The present disclosure relates to physiological signal processing, and more particularly relates to generating an artificial photoplethysmograph signal.
A method for generating an artificial photoplethysmograph (PPG) signal comprises generating, using processing equipment, a frequency modulation component, an amplitude modulation component, and a baseline modulation component based on a respiratory profile. The method further comprises generating, using the processing equipment, a pulse signal based on a pulsatile profile and the frequency modulation component. The method further comprises modifying, using the processing equipment, the pulse signal based at least in part on the amplitude modulation component and the baseline modulation component to generate a respiration modulated signal. The method further comprises outputting the artificial PPG signal based at least in part on the respiration modulated signal.
A non-transitory computer-readable storage medium for providing an artificial photoplethysmograph (PPG) signal to an electronic device has a computer-readable medium having computer program instructions recorded thereon for generating a frequency modulation component, an amplitude modulation component, and a baseline modulation component based on a respiratory profile, generating a pulse signal based on a pulsatile profile and the frequency modulation component, modifying the pulse signal based at least in part on the amplitude modulation component and the baseline modulation component to generate a respiration modulated signal, and outputting the artificial PPG signal based at least in part on the respiration modulated signal.
A test unit comprises processing equipment configured to generate a frequency modulation component, an amplitude modulation component, and a baseline modulation component based on a respiratory profile, generate a pulse signal based on a pulsatile profile and the frequency modulation component, modify the pulse signal based at least in part on the amplitude modulation component and the baseline modulation component to generate the artificial PPG signal and output the artificial PPG signal.
The above and other features of the present disclosure, its nature and various advantages will be more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings in which:
A pulse oximeter may include a pulse oximetry sensor device that includes LEDs that generate light that passes through blood perfused tissue. A detector detects the light after it has been passed through the tissue and generates a photoplethysmograph (PPG) signal that is provided to a pulse oximetry monitor, which processes the PPG signal as a representation of the intensity of the received light over time. The PPG signal may generally represent pulsatile blood flow through the tissue, which may vary based on a number of physiological and non-physiological factors. Physiological factors that impact the PPG signal may include pulsatile factors (e.g., heart beat and blood pressure) and respiratory factors (e.g., breathing). Non-physiological factors may include patient characteristics (e.g., patient age and sensor location) and environmental factors (e.g., sensor type, sensor location, and motion artifacts).
It may be desirable to generate an artificial PPG signal, for example, for equipment testing and diagnostic purposes, for comparison to real clinical data, for research purposes, or for any other suitable purpose. For purposes of brevity and clarity, the present disclosure is described in the context of using the artificial PPG signal as a PPG test signal. Given the large number of factors that impact the PPG signal, a particular artificial PPG signal may not be representative of the complete patient population, a diversity of patient physiological conditions, or differing measurement conditions.
In an exemplary embodiment, a test unit may include processing equipment for generating an artificial PPG signal (e.g., a PPG test signal) based on one or more profiles. For example, a PPG test signal may be generated based on a pulsatile profile, a respiratory profile, a patient profile, an artifact profile, any other suitable profile, or any combination thereof. The PPG test signal may be changed by modifying any of the underlying profiles.
For purposes of clarity, the present disclosure is written in the context of the physiological signal being a PPG signal generated by a pulse oximetry system, and an artificial physiological signal being an artificial PPG signal or PPG test signal. It will be understood that any other suitable artificial physiological signal may be generated in accordance with the teachings of the present disclosure.
An oximeter is a medical device that may determine the oxygen saturation of the blood. One common type of oximeter is a pulse oximeter, which may indirectly measure the oxygen saturation of a patient's blood (as opposed to measuring oxygen saturation directly by analyzing a blood sample taken from the patient). Pulse oximeters may be included in patient monitoring systems that measure and display various blood flow characteristics including, but not limited to, the oxygen saturation of hemoglobin in arterial blood. Such patient monitoring systems may also measure and display additional physiological parameters, such as a patient's pulse rate.
An oximeter may include a light sensor that is placed at a site on a patient, typically a fingertip, toe, forehead or earlobe, or in the case of a neonate, across a foot. The oximeter may use a light source to pass light through blood perfused tissue and photoelectrically sense the absorption of the light in the tissue. In addition, locations that are not typically understood to be optimal for pulse oximetry serve as suitable sensor locations for the monitoring processes described herein, including any location on the body that has a strong pulsatile arterial flow. For example, additional suitable sensor locations include, without limitation, the neck to monitor carotid artery pulsatile flow, the wrist to monitor radial artery pulsatile flow, the inside of a patient's thigh to monitor femoral artery pulsatile flow, the ankle to monitor tibial artery pulsatile flow, and around or in front of the ear. Suitable sensors for these locations may include sensors for sensing absorbed light based on detecting reflected light. In all suitable locations, for example, the oximeter may measure the intensity of light that is received at the light sensor as a function of time. The oximeter may also include sensors at multiple locations. A signal representing light intensity versus time or a mathematical manipulation of this signal (e.g., a scaled version thereof, a log taken thereof, a scaled version of a log taken thereof, etc.) may be referred to as the photoplethysmograph (PPG) signal. In addition, the term “PPG signal,” as used herein, may also refer to an absorption signal (i.e., representing the amount of light absorbed by the tissue) or any suitable mathematical manipulation thereof. The light intensity or the amount of light absorbed may then be used to calculate any of a number of physiological parameters, including an amount of a blood constituent (e.g., oxyhemoglobin) being measured as well as a pulse rate and when each individual pulse occurs.
In some applications, the light passed through the tissue is selected to be of one or more wavelengths that are absorbed by the blood in an amount representative of the amount of the blood constituent present in the blood. The amount of light passed through the tissue varies in accordance with the changing amount of blood constituent in the tissue and the related light absorption. Red and infrared (IR) wavelengths may be used because it has been observed that highly oxygenated blood will absorb relatively less Red light and more IR light than blood with a lower oxygen saturation. By comparing the intensities of two wavelengths at different points in the pulse cycle, it is possible to estimate the blood oxygen saturation of hemoglobin in arterial blood.
When the measured blood parameter is the oxygen saturation of hemoglobin, a convenient starting point assumes a saturation calculation based at least in part on Lambert-Beer's law. The following notation will be used herein:
I(λ,t)=Io(λ)exp(−(sβo(λ)+(1−s)βr(λ))/(t)) (1)
where:
λ=wavelength;
t=time;
I=intensity of light detected;
I0=intensity of light transmitted;
S=oxygen saturation;
β0, βr-empirically derived absorption coefficients; and
l(t)=a combination of concentration and path length from emitter to detector as a function of time.
The traditional approach measures light absorption at two wavelengths (e.g., Red and IR), and then calculates saturation by solving for the “ratio of ratios” as follows.
1. The natural logarithm of EQ. 1 is taken (“log” will be used to represent the natural logarithm) for IR and Red to yield
log I=log Io−(sβo+(1−s)βr)l. (2)
2. Eq. 2 is then differentiated with respect to time to yield.
3. Eq. 3, evaluated at the Red wavelength λR, is divided by Eq. 3 evaluated at the IR wavelength λIR in accordance with
4. Solving for S yields
5. Note that, in discrete time, the following approximation can be made:
6. Rewriting Eq. 6 by observing that log A−log B=log (A/B) yields
7. Thus, Eq. 4 can be expressed as
where R represents the “ratio of ratios.”
