Systems and methods for generating data based on one or more spectrally-encoded endoscopy techniques

Abstract
Exemplary systems and methods for generating data associated with at least one portion of a sample can be provided. For example, according to one exemplary embodiment of such systems and methods, it is possible to provide a particular radiation using at least one first arrangement. The particular radiation can include at least one first electro-magnetic radiation directed to at least one sample and at least one second electro-magnetic radiation directed to a reference arrangement. The first radiation and/or the second radiation can comprise a plurality of wavelengths. The first electro-magnetic radiation can be spectrally dispersed along at least one portion of the sample. The second electro-magnetic radiation measured at two or more different lengths of the reference arrangement with respect to the first arrangement. Data can be generated which is associated with the first and second electro-magnetic radiations obtained at the two different lengths using at least one second arrangement which comprises a spectrometer arrangement.
Description
FIELD OF THE INVENTION

The present invention generally relates to systems and methods for generating data associated with at least one portion of a sample, and particularly for, e.g., generating such data using one or more spectrally-encoded endoscopy techniques.


BACKGROUND OF THE INVENTION

As is known in the art, three-dimensional (3D) endoscopy which provides clinicians with depth information can greatly aid a variety of minimally invasive procedures. Depth resolved imaging with a large, three-dimensional field of view is, however, challenging when utilizing flexible imaging probes such as borescopes, laparoscopes, and endoscopes having relatively small diameters.


Confocal imaging through a fiber-bundle using a high numerical aperture (NA) lens such as that described in Y. S. Sabharwal et al., “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt. 38, 7133 (1999) is one solution to this problem. The 3D field of view for these devices, however, may be limited to less than a few millimeters due to the small clear aperture of the objective lens and low f-number required for high-resolution optical sectioning.


Other methods, such as stereo imaging and structured illumination as described in M. Chan et al., “Miniaturized three-dimensional endoscopic imaging system based on active stereovision,” Appl. Opt. 42, 1888 (2003) and D. Karadaglic et al., “Confocal endoscope using structured illumination,” Photonics West 2003, Biomedical Optics, 4964-34, respectively, have also been described. These techniques, however, likely a large number of pieces of hardware for the probe than confocal imaging through a fiber bundle. This additional hardware increased the size, cost, and complexity of such devices.


Spectrally-encoded endoscopy (“SEE”) is a techniques which uses a broadband light source and a diffraction grating to spectrally encode reflectance across a transverse line within a sample. A two-dimensional image of the sample can be formed by slowly scanning this spectrally-encoded line across the sample. This exemplary technique generally uses a single optical fiber, thereby enabling imaging through a flexible probe having a small diameter. When combined with interferometry, the SEE technique has the additional capability of providing three-dimensional images.


Depth-resolved imaging can be achieved by incorporating an SEE probe into the sample arm of a Michelson interferometer. Using this arrangement, two-dimensional (“2D”) speckle patterns can be recorded by a charge-coupled device (“CCD”) camera at multiple longitudinal locations of a reference mirror. Subsequently, depth information can be extracted by comparing the interference obtained at consecutive reference mirror positions.


One problem with this exemplary approach, however, may be that the reference mirror should be maintained in a stationary configuration to within an optical wavelength during a single image (or line) acquisition time to avoid the loss of fringe visibility. Stepping the reference mirror with such high fidelity over multiple discrete depths is quite challenging at the high rates required for real-time volumetric imaging.


One exemplary improvement in an acquisition speed and therefore susceptibility to sample motion can be achieved using time-domain heterodyne interferometry. In this exemplary approach, an interference signal can be recorded with a standard photodetector at every group delay scan of a rapid scanning optical delay line (“RSOD”). By applying a short-time Fourier transformation (“STFT”) to a so-measured trace, transverse and depth information can be extracted. In this exemplary method, three-dimensional (“3D”) data sets can be acquired at a rate of about five per second.


Image quality can be governed, at least in part, by the signal-to-noise ratio (“SNR”). For fast imaging rates and low illumination powers used for safe clinical imaging, maintaining a high SNR may be challenging. For example, with 4 milli-watt (mW) of power on the sample, the time-domain SEE system can provide an SNR of approximately 10 dB.


Using an exemplary SEE technique, a low NA collection system can be utilized to achieve a large working distance, likely resulting in a decrease in the solid angle of collection of light scattered from tissue. Typical optical parameter of NA=0.01 can allow the collection of, e.g., only 0.01% of light scattered from the sample. As a result, the signal of SEE images of tissue may, e.g., only be 10 dB above the noise floor. Increasing the imaging speed increases the bandwidth, thereby decreasing the SNR commensurately.


High imaging speed and high SNR can be important for clinical applications of optical imaging. Optical coherence tomography (“OCT”) is an imaging technique which shares certain principles with 3D SEE. For example, exemplary OCT systems can utilize the RSOD and a single detector, and may be operated with an A-line acquisition rate in the range of about 2-3 kHz. This can correspond to about 4 frames/second with 500 A-lines per frame. An improvement of a number of orders of magnitudes in imaging speed has been demonstrated with an alternative approach, e.g., a spectral-domain OCT (“SD-OCT”) technique. In this exemplary technique, a high-resolution spectrometer can include a diffraction grating and a linear CCD array which may be used to record spectral interference between light from a sample and from a fixed-length reference arm. The improvement in SNR using such exemplary technique has enabled imaging at 30,000 A-lines per second, nearly three orders of magnitude improvement over time-domain methods.


An exemplary proof of principle using spectral domain interferometry for spectral encoding has been described in by Froehly et al., Optics Communications 222 (2003), pp. 127-136. In such document, transverse and depth resolution of this exemplary technique has been analyzed, and a phase-sensitive depth measurement of a 1 mm thick glass plate was demonstrated.


Accordingly, it may be beneficial to address and/or overcome at least some of the deficiencies described herein above.


OBJECTS AND SUMMARY OF THE INVENTION

One of the objectives of the present invention is to overcome certain deficiencies and shortcomings of the prior art arrangements and methods (including those described herein above), and provide exemplary embodiments of systems and methods for generating data associated with at least one portion of a sample, and particularly for, e.g., generating such data using one or more spectrally-encoded endoscopy techniques.


According to one exemplary embodiment of the systems and methods of the present invention, it is possible to provide a particular radiation using at least one first arrangement. The particular radiation can include at least one first electro-magnetic radiation directed to at least one sample and at least one second electro-magnetic radiation directed to a reference arrangement. The first radiation and/or the second radiation can comprise a plurality of wavelengths. The first electro-magnetic radiation can be spectrally dispersed along at least one portion of the sample. The second electro-magnetic radiation measured at two or more different lengths of the reference arrangement with respect to the first arrangement. Data can be generated which is associated with the first and second electro-magnetic radiations obtained at the two different lengths using at least one second arrangement which comprises a spectrometer arrangement.


For example, the reference arrangement can include a translatable mirror arrangement, a piezo-electric fiber stretching arrangement, a pulse-shaping arrangement, a rapidly-scanning optical delay line arrangement and/or an electro-optical or acousto-optical arrangement. The data can be generated based on a Fourier transform of information received by the spectrometer arrangement which is associated with the first and second electro-magnetic radiations. According to one exemplary variant, the data may be generated as a function of a phase of the information.


According to another exemplary embodiment of the present invention, the data can be generated based on a time frequency transform and/or a space-frequency transform of information received by the spectrometer arrangement which is associated with the first and second electro-magnetic radiations. The transform can be a Short-time Fourier transform. The data may also be generated based on a correlation between information received at least one first length of the two different lengths and at least second length of the two different lengths. The correlation can be a cross-correlation. A first peak of the cross-correlation may be obtained, and a sign of the cross-correlation can be determined based on further information associated with the first peak.


