel in the step chamber 426 while providing similar technical effects as DI pump 314 of second embodiment 300.
Circulation in step chamber 426 of DI pump 414 may be provided by flowing the first portion of fuel from LPP 212 via node 224, through check valve 444 coupled in step room passage 442 into step chamber 426. Further, the first portion of fuel may then exit step chamber 426 via second step room passage 443. As depicted, step room passage 442 may be coupled to step room 426 at a location that is opposite to a location where second step room passage 443 is coupled to the step room 426. Circulation of fuel in the step chamber 426 is provided by ensuring that fuel entry into the step room occurs at a location that is different from where fuel exits the step room.
Pressure relief valve 446 may be fluidically coupled to second step room passage 443. Pressure relief valve 446 may be coupled to second step room passage 443 at other locations than that shown in
During a suction stroke, fuel may exit step chamber 426 via second step room passage 443 through pressure relief valve 446, past node 462, to merge into pump passage 254. This fuel received from step chamber 426 into pump passage 254 may then flow through SACV 236 into compression chamber 238 of DI pump 414 during the continuing suction stroke.
Meanwhile, pressure relief valve 448 fluidically coupled to compression chamber 238 may be biased to regulate pressure in the compression chamber 238 during a compression stroke. Pressure relief valve 448 may enable a default pressure (e.g., regulation pressure) in DI pump 414 when SACV 236 is in pass-through mode during the compression stroke and the direct injectors are deactivated. As such, the relief setting of pressure relief valve 448 may be different from that of second pressure relief valve 326 of second embodiment 300 in
DI pump 414 of third embodiment 400 of the fuel system may be lubricated during each of the compression strokes and the suction strokes in the DI pump, similar to DI pump 314. It will be noted that pressure relief settings of pressure relief valve 448 and pressure relief valve 446 may be dissimilar, in one example.
Line 703 represents regulation pressure of compression chamber 238 of DI pump 414 (e.g., pressure relief setting of pressure relief valve 448+lift pump output pressure), line 705 represents an output pressure of the lift pump (e.g., LPP 212) relative to compression chamber pressure, line 707 represents a regulation pressure of the step room e.g. combined pressure of the pressure relief set-point of pressure relief valve 446 and the lift pump pressure, and line 709 represents the output pressure of the lift pump (e.g., LPP 212) relative to step chamber pressure. As such, separate numbers (and lines) are used to indicate the lift pump pressure for enabling clarity. However, the output pressure of the lift pump is the same whether represented by line 705 or line 709. Furthermore, while the plot of pump piston position 702 is shown as a straight line, this plot may exhibit more oscillatory behavior. For the sake of simplicity and clarity, straight lines are used in
The operating sequence 700 may be substantially similar to the operating sequence 600 of
Thus, a pressure differential may exist across the pump piston in DI pump 414 during each pump stroke (e.g., each compression stroke and each suction stroke). During the compression stroke, the compression chamber has a higher pressure than the step room (whether spill valve is open or closed), and during the suction stroke, the step room has a higher pressure than the compression chamber. Fuel may thus leak past the piston-bore interface within the DI pump during each pump stroke providing cooling and lubrication.
Overall, in each of the second and third embodiments of the fuel system (and DI pump), lubrication and cooling of the piston-bore interface in the DI pump may be ensured due to the presence of differential pressure across the pump piston during each of the compression and suction strokes in the DI pump.
Lubrication of the DI fuel pump may be largely ensured when the pump piston experiences a pressure greater than vapor pressure in its forward direction of motion. Thus, in the compression stroke in DI pump 314 and DI pump 414, the forward direction of pump piston 220 may include towards compression chamber. Herein, the pump piston 220 experiences a pressure greater than vapor pressure (e.g., lift pump output pressure) in the compression chamber (due to second pressure relief valve 326 and pressure relief valve 448, respectively). While in the suction stroke, the forward direction of pump piston 220 may be towards the step chamber 226 of DI pump 314 and step chamber 426 of DI pump 414. In the suction stroke in DI pump 314 and DI pump 414, the pump piston 220 experiences a pressure greater than vapor pressure (e.g., lift pump output pressure) in the step chamber (due to first pressure relief valve 246 in DI pump 314, and pressure relief valves 446 and 448 in DI pump 414 respectively).
Another approach to providing lubrication is by exposing the pump piston to a higher pressure in the direction of motion than in the trailing direction. In the compression stroke in DI pump 314 and DI pump 414, the direction of motion of pump piston 220 may be towards compression chamber 238 while the trailing direction may be the step chamber. Herein, the pump piston 220 is exposed to a higher pressure in the compression chamber than in the step chamber 226 (as shown between t1 and t3, t4 and t5, and t6 and t7 of operating sequences 600 and 700). In the suction stroke, direction of motion of pump piston 220 may be towards the step chamber 226 in DI pump 314, and towards step room 426 in DI pump 414. In the suction stroke in each of DI pump 314 and DI pump 414, the pump piston 220 experiences a higher pressure in the step chamber than in the trailing direction of the compression chamber 238 (as depicted between t3 and t4, t5 and t6, and t7 onwards till end of plot in operating sequences 600 and 700).
Turning now to
As such, fourth embodiment 800 is distinct from each of first embodiment 200 and second embodiment 300 in that fourth embodiment 800 includes a common pressure relief valve 846, biased to regulate pressure in each of the compression chamber 238 and step chamber 826 of DI pump 814. As such, common pressure relief valve 846 may be the sole pressure relief valve utilized in the fourth embodiment 800. Furthermore, step chamber 826 is fluidically coupled to compression chamber 238 in the fourth embodiment. Thus, the step chamber 826 may receive fuel from compression chamber 238 during a compression stroke in the DI pump 814 when SACV 236 is in pass-through state.
Common pressure relief valve 846 is coupled parallel to first check valve 246 in relief passage 862. Further, common pressure relief valve 846 may have a distinct pressure relief setting relative to those of first pressure relief valve 246 in respective first and second embodiments 200 and 300, second pressure relief valve 326 in second embodiment 300, and pressure relief valves 446 and 448 in third embodiment 400. In one example, the pressure relief set-point of common pressure relief valve 846 may be 6 bar. In another example, the pressure relief set-point of common pressure relief valve 846 may be 8 bar.
During a compression stroke in DI pump 814, if SACV 236 is open and in the pass-through mode, reflux fuel may exit compression chamber 238 via SACV 236 towards pump passage 254. Further, this reflux fuel, being blocked along pump passage 254 by second check valve 344 may be diverted at node 866 to flow through third check valve 844. As shown, third check valve 844 may be coupled in bypass passage 876, and may allow flow from pump passage 254 to relief passage 862 and/or step room passage 242. Specifically, bypass passage 876 fluidically couples pump passage 254 to each of relief passage 862 and step room passage 242. As such, pump passage 254 may be fluidically coupled to step chamber via bypass passage 876 and step room passage 242.
A portion of the reflux fuel from compression chamber 238 may flow into step chamber 826 via bypass passage 876, across nodes 872 and 248, and through step room passage 242. As such, step chamber may not receive fuel from LPP 212 across first check valve 244 while receiving fuel from compression chamber 238. Further still, the compression chamber may supply fuel to the step chamber as long as the spill valve (SACV 236) is open. Fuel may be supplied at a regulation pressure set by common pressure relief valve 846. Further, as the pressure in bypass passage 876 increases to overcome the relief setting of common pressure relief valve 846, another portion of reflux fuel may flow through bypass passage 876, past node 872 into relief passage 862, and through common pressure relief valve 846 towards LPP 212. If the spill valve closes before the completion of the compression stroke, the step chamber may receive fuel from the LPP 212 through low pressure passage 218, past first check valve 244, into step room passage 242, and thereon into step room 826.
It will be appreciated herein that additional components to those described here may not be included in bypass passage 876. Accordingly, no intervening components than those described above may be included in the passages.
Common pressure relief valve 846 may regulate pressure in the compression chamber to a single pressure based on the relief setting of the common pressure relief valve. Similar to first embodiment 200 of
Thus, an example method for a direct injection fuel pump in an engine may include increasing a pressure in a step chamber of the direct injection fuel pump during at least a portion of a pump stroke in the direct injection fuel pump, the pressure increased to higher than an output pressure of a lift pump. The portion of the pump stroke, in one example, includes a portion of a suction stroke in the direct injection fuel pump. For example, the pressure in the step chamber may be increased during the suction stroke at the beginning of the suction stroke. Alternatively, the pressure in the step room may be increased just after the beginning of the suction stroke. The increase in pressure in the step chamber during the suction strokes may be maintained for the entire duration of the suction stroke such that the pressure in the step chamber is increased at the end of the suction stroke. The method includes increasing pressure in the step chamber via a first pressure relief valve (e.g., 246 of
In an example representation, an example system may comprise an engine including a cylinder, a direct injection fuel pump including a piston, a compression chamber, a step chamber arranged below a bottom surface of the piston, a cam for moving the piston, and a solenoid activated check valve positioned at an inlet of the direct injection fuel pump, a lift pump fluidically coupled to each of the compression chamber and the step chamber of the direct injection fuel pump, a pressure relief valve biased to regulate pressure in each of the compression chamber and the step chamber (e.g., common pressure relief valve 846), a direct injector fuel rail fluidically coupled to the compression chamber of the direct injection fuel pump, and a direct injector providing fuel to the cylinder, the direct injector coupled to and receiving fuel from the direct injector fuel rail.
Referring now to
Line 903 represents regulation pressure of compression chamber 238 of DI pump 814 (e.g., pressure relief setting of common pressure relief valve 846+lift pump output pressure), line 905 represents an output pressure of the lift pump (e.g., LPP 212) relative to compression chamber pressure, line 907 represents a regulation pressure of the step room e.g., combined pressure of the pressure relief set-point of common pressure relief valve 846 and the lift pump pressure, and line 909 represents the output pressure of the lift pump (e.g., LPP 212) relative to step chamber pressure. As such, separate numbers (and lines) are used to indicate the lift pump pressure for enabling clarity. However, the output pressure of the lift pump is the same whether represented by line 905 or line 909. It will be noted that the regulation pressure in each of the compression chamber and the step chamber may be the same, though represented as distinct lines 903 and 907. However, in some cases, if third check valve 844 has intentional or unintentional flow resistance, third check valve 844 may raise regulation pressure of compression chamber (line 903) to higher than regulation pressure of step chamber (line 907). Furthermore, while the plot of pump piston position 902 is shown as a straight line, this plot may exhibit more oscillatory behavior. For the sake of simplicity and clarity, straight lines are used in
Similar to operating sequence 500 of
Operating sequence 900 illustrates pressurizing the step room (e.g. increasing positive pressure in the step room of DI pump 814) to the regulation pressure of the step room (line 907), e.g. the combined pressure of the pressure relief set-point of common pressure relief valve 846 and the lift pump pressure, during each of the three suction strokes. As depicted, the increase in pressure in the step room occurs immediately after each suction stroke begins (as shown at t3 and t7), and the step room may be pressurized throughout each suction stroke. The compression chamber receives fuel from the LPP 212 during each suction stroke and is therefore, at the LPP pressure during each suction stroke.