8. Solving Eq. 4 for S using the relationship of Eq. 5 yields
9. From Eq. 8, R can be calculated using two points (e.g., PPG maximum and minimum), or a family of points. One method applies a family of points to a modified version of Eq. 8. Using the relationship
Eq. 8 becomes
which defines a cluster of points whose slope of y versus X will give R when
x=[I(t2,λIR)−I(t1,λIR)]I(t1,λR), (12)
and
y=[I(t2,λR)−I(t1,λR)]I(t1,λIR). (13)
Once R is determined or estimated, for example, using the techniques described above, the blood oxygen saturation can be determined or estimated using any suitable technique for relating a blood oxygen saturation value to R. For example, blood oxygen saturation can be determined from empirical data that may be indexed by values of R, and/or it may be determined from curve fitting and/or other interpolative techniques.
Sensor units may each detect any signal that carries information about a patient's physiological state, such as an electrocardiograph signal, arterial line measurements, or the pulsatile force exerted on the walls of an artery using, for example, oscillometric methods with a piezoelectric transducer. According to some embodiments, system 10 may include two or more sensors forming a sensor array in lieu of either or both of the sensor units. Each of the sensors of a sensor array may be a complementary metal oxide semiconductor (CMOS) sensor. Alternatively, each sensor of an array may be charged coupled device (CCD) sensor. In some embodiments, a sensor array may be made up of a combination of CMOS and CCD sensors. The CCD sensor may comprise a photoactive region and a transmission region for receiving and transmitting data whereas the CMOS sensor may be made up of an integrated circuit having an array of pixel sensors. Each pixel may have a photodetector and an active amplifier. It will be understood that any type of sensor, including any type of physiological sensor, may be used in one or more sensor units in accordance with the systems and techniques disclosed herein. It is understood that any number of sensors measuring any number of physiological signals may be used to determine physiological information in accordance with the techniques described herein.
In some embodiments, emitter 16 and detector 18 may be on opposite sides of a digit such as a finger or toe, in which case the light that is emanating from the tissue has passed completely through the digit. In some embodiments, emitter 16 and detector 18 may be arranged so that light from emitter 16 penetrates the tissue and is reflected by the tissue into detector 18, such as in a sensor designed to obtain pulse oximetry data from a patient's forehead.
In some embodiments, sensor unit 12 may be connected to and draw its power from monitor 14 as shown. In another embodiment, the sensor may be wirelessly connected to monitor 14 and include its own battery or similar power supply (not shown). Monitor 14 may be configured to calculate physiological parameters (e.g., pulse rate, blood oxygen saturation (e.g., SpO2), and respiration information) based at least in part on data relating to light emission and detection received from one or more sensor units such as sensor unit 12 and an additional sensor (not shown). In some embodiments, the calculations may be performed on the sensor units or an intermediate device and the result of the calculations may be passed to monitor 14. Further, monitor 14 may include a display 20 configured to display the physiological parameters or other information about the system. In the embodiment shown, monitor 14 may also include a speaker 22 to provide an audible sound that may be used in various other embodiments, such as for example, sounding an audible alarm in the event that a patient's physiological parameters are not within a predefined normal range. In some embodiments, the system 10 includes a stand-alone monitor in communication with the monitor 14 via a cable or a wireless network link.
In some embodiments, sensor unit 12 may be communicatively coupled to monitor 14 via a cable 24. In some embodiments, a wireless transmission device (not shown) or the like may be used instead of or in addition to cable 24. Monitor 14 may include a sensor interface configured to receive physiological signals from sensor unit 12, provide signals and power to sensor unit 12, or otherwise communicate with sensor unit 12. The sensor interface may include any suitable hardware, software, or both, which may allow communication between monitor 14 and sensor unit 12.
As is described herein, monitor 14 may generate a PPG signal based on the signal received from sensor unit 12. The PPG signal may consist of data points that represent a pulsatile waveform. The pulsatile waveform may be modulated based on the respiration of a patient. Respiratory modulations may include baseline modulations, amplitude modulations, frequency modulations, respiratory sinus arrhythmia, any other suitable modulations, or any combination thereof. Respiratory modulations may exhibit different phases, amplitudes, or both, within a PPG signal and may contribute to complex behavior (e.g., changes) of the PPG signal. For example, the amplitude of the pulsatile waveform may be modulated based on respiration (amplitude modulation), the frequency of the pulsatile waveform may be modulated based on respiration (frequency modulation), and a signal baseline for the pulsatile waveform may be modulated based on respiration (baseline modulation). Monitor 14 may analyze the PPG signal (e.g., by demodulating the PPG signal) to determine respiration information based on one or more of these modulations of the PPG signal.
As is described herein, respiration information may be determined from the PPG signal by monitor 14. However, it will be understood that the PPG signal could be transmitted to any suitable device for the determination of respiration information, such as a local computer, a remote computer, a nurse station, mobile devices, tablet computers, or any other device capable of sending and receiving data and performing processing operations. Information may be transmitted from monitor 14 in any suitable manner, including wireless (e.g., WiFi, Bluetooth, etc.), wired (e.g., USE, Ethernet, etc.), or application-specific connections. The receiving device may determine respiration information as described herein.
Sensor unit 12 may include emitter 16, detector 18, and encoder 42. In the embodiment shown, emitter 16 may be configured to emit at least two wavelengths of light (e.g., Red and IR) into a patient's tissue 40. Hence, emitter 16 may include a Red light emitting light source such as Red light emitting diode (LED) 44 and an IR light emitting light source such as IR LED 46 for emitting light into the patient's tissue 40 at the wavelengths used to calculate the patient's physiological parameters. In some embodiments, the Red wavelength may be between about 600 nm and about 700 nm, and the IR wavelength may be between about 800 nm and about 1000 nm. In embodiments where a sensor array is used in place of a single sensor, each sensor may be configured to emit a single wavelength. For example, a first sensor may emit only a Red light while a second sensor may emit only an IR light. In a further example, the wavelengths of light used may be selected based on the specific location of the sensor.
It will be understood that, as used herein, the term “light” may refer to energy produced by radiation sources and may include one or more of radio, microwave, millimeter wave, infrared, visible, ultraviolet, gamma ray or X-ray electromagnetic radiation. As used herein, light may also include electromagnetic radiation having any wavelength within the radio, microwave, infrared, visible, ultraviolet, or X-ray spectra, and that any suitable wavelength of electromagnetic radiation may be appropriate for use with the present techniques. Detector 18 may be chosen to be specifically sensitive to the chosen targeted energy spectrum of the emitter 16.
In some embodiments, detector 18 may be configured to detect the intensity of light at the Red and IR wavelengths. Alternatively, each sensor in the array may be configured to detect an intensity of a single wavelength. In operation, light may enter detector 18 after passing through the patient's tissue 40. Detector 18 may convert the intensity of the received light into an electrical signal. The light intensity is directly related to the absorbance and/or reflectance of light in the tissue 40. That is, when more light at a certain wavelength is absorbed or reflected, less light of that wavelength is received from the tissue by the detector 18. After converting the received light to an electrical signal, detector 18 may send the signal to monitor 14, where physiological parameters may be calculated based on the absorption of the Red and IR wavelengths in the patient's tissue 40.