According to a further exemplary embodiment of the present invention, the data may be generated based on a comparison of phases between information received at at least one first length of the two different lengths and at least second length of the two different lengths. Further data can be generated based on a magnitude of a Fourier transform of the data. The data and the further data can be combined to form a composite image data associated with the sample.


In another exemplary embodiment of the present invention, the data may be associated with at least one portion of the sample which is located in a direction that is axial with respect to a direction of the first electro-magnetic radiation. The sign of a location of the first peak of the cross-correlation may be associated with the portion of the sample which is located in the direction that is axial with respect to the direction of the first electro-magnetic radiation.


According to still another exemplary embodiment of the present invention, the data can be further associated with a two-dimensional image and/or a three-dimensional image of the portion of the sample. The second electro-magnetic radiation can be directed to continuously scan the different lengths of the reference arrangement.


In accordance with yet another exemplary embodiment of the present invention, a spectral-domain spectrally-encoded endoscopy (“SD-SEE”) system and method can be provided. For example, a source and an interferometer can be utilized. The interferometer can have a first port coupled to receive a signal from the source, a second port coupled to reference arm which may include a path length control device, a third port coupled to a sample arm which may include a scanning element and one or more optical imaging elements, and a fourth port coupled to a detector which may include a spectrometer and a camera.


The exemplary embodiment of the SD-SEE system can perform 3D imaging, e.g., at about 30 frames per second, with SNR of greater than about 30 dB. Using an exemplary high-speed line camera in a high-resolution spectrometer, e.g., each x-z plane can be captured in a single shot. This exemplary embodiment of the present invention facilitates high-speed imaging with two to three orders of magnitude improvement in SNR over conventional techniques. In one further exemplary embodiment of the present invention, the path length control device of the reference arm can include an RSOD, and real-time 3D imaging of tissue can be facilitated at a rate of about 30 frames per second with an SNR typically of about 30 dB. SNR of greater than about 30 dB can provide an improvement of about two to three orders of magnitude over time-domain SEE techniques.


In a further exemplary embodiment of the present invention, a detection SEE technique can be provided which uses spectral-domain interferometry. For example, a light or other electro-magnetic radiation can be provided to a sample and a reference arm. A path length of the reference arm can be changed, spectral interference between light reflected from the sample and light reflected from the reference arm may be measured, and a cross-correlation between a short time Fourier transforms (STFTs) of adjacent sample locations can be determined.


Using this exemplary arrangement according to one exemplary embodiment of the present invention, it is possible to resolve a depth ambiguity in SD-SEE. By determining a cross-correlation between STFTs of adjacent sample locations, the sign of an offset of the first cross-correlation maximum can be used to remove height ambiguity. The implementation of this exemplary cross-correlation technique can be accomplished by, e.g., stepping the sample arm slow scan axis to one location, acquiring one spectral scan, stepping the reference arm path length, and acquiring an additional spectral scan. This exemplary procedure may be repeated for the entire volumetric image. For example, moving either the sample arm or the reference path in small steps may be challenging at high speeds. Thus, according certain exemplary embodiments, the reference arm can be continuously scanned at a slow rate. The sample arm can also be continuously scanned and spectral data can be over-sampled by capturing a plurality of spectrally-encoded lines per resolution element, which can be determined by the numerical aperture of the SEE probe lens.


In accordance with a further exemplary embodiment of the present invention, the exemplary SD-SEE technique can include (a) stepping a sample arm slow scan axis to a location, (b) acquiring one spectral scan at the location, (c) stepping a reference arm path length, and (d) acquiring an additional spectral scan. If the entire volumetric image is complete, the processing can be stopped. Otherwise, the sample arm slow scan axis may be moved to a new location and processing steps (b)-(d) can be repeated.


Using an exemplary embodiment of the arrangement which uses such exemplary technique for spectral-domain spectrally-encoded endoscopy, a desirable SNR can be provided. For example, moving either the sample arm or the reference path (e.g., an RSOD galvanometer) in small steps may be challenging at high speeds. Thus, according to certain exemplary embodiments, the reference arm can be continuously scanned so that the optical delay between two adjacent lines in the image may be in the range of about 0 to λ/2, and preferably about λ/4.


In one additional exemplary embodiment of the present invention, the reference arm can be continuously scanned at a rate of about 30 Hz, with a sawtooth waveform having an amplitude typically of about 100 μm, the sample arm may be continuously scanned, and spectral data can be over-sampled by capturing about a plurality of spectrally-encoded lines per resolution element, which can be determined by the numerical aperture of the SEE probe lens.


Another exemplary way to remove depth ambiguity may be by (a) acquiring a full 3D image at a fixed location of the reference arm, (b) moving the reference arm to another location, (preferably by one axial resolution element), and (c) acquiring second 3D image. The unwrap mask can be obtained by determining the sign of the difference between the two height maps (e.g., depth information only).


Other features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

Further objects, features and advantages of the present invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the present invention, in which:



FIG. 1. is a block diagram of an exemplary embodiment of a spectral-domain spectrally-encoded endoscope (“SD-SEE”) imaging system having a rapidly scanning optical delay line (“RSOD”) with neutral density (“ND”);



FIG. 2. is a block diagram illustrating an exemplary embodiment of data capturing and processing in the SD-SEE system of FIG. 1;



FIG. 3A is an exemplary unprocessed image of a doll's face from which information may be extracted, and includes an inset corresponding to a white-light image of the doll's face;



FIG. 3B is an expanded view of a portion of the image of FIG. 3A, as circumscribed by a white rectangle;



FIG. 3C is an exemplary graph of image intensity versus distance taken along the solid and the dashed lines at a particular location X indicated in FIG. 3B;



FIG. 3D is an exemplary graph of image intensity versus distance taken along the solid and the dashed lines at another location Y indicated in FIG. 3B;



FIG. 3E is an exemplary graph of image intensity versus distance taken along the solid and the dashed lines at a further location Z indicated in FIG. 3B;



FIG. 3F is an exemplary graph of power spectra (power vs. frequency) taken along the solid and the dashed lines at a certain location X indicated in FIG. 3B;



FIG. 3G is an exemplary graph of power spectra (power vs. frequency) taken along the solid and the dashed lines at an additional location Y indicated in FIG. 3B;



FIG. 3H is an exemplary graph of power spectra (power vs. frequency) taken along the solid and the dashed lines at a further location Z indicated in FIG. 3B;



FIG. 3I is an exemplary graph of cross-correlation between the power spectra of adjacent (solid and dotted) lines at the location X in FIG. 3B;



FIG. 3J is an exemplary graph of the corresponding cross-correlation between the power spectra of adjacent (solid and dotted) lines at the location Y in FIG. 3B;



FIG. 3K is an exemplary graph of the corresponding cross-correlation between the power spectra of adjacent (solid and dotted) lines at the location Z in FIG. 3B;



FIG. 4A is an exemplary two-dimensional (“2D”) image of the face of the doll;



FIG. 4B is an exemplary height map of the face of the doll shown in FIG. 4A, with numbers on the scale bar being millimeters;



FIG. 4C is an exemplary image of a sign mask of the face of the doll shown in FIG. 4A for unwrapping a depth image;



FIG. 4D is an exemplary unwrapped depth map of the face of the doll shown in FIG. 4A.



FIG. 5A is are exemplary three-dimensional (“3D”) images of a paper flower;



FIG. 5B are exemplary 3D images of a skin fold of a volunteer;



FIG. 5C are exemplary 3D images of two hind paws and a tail of a mouse embryo, with the transverse 2D images, depth images, and depth being superimposed on the 2D image being shown on the left, middle and right images, respectively; and



FIG. 6 is a flow diagram describing an exemplary procedure for an extraction of three dimensional information in according to one exemplary embodiment of the present invention.





Throughout the figures, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments. Moreover, while the subject invention will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments. It is intended that changes and modifications can be made to the described embodiments without departing from the true scope and spirit of the subject invention as defined by the appended claims.


DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS


FIG. 1 shows a block diagram of an exemplary embodiment of a system according to the present invention for spectral-domain spectrally-encoded endoscopy (“SD-SEE”). This exemplary system includes a light source 10 coupled to a first port 12a of a single-mode fiber optic interferometer 12. In one exemplary embodiment, the light source 10 may be, for example, a broad-bandwidth titanium-sapphire laser of the type manufactured by, e.g., Femtolasers Produktions, GmbH, Femtosource integral OCT™, with a center wavelength of about 800 nanometers (nm) and an FWHM bandwidth of about 140 nm. Further, according to another exemplary embodiment, the interferometer 12 may be a 50/50 Michelson interferometer.


A second port 12b of the interferometer 12 of the system of FIG. 1 can be coupled to a reference arm which may include, e.g., an arrangement for adjusting or otherwise controlling a path length 14 coupled thereto. A third port 12c of the interferometer 12 can be coupled to a sample arm having, e.g., a miniature endoscopic imaging probe 16 coupled thereto. A fourth port 12d of the interferometer 12 can be coupled to a detection arm having, e.g., a detector 18 coupled thereto.


In the exemplary embodiment of the system of FIG. 1, the arrangement which is capable of adjusting the path length 14 can include a rapidly scanning optical delay line (“RSOD”) which may control a group delay of light or other electro-magnetic radiation propagating in the reference arm. The RSOD can be provided from a neutral density (“ND”) filter, a grating (or other light/electro-magnetic radiation providing device), a lens and a galvanometric scanner.


The miniature endoscopic imaging probe 16 of FIG. 1 can be simulated utilizing a compact lens-grating design in which a beam can be first focused by a lens (e.g., f=40 mm, beam diameter 0.5 mm), and then diffracted by a transmission grating (e.g., Holographix LLC, 1000 lines/mm) to form a spectrally-encoded line (x-axis) on the surface of a sample 20. The galvanometric optical scanner can be used to provide a slow (y) axis scanning. The above exemplary parameters can result in a spatial transverse resolution of approximately 80 μm. The image can be comprised of, e.g., about 80 transverse resolvable points; each transverse spot may be illuminated with a bandwidth of 1.9 nm. The overall power on the sample 20 can be about 4 mW.


The detector 16 may be a spectrometer. In one exemplary embodiment, a spectrometer can have a relatively high resolution, which may be comprised of a beam collimator (e.g., Oz optics, f=50 mm), a diffraction grating (e.g., Spectra-Physics, 1800 lines/mm), a lens (e.g., Nikon 85 mm, f/1.8) and a high-speed (e.g., 2048 elements, read-out rate 30 kHz) line scan camera (Basler L104k-2k). A function generator can be used to control the galvanometric scanner(s) at the sample arm and in the RSOD, and may provide a synchronization signal to the line scan camera.



FIG. 2 shows various exemplary images and graphs to illustrate and describe an exemplary embodiment of an image formation process. For example, a sample 50 to be imaged may have three surfaces 50a, 50b, 50c, with each of the three surfaces 50a, 50b, 50c having different heights, as shown in FIG. 2. An imaging probe (not shown in FIG. 2) with which the sample 50 can be imaged may provide three resolvable points at wavelengths λ1, λ2, λ3. To promote clarity and for ease of explanation, it can be assumed that the sample 50 may have a uniform or substantially uniform reflectivity. Further, in certain practical imaging systems, the imaging probes utilizing more than three resolvable points may typically be used.


Each horizontal line recorded by the CCD (e.g. the CCD in the detector 18 of FIG. 1) can correspond to a spectral interference between the light reflected from the sample 20 and from the reference arm. A series of interference patterns 52a-52c (plotted as a solid lines in FIG. 2) can have modulation frequencies which may be proportional to the absolute distance from a plane that can match the path length of the reference arm (e.g., can be referred to as a “zero plane”).


As shown in FIG. 2, for example, the reference arm path length can match the distance from a surface (or plane) 50b. Thus, the interference pattern 52b can be a straight horizontal line (e.g., without having a modulation) as shown and the distance. The exemplary distances from surfaces 50a and 50c, may not match the reference arm path length, and thus interference patterns 52a, 52c having sinusoidal shapes may result.


Short Time Fourier transform (“STFT”) or other Space-time or frequency-time signal transforms including, e.g., the Wigner transform, pseudo-Wigner transform, wavelet transforms, Fractional Fourier Transform, etc. of the CCD line scan signal can facilitate the determination of the axial information of the sample. For example, a strong reflection from the first surface of an object can usually occur. Therefore, the intensity of the highest peak in each Fourier transform may be proportional to the intensity of the reflection (assuming no DC term), and the location of that peak (which corresponds to the frequency) is proportional to the depth (z) of that surface. Reflections from other depths (for example, from locations under the front surface), may manifest in different, often lower in intensity, locations in the Fourier trace. As a result, sub-surface imaging may be performed by determining the intensity of the Fourier component adjacent to the strongest peak.


In the exemplary graphs and images of FIG. 2, with the assumption that the surface reflection is higher than any reflections within the sample, the frequency at which the STFT amplitude is a maximum may likely be proportional to the step height intensity.


Since the spectrum detected by the linear array can provide likely only the real value of the complex field, however, it may be difficult to resolve the ambiguity of whether the surface height is above or below the “zero plane” with a single spectral measurement. This ambiguity in axial location is a known characteristic of SD-OCT (and optical frequency domain interferometry—“OFDI”), where depth data wrapping may occur around the zero path difference between the reference and the sample arms. One exemplary solution to this problem can be to place the sample only in one-half of the measurement range. This exemplary method may be disadvantageous since it can decrease the ranging depth by a factor of two.


Several exemplary techniques for recovering the complex field and removing the depth ambiguity have been demonstrated for SD-OCT, including, e.g., the use of a 3×3 fiber-splitter and by acquiring several A-lines at slightly different reference arm path lengths.



FIGS. 3A and 3B and FIGS. 3C-3K show are a series of images and graphs, respectively, which indicate a use of an exemplary embodiment of a technique for extracting three-dimensional (“3D”) data from a raw (e.g., an unprocessed) image. For example, FIG. 3A shows an exemplary raw image. Inset with a white-light image being of the face of a doll. FIG. 3B shows an expanded region encased in a square in FIG. 3A. FIGS. 3C-E show an exemplary graph of the intensity cross-sections provided along the solid and the dashed lines at the three locations marked in FIG. 3B. FIGS. 3F-3H show exemplary graphs of the corresponding power spectra of FIGS. 3C-3E. FIGS. 3I-3K show exemplary graphs of the corresponding cross-correlation between the power spectra of adjacent (solid and dotted) lines.


Referring to FIGS. 3A-3K in further detail, to resolve the depth ambiguity in SD-SEE, it is possible to acquire two spectra at different reference arm path lengths. Comparing the phases of such STFT's can facilitate a determination of whether a surface location is above or below a “zero plane.” However, due to difficulties in accurately determining the phase in the presence of noise, such exemplary technique can have a high error rate when imaging tissue, resulting in a noisy three-dimensional reconstruction.


To overcome the above-described problem, it is possible to employ an exemplary technique to determine the cross-correlation between immediately adjacent sample locations, while the reference arm is scanned at a slow rate was implemented. The sign of the offset of the first cross-correlation maximum is utilized to remove the height ambiguity. The implementation of this exemplary cross-correlation method can be accomplished by, e.g., stepping the sample arm slow scan (y-axis) to one location, acquiring one spectral scan, stepping the reference arm path length and acquiring an additional spectral scan. This exemplary procedure may be repeated for the entire volumetric image.


Moving either the sample arm or the reference path (RSOD galvanometer) in small steps can, however, be difficult at high speeds. As a result, the reference arm can be continuously scanned at a slow rate (30 Hz, sawtooth waveform, typically 100 μm amplitude). The sample arm can also be continuously scanned, and spectral data can be over-sampled by capturing 5 spectrally-encoded lines per resolution element (which may be determined by the numerical aperture of the SEE probe lens).