Pressure in the compression chamber is at the regulation pressure of the compression chamber (line 903) throughout the second compression stroke since the spill valve is in pass-through mode the entire duration. In the third compression stroke, pressure in the compression chamber is higher than the regulation pressure since the spill valve is closed through the entire duration. Specifically, compression chamber pressure may be at the desired fuel rail pressure for the first fuel rail 250. In the first compression stroke, compression chamber pressure is at the regulation pressure while the spill valve is open, but once the spill valve is closed, compression chamber pressure rises to higher than the regulation (e.g., default) pressure.
The fourth embodiment 800 also includes pressurizing the step room during a compression stroke as long as the spill valve is in pass-through mode. During the second compression stroke, the step room may be at substantially (e.g., within 5% of) the regulation pressure since the spill valve is open and step chamber receives fuel at the compression chamber pressure from the compression chamber. However, during the third compression stroke, since the spill valve is closed at the beginning of the third compression stroke, step room pressure does not receive fuel from the compression chamber. Accordingly, pressure in the step chamber reduces to that of the output pressure of the LPP, as shown at t6, as the step room receives fuel from the lift pump between t6 and t7. During the first compression stroke, the step room is pressurized to the regulation pressure (between t1 and t2) as long as the spill valve is open and pressurized fuel enters the step room from the compression chamber. Once the spill valve closes (at t2), step room pressure drops to that of LPP output pressure (between t2 and t3). Thus, the duration that the step room is pressurized by the compression chamber during a compression stroke may be based on how long the spill valve is held open. Accordingly, when the spill valve is closed at the beginning of the third compression stroke, the step chamber is not pressurized during the third compression stroke, whereas in the default mode, the step room is pressurized throughout the compression stroke (e.g., second compression stroke). Further, the step room is pressurized only during the first half of first compression stroke until the spill valve is energized to close.
In this way, the step room in fourth embodiment 800 of
An example method for operating a high pressure fuel pump in an engine may, thus, comprise regulating a pressure in a step chamber of the high pressure fuel pump to a single pressure during a suction stroke, the pressure greater than an output pressure of a low pressure pump supplying fuel to the direct injection fuel pump. The pressure in the step chamber may be regulated by a first pressure relief valve (in one example, common pressure relief valve 846 of
The fifth embodiment 1000 includes a second fuel rail 1050 fluidically coupled to each of the HPP 1014 and LPP 212. In the depicted example, second fuel rail 1050 may be a port injector fuel rail 1050 supplying fuel to a plurality of port injectors 1052. Thus, cylinders of engine 1010 may be fueled by port injectors as well as direct injectors. Thus, engine 1010 may be a PFDI engine.
Controller 202 can individually actuate each of the port injectors 1052 via a second injection driver 1006. The controller 202, the second injection driver 1006, the first injection driver 206, and other suitable engine system controllers can comprise a control system. While the second injection driver 1006 is shown external to the controller 202, it should be appreciated that in other examples, the controller 202 can include the second injection driver 1006 or can be configured to provide the functionality of the second injection driver 1006. Controller 202 may include additional components not shown, such as those included in controller 12 of
It will be noted that though second fuel rail 1050 is depicted as fueling four port injectors 1052, the port injector fuel rail 1050 may fuel additional or fewer port injectors without departing from the scope of this disclosure.
Fifth embodiment 1000 includes second check valve 344 coupled to pump passage 254, as in previously described embodiments. Step chamber 1026 in DI pump 1014 can receive fuel from compression chamber 238 during a compression stroke in the DI pump when the SACV is open via pump passage 254, through node 1066, and along step room passage 1042. Additional fuel, if desired, may be supplied to the step chamber during the compression stroke from the lift pump 212 via low pressure passage 218, past node 324, through second check valve 344, past node 1066, and into step room passage 1042. The additional fuel from the lift pump may be received in the step chamber 1026 after SACV 236 is energized to close during the compression stroke.
Further still, the compression chamber 238 may also supply fuel to the port injector fuel rail 1050 (also termed, PFI rail 1050) during the compression stroke as long as the SACV 236 is open. As such, fuel may be supplied to the second fuel rail 1050 after the step chamber 1026 is filled and pressurized. Thus, on the compression stroke (with SACV un-energized) the fuel volume that is pushed toward the PFI rail 1050 from the compression chamber is the difference of the compression chamber displacement (e.g., 0.25 cc) and the step chamber displacement (e.g., 015 cc). Herein, the net displacement is 0.10 cc, and therefore, 0.1 cc of fuel may be delivered into PFI rail 1050. Step chamber displacement is a function of the size of the piston stem 228. Accordingly, if the diameter of the piston rod 228 is increased, the net displacement may also be increased.
Fuel flow from compression chamber 238 to second fuel rail 1050 may occur as reflux fuel exits compression chamber 238 via SACV 236, into pump passage 254, via node 1066 towards port passage 1062, past node 1068 and into port supply passage 1064, and thereon into port injector fuel rail 1050.
Third pressure relief valve 1046 is coupled in relief passage 1056 to allow fuel flow in the direction of lift pump 212 when pressure at node 1068 is greater than the pressure relief setting of third pressure relief valve 1046. The pressure relief setting of third pressure relief valve 1046 may be different and distinct from pressure relief settings of previously introduced pressure relief valves in previous embodiments. It will be noted that third pressure relief valve 1046 may be biased to regulate pressure in the compression chamber 238, and in the PFI rail 1050.
During a suction stroke in DI pump 1014, fuel from the step chamber may flow from step room 1026 thru step room passage 1042 towards node 1066. At node 1066, fuel may be diverted towards SACV 236 and compression chamber 238, and may not flow into port passage 1062. Thus, the step room may not be pressurized by third pressure relief valve 1046 during the suction stroke. As such, the step room may be pressurized by the compression chamber during the compression stroke alone when the SACV is open. At the same time, the step chamber may not supply fuel to PFI rail 1050.
Turning now to
Line 1103 represents regulation pressure of compression chamber 238 of DI pump 1014 (e.g., pressure relief setting of third pressure relief valve 1046+lift pump output pressure), line 1105 represents an output pressure of the lift pump (e.g., LPP 212) relative to compression chamber pressure, line 1107 represents a regulation pressure of the step room which may be similar to the regulation pressure of the compression chamber e.g., combined pressure of the pressure relief set-point of third pressure relief valve 1046 and the lift pump pressure, and line 1109 represents the output pressure of the lift pump (e.g., LPP 212) relative to step chamber pressure. Line 1111 represents the regulation pressure of the PFI rail which may be similar to the regulation pressure of the compression chamber (line 1103). Line 1113 represents the output pressure of the lift pump (e.g., LPP 212) relative to PFI rail pressure. As such, separate lines are used to indicate the lift pump pressure for enabling clarity. However, the output pressure of the lift pump is the same whether represented by line 1105, line 1113, or line 1109. It will be noted that the regulation pressure in each of the compression chamber, the PFI rail, and the step chamber may be the same, though represented as distinct lines 1103, 1111, and 1107. Furthermore, while the plot 1102 of pump piston position is shown as a straight line, this plot may exhibit more oscillatory behavior. For the sake of simplicity, straight lines are used in
Operating sequence 1100 of
Operating sequence 1100 also includes three suction strokes (from t4 to t5, from t7 to t8, and from t10 till t11). Each suction stroke ensues a preceding corresponding compression stroke as shown in
Operating sequence 1100 illustrates pressurizing each of the step room (e.g. increasing pressure in the step room of DI pump 1014) and the PFI rail during each compression stroke. Specifically, each of the step room and the PFI rail receive pressurized fuel from the compression chamber during the compression stroke when the spill valve is open. Thus, each of the step room and the PFI rail is pressurized to the regulation pressure when the SACV is open. During the first compression stroke, pressure in each of the compression chamber, the step room, and the PFI rail may be the same pressure as long as the spill valve is open. The regulation pressure is attained in each of the compression chamber, the step room, and the PFI rail towards the beginning of the compression stroke. As depicted, the pressure rise may not be immediate but may be gradual, since the compression chamber supplies fuel to both the step chamber and the PFI rail. Once the spill valve is closed at t2, pressure in the compression chamber rises sharply to the desired fuel rail pressure in the direct injector rail. Pressure in the PFI rail may stay at the regulation pressure but pressure in the step room reduces to that of the lift pump pressure after t2 (once the SACV is energized). Further, when a port injection occurs at t3, FRP in the PFI rail drops to lower than the regulation pressure.
During the second compression stroke, since the spill valve is open throughout, each of the compression chamber, the step room, and the PFI rail may be at the same pressure throughout the second compression stroke. Fuel injection via a port injector at t6 may not reduce FRP in the PFI rail since the compression chamber supplies additional fuel to the fuel rail and maintains regulation pressure. In the third compression stroke, the step room pressure does not rise to the regulation pressure since fuel supply from the compression chamber may not be received. However, the step room may receive fuel from the lift pump during the third compression stroke, and therefor may be at the lift pump pressure during the third compression stroke. The PFI rail may be at the regulation pressure since the previous port injection at t6. However, FRP of the PFI rail reduces in response to delivering the port injection at t9 since additional fuel may not be received from the compression chamber until the subsequent compression stroke.
Pressure in the compression chamber, the step chamber, and the port injector fuel rail may be at the lift pump pressure through each of the three suction strokes.
In this way, the step room in fifth embodiment 1000 of
Turning now to
Specifically, sixth embodiment includes PFDI engine 1010 as well as port injector (PFI) rail 1050. Herein, PFI rail 1050 is fluidically coupled to each of compression chamber 238 and step chamber 226 of DI pump 1214. To elaborate, PFI rail 1050 may receive fuel from compression chamber 238 during a compression stroke when SACV 236 is open. Herein, reflux fuel may exit compression chamber 238 through SACV 236 into pump passage 254, and flow past node 1266 into first port conduit 1206, through fourth check valve 1216, past node 1276 and node 1268, through port supply passage 1064 into PFI rail 1050. PFI rail 1050 may also receive fuel from step chamber 226 during a suction stroke. During the suction stroke, fuel exiting step room 226 may flow through step room passage 242, past node 1248 into second port conduit 1204, past fifth check valve 1212, across node 1268, into port supply passage 1064, and thereon into PFI rail 1050. Each of fourth check valve 1216 and fifth check valve 1212 may block fuel flow from nodes 1276 and 1268, respectively, towards node 1266 and node 1248 respectively.
It will be noted though that DI rail 250 receives fuel only from the compression chamber 238 during a compression stroke in the DI pump 1214.
Fourth pressure relief valve 1246 fluidically coupled in relief passage 1256 may be biased to regulate pressure in each of the compression chamber 238, the step chamber 226, and the PFI rail of the sixth embodiment 1200. Relief setting of fourth pressure relief valve 1246 may be distinct from relief settings of previously introduced pressure relief valves in earlier embodiments. Thus, when pressure at either node 1276 or node 1268 exceeds the pressure relief setting of fourth pressure relief valve 1246, fuel may flow into relief passage 1256, through fourth pressure relief valve 1246 towards low pressure passage 218 (across node 324).
