Systems and methods for generating electricity via a pumped thermal energy storage system

Information

  • Patent Grant
  • 11187112
  • Patent Number
    11,187,112
  • Date Filed
    Wednesday, June 26, 2019
    6 years ago
  • Date Issued
    Tuesday, November 30, 2021
    3 years ago
Abstract
Systems and methods are provided for charging a pumped thermal energy storage (“PTES”) system. A system may include a compressor or pump configured to circulate a working fluid within a fluid circuit, wherein the working fluid enters the pump at a first pressure and exits at a second pressure; a first heat exchanger through which the working fluid circulates in use; a second heat exchanger through which the working fluid circulates in use; a third heat exchanger through which the working fluid circulates in use, a turbine positioned between the first heat exchanger and the second heat exchanger, configured to expand the working fluid to the first pressure; a high temperature reservoir connected to the first heat exchanger; a low temperature reservoir connected to the second heat exchanger, and a waste heat reservoir connected to the third heat exchanger.
Description
BACKGROUND

Pumped thermal energy storage (“PTES”) systems, also known as electro-thermal energy storage systems, are used to store and generate energy. PTES systems generally consist of a configurable thermodynamic cycle where thermal energy is transferred between a high temperature reservoir and a low temperature reservoir via working fluid in a working fluid circuit.


During a “charging” cycle of operation, the thermodynamic cycle, which is a heat pump cycle in a nominally forward direction, may be used to increase the thermal energy in the high temperature reservoir. In some instances, an electrical motor may be used to drive a compressor, which increases the pressure and temperature of the working fluid, whereby the thermal energy in the fluid is transferred to and stored in the high temperature reservoir by using a high temperature heat exchanger. Following the heat transfer to the high temperature reservoir, the fluid may be expanded through a turbine, which produces shaft work that may be used to drive the gas compressor. This working fluid expansion may lower the pressure and temperature of the working fluid. After exiting the turbine, the working fluid may pass through a low temperature heat exchanger that is connected to a low temperature reservoir and may affect transfer of heat from the low temperature reservoir to the working fluid. Upon exit from the low temperature heat exchanger, the working fluid may be returned to approximately its initial state (i.e., pressure and temperature).


During a “generating” cycle of operation, the directions of fluid and heat circulation are reversed. A pump may increase the pressure of the working fluid and move the working fluid through the high temperature heat exchanger, which transfers heat from the high temperature reservoir to the working fluid. The heated working fluid may be expanded by a turbine, producing shaft work. The shaft work from the turbine may exceed the compressor work, and the excess work may be converted to electrical power by a generator and distributed to an electrical grid electrically coupled to the generator. Following the turbine expansion, the working fluid may be cooled by passing through the low temperature heat exchanger that is connected to a low temperature reservoir before entering the pump. Upon exit of the low temperature heat exchanger, the working fluid may be returned to approximately its initial state (i.e., pressure and temperature).


One metric used to determine performance of a PTES system is round trip efficiency (“RTE”). Round trip efficiency is defined as the amount of electrical energy that may be produced during the generating cycle divided by the amount of electrical energy that was consumed during the charging cycle. Due to thermodynamic irreversibilities, pressure losses, and finite temperature approaches through the heat exchangers, the RTE values of PTES systems, as described above, are generally calculated at around 55-56%. Therefore, there is a need for an improved PTES system and method that results in a higher RTE, and greater electricity generation.