Turning to FIG. 3A, an exemplary raw image obtained from a face of a small plastic doll is shown therein. A white-light image of the doll's face is illustrated in the inset for reference. FIG. 3B shows an image of an expanded region of the raw image, displaying the interferometric fringes in more detail. In an exemplary embodiment, the detection spectrometer can measure a spectral resolution of approximately 0.1 nm, which is about 20 times higher than the spectral resolution at the imaging probe. In the interference pattern shown in FIG. 3A, areas that are lower (or higher) than the zero plane have a diagonal flow-like pattern from top-right (top-left) to the bottom-left (bottom-right).


The STFT of each horizontal line of the raw image can be determined, e.g., using 250 rectangle windows with each window being 32 pixels wide. The data processing graphs associated with the procedure are illustrated in FIGS. 3C-3K for the three sample locations shown in FIG. 3B, respectively. The intensity cross-section along the 32-pixel-wide window pairs, indicated as solid and dashed lines on FIG. 3B, are shown in solid and dashed curves, respectively, on the three respective graphs of FIGS. 3C-3E. The corresponding exemplary intensity graphs of the FT's are shown in solid and dashed lines in FIGS. 3F-3H. The exemplary graphs of the cross-correlation between the solid and the dashed curves within each plot are shown in FIGS. 31-3K.


For example, a full recovery of the 3D image can be obtained by performing these operations for every resolution element on the sample. An exemplary image which maps the scattering intensity from the doll's face can be obtained by determining the logarithmic of the maximum intensity value of each FT, and is shown in FIG. 4A. Such exemplary 2D reflectance image of the doll's face indicates regions of a low reflectance, such as the eyes and the eyebrows. The characteristic speckle pattern typical of coherent imaging is also present in this exemplary image.



FIG. 4B shows an image of an exemplary height map of the doll's face. For example, the depth dimension in this exemplary image is “folded” around the zero-plane (the doll's nose appears to have the same height as the lower lip). The signs of the locations of the maximum values of each cross-correlation may form the unwrapping sign mask, as shown in the exemplary image of FIG. 4C. This exemplary image can be used to unwrap the depth dimension, e.g., by multiplying it with the height map (FIG. 4B). The resulting exemplary unwrapped height map image, shown in FIG. 4D, may have two times greater depth range (e.g., 20 resolvable points) than the unwrapped image (see FIG. 4B, 10 axial points). Since the height can be determined for every point in the image, the height map may not be negatively effected by speckle noise, such as seen on the 2D image of FIG. 4A. This exemplary technique for unwrapping the depth dimension may also not be negatively effected by losses involved with using an additional fiber coupler, and due to the continuous scanning of the RSOD, may not need any decrease in the imaging speed. Compared with time-domain SEE that was limited by the scanning range of the RSOD (1.5 mm), here the depth range was approximately 3 mm, limited by the spectrometer resolution.


Exemplary images generated by real-time 3D imaging techniques for various types of samples, including, e.g., a small paper flower, a skin fold on a volunteer's hand, and the tail between the hind paws of a mouse embryo, are shown in FIGS. 5A-5C. For example, FIGS. 5A-5C are a series of transverse 2D images, depth images, and depth superimposed on the 2D image (shown in the left images 510, 540, 570, center images 520, 550, 580 and right images 530, 560, 590, respectively), and presented with the same scale. The left images 510, 540, 570 of each of FIGS. 5A-5C illustrate the 2D images. The center images 520, 550, 580 of FIGS. 5A-5C show the surface height encoded in gray levels, where high pixel value represent surface height closer to the imaging probe. The right images 530, 560, 590 of FIGS. 5A-5C show the depth information superimposed on the 2D image, where height is encoded with color. The exemplary images can be acquired at a rate of about 30 frames per second. The SNR can be 35 dB, 30 dB and 25 dB for images in FIGS. 5A, 5B and 5C, respectively.


In particular, FIG. 5A illustrates the images 510, 520, 530 with the depth range of the flower with can cover about 2.2 mm. Certain fine details are provided in the 2D image of the skin fold, as shown in the left image 540 of FIG. 5B. The height map image 550 as shown in the center image of FIG. 5B, illustrates a large height difference between the right image 540 and the left image 560 of FIG. 5B. For example, to simulate endoscopic imaging of a fetus, a mouse embryo can be imaged through an approximately 2 mm thick plastic wall of a polypropylene 50 ml tube, and through approximately 10 mm thick layer of 3.7% formaldehyde fixative solution.



FIG. 5C shows exemplary three-dimensional (“3D”) images 560, 570, 580 of two hind paws and a tail of a mouse embryo. Transverse 2D image, depth image, and depth superimposed on the 2D image are shown in the left image 560, the center image 570 and the right image 580 of FIG. 5C, respectively, and presented on the same scale. A significant amount of information present in the depth image in the center image 570 of FIG. 5C, compared to the 2D image provided in the left image 580 of FIG. 5C. While the exemplary 2D image of one of the mouse's hind paws reveals only three fingers, the depth image illustrates the 4th finger, as well as the paw's structure. The depth resolved image 570 also shows the relative location in space of the tail and the second paw.



FIG. 6 shows a flow diagram of an exemplary procedure for providing the three-dimensional (“3D”) data reconstruction according to one exemplary embodiment of the present invention. For example, after illuminating a transverse line (step 610), two spectra can be captured in steps 615 and 625 with a small difference in reference path of approximately λ/4 (step 620). By determining the peak value of the short-time Fourier transform of the captured spectra in steps 630 and 635, the reflectance values of the entire transverse line can be obtained (step 640). The Fourier transform peak location can provide information on the axial distance in step 645 from the reference plane 50b. Unwrapping the axial dimension can be obtained by determining the short-time cross-correlation between the two spectra (step 650), determining the location of the first maxima (step 655), and using that information to determined if the measured location is above or below the reference plane (step 660). In this exemplary manner, the location height can be obtained in step 670. When the transverse and axial dimensions are determined, another line on the sample can be imaged (step 680).


SNR Analysis


Exemplary SEE techniques can be performed using a CCD-based spectrometer that may record back reflections from the sample. Without a reference arm, this approach can be used only for imaging in 2D. When the reflectivity from the sample is low, which may be often the case for biomedical imaging, the electrical noise of the CCD camera can be the dominant noise source. Assuming a uniformly flat spectrum, the SNR can be given by the following:











SNR

2

D


=




[

η






RP
s



τ
/

(


N
x


hv

)



]

2


n
noise
2


=



2


RP
s


τ


hv






N
x
2



N
z



·



n
photon



n
signal



N
x



N
z



2


n
noise
2






,




(
1
)








in which:

    • η denotes the quantum efficiency including the spectrometer efficiency;
    • Ps denotes the total sample power;
    • nnoise denotes the number of noise electrons of a single CCD pixel;
    • nsignal=ηRPsτ/(Nxhν) corresponds to the number of single electrons per pixel associated with the sample light; and
    • nphotons=η.


With nnoise=170, Nx=100, Nz=10, τ=1 ms, Ps=1 mW, and η=0.5, the exemplary minimum detectable reflectivity corresponding to SNR2D=1 is R=7.7e-9 at 800 nm wavelength.