As such, fourth pressure relief valve 1246 may be a common pressure relief valve in this embodiment enabling a default pressure in the compression chamber and the DI fuel rail, as well as a default pressure in the PFI rail, and enabling a regulation pressure in the step chamber that is higher than lift pump pressure. Specifically, the regulation pressure for each of the PFI rail, the step room, and the compression chamber may be the same. Further, since the step room is pressurized by the fourth pressure relief valve 1246, pressurized fuel is supplied to PFI rail 1050 during the suction stroke. Similarly, when the SACV is open, the compression chamber may be pressurized to the regulation pressure allowing pressurized fuel to be supplied to the PFI rail 1050.
In another representation, an example system may comprise a port fuel direct injection (PFDI) engine, a direct injection fuel pump including a piston, a compression chamber, a step chamber arranged below a bottom surface of the piston, a cam for moving the piston, and a solenoid activated check valve positioned at an inlet of the compression chamber of the direct injection fuel pump, a lift pump fluidically coupled to each of the compression chamber and the step chamber of the direct injection fuel pump, a direct injector fuel rail fluidically coupled to the compression chamber of the direct injection pump, a port injector fuel rail fluidically coupled to each of the compression chamber and the step chamber of the direct injection fuel pump, and a common pressure relief valve (such as fourth pressure relief valve 1246 in
In this way, in each of the sixth embodiment 1200 and the seventh embodiment 1300 of the fuel system, both sides of the pump piston 220 in respective DI fuel pumps 1214 and 1314 are used to pump to the PFI rail 1050. As such, pumping volume of the DI fuel pump to the PFI rail may be increased significantly (e.g., approximately doubled). Specifically, piston top 221 may impel fuel from compression chamber 238 towards the PFI rail 1050 when SACV 236 is in pass-through mode during a compression stroke. Further, piston bottom 223 may be used to force fuel from step chamber 226 of DI pump 1214 to fuel PFI rail 1050 during a suction stroke. Similarly, piston bottom 223 of pump piston 220 may force fuel from step chamber 1326 of DI pump 1314 to PFI rail 1050 during the suction strokes. Furthermore, piston top 221 may pump fuel to DI rail 250 during the compression stroke following closing the SACV 236. Thus, the port injector fuel rail may be provided sufficient pressure to enable atomization of fuel. Further still, even at higher fuel flow rates, the PFI rail pressure (as well as volume) can be provided by the DI pump. Accordingly, the lift pump can be operated at a lower power setting (e.g., minimum power) providing a more efficient fuel system.
An example system may comprise a port fuel direct injection (PFDI) engine, a direct injection fuel pump including a piston, a compression chamber, a step chamber arranged below a bottom surface of the piston, a cam for moving the piston, and a solenoid activated check valve positioned at an inlet of the compression chamber of the direct injection fuel pump, a lift pump fluidically coupled to each of the compression chamber and the step chamber of the direct injection fuel pump, a first pressure relief valve (e.g., fifth pressure relief valve 1346) positioned in a first line coupled to the compression chamber of the direct injection fuel pump, a direct injector fuel rail fluidically coupled to the compression chamber of the direct injection pump, a port injector fuel rail fluidically coupled to each of the compression chamber and the step chamber of the direct injection fuel pump, and a second pressure relief valve (e.g., fourth pressure relief valve 1246) positioned upstream of the port injector fuel rail, the second pressure relief valve biased to regulate pressure in each of the port injector fuel rail, the step chamber, and the compression chamber. The lift pump may be electrically actuated, and the direct injector fuel pump may be driven by the PFDI engine, and may not be electrically actuated. Each of the first pressure relief valve and the second pressure relief valve may be biased to regulate pressure in the compression chamber of the direct injection fuel pump during a compression stroke in the direct injection fuel pump when the solenoid activated check valve is in a pass-through state. However, the second pressure relief valve may be biased to regulate pressure in the step chamber during a suction stroke in the direct injection fuel pump. The system may include a controller having executable instructions stored in a non-transitory memory for activating the solenoid activated check valve to a closed position during the compression stroke of the direct injection fuel pump based on a fuel rail pressure of the direct injector fuel rail.
Turning now to
Line 1503 represents regulation pressure of compression chamber 238 of DI pump 1214 (e.g., pressure relief setting of fourth pressure relief valve 1246+lift pump output pressure), line 1505 represents an output pressure of the lift pump (e.g., LPP 212) relative to compression chamber pressure, line 1507 represents a regulation pressure of the step room e.g. combined pressure of the pressure relief set-point of fourth pressure relief valve 1246 and the lift pump pressure, and line 1509 represents the output pressure of the lift pump (e.g., LPP 212) relative to step chamber pressure. Line 1511 represents the regulation pressure of the PFI rail which may be similar to the regulation pressure of the compression chamber (line 1503) and the regulation pressure of the step chamber (line 1507). Line 1513 represents the output pressure of the lift pump (e.g., LPP 212) relative to PFI rail pressure. As such, separate lines are used to indicate the lift pump pressure for enabling clarity. However, the output pressure of the lift pump is the same whether represented by line 1505, line 1509, or line 1513. It will be noted that the regulation pressure in each of the compression chamber, the PFI rail, and the step chamber may be the same (e.g., combined pressure of pressure relief setting of fourth pressure relief valve 1246 and lift pump output pressure), though represented as distinct lines 1503, 1507, and 1511. Furthermore, while the plot of pump piston position 1502 is shown as a straight line, this plot may exhibit more oscillatory behavior. For the sake of simplicity, straight lines are used in
Operating sequence 1500 of
Operating sequence 1500 also includes three suction strokes (from t4 to t5, from t7 to t8, and from t10 till t11). Each suction stroke ensues a preceding corresponding compression stroke as shown in
Operating sequence 1500 illustrates pressurizing the step room (e.g., increasing positive pressure in the step room of DI pump 1214) during each suction stroke to the regulation pressure (line 1507). Further, the PFI rail is also pressurized (e.g., supplied pressurized fuel) by the step chamber during each suction stroke. Specifically, regulation pressure of the PFI rail may be attained during each suction stroke in the DI pump 1214.
Further still, pressure in the step room reduces to that of the lift pump during each compression stroke as the step chamber receives fuel from the lift pump. The step chamber does not supply fuel to the PFI rail during the compression stroke. The PFI rail also receives pressurized fuel during each compression stroke as long as the spill valve is open (e.g., de-energized). However, if the spill valve is closed the PFI rail does not receive fuel (nor pressurization) from the compression chamber. At the same time, the PFI rail also does not receive fuel from the step chamber during the compression stroke.
Accordingly, during the first compression stroke, pressure in each of the compression chamber and the PFI rail may be the same pressure (e.g., respective regulation pressure) as long as the spill valve is open. The regulation pressure may be attained in each of the compression chamber and the PFI rail towards (e.g., at or just after) the beginning of the compression stroke. As depicted, the pressure rise in the compression chamber may not be immediate (e.g., at the commencement of the compression stroke) but may be gradual, since the compression chamber supplies fuel to the PFI rail. Once the spill valve is closed at t2, pressure in the compression chamber rises sharply to the desired fuel rail pressure in the direct injector rail. Pressure in the PFI rail stays at the regulation pressure. However, when a port injection occurs at t3, FRP in the PFI rail drops to lower than the regulation pressure (and remains there until t4) since the PFI rail is not receiving pressurized fuel from the compression chamber since the spill valve is closed. The ensuing suction stroke at t4 causes an increase in FRP of the PFI rail (plot 1510) to regulation pressure just after t4 since PFI rail receives pressurized fuel from the step chamber.
During the second compression stroke, since the spill valve is open throughout, the compression chamber and the PFI rail may be at the same pressure throughout the second compression stroke. Fuel injection via a port injector at t6 may not reduce FRP in the PFI rail since the compression chamber supplies additional fuel to the port injector fuel rail and maintains regulation pressure in the PFI rail. At the beginning of the third compression stroke (at t8), the PFI rail may be at its regulation pressure due to the previous suction stroke (from t7 to t8). However, FRP of the PFI rail reduces in response to delivering the port injection at t9 since the PFI rail does not receive supplementary fuel from the compression chamber since the spill is closed. Pressure in the compression chamber may be significantly higher during the third compression stroke since 100% of the fuel is trapped and delivered to the DI rail
Pressure in the compression chamber may be at the lift pump pressure through each of the three suction strokes. Pressure in the step chamber may be at the lift pump pressure through each of the three compression strokes.
In this way, the DI pump 1214 in sixth embodiment 1200 of
An example method for an engine may comprise supplying fuel to each of a port injector fuel rail and a direct injector fuel rail from a direct injection fuel pump, the fuel supplied to the port injector fuel rail during each of a compression stroke and a suction stroke in the direct injection fuel pump and the fuel supplied to the direct injector fuel only during the compression stroke in the direct injection fuel pump. Herein, the fuel supplied to the port injector fuel rail may be at a pressure higher than an output pressure of a lower pressure pump, the lower pressure pump delivering fuel to the direct injection fuel pump, and wherein the pressure of the fuel supplied to the port injector fuel rail may be regulated by a pressure relief valve. Fuel may be supplied to the port injector fuel rail during the compression stroke when an electronically controlled solenoid valve is deactivated to a pass-through mode. The electronically controlled solenoid valve may be deactivated to the pass-through mode in response to ceasing fuel flow to the direct injector fuel rail during the compression stroke. The method may further comprise providing a differential pressure in the direct injection fuel pump between a top of a pump piston and a bottom of the pump piston during at least the suction stroke.
Turning now to
Line 1603 represents regulation pressure of compression chamber 238 of DI pump 1314 (e.g., combination of pressure relief setting of fourth pressure relief valve 1246, pressure relief setting of fifth pressure relief valve 1346, and lift pump output pressure), line 1605 represents a combination of pressure relief setting of fourth pressure relief valve 1246 and lift pump pressure, line 1607 represents an output pressure of the lift pump (e.g., LPP 212) relative to compression chamber pressure, line 1609 represents a regulation pressure of the step room e.g. combined pressure of the pressure relief set-point of fourth pressure relief valve 1246 and the lift pump pressure, and line 1611 represents the output pressure of the lift pump (e.g., LPP 212) relative to step chamber pressure. Line 1613 represents the regulation pressure of the PFI rail which may be similar to the regulation pressure of the step chamber (line 1609). Line 1615 represents the output pressure of the lift pump (e.g., LPP 212) relative to PFI rail pressure. As such, separate lines are used to indicate the lift pump pressure for enabling clarity. However, the output pressure of the lift pump is the same whether represented by line 1607, line 1611, or line 1615. It will be noted that the regulation pressure in each of the PFI rail and the step chamber may be the same (e.g., combined pressure of pressure relief setting of fourth pressure relief valve 1246 and lift pump output pressure), though represented as distinct lines 1613 and 1609 (respectively). It will also be noted that the regulation pressure of the compression chamber in DI pump 1314 may be higher than the regulation pressures of the step chamber and the PFI rail (due to the additional fifth pressure relief valve 1346). Furthermore, while the plot of pump piston position 1502 is shown as a straight line, this plot may exhibit more oscillatory behavior. For the sake of simplicity, straight lines are used in
Operating sequence 1600 of
Similar to the DI pump 1214 in sixth embodiment 1200 of
Referring now to
The eighth embodiment 1400 includes a combination of fueling the PFI rail 1050 via both sides of the pump piston 220 in DI pump 1414, pressurizing the step room and the compression chamber via one or more pressure relief valves as well as fueling the step chamber 1426 by compression chamber 238. In the eighth embodiment 1400, step chamber 1426 may be fluidically coupled to compression chamber 238 in DI pump 1414. Accordingly, additional check valves and pressure relief valves may be included that may not be included in earlier embodiments.