SUMMARY

A charging system in a PTES may include a fluid circuit configured to circulate a working fluid therethrough, the fluid circuit may include: a first heat exchanger through which the working fluid circulates in use; a second heat exchanger through which the working fluid circulates in use; a third heat exchanger through which the working fluid circulates in use; a compressor through which the working fluid circulates in use, wherein the working fluid enters the second heat exchanger at a first temperature and the working fluid exits the second heat exchanger at a second temperature, wherein the working fluid enters the third heat exchanger at the second temperature and the working fluid exits the third heat exchanger at a third temperature, wherein the working fluid enters the compressor at the third temperature and a first pressure, and the working fluid exits the compressor at a fourth temperature and a second pressure, and wherein the working fluid enter the first heat exchanger at the fourth temperature and the working fluid exits the first heat exchanger at a fifth temperature, the fifth temperature being lower than the fourth temperature; a turbine positioned between the first heat exchanger and the second heat exchanger, the turbine configured to expand the working fluid to the first temperature and the first pressure; a high temperature reservoir connected to the first heat exchanger and configured to transfer thermal energy to and from the working fluid; a low temperature reservoir connected to the second heat exchanger and configured to transfer thermal energy to and from the working fluid; and a waste heat reservoir connected to the third heat exchanger and configured to transfer thermal energy to and from the working fluid.


A generation system in a PTES system, may include: a fluid circuit for the circulation of a working fluid therethrough, the working fluid may include a first portion and a second portion comingled together, the fluid circuit may include: a pump to circulate the working fluid within the fluid circuit, wherein the working fluid enters the pump at a first pressure, and the working fluid exits the pump at a second pressure, a first heat exchanger through which the working fluid circulates in use; a second heat exchanger through which the working fluid circulates in use; a first turbine positioned between the first heat exchanger and the second heat exchanger and wherein the first turbine is for expanding the working fluid to a third pressure, the third pressure greater than the first pressure and less than the second pressure; a separation location where the working fluid is separated into the first portion and the second portion, a second turbine positioned between the first heat exchanger and the second heat exchanger and wherein the second turbine if for expanding the first portion of the working fluid to the first pressure; an auxiliary line through which the second portion of the working fluid circulates between the turbine and the first heat exchanger, a third heat exchanger through which the working fluid circulates in use positioned between an outlet of the turbine and an inlet of a heat rejection heat exchanger, and in fluid communication with the auxiliary line, wherein the third heat exchanger removes thermal energy from the second portion of the working fluid; the heat rejection heat exchanger positioned between an outlet of the third heat exchanger and an inlet of the first heat exchanger, and in fluid communication with the auxiliary line, wherein the heat rejection heat exchanger removes thermal energy from the second portion of the working fluid; a high temperature reservoir connected to the first heat exchanger for transferring thermal energy to and from the working fluid; a low temperature reservoir connected to the second heat exchanger for transferring thermal energy to and from the working fluid and a waste heat reservoir connected to the third heat exchanger for transferring thermal energy to and from the working fluid.


A method for charging a pumped thermal energy system, may include: circulating a working fluid through a fluid circuit, wherein the fluid circuit may include a first heat exchanger, a second heat exchanger, and a third heat exchanger connected thereto; circulating the working fluid through the second heat exchanger; providing thermal energy from the second heat exchanger to the working fluid; circulating the working fluid through a recuperator; circulating the working fluid through the third heat exchanger, wherein a waste heat reservoir storing waste heat transfers thermal energy to the working fluid to increase its temperature; circulating the working fluid through a compressor; and circulating the working fluid through the first heat exchanger to transfer thermal energy from the working fluid to a high temperature reservoir connected to the first heat exchanger.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is best understood from the following detailed description when read with the accompanying Figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.



FIG. 1 is a schematic of a charging system of a pumped thermal energy storage (“PTES”) system, according to one or more embodiments disclosed.



FIG. 2 is a pressure enthalpy diagram for the different cycles of operation of the PTES system of FIG. 1, according to one or more embodiments.



FIG. 3 is a schematic of the charging system shown in FIG. 1 and a generating system of the PTES system, according to one or more embodiments disclosed.



FIG. 4 is a schematic of an alternative example charging system of the PTES system shown in FIG. 3, according to one or more embodiments disclosed.



FIG. 5 is a pressure enthalpy diagram for the alternative example charging system of FIG. 4 operating with the PTES system of FIG. 3, according to one or more embodiments disclosed.



FIG. 6 is a schematic of another alternate example charging system of the PTES system shown in FIG. 3, according to one or more embodiments disclosed.