In some embodiments, encoder 42 may contain information about sensor unit 12, such as what type of sensor it is (e.g., whether the sensor is intended for placement on a forehead or digit) and the wavelengths of light emitted by emitter 16. This information may be used by monitor 14 to select appropriate algorithms, lookup tables and/or calibration coefficients stored in monitor 14 for calculating the patient's physiological parameters.
Encoder 42 may contain information specific to patient 40, such as, for example, the patient's age, weight, and diagnosis. This information about a patient's characteristics may allow monitor 14 to determine, for example, patient-specific threshold ranges in which the patient's physiological parameter measurements should fall and to enable or disable additional physiological parameter algorithms. This information may also be used to select and provide coefficients for equations from which measurements may be determined based at least in part on the signal or signals received at sensor unit 12. For example, some pulse oximetry sensors rely on equations to relate an area under a portion of a PPG signal corresponding to a physiological pulse to determine blood pressure. These equations may contain coefficients that depend upon a patient's physiological characteristics as stored in encoder 42.
Encoder 42 may, for instance, be a coded resistor that stores values corresponding to the type of sensor unit 12 or the type of each sensor in the sensor array, the wavelengths of light emitted by emitter 16 on each sensor of the sensor array, and/or the patient's characteristics and treatment information. In some embodiments, encoder 42 may include a memory on which one or more of the following information may be stored for communication to monitor 14; the type of the sensor unit 12; the wavelengths of light emitted by emitter 16; the particular wavelength each sensor in the sensor array is monitoring; a signal threshold for each sensor in the sensor array; any other suitable information; physiological characteristics (e.g., gender, age, weight); or any combination thereof.
In some embodiments, sensor unit 12 may be replaced with a test unit 90. In an exemplary embodiment, test unit 90 may include a test signal generator 92, a signal output 94, and an encoder 96. Test signal generator 92 may generate a PPG test signal (e.g., as described in
In some embodiments, signals from detector 18 (or signal output 94) and encoder 42 for encoder 96) may be transmitted to monitor 14. In the embodiment shown, monitor 14 may include a general-purpose microprocessor 48 connected to an internal bus 50. Microprocessor 48 may be adapted to execute software, which may include an operating system and one or more applications, as part of performing the functions described herein. Also connected to bus 50 may be a read-only memory (ROM) 52, a random access memory (RAM) 54, user inputs 56, display 20, data output 84, and speaker 22.
RAM 54 and ROM 52 are illustrated by way of example, and not limitation. Any suitable computer-readable media may be used in the system for data storage. Computer-readable media are capable of storing information that can be interpreted by microprocessor 48. This information may be data or may take the form of computer-executable instructions, such as software applications, that cause the microprocessor to perform certain functions and/or computer-implemented methods. Depending on the embodiment, such computer-readable media may include computer storage media and communication media. Computer storage media may include volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media may include, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store the desired information and that can be accessed by components of the system.
In the embodiment shown, a time processing unit (TPU) 58 may provide timing control signals to light drive circuitry 60, which may control when emitter 16 is illuminated and multiplexed timing for Red LED 44 and IR LED 46. TPU 58 may also control the gating-in of signals from detector 18 through amplifier 62 and switching circuit 64. These signals are sampled at the proper time, depending upon which light source is illuminated. The received signal from detector 18 may be passed through amplifier 66, low pass filter 68, and analog-to-digital converter 70. The digital data may then be stored in a queued serial module (QSM) 72 (or buffer) for later downloading to RAM 54 as QSM 72 is filled. In some embodiments, there may be multiple separate parallel paths having components equivalent to amplifier 66, filter 68, and/or A/D converter 70 for multiple light wavelengths or spectra received. Any suitable combination of components (e.g., microprocessor 48, RAM 54, analog to digital converter 70, any other suitable component shown or not shown in
In some embodiments, microprocessor 48 may determine the patient's physiological parameters, such as SpO2, pulse rate, and/or respiration information, using various algorithms and/or look-up tables based on the value of the received signals and/or data corresponding to the light received by detector 18 (or generated by signal output 94). As is described herein, microprocessor 48 may utilize amplitude demodulation and/or frequency demodulation techniques to determine respiration information from a PPG signal.
Signals corresponding to information about patient 40, and particularly about the intensity of light emanating from a patients tissue over time, may be transmitted from encoder 42 (or encoder 96) to decoder 74. These signals may include, for example, encoded information relating to patient characteristics. Decoder 74 may translate these signals to enable microprocessor 48 to determine the thresholds based at least in part on algorithms or look-up tables stored in ROM 52. In some embodiments, user inputs 56 may be used to enter information, select one or more options, provide a response, input settings, any other suitable inputting function, or any combination thereof. User inputs 56 may be used to enter information about the patient, such as age, weight, height, diagnosis, medications, treatments, and so forth. In some embodiments, display 20 may exhibit a list of values, which may generally apply to the patient, such as, for example, age ranges or medication families, which the user may select using user inputs 56.
Calibration device 80, which may be powered by monitor 14 via a communicative coupling 82, a battery, or by a conventional power source such as a wall outlet, may include any suitable signal calibration device. Calibration device 80 may be communicatively coupled to monitor 14 via communicative coupling 82, and/or may communicate wirelessly (not shown). In some embodiments, calibration device 80 is completely integrated within monitor 14. In some embodiments, calibration device 80 may include a manual input device (not shown) used by an operator to manually input reference signal measurements obtained from some other source (e.g., an external invasive or non-invasive physiological measurement system).
Data input/output (I/O) 84 may provide for communications with other devices utilizing any suitable transmission medium, including wireless (e.g., WiFi, Bluetooth, etc.), wired (e.g., USE, Ethernet, etc.), or application-specific connections. Data I/O 84 may receive messages to be transmitted from microprocessor 48 via bus 50. Exemplary messages to be sent in an embodiment described herein may include samples of the PPG signal to be transmitted to an external device for determining respiration information. Data I/O 84 may also receive messages from an external device to be transmitted to microprocessor 48 via bus 50.
In an another exemplary embodiment of a test unit connecting to monitor 14, test unit 86 may connect to monitor 14 through data I/O 84. Test unit 86 may generate a PPG test signal (e.g., as described in
The optical signal attenuated by the tissue of patient 40 can be degraded by noise, among other sources. One source of noise is ambient light that reaches the light detector. Another source of noise is electromagnetic coupling from other electronic instruments. Movement of the patient also introduces noise and affects the signal. For example, the contact between the detector and the skin, or the emitter and the skin, can be temporarily disrupted when movement causes either to move away from the skin. Also, because blood is a fluid, it responds differently than the surrounding tissue to inertial effects, which may result in momentary changes in volume at the point to which the oximeter probe is attached.