The step chamber 1426 and PFI rail 1050 may each receive fuel from the compression chamber 238 of DI pump 1414 during a compression stroke when SACV 236 is in pass-through mode. Reflux fuel from compression chamber may exit backwards through SACV 236 along pump passage 254 towards node 1466. At node 1466, reflux fuel may flow at first towards step chamber 1426 via conduit 1486 past node 1472 to node 248, and thereon into step room passage 1442, and into step chamber 1426. Herein, reflux fuel may flow into step chamber 1426 if fuel pressure is lower than the pressure relief setting of sixth pressure relief valve 1446. If pressure of the fuel is greater than the pressure relief set-point of the sixth pressure relief valve 1446, fuel flowing through conduit 1486 may be diverted at node 1472 into relief passage 1462, and through sixth pressure relief valve 1446 into low pressure passage 218. Sixth check valve 1444 coupled along conduit 1486 may allow fuel flow from node 1466 and pump passage 254 towards nodes 1472 and 248, and step room passage 1442. However, sixth check valve 1444 may obstruct fuel flow from node 1472 (and node 248 and step room 1426) towards node 1466. Sixth pressure relief valve 1446 may be biased to regulate pressure in each of the compression chamber 238 and the step chamber 1426 of DI pump 1414. Sixth pressure relief valve 1446 may not be biased to regulate pressure in the PFI rail 1050.
As such, reflux fuel flowing out of compression chamber 238 at the beginning of the compression stroke may flow towards the step chamber 1426 first. After step chamber 1426 is substantially filled, reflux fuel exiting compression chamber 238 through SACV 236 may enter conduit 1408 at node 1466 and flow towards port injector rail 1050. As such, fuel may be supplied to the port injector rail 1050 after the step chamber 1426 is filled and pressurized. Similar to the fifth embodiment 1000 of the fuel system, on the compression stroke (with SACV un-energized) the fuel volume that is pushed toward the PFI rail 1050 from the compression chamber is the difference of the compression chamber displacement and the step chamber displacement.
Reflux fuel from pump passage 254 entering conduit 1408 at node 1466 may flow through seventh check valve 1458 coupled in conduit 1408 towards node 1472 and thereon into port supply passage 1064 towards PFI rail 1050. If pressure of the reflux fuel at node 1472 is higher than pressure relief setting of seventh pressure relief valve 1436, the reflux fuel may flow through relief passage 1412 and through seventh pressure relief valve 1436 towards node 1470, and therethrough into conduit 1476 towards node 1448. Once the pressure of the reflux fuel is higher than the pressure relief setting of sixth pressure relief valve 1446, the reflux fuel arriving at node 1448 from seventh pressure relief valve 1436 may enter relief passage 1462 through sixth pressure relief valve 1446 towards lift pump 212.
The pressure relief points for sixth pressure relief valve 1446 and seventh pressure relief valve 1436 may be added to regulate pressure in the embodiment depicted in
If the spill valve is closed before the step chamber is filled, the step chamber 1426 may receive additional fuel from lift pump 212 through first check valve 244, past nodes 248 and 1448 along step room passage 1442.
During a suction stroke, downward motion of pump piston 220 may expel fuel from step chamber 1426 through step room passage 1442. If the pressure of the fuel is lower than sixth pressure relief valve 1446, fuel exiting the step chamber 1426 may flow through node 1448 into conduit 1476, past node 1470, and thereon through eighth check valve 1450 into port supply passage 1064, and thereon into PFI rail 1050. Specifically, step room 1426 may fuel the PFI rail 1050 during the suction stroke. Eighth check valve 1450 blocks fuel flow from port supply passage 1064 to conduit 1476. Fuel with pressure higher than the relief setting of seventh pressure relief valve 1436 may exit port supply passage 1064 through relief passage 1412 and through seventh pressure relief valve 1436 back through conduit 1476 towards step room passage 1442.
If fuel pressure at node 1448 (whether directly exiting step chamber 1426 or fuel received from seventh pressure relief valve 1436) is higher than the relief setting of sixth pressure relief valve 1446, the fuel may flow through node 248, into conduit 1486, past node 1472 into relief passage 1462, and through sixth pressure relief valve 1446 into low pressure passage 218.
Referring now to operating sequence 1700 of
Line 1703 represents regulation pressure of compression chamber 238 of DI pump 1414 (e.g., combination of pressure relief setting of sixth pressure relief valve 1446, pressure relief setting of seventh pressure relief valve 1436, and lift pump output pressure), line 1705 represents a combination of pressure relief setting of seventh pressure relief valve 1436 and lift pump pressure (line 1705 provided for comparison), line 1707 represents an output pressure of the lift pump (e.g., LPP 212) relative to compression chamber pressure, line 1709 represents a regulation pressure of the step room e.g., combined pressure of pressure relief setting of sixth pressure relief valve 1446, pressure relief setting of seventh pressure relief valve 1436, and lift pump output pressure, line 1711 represents a combination of pressure relief setting of seventh pressure relief valve 1436 and lift pump pressure, and line 1713 indicates the output pressure of the lift pump (e.g., LPP 212) relative to step chamber pressure. Line 1715 represents the regulation pressure of the PFI rail which may be a combination of pressure relief setting of seventh pressure relief valve 1436 and lift pump pressure, similar to line 1705 and 1711. Line 1717 represents the output pressure of the lift pump (e.g., LPP 212) relative to PFI rail pressure. As such, separate lines are used to indicate the lift pump pressure for enabling clarity. However, the output pressure of the lift pump is the same whether represented by line 1707, line 1713, or line 1717. It will be noted that the regulation pressure of the compression chamber in DI pump 1414 may be higher than the regulation pressure of the PFI rail. Furthermore, while the plot of pump piston position 1502 is shown as a straight line, this plot may exhibit more oscillatory behavior. For the sake of simplicity, straight lines are used in
Operating sequence 1700 of
Operating sequence 1700 also includes three suction strokes (from t4 to t5, from t7 to t8, and from t10 till t11). Each suction stroke ensues a preceding corresponding compression stroke as shown in
Operating sequence 1700 depicts pressurization of the step chamber (e.g., increase in pressure to regulation pressure) during each of the suction strokes. The step chamber is also pressurized during the compression strokes when the spill valve is open. This is because the step chamber receives pressurized fuel from the compression chamber when the SACV is open. Thus, in the first compression stroke, pressure in the step room increases to the regulation pressure of line 1709 (similar to regulation pressure represented by line 1703) when the spill valve is open. At t2, when the spill valve is energized to close, pressure in the step room reduces to that of the combined pressure of pressure relief setting of seventh pressure relief valve 1436 and lift pump pressure since pressurized fuel is not received from the compression chamber. However, during the succeeding suction stroke, step room pressure increases to the regulation pressure of line 1709.
In the second compression stroke, pressure in the step chamber is maintained at the higher regulation pressure of combined pressure of pressure relief setting of sixth pressure relief valve 1446, pressure relief setting of seventh pressure relief valve 1436, and lift pump output pressure throughout the second compression stroke. This is because the step chamber receives pressurized fuel from the compression chamber due to the open spill valve. During the third compression stroke, since the spill valve is closed at the beginning of the third compression stroke, pressure in the step room decreases initially to the combined pressure of pressure relief setting of seventh pressure relief valve 1436 and lift pump pressure (line 1711) and may decrease further to lift pump pressure if fuel is received from the lift pump.
Pressure in the compression chamber is at or higher than the regulation pressure of the compression chamber during the compression strokes, and at LPP pressure during the suction strokes, as described in previous operating sequences. Meanwhile, FRP in the PFI rail may be at the regulation pressure of the PFI rail (e.g., combined pressure of pressure relief setting of seventh pressure relief valve 1436 and lift pump pressure) when the PFI rail receives fuel from either the compression chamber or the step chamber. This is because seventh pressure relief valve 1436 is biased to regulate pressure in the PFI rail. FRP in the PFI rail drops at t3 in response to a port injection since additional fuel may not be received from the compression chamber during the first compression stroke after spill valve closes at t2. The ensuing suction stroke replenishes fuel in the PFI rail and FRP rises to the regulation pressure soon after suction stroke beings at t4. The port injection at t6 may not cause a drop in FRP since fuel is supplied from the compression chamber via the open spill valve. During the third compression stroke, port injection at t9 again causes a reduction in FRP in the PFI rail since the compression chamber may not supply supplementary fuel to the PFI rail with the spill valve closed.
In this way, the eighth embodiment 1400 of
Thus, an example method for an engine may comprise delivering pressurized fuel to a port injector fuel rail from each of a compression chamber of a direct injection fuel pump and a step chamber of the direct injection fuel pump. In one example, a pressure of the pressurized fuel is regulated via a pressure relief valve, wherein the pressure of the pressurized fuel is higher than an output pressure of a lift pump. As such, the lift pump may be an electrical pump. Further, the lift pump may supply fuel to each of the compression chamber and the step chamber of the direct injection pump. Further still, the lift pump may be operated at a lower power setting. The method may further comprise delivering pressurized fuel to a direct injector fuel rail from only the compression chamber of the direct injection fuel pump. Herein, a pressure of the pressurized fuel delivered to the direct injector fuel rail may be regulated by a solenoid activated check valve. Furthermore, pressurized fuel may be delivered to the direct injector fuel rail from the compression chamber of the direct injection fuel pump when the solenoid activated check valve is energized to fully closed. Pressurized fuel may be delivered to the port injector fuel rail from the compression chamber of the direct injection fuel pump when the solenoid activated check valve is in a pass-through state. The direct injection fuel pump is operated by the engine.
Turning now to
Lift pump 212 may supply fuel to compression chamber 238 of DI pump 1814 during a suction stroke wherein fuel from LPP 212 flows via low pressure passage 218 through second check valve 344 into pump passage 254, past node 1866 and thereon via SACV 236 into compression chamber 238. Further, during the suction stroke, fuel may be expelled from the step chamber 1826 into passage 1843 towards accumulator 1832. As such, fuel from the step chamber 1826 may not enter step room passage 1842 since ninth check valve 1844 coupled in step room passage 1842 blocks fuel flow from step chamber 1826 towards node 1866. However, ninth check valve 1844 may allow fuel to flow from node 1866 towards step chamber 1826.