FIG. 7 is a pressure enthalpy diagram for the alternative example charging system of FIG. 6 operating with the PTES system of FIG. 3, according to one or more embodiments disclosed.



FIG. 8 is a flowchart depicting methods for charging the PTES system, according to one or more embodiments disclosed.





DETAILED DESCRIPTION

It is to be understood that the following disclosure describes several exemplary embodiments for implementing different features, structures, or functions of the invention. Exemplary embodiments of components, arrangements, and configurations are described below to simplify the present disclosure; however, these exemplary embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference numerals and/or letters in the various exemplary embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various exemplary embodiments and/or configurations discussed in the various Figures. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the exemplary embodiments presented below may be combined in any combination of ways, i.e., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.


Additionally, certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Additionally, in the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to.” All numerical values in this disclosure may be exact or approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope. Furthermore, as it is used in the claims or specification, the term “or” is intended to encompass both exclusive and inclusive cases, i.e., “A or B” is intended to be synonymous with “at least one of A and B,” unless otherwise expressly specified herein.


The following disclosure is directed to improved PTES systems that may result in an increased RTE in one or more embodiments. As will be discussed in more detail herein, during the charging cycle, the PTES system may include three heat exchangers, a first, second, and third heat exchanger. The three heat exchangers may introduce thermal energy to and receive thermal energy from a working fluid within a fluid circuit of the PTES system. A high temperature reservoir, a low temperature reservoir, and a waste heat reservoir may each be associated with a particular heat exchanger, may provide the thermal energy to the heat exchangers, and may receive the thermal energy from the heat exchangers. The waste heat reservoir may store heat from the generating cycle of the PTES system. The working fluid may be split into portions and moved through one or more heat exchangers to receive and provide thermal energy to and from the one or more heat exchangers and associated reservoirs. During the charging cycle, providing thermal energy from the waste heat reservoir to the working fluid, after the working fluid moves through the heat exchanger associated with the low temperature reservoir, may increase the RTE of the PTES system



FIG. 1 is a schematic of a charging system 20 of a PTES system 10, according to one or more embodiments disclosed. FIG. 2 is a pressure enthalpy diagram for the different cycles of operation of the PTES system 10, according to one or more embodiments. The charging system 20 may circulate a first working fluid 22 in a first fluid circuit 23 during a charging cycle 200 of the PTES system 10. FIG. 1 depicts different states of the first working fluid 22 in the first fluid circuit 23 during the charging cycle 200, which are indicated with circled reference numbers. These reference numbers correlate to the circled reference numbers shown in FIG. 2.


Referring to FIG. 1 and FIG. 2, the PTES system 10 may include a high temperature reservoir 110, a low temperature reservoir 106, and a waste heat reservoir 164. The PTES system 10 may include a first heat exchanger 112, a second heat exchanger 108, and a third heat exchanger 27. The first heat exchanger 112 may be fluidly connected to the high temperature reservoir 110. The second heat exchanger 108 may be fluidly connected to the low temperature reservoir 106. The third heat exchanger 27 may be fluidly connected to the waste heat reservoir 164. The high temperature reservoir 110 may include a first material that has a higher temperature than a second material that is included in the low temperature reservoir 106. The waste heat reservoir 164 may include a third material that has a higher temperature than the first material in the low temperature reservoir 106.


The high temperature reservoir 110, which may contain the first material that may be utilized by the first heat exchanger 112, may transfer thermal energy to and from the first working fluid 22. The first material may be or include thermal oil, molten salt, water, particulate such as sand or gravel, concrete, encapsulated phase-change materials, bulk phase-change materials, a combination therein, or any other material suitable for use in the high temperature reservoir 110. The high temperature reservoir 110 may include a plurality of vessels, for example, a first high temperature vessel 109 and a second high temperature vessel 111 that may be in fluid communication with one another. However, the high temperature reservoir 110 may be a single vessel or three or more vessels in other embodiments. The first material may circulate between the first high temperature vessel 109 and the second high temperature vessel 111. The first material may be at a first high temperature in the first high temperature vessel 109 and at a second high temperature in the second high temperature vessel 111. The first high temperature may be higher than the second high temperature and vice-versa. The first material may circulate through the first heat exchanger 112 to transfer thermal energy to and from the first working fluid 22 of the PTES system 10. The first heat exchanger 112 may be a conventional heat exchanger, a printed circuit heat exchanger, a moving bed heat exchanger, a fluidized bed heat exchanger, or a packed bed thermocline.


