This disclosure relates generally to turbines and more particularly to systems and methods for generating a predictable load upon completion of a start sequence of a turbine.
A start sequence of a gas turbine may be controlled according to a predefined nominal load rate which is aimed at generating a desired load from the gas turbine after a specified amount of time following the start sequence initiation. However, in practice, the gas turbine start profile can deviate from the original path set forth with the nominal load rate due to inherent variability related, but not exclusive to, fuel composition, fuel flow, air flow, acceleration rate, starting means torque, sensor feedback, time to synchronize to the electrical grid, and other parameters. These deviations may result in significant variations in start time for the gas turbine and, consequently, to an inability to predictably achieve a desired load in a specified time.
Therefore, conventionally, to guarantee that the gas turbine will reach a desired load in a specified time upon completion of the start sequence, even in the worst-case scenario, a nominal load rate including a significant margin is implemented. This approach often leads to unnecessarily fast loading of the turbine, imposing undue thermal stress and impacting component life, blade tip clearances, and performance of the gas turbine.
Another conventional approach that can be used to address variation in gas turbine start time is application of a closed loop acceleration control scheme. In this approach, the gas turbine speed or other suitable startup parameter is monitored against time. A control routine determines whether there are any errors in the gas turbine speed or other parameters and controls various effectors, such as fuel flow and starting torque, to correct the errors. However, acceleration control is not sufficient to ensure a desired load is achieved at a certain time following start initiation as this control scheme is not applicable in the latter portion of the start, after the gas turbine generator is synchronized to the grid and holds a fixed speed.
The present disclosure relates to systems and methods for generating a predictable load upon a completion of a start sequence of a gas turbine. According to one embodiment, a system can be provided. The system can include a controller to control the gas turbine, and a processor communicatively coupled to the controller. The processor may be configured to receive a start duration and a desired final load, and calculate a target load rate to reach the desired final load within the start duration based on the desired final load and the start duration. Measurements of a present load may be periodically received from a measuring device and used to recalculate the target load rate. A present load rate may be periodically adjusted by the controller based on the recalculation.
In one embodiment, a method can be provided. The method can include receiving a start duration and a desired final load, and calculating a target load rate to reach the desired final load within the start duration. A present load may be periodically measured, and based on the measurements, the target load rate may be recalculated. A present load rate may be periodically adjusted based on the recalculation.
In one embodiment, another system can be provided. The system can include a gas turbine, a generator coupled to the gas turbine, a controller coupled to the gas turbine, and a processor coupled to the controller. The processor may be configured to receive a start duration and a desired final load, and calculate a target load rate to reach the desired final load within the start duration. Measurements of a present load may be periodically received from a measuring device and used to recalculate the target load rate. The controller can periodically adjust, based on the recalculation, a present load rate. In some embodiments, the system can include an output device configured to display data related to the start sequence of the gas turbine.
Other embodiments and aspects will become apparent from the following description taken in conjunction with the following drawings.
The following detailed description includes references to the accompanying drawings, which form part of the detailed description. The drawings depict illustrations in accordance with example embodiments. These example embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the present subject matter. The example embodiments may be combined, other embodiments may be utilized, or structural, logical, and electrical changes may be made, without departing from the scope of the claimed subject matter. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope is defined by the appended claims and their equivalents.
The embodiments described herein relate to systems and methods for generating a predictable load upon completion of a start sequence of a turbine. Certain embodiments can provide for generating a predictable load upon completion of a start sequence of a turbine by calculating a target load rate for a final phase of a turbine startup, a turbine loading, and then periodically adjusting, a present load rate during the turbine loading based on the periodic measurements. The target load rate for the turbine loading may be calculated after synchronizing the turbine with a utility grid, which is when a number of startup operations with significant variability are performed. Thus, the target load rate may be calculated based on the period of time left for the start sequence and the desired final load.
However, over time, the load rate of the turbine may deviate from the target load rate. To detect such deviations, measurements of a present load of the turbine may be taken periodically during the turbine loading. Based on these measurements, the target load rate may be recalculated to achieve the desired final load within the start duration. The present load rate may be then adjusted according to the recalculations.
One will recognize the applicability of embodiments of the disclosure to apply to changing load during operation or any time after completion of a start sequence of a turbine.
The technical effects of certain embodiments of the disclosure may include generating a predictable load upon completion of a start sequence of a turbine. In particular, technical effects of certain embodiments of the disclosure may include generating a predictable load by manipulating elements of the turbine startup to achieve the desired load within a specified start duration. Since timely loading of a turbine allows avoiding undue thermal stress on turbines, further technical effects of certain embodiments of the disclosure may include increasing equipment life.