In time-domain SEE, the light reflected from the sample can be combined with the reference light in a Michelson interferometer employing a scanning delay line. An STFT of the interference signal can be recorded with a photodiode, thus producing a 3D image. Assuming a shot-noise limited detection, the SNR associated with a particular spatial point with reflectivity R can be given by the following:











SNR
TD

=



2



P
r


N
x



R



P
s


N
x




2

hv






BP
r



=


2


RP
s


τ


hv






N
x
2



N
z





,




(
2
)








in which:

    • Pr denotes the total reference power;
    • Ps denotes the total reference power;
    • B=Nz/(2τ) denotes the measurement bandwidth
    • τ denotes the integration time (line scan period);
    • ν denotes the optical frequency;
    • Nx denotes the number of transverse resolvable points per spectrally-encoded line;
    • Nz denotes the number of axial resolvable points per spectrally-encoded line;


The SNR can be inversely proportional to the square of the number of transverse resolvable points since only a fraction of the reference arm power (Pr/Nx) interferes with the light returning from a single transverse location. With Nx=100, Nz=10, τ=1 ms, and Px=1 mW, the minimum detectable reflectivity is determined to be R=1.25e-8 at 800 nm. Typical SNR for imaging tissue was 6-10 dB.


For the exemplary SD-SEE techniques, at least some of which are described herein, the spectrometer can contains Nx*Nz pixels. The exemplary SNR can be given by the following:










SNR
TD

=



2



P
r


N
x



R



P
s


N
x




2

hv






B


(


P
r

/

N
x


)




=


2


RP
s


τ


hv






N
x








(
3
)








in which:

    • B=1/(2τ); and
    • τ is the acquisition time of each horizontal line.


With Nx=100 and Nz=10, the exemplary minimum detectable reflectivity can be R=1.25e-5 at 800 nm, e.g., three (3) orders of magnitude more sensitive than the direct detection 2D SEE and the time-domain SEE. The typical SNR for the tissue imaging which can be obtained using the exemplary techniques according to certain exemplary embodiments of the present invention may be about 30-35 dB.


The exemplary SD-SEE techniques provide a significant improvement in spectrally-encoded imaging. In comparison with the conventional techniques, the exemplary SD-SEE techniques facilitate 3D imaging at, e.g., two orders of magnitude higher SNR, more than six-fold increase in the imaging speed, two-fold increase in the depth range. Due to the higher SNR and a preference of only a slow scanning of the reference arm (e.g., for depth unwrapping), the imaging speed may be limited only by the camera's speed, if at all. As an alternative or in addition, the high SNR can facilitate the use of imaging probes with low numerical aperture and long working distance, this allowing a large field of view for applications to be obtained, where imaging a large surface area is desired.


The actual benefit of 3D imaging is mainly application dependent and remains to be studied in the clinic. In the images shown in FIGS. 4A-4D, besides providing a better sense of orientation in space, the addition of the depth information may significantly improve the resultant images. When the magnitude of the back reflection from the tissue surface is uniform and can have less than optimum details, the speckle-free depth map may resolve the details which may not be otherwise seen in the 2D image. The depth image 570 of the mouse hind paw of FIG. 5C is one such example.


An exemplary embodiment of the SEE technique according to the present invention using spectral-domain interferometry has been described above. For example, by using a high-speed line camera in a high-resolution spectrometer, each x-z plane can be captured in a single shot. This exemplary technique can allow the use of high-speed imaging with 3 order of magnitude improvement in SNR improvement over the conventional techniques. In one exemplary embodiment, the real-time 3D imaging of tissue can be performed at a rate of 30 frames per second, with SNR at about 30 dB.


The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. Indeed, the arrangements, systems and methods according to the exemplary embodiments of the present invention can be used with and/or implement any OCT system, OFDI system, SD-OCT system or other imaging systems, and for example with those described in International Patent Application PCT/US2004/029148, filed Sep. 8, 2004, U.S. patent application Ser. No. 11/266,779, filed Nov. 2, 2005, and U.S. patent application Ser. No. 10/501,276, filed Jul. 9, 2004, the disclosures of which are incorporated by reference herein in their entireties. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. In addition, to the extent that the prior art knowledge has not been explicitly incorporated by reference herein above, it is explicitly being incorporated herein in its entirety. All publications referenced herein above are incorporated herein by reference in their entireties.

Claims
  • 1. A system comprising: at least one first arrangement configured to provide a particular radiation which includes at least one first electro-magnetic radiation directed to at least one sample and at least one second electro-magnetic radiation directed to a reference arrangement, wherein at least one of the at least one first radiation or the at least one second radiation comprises a plurality of wavelengths, and wherein the at least one first arrangement is configured to spectrally disperse the at least one first electro-magnetic radiation along at least one portion of the at least one sample; andat least one second arrangement comprising a spectrometer arrangement which is configured to generate data that is the interference associated with the dispersion of the at least one first electro-magnetic radiation from the sample and the at least one second electro-magnetic radiation, wherein the data is generated by the at least one second arrangement for a plurality of depths and transverse locations for the respective depth associated with the at least one sample.
  • 2. The system according to claim 1, wherein the reference arrangement comprises at least one of a translatable mirror arrangement, a piezo-electric fiber stretching arrangement, a pulse-shaping arrangement, a rapidly-scanning optical delay line arrangement or an electro-optical or acousto-optical arrangement.
  • 3. The system according to claim 1, wherein the second arrangement is configured to generate the data based on a Fourier transform of information received by the spectrometer arrangement which is associated with the at least one first electro-magnetic radiation and the at least one second electro-magnetic radiation.
  • 4. The system according to claim 3, wherein the data is generated as a function of a phase of the information.
  • 5. The system according to claim 1, wherein the second arrangement is configured to generate the data based on at least one of a time frequency transform or a space-frequency transform of information received by the spectrometer arrangement which is associated with the at least one first electro-magnetic radiation and the at least one second electro-magnetic radiation.
  • 6. The system according to claim 5, wherein the time frequency transform is a Short-time Fourier transform.
  • 7. The system according to claim 1, wherein the second arrangement generates the data based on a correlation between information received at least one first length of the at least two different lengths and at least second length of the at least two different lengths.
  • 8. The system according to claim 7, wherein the correlation is a cross-correlation.
  • 9. The system according to claim 8, wherein the second arrangement is configured to determine a first peak of the cross-correlation, and determines a sign of the cross-correlation based on further information associated with the first peak.
  • 10. The system according to claim 1, wherein the second arrangement generates the data based on a comparison of phases between information received at least one first length of the at least two different lengths and at least second length of the at least two different lengths.
  • 11. The system according to claim 10, wherein the second arrangement is configured to generate further data based on a magnitude of a Fourier transform of the data.
  • 12. The system according to claim 11, wherein the second arrangement is configured to combines the data and the further data to form a composite image data associated with the at least one sample.
  • 13. The system according to claim 1, wherein the data is associated with at least one portion of the at least one sample which is located in a direction that is axial with respect to a direction of the at least one first electro-magnetic radiation.
  • 14. The system according to claim 9, wherein the sign of the first peak of the cross-correlation is associated with at least at least one portion of the at least one sample which is located in a direction that is axial with respect to a direction of the at least one first electro-magnetic radiation.
  • 15. The system according to claim 1, wherein the data is further associated with a three-dimensional image of at least a portion of the at least one sample.
  • 16. The system according to claim 1, wherein the at least one second electro-magnetic radiation is directed to continuously scan the different lengths of the reference arrangement.
  • 17. The system according to claim 1, wherein the at least one second electro-magnetic radiation is measured at least two different lengths of the reference arrangement with respect to the at least one first arrangement.
  • 18. A method comprising: providing a particular radiation using at least one first arrangement, the at least one particular radiation including at least one first electro-magnetic radiation directed to at least one sample and at least one second electro-magnetic radiation directed to a reference arrangement, wherein at least one of the at least one first radiation or the at least one second radiation comprises a plurality of wavelengths;spectrally dispersing the at least one first electro-magnetic radiation along at least one portion of the at least one sample; andgenerating data that is the interference associated with the dispersion of the at least one first electro-magnetic radiation from the sample and the at least one second electro-magnetic radiation using a spectrometer of at least one second arrangement which comprises a spectrometer arrangement, wherein the data is generated for a plurality of depths and transverse locations for the respective depth associated with the at least one sample.
  • 19. The method according to claim 18, wherein the data is generated based on a comparison of phases between information received at least one first length of the at least two different lengths and at least second length of the at least two different lengths.
  • 20. The method according to claim 18, further comprising combining the data and the further data to form a composite image data associated with the at least one sample.
  • 21. The method according to claim 18, further comprising measuring the at least one second electro-magnetic radiation at least two different lengths of the reference arrangement with respect to the at least one first arrangement.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is based upon and claims the benefit of priority from U.S. Patent Application Ser. No. 60/757,569, filed Jan. 10, 2006, the entire disclosure of which is incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

The invention was made with the U.S. Government support under Contract No. BES-0086709 awarded by the National Science Foundation. Thus, the U.S. Government has certain rights in the invention.