Noise (e.g., from patient movement) can degrade a sensor signal relied upon by a care provider, without the care provider's awareness. This is especially true if the monitoring of the patient is remote, the motion is too small to be observed, or the care provider is watching the instrument or other parts of the patient, and not the sensor site. Processing sensor signals (e.g., PPG signals) may involve operations that reduce the amount of noise present in the signals, control the amount of noise present in the signal, or otherwise identify noise components in order to prevent them from affecting measurements of physiological parameters derived from the sensor signals.
Although test unit 302 may communicate with any suitable electronic device, or be integrated into any suitable electronic device, in exemplary embodiments test unit 302 may be in communication with a computer 304, simulator 306, or monitor 308. Test unit 302 may communicate with electronic devices in any suitable manner, including wireless (e.g., WIFi, Bluetooth, etc.), wired (e.g., USE, Ethernet, etc.), or application-specific connections such as a connection that simulates the output of a sensor (e.g., test unit 90 of
Test unit 302 may include a user interface such as a keyboard or touch screen to allow a user to input, select, or modify parameters related to generating a PPG test signal (e.g., as depicted in
In some embodiments test unit 302 may communicate with a computer 304, for example, to transmit the PPG test signal to computer 304. Although a computer 304 is described, it will be understood that any suitable computing device (e.g., a tablet computer or smart phone) may be used in accordance with the embodiments described herein. In an exemplary embodiment test unit 302 may generate a PPG signal and transmit data representing the PPG signal to computer 304. Computer 304 may display simulated PPG waveforms based on a PPG test signal, calculate simulated physiological parameters (e.g., pulse rate, oxygen saturation, respiration information, and/or blood pressure) based on the PPG test signal, or perform any other suitable processing operations. In other embodiments, computer 304 may utilize the PPG test signal to test algorithms that process a PPG signal.
In some embodiments test unit 302 may communicate with a simulator 306, for example, to transmit the PPG test signal to simulator 306. A simulator 306 may be a device that is configured to generate a simulated PPG waveform based on receiving input data describing a simulated PPG waveform. In some embodiments, simulator 306 may display the simulated PPG waveform and calculate physiological parameters based on the received data. In other embodiments, simulator 306 may generate a simulated PPG waveform for output to another device such as a patient monitor, a computer, or both.
In some embodiments, test unit 302 may communicate with a monitor 308 such as monitor 14, for example, to transmit the PPG test signal to monitor 308. As is described herein, test unit 302 may communicate with monitor 308 in any suitable manner, including through a data I/O port of a monitor 308 (e.g., test unit 86 communicating through data I/O 84 in
The volume of the pulsatile blood flow may also vary in a periodic manner based on respiration. The period of a respiratory cycle may typically be longer than the period of a pulsatile cycle, such that any changes in the pulsatile blood flow due to respiration occur over a numb of pulsatile cycles. As one example of changes in pulsatile blood flow due to respiration, the amplitude of PPG signal 402 may be modulated based on respiration. In the exemplary embodiment depicted in
Although it will be understood that the respiratory amplitude modulation component 404 may impact the amplitude of PPG signal 402 differently based on patient conditions, measurement location, or in other manners, in the exemplary embodiment of
The timing of the pulsatile blood flow may vary in a periodic manner based on respiration. The period of a respiratory cycle may typically be longer than the period of a pulsatile cycle, such that any changes in the pulsatile blood flow due to respiration occur over a number of pulsatile cycles. As one example of changes in pulsatile blood flow due to respiration, the phase and frequency of PPG signal 502 may be modulated based on respiration. In the exemplary embodiment depicted in
In an exemplary embodiment, a series of pulses may have a relatively uniform pulse period in the absence of frequency modulation (not depicted). Although it will be understood that the frequency modulation of PPG signal 502 may impact the phase and frequency of PPG signal 502 differently based on patient conditions, measurement location, or in other manners, in the exemplary embodiment of
In some embodiments, a user may modify aspects of one or more profiles using parameter selection interface 600. Although the profiles may be modified in any suitable manner, in an exemplary embodiment, a user may select or enter a set of patient characteristics, such as a heart rate pattern, a respiration rate pattern, patient age, measurement conditions (e.g., under medication or while exercising), measurement equipment (e.g., sensor and pulse oximeter type) or any other suitable characteristics relating to a patient. Each of the profiles may be generated based on these characteristics. In some embodiments each of the profiles may be modified directly, for example, by directly modifying one or more variables relating to the PPG signal such as heart rate, dichrotic notch location, respiration rate, respiratory amplitude modulation, respiratory frequency modulation, respiratory baseline modulation, patient transmissivity, patient perfusion, and artifact patterns. In some embodiments, the profiles may be modified based on an analysis of inputs to the parameter selection interface. For example, a user may select one or more activity or data patterns to modify the modulation components that are generated based on the profiles. For example, activity patterns may be created that introduce predetermined or random changes to the values of any of the profile values over time, for example, based on known physical activity patterns, treatment regimens, or physiological conditions. Although in an exemplary embodiment the profiles are described as being acquired in a particular order (i.e., steps 802-808 of
An exemplary parameter selection interface 600 may include a patient information section 602, a physical condition section 604, a measurement and treatment section 606, and a parameter section 608. Although an exemplary configuration of a parameter selection interface 600 is described herein, it will be understood that parameter selection interface 600 could be configured in any suitable manner, could include any number of configuration screens, and could include any number or configuration of possible selections for generating one or more profiles.
Patient information section 602 may include basic information related to a patient and relevant health parameters. Although any suitable information may be included in patient information section 602, in an exemplary embodiment patient information section 602 may include information such as patient name, age, sex, pulse rate, respiration rate, sensor type, and sensor location. These values may be used to generate one or more profiles, such as a pulsatile profile (e.g., based in part on pulse rate) and a respiratory profile (e.g., based in part on respiration rate). Although values for patient information section 602 may be selected in any suitable manner, in an exemplary embodiment values for patient name, pulse rate, respiration rate, and age may be entered manually (e.g., through a keyboard or touch screen) while the values for the patient sex, sensor type, and sensor location may be selected from a menu.
Physical condition section 604 may include information related to physical conditions that may impact the shape of the PPG test signal, and therefore impact one or more profiles. For example, conditions related to heart health or blood circulation (e.g., blood pressure, heart disease, a pacemaker, or arrhythmia) may impact one or more profiles such as the pulsatile profile, while other conditions (e.g., sleep apnea or assisted breathing) may impact one or more other profiles such as a respiratory profile. It will be recognized that any suitable physical conditions may be selected within physical condition section 604. In an exemplary embodiment, an “other” category may allow for additional physical conditions to be selected based on an associated profile that is provided to the system. Although physical conditions within physical condition section 604 may be selected in any suitable manner, in an exemplary embodiment one or more physical conditions may be selected from a list.
Measurement and treatment section 606 may include information related to measurement conditions or patient treatments that may impact the shape of the PPG test signal, and therefore impact one or more profiles. For example, conditions related to physical activity (e.g., exercise, sleep, or motion artifact) and conditions related to treatments (e.g., anaesthetic or treatment 1) may impact a pulsatile profile, respiratory profile, patient profile and artifact profile. It will be recognized that any suitable measurement conditions or patient treatments may be selected within measurement and treatment section 606. In an exemplary embodiment, the “treatment 1” and “other” categories may allow for additional treatments or physical activity profiles to be selected based on an associated profile that is provided to the system. Although measurement conditions and patient treatments within measurement and treatment section 606 may be selected in any suitable manner, in an exemplary embodiment one or more measurement conditions or patient treatments may be selected from a list.