Fuel expelled from step chamber 1826 during the suction stroke may enter accumulator chamber 1834 of accumulator 1832 and may be stored within. Accumulator 1832 is arranged, as depicted, downstream of step chamber 1826, and may be fluidically coupled to step chamber 1826 via passage 1843. Fuel exiting step chamber 1826 flows along passage 1843 towards node 1830, and at node 1830, fuel may enter accumulator 1832. As such, a spring within accumulator 1832 may be compressed as an amount of fuel stored within accumulator chamber 1834 increases. While accumulator 1832 may not be pre-loaded, alternative examples may include a pre-loaded accumulator. Eighth pressure relief valve 1836 positioned downstream of accumulator 1832 may establish an upper limit on accumulator pressure. As such, when accumulator 1832 is filled to its largest extent (e.g., maximum fill), pressure in the accumulator may be substantially similar (e.g., within 5% of) the relief setting of the eighth pressure relief valve 1836. If the accumulator 1832 has lower fuel fill, accumulator pressure may be lower than the pressure relief set-point of the eighth pressure relief valve 1836.
As a non-limiting example, the pressure relief set-point of the eighth pressure relief valve may be 5 bar. As situated, eighth pressure relief valve 1836 may allow fuel flow from accumulator 1832 towards low pressure passage 218 when pressure between eighth pressure relief valve 1836 and accumulator 1832 (in relief passage 1862) is greater than a predetermined pressure (e.g., 5 bar). As shown, eighth pressure relief valve 1836 may be fluidically coupled to accumulator 1832 via relief passage 1862.
Thus, during the suction stroke, if fuel exiting step chamber 1826 fills up accumulator chamber 1834, excess fuel may exit towards the low pressure passage 218 through relief passage 1862 once fuel pressure is higher than the relief setting of eighth pressure relief valve 1836. Specifically, accumulator 1832 may be filled prior to fuel exiting via relief passage 1862. Eighth pressure relief valve 1836 may be biased to regulate pressure in each of the compression chamber 238 and the step chamber 1826. As in previous examples, the regulation pressure of the compression chamber and the suction chamber may be based on the relief setting of the eighth pressure relief valve 1836 and the lift pump pressure. Thus, if the relief setting of the eighth pressure relief valve 1836 is 5 bar, in one example, the regulation pressure of the compression chamber 238 and the step chamber 1826 may be 8 bar (sum of relief setting 5 bar of the eighth pressure relief valve 1836 and lift pump pressure of 3 bar).
During a compression stroke, if the spill valve 236 is open, reflux fuel exiting compression chamber 238 through spill valve 236 into pump passage 254 may be diverted at node 1866 towards step room passage 1842 since second check valve 344 blocks flow from node 1866 to low pressure passage 218. Thus, step room 1826 may be filled (and pressurized) by reflux fuel from compression chamber 238 when the SACV 236 is open. The increase in pressure of the fuel may occur due to the presence of eighth pressure relief valve 1836. Once the spill valve is closed during the compression stroke, the step chamber 1826 may be filled by fuel from the accumulator 1832. The fuel may be at a substantially constant pressure (e.g., with a variation of 5%) based on accumulator pressure as well as relief setting of the eighth pressure relief valve 1836.
Thus, in the ninth embodiment 1800 of
Referring now to
Line 1903 represents regulation pressure of compression chamber 238 of DI pump 1814 (e.g., pressure relief setting of eighth pressure relief valve 1836+lift pump output pressure), line 1905 represents an output pressure of the lift pump (e.g., LPP 212) relative to compression chamber pressure, line 1907 represents a regulation pressure of the step room e.g., combined pressure of the pressure relief set-point of eighth pressure relief valve 1836 and the lift pump pressure, and line 1909 represents the output pressure of the lift pump (e.g., LPP 212) relative to step chamber pressure. As such, separate numbers (and lines) are used to indicate the lift pump pressure for enabling clarity. However, the output pressure of the lift pump is the same whether represented by line 1905 or line 1909. It will be noted that the regulation pressure in each of the compression chamber and the step chamber may be the same, though represented as distinct lines 1903 and 1907. Furthermore, while the plot of pump piston position 1902 is shown as a straight line, this plot may exhibit more oscillatory behavior. For the sake of simplicity and clarity, straight lines are used in
Similar to operating sequences such as 500 of
Operating sequence 1900 illustrates regulating (e.g., maintaining) the step room to the regulation pressure of the step room (line 1907), such as the combined pressure of the pressure relief set-point of eighth pressure relief valve 1836 and the lift pump pressure, during each of the three compression and three suction strokes. As depicted, the pressure in the step room may be maintained at the regulation pressure that is higher than lift pump output pressure through each pump stroke.
As the first compression stroke begins at t1, compression chamber increases to the regulation pressure while the spill valve is open. Herein, fuel exits the compression chamber via the spill valve and enters the step room. If the step room is filled, excess fuel may be stored in the accumulator and/or may be returned to low pressure passage 218 after flowing through eighth pressure relief valve 1836. Step chamber pressure may also be at the regulation pressure since it receives pressurized fuel from the compression chamber.
As spill valve is energized to close (e.g., function as a check valve) at t2, trapped fuel in compression chamber is delivered to the DI fuel rail and compression chamber pressure rises significantly. Step room pressure may drop slightly and remain below the regulation pressure (line 1907) through the remaining part of the first compression stroke after the spill valve is closed, particularly if the step chamber is not filled. Once the spill valve is closed, the step room is replenished by stored fuel from the accumulator and the pressure in the step room remains slightly below the regulation pressure. During the following suction stroke that begins at t3, pressure in the step room rises to that of the regulation pressure of the step room as fuel is pushed out of the step room into the accumulator and then through the eighth pressure relief valve. Step chamber pressure between t3 and t4 may be at the regulation pressure as set by eighth pressure relief valve 1836.
Further, between t3 and t4 (first suction stroke), compression chamber pressure drops to that of lift pump output pressure as fuel is supplied to the compression chamber via the lift pump. Compression chamber may increase to, and remain at the regulation pressure in the second compression stroke as the spill valve is maintained open for the entire duration of the second compression stroke. Step chamber pressure is also maintained constant at the regulation pressure through the second compression stroke since step room receives fuel from the compression chamber, as described above. In the third compression stroke, the spill valve is energized to close at the beginning of the third compression stroke at t6. The step chamber may experience a pressure drop, as indicated by 1917, since fuel may not be received from the compression chamber. However, step room pressure returns to regulation pressure as the accumulator replenishes the step chamber with fuel. Step room pressure is maintained at the regulation pressure during the subsequent suction stroke (third suction stroke) as compression chamber reduces to lift pump pressure.
In this way, pressure in the step chamber is regulated by the accumulator to a substantially constant pressure during each of the compression stroke and the suction stroke of the DI pump 1814. The substantially constant pressure may be the regulation pressure represented by line 1907 of operating sequence 1900 (e.g., combined pressure of relief setting of eighth pressure relief valve 1836 and lift pump pressure). Thus, the step chamber may be regulated to the substantially constant pressure that may be higher than lift pump output pressure.
Turning now to tenth embodiment 2000 of the fuel system including HPP 2014. Tenth embodiment 2000 may be similar to ninth embodiment in that an accumulator supplies fuel to the step chamber 1826. Further, the step chamber may be held at a substantially constant pressure through pump cycles. However, the function of the accumulator may be performed by port fuel injector (PFI) fuel rail 2050. For example, the PFI rail 2050 may be formed of a compliant material that stores fuel. In one example, PFI rail 2050 may be formed of thin stainless steel (e.g., 1 mm thickness) material. In another example, the PFI rail may also have a polygon cross-section. In yet another example, the PFI fuel rail may have thinner walls, and a non-circular cross-section. As such, in the tenth embodiment 2000 of the fuel system, PFI fuel rail 2050 may flex under PFI pressures.
Further, PFI rail 2050 may be fluidically coupled to step chamber 2026 via port conduit 2038. Thus, PFI rail receives fuel directly from step room 2026, and may not receive fuel directly from either lift pump 212 or compression chamber 238.
Tenth embodiment 2000 includes PFDI engine 1010 fueled by port injectors 1052 and direct injectors 252. As in the ninth embodiment, lift pump 212 delivers fuel to compression chamber 238 during a suction stroke. Fuel in step chamber 1826 of DI pump 2014 may be expelled through conduit 2043 towards node 2034. As such, ninth check valve 1844 blocks fuel flow from step chamber 1826 along step room passage 1842 towards node 1866.
At node 2034, if fuel pressure is lower than ninth pressure relief valve 2036, fuel may flow from node 2034 towards PFI rail 2050 via port conduit 2038. However, if fuel pressure is higher than relief setting of ninth pressure relief valve 2036, fuel may flow from node 2034 towards ninth pressure relief valve 2036 along relief conduit 2032. The relief setting of ninth pressure relief valve 2036 may be the same as the relief setting of eighth pressure relief valve 1836 in
As in the ninth embodiment 1800 of
In a compression stroke, similar to the ninth embodiment 1800, if spill valve 236 is open, reflux fuel from compression chamber 238 may flow through SACV 236, and at node 1866 enter step room passage 1842. This reflux fuel may flow through ninth check valve 1844 into step chamber 1826. Once the step room is filled, excess fuel may flow into accumulator PFI rail 2050 through port conduit 2038. Again, if pressure of the reflux fuel is higher than relief setting of ninth pressure relief valve 2036, fuel may flow from node 2034 towards ninth pressure relief valve 2036 along relief conduit 2032. Once the SACV 236 is closed during the compression stroke, the step room may be supplied fuel by the accumulator PFI rail 2050. Herein, fuel may stream from PFI rail 2050 along port conduit 2038 towards node 2034. From node 2034, fuel to replenish step room may flow through conduit 2043 into step room 1826.
Thus, an example method may comprise delivering fuel from a step chamber of a high pressure fuel pump to a port injection fuel rail at a pressure that is higher than an output pressure of a lift pump during a suction stroke, the port injection rail not receiving fuel directly from either the lift pump or a compression chamber of the high pressure fuel pump. The method may further comprise regulating a pressure of the step chamber via a pressure relief valve positioned downstream of the step chamber. Herein, the port injection fuel rail may function as an accumulator. Further, the port injection fuel rail may supply fuel to the step chamber such as during a compression stroke when a spill valve is closed. A pressure in a compression chamber of the high pressure fuel pump may be regulated by the pressure relief valve during a compression stroke in the high pressure fuel pump. Furthermore, the pressure in the compression chamber of the high pressure fuel pump may be regulated by the pressure relief valve during the compression stroke when a solenoid activated check valve positioned at an inlet of the compression chamber of the high pressure pump is in pass-through mode.