US Referenced Citations (397)
Number Name Date Kind
2339754 Brace Jan 1944 A
3090753 Matuszak et al. May 1963 A
3601480 Sexton Aug 1971 A
3856000 Chikama Dec 1974 A
3872407 Hughes Mar 1975 A
3941121 Olinger Mar 1976 A
3973219 Tang et al. Aug 1976 A
3983507 Tang et al. Sep 1976 A
4030827 Delhaye et al. Jun 1977 A
4030831 Gowrinathan Jun 1977 A
4140364 Yamashita et al. Feb 1979 A
4141362 Wurster Feb 1979 A
4224929 Furihata Sep 1980 A
4295738 Meltz et al. Oct 1981 A
4300816 Snitzer et al. Nov 1981 A
4303300 Pressiat et al. Dec 1981 A
4428643 Kay Jan 1984 A
4479499 Alfano Oct 1984 A
4533247 Epworth Aug 1985 A
4585349 Gross et al. Apr 1986 A
4601036 Faxvog et al. Jul 1986 A
4607622 Fritch et al. Aug 1986 A
4631498 Cutler Dec 1986 A
4650327 Ogi Mar 1987 A
4744656 Moran et al. May 1988 A
4751706 Rohde et al. Jun 1988 A
4763977 Kawasaki et al. Aug 1988 A
4770492 Levin et al. Sep 1988 A
4827907 Tashiro et al. May 1989 A
4834111 Khanna et al. May 1989 A
4868834 Fox et al. Sep 1989 A
4890901 Cross, Jr. Jan 1990 A
4892406 Waters Jan 1990 A
4905169 Buican et al. Feb 1990 A
4909631 Tan et al. Mar 1990 A
4925302 Cutler May 1990 A
4928005 Lefevre et al. May 1990 A
4965441 Picard Oct 1990 A
4965599 Roddy et al. Oct 1990 A
4984888 Tobias et al. Jan 1991 A
4993834 Carlhoff et al. Feb 1991 A
4998972 Chin et al. Mar 1991 A
5039193 Snow et al. Aug 1991 A
5040889 Keane Aug 1991 A
5045936 Lobb et al. Sep 1991 A
5046501 Crilly Sep 1991 A
5065331 Vachon et al. Nov 1991 A
5085496 Yoshida et al. Feb 1992 A
5120953 Harris Jun 1992 A
5121983 Lee Jun 1992 A
5127730 Brelje et al. Jul 1992 A
5197470 Helfer et al. Mar 1993 A
5202745 Sorin et al. Apr 1993 A
5202931 Bacus et al. Apr 1993 A
5208651 Buican May 1993 A
5212667 Tomlinson et al. May 1993 A
5214538 Lobb May 1993 A
5228001 Birge et al. Jul 1993 A
5241364 Kimura et al. Aug 1993 A
5248876 Kerstens et al. Sep 1993 A
5250186 Dollinger et al. Oct 1993 A
5262644 Maguire Nov 1993 A
5275594 Baker et al. Jan 1994 A
5291885 Taniji et al. Mar 1994 A
5293872 Alfano et al. Mar 1994 A
5293873 Fang Mar 1994 A
5304173 Kittrell et al. Apr 1994 A
5304810 Amos Apr 1994 A
5305759 Kaneko et al. Apr 1994 A
5317389 Hochberg et al. May 1994 A
5318024 Kittrell et al. Jun 1994 A
5321501 Swanson et al. Jun 1994 A
5348003 Caro Sep 1994 A
5353790 Jacques et al. Oct 1994 A
5383467 Auer et al. Jan 1995 A
5394235 Takeuchi et al. Feb 1995 A
5404415 Mori et al. Apr 1995 A
5411016 Kume et al. May 1995 A
5419323 Kittrell et al. May 1995 A
5424827 Horwitz et al. Jun 1995 A
5439000 Gunderson et al. Aug 1995 A
5441053 Lodder et al. Aug 1995 A
5450203 Penkethman Sep 1995 A
5454807 Lennox et al. Oct 1995 A
5459325 Hueton et al. Oct 1995 A
5459570 Swanson et al. Oct 1995 A
5465147 Swanson Nov 1995 A
5486701 Norton et al. Jan 1996 A
5491524 Hellmuth et al. Feb 1996 A
5491552 Knuttel Feb 1996 A
5526338 Hasman et al. Jun 1996 A
5555087 Miyagawa et al. Sep 1996 A
5562100 Kittrell et al. Oct 1996 A
5565983 Barnard et al. Oct 1996 A
5565986 Knüttel Oct 1996 A
5566267 Neuberger Oct 1996 A
5583342 Ichie Dec 1996 A
5590660 MacAulay et al. Jan 1997 A
5600486 Gal et al. Feb 1997 A
5601087 Gunderson et al. Feb 1997 A
5621830 Lucey et al. Apr 1997 A
5623336 Raab et al. Apr 1997 A
5635830 Itoh Jun 1997 A
5649924 Everett et al. Jul 1997 A
5697373 Richards-Kortum et al. Dec 1997 A
5698397 Zarling et al. Dec 1997 A
5710630 Essenpreis et al. Jan 1998 A
5716324 Toida Feb 1998 A
5719399 Alfano et al. Feb 1998 A
5730731 Mollenauer et al. Mar 1998 A
5735276 Lemelson Apr 1998 A
5740808 Panescu et al. Apr 1998 A
5748318 Maris et al. May 1998 A
5748598 Swanson et al. May 1998 A
5784352 Swanson et al. Jul 1998 A
5785651 Kuhn et al. Jul 1998 A
5795295 Hellmuth et al. Aug 1998 A
5801826 Williams Sep 1998 A
5801831 Sargoytchev et al. Sep 1998 A
5803082 Stapleton et al. Sep 1998 A
5807261 Benaron et al. Sep 1998 A
5810719 Toida Sep 1998 A
5817144 Gregory Oct 1998 A
5836877 Zavislan et al. Nov 1998 A
5840023 Oraevsky et al. Nov 1998 A
5840075 Mueller et al. Nov 1998 A
5842995 Mahadevan-Jansen et al. Dec 1998 A
5843000 Nishioka et al. Dec 1998 A
5843052 Benja-Athon Dec 1998 A
5847827 Fercher Dec 1998 A
5862273 Pelletier Jan 1999 A
5865754 Sevick-Muraca et al. Feb 1999 A
5867268 Gelikonov et al. Feb 1999 A
5871449 Brown Feb 1999 A
5872879 Hamm Feb 1999 A
5877856 Fercher Mar 1999 A
5887009 Mandella et al. Mar 1999 A
5892583 Li Apr 1999 A
5910839 Erskine et al. Jun 1999 A
5912764 Togino Jun 1999 A
5920373 Bille Jul 1999 A
5920390 Farahi et al. Jul 1999 A
5921926 Rolland et al. Jul 1999 A
5926592 Harris et al. Jul 1999 A
5949929 Hamm Sep 1999 A
5951482 Winston et al. Sep 1999 A
5955737 Hallidy et al. Sep 1999 A
5956355 Swanson et al. Sep 1999 A
5968064 Selmon et al. Oct 1999 A
5975697 Podoleanu et al. Nov 1999 A
5983125 Alfano et al. Nov 1999 A
5987346 Benaron et al. Nov 1999 A
5991697 Nelson et al. Nov 1999 A
5994690 Kulkarni et al. Nov 1999 A
5995223 Power Nov 1999 A
6002480 Izatt et al. Dec 1999 A
6004314 Wei et al. Dec 1999 A
6006128 Izatt et al. Dec 1999 A
6007996 McNamara et al. Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6014214 Li Jan 2000 A