Parameter section 608 may include information to allow the variability of the waveform to be modified to reflect physical conditions changing over time. Although any parameters may be included in parameter section. 608, in an exemplary embodiment parameter section 608 may include percentage values for pulse rate variability, pulse amplitude variability, respiration rate variability, and respiration amplitude variability to be modified. These values may be used to generate one or more profiles, such as a pulsatile profile (e.g., based on pulse rate variability and pulse amplitude variability), respiratory profile (e.g., based on respiration rate variability and respiration amplitude variability), patient profile, and artifact profile. Although values for parameter section 608 may be selected in any suitable manner, in an exemplary embodiment values for pulse rate variability, pulse amplitude variability, respiration rate variability, and respiration amplitude variability age may be entered manually (e.g., through a keyboard or touch screen).
At step 804, test unit 302 may acquire a respiratory profile (e.g., that is generated based on values entered in parameter selection interface 600). The respiratory profile may include any suitable information relating to respiratory modifications to the pulsatile component of a PPG test waveform, such as amplitude modulation, frequency modulation, baseline modulation, respiration rate, or any combination thereof. Although a respiratory profile may be acquired in any suitable manner, in an exemplary embodiment aspects of the respiratory profile may be stored in memory and aspects of the respiratory profile may be provided by a user. For example, in some embodiments a user may select between multiple respiratory profiles based on desired characteristics of the PPG test signal (e.g., whether the PPG test signal simulates a neonate or an adult) or known physiological conditions or treatments (e.g., exercise patterns, sleep apnea, or assisted breathing) In other embodiments the user may modify the respiratory profile, for example, to modify a respiratory rate associated with the PPG test signal.
At step 806, test unit 302 may acquire a patient profile (e.g., that is generated based on values entered in parameter selection interface 600). The patient profile may include additional suitable information relating to modifications to a PPG test waveform based on patient characteristics such as age, skin type, measurement location, sensor type, sensor location, or any combination thereof. Although a patient profile may be acquired in any suitable manner, in an exemplary embodiment aspects of the patient profile may be stored in memory and aspects of the patient profile may be provided by a user. For example, in some embodiments a user may select between multiple patient profiles based on desired characteristics of the PPG test signal (e.g., whether the PPG test signal simulates a neonate or an adult) or known measurement conditions (e.g., to simulate noisy measurement conditions, different sensor types, or sensor locations). In other embodiments the user may modify the patient profile, for example, to select a particular simulated measurement location or sensor type associated with the PPG test signal.
At step 808, test unit 302 may acquire an artifact profile (e.g., that is generated based on values entered in parameter selection interface 600). The artifact profile may include additional information relating to modifications to a PPG test waveform based on artifacts such as motion artifacts. Although an artifact profile may be acquired in any suitable manner, in an exemplary embodiment aspects of the artifact profile may be stored in memory and aspects of the artifact profile may be provided by a user. For example, in some embodiments an artifact profile may be generated based on known conditions that result in artifacts (e.g., improper sensor placement or patient motion).
At step 810, test unit 302 may generate the PPG test signal. Although the PPG test signal may be generated in any suitable manner, in an exemplary embodiment the PPG test signal may be generated as described in
The flow depicted in
Referring to the flow for frequency modulation 902, a signal generator 910 may generate a signal based on a respiration rate pattern RR(t) and frequency modulation phase θFM(t) that are based on the respiratory profile. Although signal generator 910 may generate any suitable signal type, in an exemplary embodiment the generated signal may be a sine wave having a phase and frequency based on the respiration rate pattern RR(t) and frequency modulation phase θFM(t). Although signal generator 910 (and other signal generators of
The frequency modulation phase θFM(t) may define a phase relationship compared to the phase of a pulsatile component of the signal θPLETH1(t), the phase of the amplitude modulation signal θAM(t), and the phase of the baseline modulation signal θBM(t). Each of these phase values may be selected and modified by a user of test unit 302, may be based on predetermined respiratory and pulsatile patterns (i.e., as determined by the respiratory and pulsatile profiles), or any combination thereof. In an exemplary embodiment the phase of a first pulsatile component phase θPLETH1(t) may be in phase with the baseline modulation signal phase θBM(t), the frequency modulation signal phase θFM(t) may have a 20° lag, and the amplitude modulation signal phase θAM(t) may be 180° out of phase.
Signal generator 910 may output the respiration modulation signal to amplifier 912. Amplifier 912 (as well as other amplifiers described in
Signal generator 914 may generate a pulsatile signal component of the PPG test signal based on a pulse rate pattern PR(t) and the first pulsatile component phase θPLETH1(t) that are based on the pulsatile profile, as well as the frequency modulation component. Although signal generator 914 may generate any suitable signal type, in an exemplary embodiment the generated signal may be a sine wave having a phase and frequency based on the pulse rate pattern PR(t), the pulsatile component phase θPLETH1(t), and the frequency modulation component. The pulse rate pattern PR(t) may include any suitable range of pulse rate, such as 40-250 beats per minute. The pulse rate may be fixed or may vary in any suitable manner. In some embodiments, a user may select a fixed pulse rate, or may modify the pulse rate based on an input to test unit 302. In some embodiments, pulse rate patterns vary may be based on predetermined patterns associated with physiological activities such as sleep or exercise, physiological conditions such as known heart conditions, or treatment patterns such as heart pacing or medication. In some embodiments, the pulse rate patterns may vary randomly within a pulse rate range.
Signal generator 914 may output the pulsatile component to adder 920. The pulse rate pattern PR(t) may also be multiplied by multiplier 916 and provided to signal generator 918. Signal generator 918 may generate a harmonic component to be combined with the pulsatile component at adder 920. Although a single harmonic is described in herein, it will be understood that multiple harmonic components could be generated to be combined with the pulsatile component of the PPG test signal. In some embodiments, adding one or more harmonic signals to the fundamental pulsatile component may result in a PPG test signal that better matches the shape of an actual PPG signal. For example, a PPG signal may generally include a dichrotic notch that may be approximated as a second harmonic of the underlying pulse rate signal. Although additional components of the PPG test signal may be generated in any suitable manner, in an exemplary embodiment this signal morphology may be implemented by multiplying the pulse rate pattern by two at multiplier 916, and generating a second harmonic signal based on the output of multiplier 916, the frequency modulation component, and a second pulsatile component phase θPLETH2(t). The pulsatile component of the PPG test signal and the second harmonic component signals may then be combined at adder 920 to generate the pulse signal.
Referring to the flow for amplitude modulation 906, a signal generator 922 may generate a signal based on a respiration rate pattern RR(t) and amplitude modulation phase θAM(t) that are based on the respiratory profile. Although signal generator 922 may generate any suitable signal type, in an exemplary embodiment the generated signal may be a sine wave having a phase and frequency based on the respiration rate pattern RR(t) and amplitude modulation phase θAM(t). In an exemplary embodiment, the respiration rate pattern RR(t) of signal generator 922 may be the same respiration rate pattern RR(t) that is provided to signal generator 910 and signal generator 926.