It will be noted that tenth embodiment 2000 and eleventh embodiment 2100 of the fuel system may include certain components (e.g., controller 202, drivers for the injectors, etc.) shown in earlier embodiments though these components are not depicted in
Thus, an example system may comprise a port fuel direct injection (PFDI) engine, a direct injection fuel pump including a piston, a compression chamber, a step chamber arranged below a bottom surface of the piston, a cam for moving the piston, and a solenoid activated check valve positioned at an inlet of the compression chamber of the direct injection fuel pump, a lift pump fluidically coupled to the direct injection fuel pump, a first pressure relief valve (e.g., tenth pressure relief valve 2148 of
Referring now to
Operating sequence 2200 includes time plotted along the horizontal axis and time increases from the left to the right of the horizontal axis. Operating sequence 2200 depicts pump piston position at plot 2202, a spill valve (e.g., SACV 236) position at plot 2204, compression chamber pressure at plot 2206, step chamber pressure at plot 2208, changes in fuel rail pressure (FRP) in the port injector (PFI) fuel rail at plot 2210, and port injections at plot 2212. Pump piston position may vary between the top-dead-center (TDC) and bottom-dead-center (BDC) positions of pump piston 220 as indicated by plot 2202. For the sake of simplicity, the spill valve position of plot 2204 is shown in
Line 2203 represents regulation pressure of compression chamber 238 of DI pump 2014 (e.g., pressure relief setting of ninth pressure relief valve 2036+lift pump output pressure), line 2205 represents an output pressure of the lift pump (e.g., LPP 212) relative to compression chamber pressure, line 2207 represents a regulation pressure of the step room e.g., combined pressure of the pressure relief set-point of ninth pressure relief valve 2036 and the lift pump pressure, and line 2209 represents the output pressure of the lift pump (e.g., LPP 212) relative to step chamber pressure. Line 2211 represents the regulation pressure of the PFI rail which may be similar to the regulation pressure of the compression chamber (line 2203) and the regulation pressure of the step chamber (line 2207). Line 2213 represents the output pressure of the lift pump (e.g., LPP 212) relative to PFI rail pressure. As such, separate numbers (and lines) are used to indicate the lift pump pressure for enabling clarity. However, the output pressure of the lift pump is the same whether represented by line 2205, line 2209 or line 2213. It will be noted that the regulation pressure in each of the compression chamber, the PFI rail, and the step chamber may be the same, though represented as distinct lines 2203, 2207, and 2211. Furthermore, while the plot of pump piston position 2202 is shown as a straight line, this plot may exhibit more oscillatory behavior. For the sake of simplicity, straight lines are used in
Operating sequence 2200 of
Operating sequence 2200 also includes three suction strokes (from t4 to t5, from t7 to t8, and from t10 till t11). Each suction stroke ensues a preceding corresponding compression stroke as shown in
Operating sequence 2200 illustrates regulating the step room to a single, substantially constant pressure, e.g., regulation pressure represented by line 2207, such as the combined pressure of the relief set-point of ninth pressure relief valve 2036 and the lift pump pressure, during each of the three compression and three suction strokes. As depicted, the pressure in the step room may be maintained at the regulation pressure through each pump stroke. Pressure in the step room may reduce slightly when the spill valve is closed during a compression stroke (as shown between t2 and t4, and between t8 and t10) but the PFI rail functioning as accumulator may refill the step chamber. Accordingly, pressure in the step chamber drops slightly below the regulation pressure of the step chamber (line 2207). However, step room pressure may be returned to the regulation pressure in the ensuing suction stroke.
Pressure in the PFI rail may also be maintained at the regulation pressure of line 2211 since the PFI rail may receive fuel from the step chamber during each of the compression stroke (as long as spill valve is open and the step chamber is filled) and the suction stroke. The port injections at t3, however, reduce FRP since the spill valve is closed during the first compression stroke between t2 and t4, and the PFI rail delivers fuel to the step chamber (at 2215) to maintain the regulation pressure in the step chamber. The port injection at t6 may not reduce FRP since the port injector fuel rail may receive fuel from the compression chamber (via the step chamber) since the spill valve is open. The port injection at t9, like that at t3, causes a decrease in FRP. This is because the step chamber may receive fuel from the accumulator PFI rail during the third compression stroke, as no fuel is received form the compression chamber. Further still, the PFI rail may not receive fuel from the step chamber. FRP in PFI rail may be returned to the regulation pressure in the ensuing suction strokes as the step chamber refills the accumulator PFI rail.
Thus, an example method may comprise regulating a pressure in a step chamber of a direct injection fuel pump to a substantially constant pressure during each of a compression stroke and a suction stroke in the direct injection fuel pump. Herein, the substantially constant pressure in the step chamber may be higher than an output pressure of a lift pump, the lift pump supplying fuel to the direct injection pump. The substantially constant pressure in the step chamber may be maintained by an accumulator positioned downstream of the step chamber. In one example, such as in the tenth and eleventh embodiments, the accumulator may also function as a port injector fuel rail. In other words, the port injector fuel rail may serve as the accumulator. The method may also include regulating a pressure of the accumulator by a pressure relief valve situated downstream of the accumulator. The pressure relief valve may be biased to regulate pressure in not only the accumulator, but also the step chamber and a compression chamber of the DI pump. The step chamber may receive fuel from the compression chamber of the direct injection fuel pump during a compression stroke in the direct injection pump. The step chamber may receive fuel from the compression chamber during the compression stroke when a solenoid activated check valve arranged at an inlet of the compression chamber of the direct injection pump is in a pass-through mode. The step chamber may receive fuel from the accumulator during the compression stroke when the solenoid activated check valve arranged at the inlet of the direct injection pump is closed.
Referring now to
Operating sequence 2300 includes time plotted along the horizontal axis and time increases from the left to the right of the horizontal axis. Operating sequence 2300 depicts pump piston position at plot 2302, a spill valve (e.g., SACV 236) position at plot 2304, compression chamber pressure at plot 2306, step chamber pressure at plot 2308, changes in fuel rail pressure (FRP) in the port injector (PFI) fuel rail at plot 2310, and port injections at plot 2312. Pump piston position may vary between the top-dead-center (TDC) and bottom-dead-center (BDC) positions of pump piston 220 as indicated by plot 2302. For the sake of simplicity, the spill valve position of plot 2304 is shown in
Line 2303 represents regulation pressure of compression chamber 2138 of DI pump 2114 (e.g., combined pressure of pressure relief setting of ninth pressure relief valve 2036, pressure relief setting of tenth pressure relief valve 2148, and lift pump output pressure), line 2305 represents a combined pressure of pressure relief setting of ninth pressure relief valve 2036 and lift pump pressure (provided for comparison), line 2307 represents an output pressure of the lift pump (e.g., LPP 212) relative to compression chamber pressure, line 2309 represents a regulation pressure of the step room e.g. combined pressure of the pressure relief set-point of ninth pressure relief valve 2036 and the lift pump pressure, and line 2311 represents the output pressure of the lift pump (e.g., LPP 212) relative to step chamber pressure. Line 2313 represents the regulation pressure of the PFI rail which may be similar to the regulation pressure of the step chamber (line 2309). Line 2315 represents the output pressure of the lift pump (e.g., LPP 212) relative to PFI rail pressure. As such, separate numbers (and lines) are used to indicate the lift pump pressure for enabling clarity. However, the output pressure of the lift pump is the same whether represented by line 2307, line 2311 or line 2315. It will be noted that the regulation pressure in each of the PFI rail and the step chamber may be the same, though represented as distinct lines 2309, and 2313. Further still, the regulation pressure of compression chamber 2138 of DI pump 2114 may be higher than each of the regulation pressure in each of the PFI rail and the step chamber. Furthermore, while the plot of pump piston position 2302 is shown as a straight line, this plot may exhibit more oscillatory behavior. For the sake of simplicity and clarity, straight lines are used in
Operating sequence 2300 of
The step room in the eleventh embodiment may be regulated to a single, substantially constant pressure, e.g. regulation pressure represented by line 2309, such as the combined pressure of the relief set-point of ninth pressure relief valve 2036 and the lift pump pressure, during each of the three compression and three suction strokes. Pressure in the step room may reduce slightly (e.g., by 5%) below regulation pressure when the spill valve closed (as indicated in operating sequence 2300 between t2 and t4, and between t8 and t10) but the accumulator PFI rail may fill the step chamber once the spill valve is energized. Accordingly, pressure in the step chamber drops slightly below the regulation pressure of the step chamber (line 2309). Further, pressure in the step room may return to the regulation pressure in the ensuing suction stroke(s).
Pressure in the PFI rail may also be maintained at the regulation pressure of line 2313 since the PFI rail may receive fuel from the step chamber during each of the compression stroke (from compression chamber as long as spill valve is open and step room is filled) and the suction stroke. The port injections at t3, however, reduce FRP since the spill valve is closed during the first compression stroke between t2 and t4, and the PFI rail delivers fuel to the step chamber to maintain the regulation pressure in the step chamber. The port injection at t6 may not reduce FRP since the port injector fuel rail may receive fuel from the compression chamber (via the step chamber) since the spill valve is open throughout. The port injection at t9, like that at t3, causes a decrease in FRP. This is because the step chamber may receive fuel from the accumulator PFI rail during the third compression stroke, as no fuel is received form the compression chamber. FRP in PFI rail may be returned to the regulation pressure in the ensuing suction strokes as the step chamber refills the accumulator PFI rail.
In this way, the embodiments of the fuel systems described above (
Turning now to
At 2402, engine operating conditions may be estimated and/or measured. For example, engine conditions such as engine speed, engine fuel demand, boost, driver demanded torque, engine temperature, air charge, etc. may be determined. At 2404, routine 2400 determines if the HPP (e.g., DI fuel pumps of the various embodiments) can be operated in the default pressure mode. The HPP may be operated in default pressure mode, in one example, if the engine is idling. In another example, the HPP may function in default pressure mode if the vehicle is decelerating. If it is determined that the DI fuel pump can be operated in default pressure mode, routine 2400 progresses to 2420 to deactivate and de-energize the solenoid activated check valve (such as SACV 236 of DI pumps described earlier). To elaborate, the solenoid within the SACV may be de-energized to a pass-through state such that fuel may flow through the SACV both upstream from and downstream of SACV.
If, however, it is determined at 2404 that the HPP may not be operated in default pressure mode, routine 2400 continues to 2406 to operate the HPP in variable pressure mode. The variable pressure mode of HPP operation may be used during non-idling conditions, in one example. In another example, the variable pressure mode may be used when torque demand is greater, such as during acceleration of a vehicle. As mentioned earlier, variable pressure mode may include controlling HPP operation electronically by actuating and energizing the solenoid activated check valve based on desired duty cycle.
Next, at 2408, routine 2400 determines if current torque demand (and fuel demand) includes a demand for full pump strokes. Full pump strokes may include operating the DI fuel pump at 100% duty cycle wherein a substantially large portion of fuel is delivered to the DI fuel rail. An example 100% duty cycle operation of the various DI pumps is depicted in each third compression stroke of example operating sequences shown earlier.
If it is confirmed that full pump strokes (e.g., 100% duty cycle) are desired, routine 2400 continues to 2410, where the SACV may be energized for an entire stroke of the pump. As such, the SACV may be energized (and closed) through an entire compression stroke. Thus, at 2412, the SACV may be energized and closed at a beginning of a compression stroke (such as at the beginning of each third compression stroke in the operating sequences described earlier).