6016197 Krivoshlykov Jan 2000 A
6020963 DiMarzio et al. Feb 2000 A
6033721 Nassuphis Mar 2000 A
6044288 Wake et al. Mar 2000 A
6045511 Ott et al. Apr 2000 A
6048742 Weyburne et al. Apr 2000 A
6053613 Wei et al. Apr 2000 A
6069698 Ozawa et al. May 2000 A
6091496 Hill Jul 2000 A
6091984 Perelman et al. Jul 2000 A
6107048 Goldenring et al. Aug 2000 A
6111645 Tearney et al. Aug 2000 A
6117128 Gregory Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6134003 Tearney et al. Oct 2000 A
6134010 Zavislan Oct 2000 A
6134033 Bergano et al. Oct 2000 A
6141577 Rolland et al. Oct 2000 A
6151522 Alfano et al. Nov 2000 A
6159445 Klaveness et al. Dec 2000 A
6160826 Swanson et al. Dec 2000 A
6161031 Hochman et al. Dec 2000 A
6166373 Mao Dec 2000 A
6174291 McMahon et al. Jan 2001 B1
6175669 Colston et al. Jan 2001 B1
6185271 Kinsinger Feb 2001 B1
6191862 Swanson et al. Feb 2001 B1
6193676 Winston et al. Feb 2001 B1
6198956 Dunne Mar 2001 B1
6201989 Whitehead et al. Mar 2001 B1
6208415 De Boer et al. Mar 2001 B1
6208887 Clarke Mar 2001 B1
6245026 Campbell et al. Jun 2001 B1
6249349 Lauer Jun 2001 B1
6249381 Suganuma Jun 2001 B1
6249630 Stock et al. Jun 2001 B1
6263234 Engelhardt et al. Jul 2001 B1
6264610 Zhu Jul 2001 B1
6272376 Marcu et al. Aug 2001 B1
6274871 Dukor et al. Aug 2001 B1
6282011 Tearney et al. Aug 2001 B1
6297018 French et al. Oct 2001 B1
6301048 Cao Oct 2001 B1
6308092 Hoyns Oct 2001 B1
6324419 Guzelsu et al. Nov 2001 B1
6341036 Tearney et al. Jan 2002 B1
6353693 Kano et al. Mar 2002 B1
6359692 Groot Mar 2002 B1
6374128 Toida et al. Apr 2002 B1
6377349 Fercher Apr 2002 B1
6384915 Everett et al. May 2002 B1
6393312 Hoyns May 2002 B1
6394964 Sievert, Jr. et al. May 2002 B1
6396941 Bacus et al. May 2002 B1
6421164 Tearney et al. Jul 2002 B2
6437867 Zeylikovich et al. Aug 2002 B2
6441892 Xiao Aug 2002 B2
6441959 Yang et al. Aug 2002 B1
6445485 Frigo et al. Sep 2002 B1
6445944 Ostrovsky Sep 2002 B1
6459487 Chen et al. Oct 2002 B1
6463313 Winston et al. Oct 2002 B1
6469846 Ebizuka et al. Oct 2002 B2
6475159 Casscells, III et al. Nov 2002 B1
6475210 Phelps et al. Nov 2002 B1
6477403 Eguchi et al. Nov 2002 B1
6485413 Boppart et al. Nov 2002 B1
6485482 Belef Nov 2002 B1
6501551 Tearney et al. Dec 2002 B1
6501878 Hughes et al. Dec 2002 B2
6517532 Altshuler et al. Feb 2003 B1
6538817 Farmer et al. Mar 2003 B1
6549801 Chen et al. Apr 2003 B1
6552796 Magnin et al. Apr 2003 B2
6556305 Aziz et al. Apr 2003 B1
6556853 Cabib et al. Apr 2003 B1
6558324 Von Behren et al. May 2003 B1
6564087 Pitris et al. May 2003 B1
6564089 Izatt et al. May 2003 B2
6567585 Harris May 2003 B2
6593101 Richards-Kortum et al. Jul 2003 B2
6611833 Johnson et al. Aug 2003 B1
6615071 Casscells, III et al. Sep 2003 B1
6622732 Constantz Sep 2003 B2
6680780 Fee Jan 2004 B1
6685885 Nolte et al. Feb 2004 B2
6687007 Meigs Feb 2004 B1
6687010 Horii et al. Feb 2004 B1
6687036 Riza Feb 2004 B2
6701181 Tang et al. Mar 2004 B2
6721094 Sinclair et al. Apr 2004 B1
6738144 Dogariu et al. May 2004 B1
6741355 Drabarek May 2004 B2
6757467 Rogers Jun 2004 B1
6790175 Furusawa et al. Sep 2004 B1
6806963 Wälti et al. Oct 2004 B1
6816743 Moreno et al. Nov 2004 B2
6831781 Tearney et al. Dec 2004 B2
6839496 Mills et al. Jan 2005 B1
6882432 Deck Apr 2005 B2
6903820 Wang Jun 2005 B2
6909105 Heintzmann et al. Jun 2005 B1
6949072 Furnish et al. Sep 2005 B2
6961123 Wang et al. Nov 2005 B1
6980299 de Boer Dec 2005 B1
6996549 Zhang et al. Feb 2006 B2
7006231 Ostrovsky et al. Feb 2006 B2
7019838 Izatt et al. Mar 2006 B2
7027633 Foran et al. Apr 2006 B2
7061622 Rollins et al. Jun 2006 B2
7072047 Westphal et al. Jul 2006 B2
7075658 Izatt et al. Jul 2006 B2
7099358 Chong et al. Aug 2006 B1
7113625 Watson et al. Sep 2006 B2
7130320 Tobiason et al. Oct 2006 B2
7139598 Hull et al. Nov 2006 B2
7142835 Paulus Nov 2006 B2
7190464 Alphonse Mar 2007 B2
7231243 Tearney et al. Jun 2007 B2
7236637 Sirohey et al. Jun 2007 B2
7242480 Alphonse Jul 2007 B2
7267494 Deng et al. Sep 2007 B2
7272252 De La Torre-Bueno et al. Sep 2007 B2
7304798 Izumi et al. Dec 2007 B2
7336366 Choma et al. Feb 2008 B2
7342659 Horn et al. Mar 2008 B2
7355716 De Boer et al. Apr 2008 B2
7355721 Quadling et al. Apr 2008 B2
7359062 Chen et al. Apr 2008 B2
7366376 Shishkov et al. Apr 2008 B2
7391520 Zhou et al. Jun 2008 B2
7458683 Chernyak et al. Dec 2008 B2
7530948 Seibel et al. May 2009 B2
7609391 Betzig Oct 2009 B2
7646905 Guittet et al. Jan 2010 B2
7664300 Lange et al. Feb 2010 B2
20010047137 Moreno et al. Nov 2001 A1
20020016533 Marchitto et al. Feb 2002 A1
20020024015 Hoffmann et al. Feb 2002 A1
20020048025 Takaoka Apr 2002 A1
20020048026 Isshiki et al. Apr 2002 A1
20020052547 Toida May 2002 A1
20020057431 Fateley et al. May 2002 A1
20020064341 Fauver et al. May 2002 A1
20020076152 Hughes et al. Jun 2002 A1
20020085209 Mittleman et al. Jul 2002 A1
20020086347 Johnson et al. Jul 2002 A1
20020091322 Chaiken et al. Jul 2002 A1
20020093662 Chen et al. Jul 2002 A1
20020109851 Deck Aug 2002 A1
20020122246 Tearney et al. Sep 2002 A1
20020140942 Fee et al. Oct 2002 A1