Signal generator 922 may output the amplitude modulation signal to amplifier 924. Amplifier 924 may amplify the amplitude modulation signal based on a gain value GAM(t) that is based on the respiratory profile. The gain value GAM(t) may be selected and modified by a user of test unit 302, may be based on predetermined respiratory patterns, or any combination thereof. Although the gain may be set in any suitable manner, in an exemplary embodiment the gain may be defined based on a percentage modulation of the PPG test signal. For example, the percentage modulation may be based on the AC amplitude of the amplitude modulation signal divided by the AC amplitude of the fundamental frequency of the PPG test signal. The resulting amplitude modulation component may then be output to multiplier 930 to be combined with the pulse signal output from adder 920.
Although amplitude modulation may be implemented in any suitable manner, in an exemplary embodiment, the amplitude modulation may be implemented by multiplying the pulse signal from adder 920 with the amplitude modulation component output from amplifier 924. In an exemplary embodiment, the pulse signal may be modified by multiplying the pulse signal with the amplitude modulation component at multiplier 930. The amplitude of the resulting amplitude modulated pulse signal may vary based on respiration, such as is depicted in
Referring to the flow for baseline modulation 908, signal generator 926 may generate a signal based on a respiration rate pattern RR(t) and amplitude modulation phase θAM(t) that are based on the respiratory profile. Although signal generator 926 may generate any suitable signal type, in an exemplary embodiment the generated signal may be a sine wave having a phase and frequency based on the respiration rate pattern RR(t) and baseline modulation phase θBM(t). In an exemplary embodiment, the respiration rate pattern RR(t) of signal generator 926 may be the same respiration rate pattern RR(t) that is provided to signal generator 910 and signal generator 922.
Signal generator 926 may output the baseline modulation signal to amplifier 928. Amplifier 928 may amplify the baseline modulation signal based on a gain value GBM (t) that is based on the respiratory profile. The gain value GBM(t) may be selected and modified by a user of test unit 302, may be based on predetermined respiratory patterns, or any combination thereof. Although the gain may be set in any suitable manner, in an exemplary embodiment the gain may be defined based on a percentage modulation of the PPG test signal. For example, the percentage modulation may be based on the AC amplitude of the baseline modulation signal divided by the AC amplitude of the fundamental frequency of the PPG test signal. The resulting baseline modulation component may then be output to adder 932 to be combined with the amplitude modulated pulse signal output from multiplier 930.
Although baseline modulation may be implemented in the PPG test signal in any suitable manner, in an exemplary embodiment, the baseline modulation may be implemented by adding the amplitude modulated pulse signal output from multiplier 930 to the baseline modulation component output from amplifier 928. In an exemplary embodiment, the amplitude modulated pulse signal and baseline modulation component may be combined at adder 932. The resulting respiration modulated signal may have a baseline that varies in accordance with the periodic changes in the baseline modulation component. In some embodiments the respiration modulated signal may be output without additional modulations due to additional profiles, and may be the PPG test signal. In the exemplary embodiment described herein, the respiration modulated signal may be further processed based on the patient profile and artifact profile. The flow may continue to
The flow depicted in
Patient characteristic flow 1002 may relate to scaling or modifications of the simulated PPG signal based on patient characteristics. It will be understood that patient characteristic flow 1002 may not include all modulations of the PPG test signal due to patient characteristics, since other profiles (such as the pulsatile profile and respiratory profile) may also change in response to changes in patient characteristics.
Referring to the patient profile, the pulsatile blood flow indicated by a PPG signal may vary from patient to patient based on patient characteristics such as age, skin thickness, measurement location, patient cardiovascular health, or any other suitable patient characteristics. Although it will be understood that the patient characteristic flow may modify a PPG test signal in any suitable manner, in an exemplary embodiment the PPG test signal may be modified based on perfusion and transmissivity values of a patient profile.
In some embodiments, a perfusion signal P(t) and a transmissivity signal Tr(t) may be selected based on a patient profile. The signal values may be fixed, may vary over time based on a predetermined pattern, may vary randomly about a predetermined baseline value, may be based on known patient characteristics, or may be implemented in any other suitable manner. In an exemplary embodiment, a user of test unit 302 may select from among a set of patient characteristics such as age, sex, sensor location, body mass index, medications, known health conditions, any other suitable characteristic, or any combination thereof. Based on the selections, test unit 302 may generate a patient profile including a perfusion signal P(t) and a transmissivity signal Tr(t).
Although it will be understood that the perfusion signal P(t) and transmissivity signal Tr(t) may modify the PPG test signal in any suitable manner, in an exemplary embodiment the perfusion signal P(t) may modify the amplitude of the PPG signal while the transmissivity signal Tr(t) may modify the signal baseline. The respiration modulated signal and perfusion signal P(t) may be input to multiplier 1006, and the resulting signal may be input to adder 1008 along with transmissivity signal Tr(t). In some embodiments the resulting patient modulated signal may be output without additional modulations due to additional profiles, and may be the PPG test signal. In the exemplary embodiment described herein, the patient modulated signal may be further processed based on the artifact profile. The resulting patient modulated signal may be output from adder 1008 to artifact flow 1004.
Artifact flow 1004 may modify the patient modulated signal to simulate artifacts that cause non-physiological changes to a PPG signal. Although artifact flow may simulate any suitable artifacts, the artifacts may generally relate to motion artifacts and measurement artifacts that are part of an artifact profile. Motion artifacts may include artifact events due to irregular motion or artifacts due to regular patient motion. Motion artifacts may be selected from a set of predetermined artifact patterns, based on patient physiological characteristics and conditions (e.g., age, medications, or known health conditions), in any other suitable manner, or any combination thereof. Measurement artifacts may include artifact events due to the measurement equipment or process. For example, it may be desirable to simulate a particular type of sensor or sensor placement location. In some embodiments, a user of test unit 302 may input sensor characteristics or other measurement artifact parameters to generate the artifact profile. In some embodiments, a user of test unit 302 may select from among a set of known sensor types, sensor locations, or any other suitable measurement artifact parameters to generate the artifact profile.
Although it will be understood that artifacts may modify the patient modulated signal in any suitable manner, in an exemplary embodiment the artifacts may generally be categorized as multiplicative artifacts 1010 and additive artifacts 1012. Multiplicative artifacts may be combined with the patient modulated signal by multiplier 1014, while additive artifacts may be combined with the output of multiplier 1014 at adder 1016. The resulting PPG test signal may be output for additional processing (e.g., at truncating step 1018 and filtering step 1020).
At truncating step 1018, the values associated with the PPG test signal may be modified based on an analog to digital conversion rate and a sampling rate. A pulse oximeter may process a received PPG signal (e.g., at microprocessor 48) as a digital signal having a certain resolution and sampling rate. At truncating step 1018, the PPG test signal may be truncated to the nearest digital value based on a desired resolution. In addition, the time scale for samples of the PPG test signal may be selected based on a sampling rate. A user of the test unit 302 may select a desired resolution and sampling rate, may select from pulse oximeter types having known resolutions and sampling rates, or the resolution and sampling rate may be selected in any other suitable manner.