If, on the other hand, it is determined at 2408 that full pump strokes are (or 100% duty cycle operation is) not desired, routine 2400 progresses to 2414 to operate the DI pump in a reduced pump stroke or at less than 100% duty cycle. Next, at 2416, the controller may energize and close the SACV at a time between BDC position and TDC position of the pump piston in the compression stroke. For example, the DI pump may be operated with a 20% duty cycle wherein the SACV is energized to close when 80% of the compression stroke is complete to pump about 20% volume of the DI pump. In another example, the DI pump may be operated with a 60% duty cycle, wherein the SACV may be closed when 40% of the compression stroke is complete. Herein, 60% of the DI pump volume may be pumped into the DI fuel rail. An example of a reduced pump stroke or a less than 100% duty cycle operation (also termed, reduced duty cycle operation) of the HP pump was previously described in reference to first compression strokes in each operating sequence where the SACV is closed at time t2.
Turning now to
It will be noted that the controller (such as controller 12 of
At 2502, routine 2500 establishes that the DI pump is in variable mode. At 2504, it may be determined if a 100% duty cycle is commanded. If yes, at 2510, it is determined that the SACV may be energized to close at the beginning of a compression stroke in the DI pump. If no, routine 2500 continues to 2506 to establish that the DI pump is operating in a less than 100% duty cycle mode. Further, at 2508, routine 2500 proceeds to routine 2800 of
At 2512, routine 2500 confirms if the DI pump includes an accumulator fueling the step room (such as in the fuel system embodiments of
At 2522, pressure changes during a compression stroke in the DI fuel pumps of the above embodiments are described. At 2524, during a compression stroke in the DI pump, pressure in the compression chamber may be increased to a pressure desired by the DI fuel rail, which is higher than the regulation pressure of the compression chamber. Further, pressure in the step room may be at the lift pump pressure enabling a differential pressure in the DI pumps and ensuing lubrication. At 2526, pressure changes during a suction stroke in the DI fuel pumps of the above embodiments are described. At 2528, pressure in the step room may be increased to the regulation pressure based on presence of one or more pressure relief valves biased to regulate pressure in the step room. Differential pressure may exist between the step room and the compression chamber as compression chamber pressure is reduced to that of lift pump output pressure. Thus, lubrication can occur in the DI pump during both pump strokes.
If at 2520, it is determined that a PFI rail is fluidically coupled to the step room, routine 2500 progresses to 2530. Thus, the embodiments described below may include those fuel systems where the step chamber is fluidically coupled to a PFI rail, but not to an accumulator, and where the step room does not receive fuel from the compression chamber, such as embodiments shown in
At 2530, pressure changes during a compression stroke in the DI fuel pumps of the above embodiments are described. At 2532, during a compression stroke in the DI pump, pressure in the compression chamber may be increased to a pressure desired by the DI fuel rail, which is higher than the regulation pressure of the compression chamber. Further, pressure in the step room may be at the lift pump pressure enabling a differential pressure in the DI pumps and ensuing lubrication. Further still, the PFI rail may not be fueled by either the compression chamber (since spill valve is closed) or the step room. Accordingly, any port injections during this period may cause a reduction in FRP.
At 2534, pressure changes during a suction stroke in the DI fuel pumps of the above embodiments are described. At 2536, pressure in the step room may be increased to the regulation pressure based on presence of one or more pressure relief valves biased to regulate pressure in the step room. Differential pressure may exist between the step room and the compression chamber as compression chamber pressure is reduced to that of lift pump output pressure. Thus, lubrication can occur in the DI pump during both pump strokes. Further still, the PFI rail is fueled by the step room. Accordingly, if FRP in the PFI rail has reduced due to previous port injections with spill valve closed, the FRP may be restored to the regulation pressure of the PFI rail in the ensuing suction strokes. Thus, when a 100% duty cycle is commanded, the PFI rail may receive fuel from the step room during the suction strokes.
Turning now to routine 2600 of
At 2602, routine 2600 establishes that the DI pump is operating in the variable mode with 100% duty cycle commanded. Further, the step room may be fluidically coupled to the compression chamber. Next at 2604, routine 2600 determines if a PFI rail is in fluidic communication with the step chamber. If no, routine 2600 proceeds to 2606. Thus, pressure changes described below may apply to those embodiments of fuel systems where the step chamber is fluidically coupled to a compression chamber but not fluidically coupled to a PFI rail, or an accumulator, such as the embodiment shown in
At 2606, pressure changes during a compression stroke in the DI fuel pump of the above embodiment (
If at 2604, it is determined that a PFI rail is fluidically coupled to the step room, routine 2600 progresses to 2614. Thus, pressure changes described below may include those in the embodiments where the step chamber is fluidically coupled to a PFI rail, but not to an accumulator, and where the step room is also fluidically coupled to the compression chamber, such as embodiment shown in
At 2614, pressure changes during a compression stroke in the DI fuel pumps of the above embodiments are described. At 2616, during a compression stroke in the DI pump, pressure in the compression chamber may be increased to a pressure desired by the DI fuel rail, which is higher than the regulation pressure of the compression chamber. Further, pressure in the step room may be reduced to that of either the lift pump pressure or the regulation pressure of the PFI rail enabling a differential pressure in the DI pumps and ensuing lubrication. Further still, the PFI rail may not be fueled by either the compression chamber (since spill valve is closed) or the step room of
At 2618, pressure changes during a suction stroke in the DI fuel pumps of
Further still, the PFI rail is fueled by the step room during the suction stroke in the embodiment of
Turning now to routine 2700 of
At 2702, routine 2700 establishes that the DI pump is operating in the variable mode with 100% duty cycle commanded. Further, the step room may be fluidically coupled to the accumulator. Next at 2704, routine 2700 determines if a PFI rail is in fluidic communication with the step chamber. If no, routine 2700 proceeds to 2706. Thus, pressure changes described below may apply to those embodiments of fuel systems where the step chamber is fluidically coupled to an accumulator but not fluidically coupled to a PFI rail, such as the embodiment shown in
At 2706, pressure changes during a compression stroke in the DI fuel pump of the above embodiment (
At 2710, pressure changes during a suction stroke in the DI fuel pump of the embodiment of
If at 2704, it is determined that a PFI rail is fluidically coupled to the step room, routine 2700 progresses to 2714. Herein, the PFI rail may function as the accumulator. Thus, pressure changes described below may include those in the embodiments where the step chamber is fluidically coupled to an accumulator PFI rail, and where the step room is also fluidically coupled to the compression chamber, such as embodiment shown in
At 2714, pressure changes during a compression stroke in the DI fuel pumps of the above embodiments are described. At 2716, during a compression stroke in the DI pump, pressure in the compression chamber may be increased to a pressure desired by the DI fuel rail, which is higher than the regulation pressure of the compression chamber. Further, pressure in the step room may be maintained at substantially the regulation pressure of the step room based on the relief set-point of the ninth pressure relief valve 2036 enabling a differential pressure in the DI pumps and ensuing lubrication. The step room may receive fuel from the accumulator PFI rail and step room pressure may be maintained substantially constant at its regulation pressure. The DI pump may have a differential pressure between the step room and the compression chamber. Further still, the PFI rail may not be fueled by the step room. Accordingly, any port injections during this period may cause a reduction in FRP (e.g., t3 in operating sequence 2200).
At 2718, pressure changes during a suction stroke in the DI fuel pumps of
Turning now to
At 2802, routine 2800 establishes that the DI pump is operating in variable mode (where the SACV is not in pass-through mode for an entire duration of a compression stroke) with a duty cycle of less than 100% being commanded. Thus, the SACV may be energized to close between BDC and TDC positions of the pump piston. Next at 2804, routine 2800 confirms if the fuel system includes an accumulator supplying fuel to the step chamber, e.g., such as in the embodiments depicted in
If no, routine 2800 continues to 2812 to determine if the DI pump supplies fuel to a PFI rail from the step chamber. Herein, it may be confirmed if the step chamber is fluidically coupled to a PFI rail. If it is determined that a PFI rail is not coupled to the step room, routine 2800 continues to 2814. Thus, the embodiments described below may include those fuel systems where the step chamber is not fluidically coupled to a PFI rail or an accumulator, and where the step room is not fluidically coupled to the compression chamber, such as embodiments shown in
At 2814, pressure changes during a compression stroke in the DI fuel pumps of the above embodiments are described. At 2816, during a compression stroke in the DI pump, pressure in the compression chamber may be increased to the regulation pressure of the compression chamber (e.g., default pressure) when the spill valve is in pass-through mode. The regulation pressure may be based on the pressure relief setting of a pressure relief valve biased to regulate pressure in the compression chamber (such as second pressure relief valve 326 in
If at 2812, it is determined that a PFI rail is fluidically coupled to the step room, routine 2800 progresses to 2822. Thus, the embodiments described below may include those fuel systems where the step chamber is fluidically coupled to a PFI rail, but not to an accumulator, and where the step room is not fluidically coupled to (and does not receive fuel from) the compression chamber, such as embodiments shown in
At 2822, pressure changes during a compression stroke in the DI fuel pumps of the above embodiments are described. At 2824, during a compression stroke in the DI pump, compression chamber pressure increases to the regulation pressure of the compression chamber, based on one or more pressure relief valves (e.g., fourth pressure relief valve 1246 alone in
At 2826, pressure changes during a suction stroke in the DI fuel pumps of the above embodiments are described. At 2828, pressure in the step room may be increased to the regulation pressure based on presence of one or more pressure relief valves (e.g., fourth pressure relief valve 1246 in
Referring now to
At 2902, routine 2900 establishes that the DI pump is operating in the variable mode with a duty cycle that is less than 100%. Further, the step room may be fluidically coupled to the compression chamber. Next at 2904, routine 2900 determines if a PFI rail is in fluidic communication with the step chamber. If no, routine 2900 proceeds to 2906. Thus, pressure changes described below may apply to those embodiments of fuel systems where the step chamber is fluidically coupled to a compression chamber but not fluidically coupled to either a PFI rail, or an accumulator, such as the embodiment shown in
At 2906, pressure changes during a compression stroke in the DI fuel pump of the above embodiment (
If at 2904, it is determined that a PFI rail is fluidically coupled to the step room, routine 2900 progresses to 2914. Thus, pressure changes described below may include those in the embodiments where the step chamber is fluidically coupled to a PFI rail, but not to an accumulator, and where the step room is also fluidically coupled to the compression chamber, such as embodiment shown in
At 2914, pressure changes during a compression stroke in the DI fuel pumps of the above embodiments are described. At 2916, during a compression stroke in the DI pump, pressure in the compression chamber may be increased to the regulation pressure of the compression chamber based on one or more pressure relief valves (e.g., third pressure relief valve 1046 of
Upon closing the SACV, compression chamber pressure may rise to a pressure desired by the DI fuel rail, which is higher than the regulation pressure of the compression chamber, and fuel may be delivered to the DI rail from the compression chamber. Further, pressure in the step room may be reduced to that of either the regulation pressure of the PFI rail or the lift pump pressure enabling a differential pressure in the DI pumps and ensuing lubrication. Further still, the PFI rail may not be fueled by either the compression chamber (since spill valve is closed) or the step room of
At 2918, pressure changes during a suction stroke in the DI fuel pumps of
Turning now to routine 3000 of
At 3002, routine 3000 establishes that the DI pump is operating in the variable mode with a less than 100% duty cycle being commanded. Further, the step room may be fluidically coupled to the accumulator. Next at 3004, routine 3000 determines if a PFI rail is in fluidic communication with the step chamber. If no, routine 3000 proceeds to 3006. Thus, pressure changes described below may apply to those embodiments of fuel systems where the step chamber is fluidically coupled to an accumulator but not fluidically coupled to a PFI rail such as the embodiment shown in
At 3006, pressure changes during a compression stroke in the DI fuel pump of the above embodiment (
Once the SACV closes between BDC and TDC positions, compression chamber pressure may be increased to a pressure desired by the DI fuel rail, which is higher than the regulation pressure of the compression chamber. As such, fuel at this desired pressure may be delivered to the DI fuel rail. Since the spill valve is closed and the step chamber no longer receives fuel from the compression chamber, the accumulator may supply fuel to the step room to maintain the step room at a constant pressure if the step room experiences a reduction in pressure after the SACV closes, as shown at 2215 of
At 3010, pressure changes during a suction stroke in the DI fuel pump of the embodiment of
If at 3004, it is determined that a PFI rail is fluidically coupled to the step room, routine 3000 progresses to 3014. Herein, the PFI rail may function as the accumulator. Thus, pressure changes described below may include those in the embodiments where the step chamber is fluidically coupled to an accumulator PFI rail, and where the step room is also fluidically coupled to the compression chamber, such as embodiment shown in
At 3014, pressure changes during a compression stroke in the DI fuel pumps of the above embodiments are described. At 3016, during a compression stroke in the DI pump, pressure in the compression chamber may rise to the regulation pressure when the SACV is open. The regulation pressure of the compression chamber may be based on the relief setting of a pressure relief valve such as ninth pressure relief valve 2036 alone in
Once the SACV closes, pressure in the compression chamber may be increased to a pressure desired by the DI fuel rail, which is higher than the regulation pressure of the compression chamber. Further, the step room may receive fuel from the accumulator PFI rail if the step room is not completely filled allowing step room pressure to be maintained substantially constant at its regulation pressure. Further, pressure in the step room may be maintained at substantially the regulation pressure of the step room based on the relief set-point of the ninth pressure relief valve 2036 enabling a differential pressure in the DI pumps and ensuing lubrication. Further still, the PFI rail may not be fueled by the step room once the SACV closes. As such, the PFI rail may have to supply fuel to the step chamber. Accordingly, any port injections during this period may cause a reduction in FRP (e.g., t3 in operating sequence 2200).