20020158211 Gillispie Oct 2002 A1
20020161357 Anderson et al. Oct 2002 A1
20020163622 Magnin et al. Nov 2002 A1
20020168158 Furusawa et al. Nov 2002 A1
20020172485 Keaton et al. Nov 2002 A1
20020183623 Tang et al. Dec 2002 A1
20020188204 McNamara et al. Dec 2002 A1
20020196446 Roth et al. Dec 2002 A1
20020198457 Tearney et al. Dec 2002 A1
20030013973 Georgakoudi et al. Jan 2003 A1
20030023153 Izatt et al. Jan 2003 A1
20030026735 Nolte et al. Feb 2003 A1
20030028114 Casscells et al. Feb 2003 A1
20030030816 Eom et al. Feb 2003 A1
20030053673 Dewaele et al. Mar 2003 A1
20030082105 Fischman et al. May 2003 A1
20030097048 Ryan et al. May 2003 A1
20030108911 Klimant et al. Jun 2003 A1
20030120137 Pawluczyk et al. Jun 2003 A1
20030135101 Webler Jul 2003 A1
20030137669 Rollins et al. Jul 2003 A1
20030164952 Deichmann et al. Sep 2003 A1
20030165263 Hamer et al. Sep 2003 A1
20030171691 Casscells, III et al. Sep 2003 A1
20030174339 Feldchtein et al. Sep 2003 A1
20030199769 Podoleanu et al. Oct 2003 A1
20030216719 Debenedictis et al. Nov 2003 A1
20030220749 Chen et al. Nov 2003 A1
20030236443 Cespedes et al. Dec 2003 A1
20040002650 Mandrusov et al. Jan 2004 A1
20040054268 Esenaliev et al. Mar 2004 A1
20040072200 Rigler et al. Apr 2004 A1
20040075841 Van Neste et al. Apr 2004 A1
20040077949 Blofgett et al. Apr 2004 A1
20040086245 Farroni et al. May 2004 A1
20040100631 Bashkansky et al. May 2004 A1
20040100681 Bjarklev et al. May 2004 A1
20040126048 Dave et al. Jul 2004 A1
20040133191 Momiuchi et al. Jul 2004 A1
20040150829 Koch et al. Aug 2004 A1
20040150830 Chan Aug 2004 A1
20040152989 Puttappa et al. Aug 2004 A1
20040165184 Mizuno Aug 2004 A1
20040166593 Nolte et al. Aug 2004 A1
20040212808 Okawa et al. Oct 2004 A1
20040239938 Izatt Dec 2004 A1
20040246583 Mueller et al. Dec 2004 A1
20040254474 Seibel et al. Dec 2004 A1
20040263843 Knopp et al. Dec 2004 A1
20050018133 Huang et al. Jan 2005 A1
20050018201 De Boer Jan 2005 A1
20050035295 Bouma et al. Feb 2005 A1
20050046837 Izumi et al. Mar 2005 A1
20050057680 Agan Mar 2005 A1
20050057756 Fang-Yen et al. Mar 2005 A1
20050059894 Zeng et al. Mar 2005 A1
20050065421 Burckhardt et al. Mar 2005 A1
20050075547 Wang Apr 2005 A1
20050083534 Riza et al. Apr 2005 A1
20050119567 Choi et al. Jun 2005 A1
20050128488 Milen et al. Jun 2005 A1
20050165303 Kleen et al. Jul 2005 A1
20050171438 Chen et al. Aug 2005 A1
20060103850 Alphonse et al. May 2006 A1
20060146339 Fujita et al. Jul 2006 A1
20060155193 Leonardi et al. Jul 2006 A1
20060164639 Horn et al. Jul 2006 A1
20060184048 Saadat et al. Aug 2006 A1
20060193352 Chong et al. Aug 2006 A1
20060244973 Yun et al. Nov 2006 A1
20070019208 Toida et al. Jan 2007 A1
20070038040 Cense et al. Feb 2007 A1
20070070496 Gweon et al. Mar 2007 A1
20070086013 De Lega et al. Apr 2007 A1
20070133002 Wax et al. Jun 2007 A1
20070188855 Milen et al. Aug 2007 A1
20070223006 Tearney et al. Sep 2007 A1
20070236700 Yun et al. Oct 2007 A1
20070291277 Everett et al. Dec 2007 A1
20080002197 Sun et al. Jan 2008 A1
20080007734 Park et al. Jan 2008 A1
20080049220 Izzia et al. Feb 2008 A1
20080097225 Milen et al. Apr 2008 A1
20090273777 Yun et al. Nov 2009 A1
Foreign Referenced Citations (81)
Number Date Country
4105221 Sep 1991 DE
4309056 Sep 1994 DE
19542955 May 1997 DE
10351319 Jun 2005 DE
0110201 Jun 1984 EP
0251062 Jan 1988 EP
0617286 Feb 1994 EP
0590268 Apr 1994 EP
0728440 Aug 1996 EP
0933096 Aug 1999 EP
1324051 Jul 2003 EP
1426799 Jun 2004 EP
2738343 Aug 1995 FR
1257778 Dec 1971 GB
2030313 Apr 1980 GB
2209221 May 1989 GB
2298054 Aug 1996 GB
6073405 Apr 1985 JP
20040056907 Feb 1992 JP
4135550 May 1992 JP
5509417 Nov 1993 JP
4135551 May 1994 JP
2002214127 Jul 2002 JP
20030035659 Feb 2003 JP
2007271761 Oct 2007 JP
7900841 Oct 1979 WO
9201966 Feb 1992 WO
9216865 Oct 1992 WO
9219930 Nov 1992 WO
9303672 Mar 1993 WO
9533971 Dec 1995 WO
9628212 Sep 1996 WO
9732182 Sep 1997 WO
9800057 Jan 1998 WO
9801074 Jan 1998 WO
9814132 Apr 1998 WO
9835203 Aug 1998 WO
9838907 Sep 1998 WO
9846123 Oct 1998 WO
9848838 Nov 1998 WO
9848846 Nov 1998 WO
9905487 Feb 1999 WO
9944089 Feb 1999 WO
9944089 Sep 1999 WO
9957507 Nov 1999 WO
0058766 Oct 2000 WO
0101111 Jan 2001 WO
0108579 Feb 2001 WO
0127679 Apr 2001 WO
0138820 May 2001 WO
0142735 Jun 2001 WO
0236015 May 2002 WO
0238040 May 2002 WO
0254027 Jul 2002 WO
02053050 Jul 2002 WO
02084263 Oct 2002 WO
03020119 Mar 2003 WO
03046495 Jun 2003 WO
03046636 Jun 2003 WO
03052478 Jun 2003 WO
03062802 Jul 2003 WO
03105678 Dec 2003 WO
2004034869 Apr 2004 WO
2004057266 Jul 2004 WO
2004066824 Aug 2004 WO
2004088361 Oct 2004 WO
2004105598 Dec 2004 WO
2005000115 Jan 2005 WO
2005047813 May 2005 WO
2005054780 Jun 2005 WO
2005082225 Sep 2005 WO
2006004743 Jan 2006 WO
2006014392 Feb 2006 WO
2006039091 Apr 2006 WO
2006059109 Jun 2006 WO
2006124860 Nov 2006 WO
2006130797 Dec 2006 WO
2007028531 Mar 2007 WO
2007038787 Apr 2007 WO
2007083138 Jul 2007 WO
2007084995 Jul 2007 WO
Related Publications (1)
Number Date Country
20070263208 A1 Nov 2007 US
Provisional Applications (1)
Number Date Country
60757569 Jan 2006 US