At filtering step 1020, the values of the samples of the PPG signal may undergo any other suitable filtering operations. For example, it may be known that a particular type of pulse oximeter performs filtering, smoothing, or interpolating operations before determining physiological parameters (e.g., pulse rate, oxygen saturation (SpO2), respiration rate, blood pressure), or that a sampled PPG signal is filtered in a particular manner before being output to another device for additional processing. For example, in some embodiments, a Bessel filter (e.g. at approximately 4 Hz) and a notch filter (e.g., at approximately 11 Hz) may be implemented at filtering step 1020.
The foregoing is merely illustrative of the principles of this disclosure and various modifications may be made by those skilled in the art without departing from the scope of this disclosure. The above described embodiments are presented for purposes of illustration and not of limitation. The present disclosure also can take many forms other than those explicitly described herein. Accordingly, it is emphasized that this disclosure is not limited to the explicitly disclosed methods, systems, and apparatuses, but is intended to include variations to and modifications thereof, which are within the spirit of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3846704 | Bessette | Nov 1974 | A |
4063551 | Sweeney | Dec 1977 | A |
4458518 | Ingle | Jul 1984 | A |
4958638 | Sharpe et al. | Sep 1990 | A |
5188108 | Secker | Feb 1993 | A |
5285783 | Secker | Feb 1994 | A |
5285784 | Secker | Feb 1994 | A |
5368026 | Swedlow et al. | Nov 1994 | A |
5398682 | Lynn | Mar 1995 | A |
5558096 | Palatnik | Sep 1996 | A |
5584295 | Muller et al. | Dec 1996 | A |
5588425 | Sackner et al. | Dec 1996 | A |
5595176 | Yamaura | Jan 1997 | A |
5605151 | Lynn | Feb 1997 | A |
5862805 | Nitzan | Jan 1999 | A |
5865736 | Baker et al. | Feb 1999 | A |
5891023 | Lynn | Apr 1999 | A |
6002952 | Diab et al. | Dec 1999 | A |
6035223 | Baker | Mar 2000 | A |
6081742 | Amano et al. | Jun 2000 | A |
6095984 | Amano et al. | Aug 2000 | A |
6129675 | Jay | Oct 2000 | A |
6135966 | Ko | Oct 2000 | A |
6178261 | Williams et al. | Jan 2001 | B1 |
6223064 | Lynn | Apr 2001 | B1 |
6229856 | Diab et al. | May 2001 | B1 |
6238351 | Orr et al. | May 2001 | B1 |
6325761 | Jay | Dec 2001 | B1 |
6334065 | Al-Ali et al. | Dec 2001 | B1 |
6342039 | Lynn et al. | Jan 2002 | B1 |
6350242 | Doten et al. | Feb 2002 | B1 |
6405076 | Taylor et al. | Jun 2002 | B1 |
6449501 | Reuss | Sep 2002 | B1 |
6463311 | Diab | Oct 2002 | B1 |
6506153 | Littek et al. | Jan 2003 | B1 |
6561986 | Baura et al. | May 2003 | B2 |
6564077 | Mortara | May 2003 | B2 |
6606511 | Al-Ali et al. | Aug 2003 | B1 |
6609016 | Lynn | Aug 2003 | B1 |
6684090 | Al-Ali et al. | Jan 2004 | B2 |
6694178 | Soula et al. | Feb 2004 | B1 |
6702752 | Dekker | Mar 2004 | B2 |
6709402 | Dekker | Mar 2004 | B2 |
6748252 | Lynn et al. | Jun 2004 | B2 |
6754516 | Mannheimer | Jun 2004 | B2 |
6760608 | Lynn | Jul 2004 | B2 |
6783498 | Sackner et al. | Aug 2004 | B2 |
6816741 | Diab | Nov 2004 | B2 |
6839581 | El Solh et al. | Jan 2005 | B1 |
6896661 | Dekker | May 2005 | B2 |
6905470 | Lee et al. | Jun 2005 | B2 |
6925324 | Shusterman | Aug 2005 | B2 |
6931269 | Terry | Aug 2005 | B2 |
6966878 | Schoisswohl et al. | Nov 2005 | B2 |
6970792 | Diab | Nov 2005 | B1 |
6980679 | Jeung et al. | Dec 2005 | B2 |
7020507 | Scharf et al. | Mar 2006 | B2 |
7035679 | Addison et al. | Apr 2006 | B2 |
7043293 | Baura | May 2006 | B1 |
7044918 | Diab | May 2006 | B2 |
7070566 | Medero et al. | Jul 2006 | B2 |
7079888 | Oung et al. | Jul 2006 | B2 |
7147601 | Marks et al. | Dec 2006 | B2 |
7177682 | Lovett | Feb 2007 | B2 |
7190261 | Al-Ali | Mar 2007 | B2 |
7215986 | Diab et al. | May 2007 | B2 |
7218966 | Haefner | May 2007 | B2 |
7254425 | Lowery et al. | Aug 2007 | B2 |
7283870 | Kaiser et al. | Oct 2007 | B2 |
7336982 | Yoo | Feb 2008 | B2 |
7355512 | Al-Ali | Apr 2008 | B1 |
7367339 | Hickle | May 2008 | B2 |
7367949 | Korhonen et al. | May 2008 | B2 |
7398115 | Lynn | Jul 2008 | B2 |
7403806 | Norris | Jul 2008 | B2 |
7407486 | Huiku et al. | Aug 2008 | B2 |
7415297 | Al-Ali et al. | Aug 2008 | B2 |
7438683 | Al-Ali et al. | Oct 2008 | B2 |
7440787 | Diab | Oct 2008 | B2 |
7470235 | Moriya et al. | Dec 2008 | B2 |
7485095 | Shusterman | Feb 2009 | B2 |
7496393 | Diab et al. | Feb 2009 | B2 |
7499835 | Weber et al. | Mar 2009 | B2 |
7523011 | Akiyama et al. | Apr 2009 | B2 |
7561912 | Schatz et al. | Jul 2009 | B2 |
7610324 | Troyansky et al. | Oct 2009 | B2 |
7690378 | Turcott | Apr 2010 | B1 |
7801591 | Shusterman | Sep 2010 | B1 |
7869980 | Casler et al. | Jan 2011 | B2 |
7887502 | Ross et al. | Feb 2011 | B2 |
7894868 | Al-Ali et al. | Feb 2011 | B2 |
7899507 | Al-Ali et al. | Mar 2011 | B2 |
7976472 | Kiani | Jul 2011 | B2 |
7988637 | Diab | Aug 2011 | B2 |
8019400 | Diab et al. | Sep 2011 | B2 |
8046040 | Al-Ali et al. | Oct 2011 | B2 |
8130105 | Al-Ali et al. | Mar 2012 | B2 |
8203438 | Kiani et al. | Jun 2012 | B2 |
8275553 | Amundson et al. | Sep 2012 | B2 |
8364223 | Al-Ali et al. | Jan 2013 | B2 |
8364226 | Diab et al. | Jan 2013 | B2 |
8755871 | Weng et al. | Jun 2014 | B2 |