At 3018, pressure changes during a suction stroke in the DI fuel pumps of
Turning now to
At 3102, routine 3100 establishes that the DI pump is operating in default mode (where the SACV is in pass-through mode for an entire duration of a compression stroke). Thus, the SACV may be de-energized and open between BDC and TDC positions of the pump piston during the delivery stroke. As such, the DI pump may operate in the default pressure mode and supply fuel at a default pressure to the DI rail, when the direct injectors are deactivated. Next at 3104, routine 3100 confirms if the fuel system includes an accumulator supplying fuel to the step chamber, e.g., such as in the embodiments depicted in
If no, routine 3100 continues to 3112 to determine if the DI pump supplies fuel to a PFI rail from the step chamber. Herein, it may be confirmed if the step chamber is fluidically coupled to a PFI rail. If it is determined that a PFI rail is not coupled to the step room, routine 3100 continues to 3114. Thus, the embodiments described below may include those fuel systems where the step chamber is not fluidically coupled to a PFI rail or an accumulator, and where the step room is not fluidically coupled to the compression chamber, such as embodiments shown in
At 3114, pressure changes during a compression stroke in the DI fuel pumps of the above embodiments are described. At 3116, during a compression stroke in the DI pump, pressure in the compression chamber may be increased to the regulation pressure of the compression chamber (e.g., default pressure) since the spill valve is in pass-through mode. The regulation pressure may be based on the pressure relief setting of a pressure relief valve biased to regulate pressure in the compression chamber (such as second pressure relief valve 326 in
If at 3112, it is determined that a PFI rail is fluidically coupled to the step room, routine 3100 progresses to 3122. Thus, the embodiments described below may include those fuel systems where the step chamber is fluidically coupled to a PFI rail, but not to an accumulator, and where the step room is not fluidically coupled to (and does not receive fuel from) the compression chamber, such as embodiments shown in
At 3122, pressure changes during a compression stroke in the DI fuel pumps of the above embodiments are described. At 3124, during a compression stroke in the DI pump, compression chamber pressure increases to the regulation pressure of the compression chamber, based on one or more pressure relief valves (e.g., fourth pressure relief valve 1246 alone in
At 3126, pressure changes during a suction stroke in the DI fuel pumps of the above embodiments are described. At 3128, pressure in the step room may be increased to the regulation pressure based on presence of one or more pressure relief valves (e.g., fourth pressure relief valve 1246 in
Referring now to
At 3202, routine 3200 establishes that the DI pump is operating in the default mode with the SACV being in pass-through state through the entire compression stroke. Further, the step room may be fluidically coupled to the compression chamber. Next at 3204, routine 3200 determines if a PFI rail is in fluidic communication with the step chamber. If no, routine 3200 proceeds to 3206. Thus, pressure changes described below may apply to those embodiments of fuel systems where the step chamber is fluidically coupled to a compression chamber but not fluidically coupled to either a PFI rail, or an accumulator, such as the embodiment shown in
At 3206, pressure changes during a compression stroke in the DI fuel pump of the above embodiment (
If at 3204, it is determined that a PFI rail is fluidically coupled to the step room, routine 3200 progresses to 3214. Thus, pressure changes described below may include those in the embodiments where the step chamber is fluidically coupled to a PFI rail, but not to an accumulator, and where the step room is also fluidically coupled to the compression chamber, such as embodiment shown in
At 3214, pressure changes during a compression stroke in the DI fuel pumps of the above embodiments are described. At 3216, during a compression stroke in the DI pump, pressure in the compression chamber may increase to the regulation pressure of the compression chamber based on one or more pressure relief valves (e.g., third pressure relief valve 1046 of
At 3218, pressure changes during a suction stroke in the DI fuel pumps of
Further still, the PFI rail is fueled by the step room in the embodiment of
Turning now to routine 3300 of
At 3302, routine 3300 establishes that the DI pump is operating in the default mode. As such, the SACV may be commanded to (e.g., de-energized) to pass-through mode through the entire compression stroke. Further, at 3302 it may be established that the step room may be fluidically coupled to the accumulator. Next at 3304, routine 3300 determines if a PFI rail is in fluidic communication with the step chamber. If no, routine 3300 proceeds to 3306. Thus, pressure changes described below may apply to those embodiments of fuel systems where the step chamber is fluidically coupled to an accumulator but not fluidically coupled to a PFI rail, such as the embodiment shown in
At 3306, pressure changes during a compression stroke in the DI fuel pump of the above embodiment (
At 3310, pressure changes during a suction stroke in the DI fuel pump of the embodiment of
If at 3304, it is determined that a PFI rail is fluidically coupled to the step room, routine 3300 progresses to 3314. Herein, the PFI rail may function as the accumulator. Thus, pressure changes described below may include those in the embodiments where the step chamber is fluidically coupled to an accumulator PFI rail, and where the step room is also fluidically coupled to the compression chamber, such as embodiment shown in
At 3314, pressure changes during a compression stroke in the DI fuel pumps of the above embodiments are described. At 3316, during a compression stroke in the DI pump, pressure in the compression chamber may rise to the regulation pressure and be at the regulation pressure throughout the compression stroke. The regulation pressure of the compression chamber may be based on the relief setting of a pressure relief valve such as ninth pressure relief valve 2036 alone in
If the step room is filled, excess fuel may flow to the PFI rail when fuel pressure is lower than the relief setting of the ninth pressure relief valve 2036. Accordingly, any port injections during default operation may not cause a reduction in FRP (e.g., t6 in operating sequence 2200 or t6 in operating sequence 2300). If fuel pressure is higher than the relief setting of the ninth pressure relief valve 2036, fuel may flow therethrough into the low pressure passage 218.
At 3318, pressure changes during a suction stroke in the DI fuel pumps of
In this way, lubrication of a direct injection (DI) fuel pump may be enhanced. In some examples, lubrication and cooling may be enhanced by enabling differential pressure in the DI fuel pump. In other examples, lubrication may be enhanced by pressurizing a step chamber of the DI fuel pump. Specifically, the step chamber may be pressurized to a pressure higher than fuel vapor pressure (e.g., lift pump output pressure). By pressurizing the step room to higher than fuel vapor pressure, fuel evaporation may be reduced. The technical effect of enhancing lubrication may be improved durability of the DI fuel pump. Further, in the embodiments where the port injector fuel rail is fueled by each of the step chamber and the compression chamber of the DI fuel pump, high pressure port fuel injection may be provided even at larger fuel flow rates. Pressurizing the step room can enable higher pressures in the port injector fuel rail. By enhancing the pressure in the port injector fuel rail, fuel injections may be atomized adequately, enabling improved power and reduced emissions.
The above described embodiments may provide lubrication of the DI pump during a compression stroke via pressurizing the compression chamber as well as a suction stroke via pressurizing the step room. A default pressure may be provided to the DI fuel rail during idle conditions or conditions when the direct fuel injectors are deactivated. In some embodiments, circulation of fuel may occur through the step room reducing overheating of fuel therein. Further, some of the embodiments above include a DI pump that provides an increased fuel flow rate to the PFI rail by pumping fuel to the PFI rail with both sides of the pump piston.
Note that the example control and estimation routines included herein can be used with various engine and/or vehicle system configurations. The control methods and routines disclosed herein may be stored as executable instructions in non-transitory memory and may be carried out by the control system including the controller in combination with the various sensors, actuators, and other engine hardware. The specific routines described herein may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like. As such, various actions, operations, and/or functions illustrated may be performed in the sequence illustrated, in parallel, or in some cases omitted. Likewise, the order of processing is not necessarily required to achieve the features and advantages of the example embodiments described herein, but is provided for ease of illustration and description. One or more of the illustrated actions, operations and/or functions may be repeatedly performed depending on the particular strategy being used. Further, the described actions, operations and/or functions may graphically represent code to be programmed into non-transitory memory of the computer readable storage medium in the engine control system, where the described actions are carried out by executing the instructions in a system including the various engine hardware components in combination with the electronic controller.
It will be appreciated that the configurations and routines disclosed herein are exemplary in nature, and that these specific embodiments are not to be considered in a limiting sense, because numerous variations are possible. For example, the above technology can be applied to V-6, I-4, I-6, V-12, opposed 4, and other engine types. The subject matter of the present disclosure includes all novel and non-obvious combinations and sub-combinations of the various systems and configurations, and other features, functions, and/or properties disclosed herein.
The following claims particularly point out certain combinations and sub-combinations regarded as novel and non-obvious. These claims may refer to “an” element or “a first” element or the equivalent thereof. Such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. Other combinations and sub-combinations of the disclosed features, functions, elements, and/or properties may be claimed through amendment of the present claims or through presentation of new claims in this or a related application. Such claims, whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the present disclosure.