Referring now to
The turbine 110 may be coupled to the generator 120. The generator 120 may be then coupled to a load/grid 130 and provide a supply of electric power to the load/grid 130. The load/grid 130 may include distribution systems known in the art.
The operation of the turbine 110 may be managed through the controller 600. The controller 600 may interact with the system for generating a predictable load upon completion of a start sequence of a turbine 110 to receive a start duration and a desired final load; calculate a target load rate to reach the desired final load within the start duration; periodically receive measurements of a present load at a respective time from a measuring device; periodically recalculate the target load rate based on the measurements of the present load; and periodically adjust a present load rate based on the recalculation.
The controller may also be coupled to the generator 120 to manage its operation and receive operational data from the generator 120.
The operator 150 may interact with the controller 600 and the system for generating a predictable load upon completion of a start sequence of a turbine 110 via the user interface device 670, such as a keyboard, mouse, control panel, or any other device capable of communicating data to and from the controller 600. Additionally, the operator 150 may view data on the start sequence of the turbine 110 displayed by an output device.
The startup of the turbine 110 may include a sequence of startup operations (i.e., ignition, acceleration, synchronization, and loading) comprising a start duration 260. Many of the startup operations imply inherent variations, which may be related to, for example, fuel composition, fuel flow, airflow, acceleration rate, starting means torque, sensor feedback, time to synchronize to the electrical grid, and other suitable parameters. Therefore, a period of time from a start initiation time 205 to a moment when the turbine 110 reaches 100% speed 240 and the generator 120 is synchronized to the load/grid 130, thereby producing a synchronization load 245, may differ. For example, in case of a fast acceleration 225, the synchronization load 245 may be reached at a low synchronization time 210. For a normal acceleration 230, the synchronization load 245 may be reached at a nominal synchronization time 215. Whereas, for a slow acceleration 235, the synchronization load 245 may be reached at a high synchronization time 220. Therefore, depending on startup parameters, the synchronization time of the generator 120 may differ, and accordingly, the period of time remaining for loading to a start completion time 255 may also differ.
To ensure that a desired final load 250 will be reached at the start completion time 255, a target load rate for each startup may be calculated when the synchronization load 245 is reached. Calculation of the target load rate may be based on a remaining start duration determined as a period of time from the elapsed synchronization time 210, 215, or 220 to the start completion time 255. In this manner, the turbine 110 startup process may be customized for each startup, following the target load rate based on parameters of a specific startup, rather than following the nominal load rate.
In certain example embodiments, the calculation of the target load rate may be based on an assumption that the target load rate is to remain constant until the desired final load 250 is reached.
In other example embodiments, the calculation of the target load rate may be based on an objective function, cost function, utility function, or energy function. Thus, the target load rate may vary according to the function used for its calculation.
However, in the process of loading, a present load rate of the turbine 110 may deviate from the calculated target load rate. Such deviations may result in untimely reaching of the desired final load 250. So, according to various embodiments, a present load of the turbine 110 may be periodically measured, and the target load rate may be periodically recalculated based on the measurements. The present load rate may be adjusted accordingly.
The synchronization load 310 may be determined after acceleration of the turbine 110 and a closure of a generator breaker (or connection of the generator 120 to an electrical grid). The target load rate 315 may be calculated based on the desired final load 250 and a loading duration 330. The loading duration 330 may correspond to a period of time from the synchronization time 305 to the start completion time 255.
In certain example embodiments, the calculation of the target load rate 315 may include a predetermined time delay to account for inherent variations or load swings that may take place after closing the generator breaker and therefore ensuring a stable load measurement is utilized.
The loading phase of the turbine startup may also be subject to variations, so a present load rate may deviate from the target load rate 315. To detect deviations 320, a measuring device may measure a present load of the turbine 110 periodically or constantly. When the deviation 320 is detected, recalculation of the target load rate 315 may be performed based on the measurements. As a result, a recalculated target load rate 325 may be periodically determined. The recalculation may be based on an assumption that the recalculated target load rate is to remain constant until the desired final load 250 is reached, or on an assumption that the target load rate may vary according to an objective function, for example, hardware life consumption, fuel consumption, emissions, and so forth.
When the recalculated target load rate 325 is determined, the present load rate may be adjusted to fit the recalculated target load rate 325.
In certain example embodiments, the recalculated target load rate 325 may be based on some operational limits (for example, a service life, compressor protection, component thermal limits, combustor dynamics, combustor blow out, combustor emissions, bottoming cycle specifications, and so forth) of the turbine 110 or other elements.
Adjusting the load rate according to the recalculated target load rate 325, which is based on detected deviations 320, allows achieving a predictable load upon start completion, since the load rate is adjusted based on the present position to the desired final load 250 at the start completion time 255.