8880576 | Ochs et al. | Nov 2014 | B2 |
20020038078 | Ito | Mar 2002 | A1 |
20020117173 | Lynn et al. | Aug 2002 | A1 |
20030036685 | Goodman | Feb 2003 | A1 |
20030158466 | Lynn | Aug 2003 | A1 |
20030163054 | Dekker | Aug 2003 | A1 |
20040015091 | Greenwald et al. | Jan 2004 | A1 |
20040225225 | Naumov et al. | Nov 2004 | A1 |
20050004479 | Townsend et al. | Jan 2005 | A1 |
20050022606 | Partin et al. | Feb 2005 | A1 |
20050027205 | Tarassenko et al. | Feb 2005 | A1 |
20050049470 | Terry | Mar 2005 | A1 |
20050070774 | Addison et al. | Mar 2005 | A1 |
20050115561 | Stahmann et al. | Jun 2005 | A1 |
20050222502 | Cooper | Oct 2005 | A1 |
20050222503 | Dunlop et al. | Oct 2005 | A1 |
20060122476 | Van Slyke | Jun 2006 | A1 |
20060192667 | Al-Ali | Aug 2006 | A1 |
20060211930 | Scharf et al. | Sep 2006 | A1 |
20060217614 | Takala et al. | Sep 2006 | A1 |
20060258921 | Addison et al. | Nov 2006 | A1 |
20070004977 | Norris | Jan 2007 | A1 |
20070010723 | Uetela et al. | Jan 2007 | A1 |
20070032639 | Gottesman et al. | Feb 2007 | A1 |
20070073120 | Li et al. | Mar 2007 | A1 |
20070073124 | Li et al. | Mar 2007 | A1 |
20070129636 | Friedman et al. | Jun 2007 | A1 |
20070149890 | Li et al. | Jun 2007 | A1 |
20070213619 | Linder | Sep 2007 | A1 |
20070213621 | Reisfeld et al. | Sep 2007 | A1 |
20070255146 | Andrews et al. | Nov 2007 | A1 |
20070293896 | Haefner | Dec 2007 | A1 |
20080067132 | Ross et al. | Mar 2008 | A1 |
20080077022 | Baker | Mar 2008 | A1 |
20080167540 | Korhonen et al. | Jul 2008 | A1 |
20080200775 | Lynn | Aug 2008 | A1 |
20080249382 | Oh et al. | Oct 2008 | A1 |
20080287815 | Chon et al. | Nov 2008 | A1 |
20090163784 | Sarpeshkar et al. | Jun 2009 | A1 |
20090247837 | Ochs et al. | Oct 2009 | A1 |
20090306487 | Crowe et al. | Dec 2009 | A1 |
20090306524 | Muhlsteff et al. | Dec 2009 | A1 |
20090326349 | McGonigle | Dec 2009 | A1 |
20090326395 | Watson | Dec 2009 | A1 |
20090326831 | McGonigle | Dec 2009 | A1 |
20100081897 | Li et al. | Apr 2010 | A1 |
20100081899 | McKenna | Apr 2010 | A1 |
20100113904 | Batchelder et al. | May 2010 | A1 |
20100113908 | Vargas et al. | May 2010 | A1 |
20100113909 | Batchelder et al. | May 2010 | A1 |
20100174160 | Chance | Jul 2010 | A1 |
20100286495 | McGonigle | Nov 2010 | A1 |
20100292568 | Droitcour et al. | Nov 2010 | A1 |
20100324389 | Moon et al. | Dec 2010 | A1 |
20110021892 | Addison et al. | Jan 2011 | A1 |
20110066062 | Banet et al. | Mar 2011 | A1 |
20110071406 | Addison et al. | Mar 2011 | A1 |
20120232398 | Roham et al. | Sep 2012 | A1 |
20120253140 | Addison et al. | Oct 2012 | A1 |
20120296219 | Chon et al. | Nov 2012 | A1 |
20120310051 | Addison et al. | Dec 2012 | A1 |
20130137936 | Baker, Jr. et al. | May 2013 | A1 |
20130138002 | Weng et al. | May 2013 | A1 |
20130172767 | Dripps et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
0072601 | Feb 1983 | EP |
1344488 | Sep 2004 | EP |
1507474 | Feb 2009 | EP |
WO 0021438 | Apr 2000 | WO |
WO 03000125 | Jan 2003 | WO |
WO 03055395 | Jul 2003 | WO |
WO 03084396 | Oct 2003 | WO |
WO 2004075746 | Sep 2004 | WO |
WO 2008135985 | Nov 2008 | WO |
WO 2009043028 | Apr 2009 | WO |
WO 2010030238 | Mar 2010 | WO |
WO 2010135518 | Nov 2010 | WO |
WO 2012014065 | Feb 2012 | WO |
WO 2012051295 | Apr 2012 | WO |
Entry |
---|
Stagg and Gennser, “Electronic analysis of foetal breathing movements: A practical application of phase-locked-loop principles,” Journal of Med. Eng. and Tech., Sep. 1978, vol. 2, No. 5, pp. 246-249. |
Rapaport and Cousin, “New phase-lock tracking instrument for foetal breathing monitoring,” Med. & Biol. Eng. & Compo 1982, vol. 20, pp. 1-6. |
Lindberg, L.G., Ughall, H., Oberg, PA, “Monitoring of respiratory and heart rates using a fibre-optic sensor,” Medical & Biological Engineering & Computing, Sep. 1992. pages 533-537. |
Long, S. “Phase Locked Loop Circuits.” Apr. 27, 2005. https://web.archive.org/web/20081201083334/http://www.ece.ucsb.edu/˜long/ece594a/PLL—intro594a—s05.pdf. |
Lesurf, Jim. “FM & PM Demodulation.” Oct. 2, 2007. https://web.archive.org/web/20071002193422/http://www.st-andrews.ac.uk/˜www—pa/Scots—Guide/RadCom/part13/page1.html. |
Addison, Paul S. et al., “Developing an Algorithm for Pulse Oximetry Derived Respiratory Rate (RRoxi): A Healthy Volunteer Study,” Journal of Clinical Monitoring & Computing, 2012, 26: 45-51. |
International Search Report and Written Opinion of the International Searching Authority for Application No. PCT/US2013/020338, mailed on Apr. 11, 2013. 6 pages. |
International Search Report and Written Opinion of the International Searching Authority for Application No. PCT/US2014/014875, mailed on May 15, 2014. 6 pages. |
International Search Report and Written Opinion of the International Searching Authority for Application No. PCT/US2014/014899, mailed on May 15, 2014. 6 pages. |
Nguyen et al., “Comparison of two Methods for Demodulation of Pulse Signals—Application in Case of Central Sleep Apnea.” Journal of Science and Technology, 49(1), 2011, pp. ISSN:0866-708X. |
Supplementary European Search Report from the European Patent Office in European Patent Application No. 14749411, dated Aug. 10, 2016. |
Number | Date | Country | |
---|---|---|---|
20140244205 A1 | Aug 2014 | US |