As shown in
In some example embodiments, data related to a start sequence may be displayed via an output device.
At operation 410, the controller 600 may calculate the target load rate 315 based on the loading duration 330 and the desired final load 250 of the turbine 110. The target load rate 315 may be calculated to reach the desired final load 250 within the loading duration 330. According to certain example embodiments, the target load rate 315 may be assumed to remain constant until the desired final load 250 is reached. According to other embodiments, the target load rate 315 may vary according to an objective function, for example, hardware life consumption, fuel consumption, emissions, and so forth. However, the present load rate of the turbine may deviate from the target load rate 315. This may result in untimely reaching of the desired final load 250, so the target load rate 315 may be periodically adjusted based on the measurements of the present load rate.
In certain example embodiments, the calculation may consider inherent variations or load swings that may take place after closing the generator breaker to connect the turbine 110 and the generator 120 to the load/grid 130. To exclude such variations from the calculation, the target load rate 315 may include a predetermined time delay.
At operation 415, the controller 600 may periodically measure a present load at a respective time. Such measurements may determine that the present load rate deviates from the target load rate 315. Deviations may result in the turbine 110 untimely reaching the desired final load 250, and must therefore be corrected.
At operation 420, the controller 600 may periodically recalculate the target load rate 315 based on the measurements of the present load, elapsed time, and determined deviations. According to the recalculation, the target load rate 315 may remain constant until the desired final load is reached, or may vary in correspondence to an objective function.
In certain example embodiments, the recalculation may consider certain operational limits of the turbine 110 and/or the generator 120. For example, such operational limits may include a service life, compressor protection, component thermal limits, combustor dynamics, combustor blow out, combustor emissions, bottoming cycle specifications, and so forth.
After recalculation of the target load rate 315, the present load rate may be adjusted at operation 425 to correspond to the recalculated target load rate 315. Operations 415-425 may be repeated periodically until the desired final load 250 is reached.
When the system is connected to the grid, the turbine may start loading to a final load. Since startup operations imply inherent variations, a period of time from the startup initiation to generator synchronization may vary. Depending on how long the acceleration and synchronization lasts, the period of start time left for loading may differ. Thus, in order to achieve the desired level of loading in the specific time, the turbine target load rate may be calculated and applied individually for each startup based on the period of time left after the generator synchronization (loading duration). At operation 525, the remaining time available for loading may be calculated.
At operation 530, the target load rate may be calculated based on the start duration and the desired load. In various embodiments, the calculation of the target load rate may consider various factors and circumstances.
In certain example embodiments, the calculation may consider certain instability that may take place after connecting the system to the grid. For example, such instability may be considered by including a predetermined time delay to calculations.
In certain example embodiments, the calculation may consider operational limits of the turbine, generator, or other equipment (e.g., a service life, compressor protection, component thermal limits, combustor dynamics, combustor blow out, combustor emissions, bottoming cycle specifications, and so forth).
Back to
Operations 535-550 may periodically repeat until the desired final load is reached at operation 555.
Accordingly, embodiments described herein allow calculating a target load rate for a turbine loading based on specific parameters of each startup, thus generating a predictable load upon completion of a start sequence of a turbine. With a predictable load, timely startup of a turbine may be ensured, thus allowing better management of a loading rate versus hardware life consumption.
References are made to block diagrams of systems, methods, apparatuses, and computer program products according to example embodiments. It will be understood that at least some of the blocks of the block diagrams, and combinations of blocks in the block diagrams, respectively, may be implemented at least partially by computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, special purpose hardware-based computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute on the computer or other programmable data processing apparatus, create means for implementing the functionality of at least some of the blocks, or combinations of blocks, in the block diagrams discussed.
These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means that implement the function specified in the block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process, such that the instructions that execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the block or blocks.
One or more components of the systems and one or more elements of the methods described herein may be implemented through an application program running on an operating system of a computer. They also may be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor based or programmable consumer electronics, mini-computers, mainframe computers, and the like.
Application programs that are components of the systems and methods described herein may include routines, programs, components, data structures, and so forth that implement certain abstract data types and perform certain tasks or actions. In a distributed computing environment, the application program (in whole or in part) may be located in local memory or in other storage. In addition, or alternatively, the application program (in whole or in part) may be located in remote memory or in storage to allow for circumstances where tasks are performed by remote processing devices linked through a communications network.
Many modifications and other embodiments of the example descriptions set forth herein to which these descriptions pertain will come to mind having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Thus, it will be appreciated the disclosure may be embodied in many forms and should not be limited to the example embodiments described above. Therefore, it is to be understood that the disclosure is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.