The low temperature reservoir 106, which may include the second material that may be utilized by the second heat exchanger 108, may transfer thermal energy to and from the first working fluid 22. The second material may be or include water, glycol, ice, seawater, ethanol, low-temperature thermal oil, hydrocarbon fluid, a combination thereof, or any other material suitable for use in a low temperature reservoir 106. The low temperature reservoir 106 may include a plurality of vessels, for example, a first low temperature vessel 105 and a second low temperature vessel 107 that may be in fluid communication with one another. However, the low temperature reservoir 106 may be a single vessel or three or more vessels in other embodiments. The second material may circulate between the first low temperature vessel 105 and the second low temperature vessel 107. The second material may be at a first low temperature in the first low temperature vessel 105 and at a second low temperature in the second low temperature vessel 107. The first low temperature may be higher than the second low temperature and vice-versa. The second material may circulate through the second heat exchanger 108 to transfer thermal energy to and from the first working fluid 22 of the PTES system 10.


Similarly, the waste heat reservoir 164, which may include the third material that may be utilized by the third heat exchanger 27, may transfer thermal energy to and from the first working fluid 22. The third material may be or include thermal oil, molten salt, water, particulate such as sand or gravel, concrete, encapsulated phase-change materials, bulk phase-change materials, a combination therein, or any other material suitable for use in the waste heat reservoir 164. The waste heat reservoir 164 may include a plurality of vessels, for example, a first waste heat vessel 162 and a second waste heat vessel 163 that may be in fluid communication with one another. However, the waste heat reservoir 164 may be a single vessel or three or more vessels in other embodiments. The third material may circulate between the first waste heat vessel 162 and the second waste heat vessel 163. The third material may be at a first waste heat temperature in the first waste heat vessel 162 and at a second waste heat temperature in the second waste heat vessel 163. The first waste heat temperature may be higher than the second waste heat temperature and vice-versa. The third material may circulate through the third heat exchanger 27 to transfer thermal energy to and from the first working fluid 22 of the PTES system 10. The third heat exchanger 27 may be a conventional heat exchanger, a printed circuit heat exchanger, a moving bed heat exchanger, a fluidized bed heat exchanger, or a packed bed thermocline.


Referring to FIG. 1 and FIG. 2, during the charging cycle 200 of operation, as depicted with the dashed lines in FIG. 1, the PTES system 10 may use the charging system 20 to transfer thermal energy to the high temperature reservoir 110 by utilizing a reversible heat pump cycle. The charging system 20 may include a compressor 24 and a turbine 28 fluidly connected to the first heat exchanger 112 and the second heat exchanger 108. The compressor 24 may be a compressor driven by an electrical motor (not separately shown). The compressor 24 and/or the turbine 28 may circulate the first working fluid 22 through the charging system 20. One or more pumps, compressors, or turbines, not shown, may be incorporated to circulate the first working fluid 22 through the charging system 20.


The turbine 28 and the compressor 24 may be in fluid communication with the first fluid circuit 23 and may be positioned in the first fluid circuit 23 between the first heat exchanger 112 and the second heat exchanger 108. Prior to entering the second heat exchanger 108, the first working fluid 22 may be at a first state 1, wherein the temperature and pressure of the first working fluid 22 may be low. The first fluid circuit 23 at the first state 1 may be at a first pressure 210 of the first fluid circuit 23 at an inlet of the second heat exchanger 108, and the first pressure 210 may be the lowest pressure of the first fluid circuit 23 over the course of one cycle through the first fluid circuit 23. In embodiments, the first pressure 210 may be about equal to from about 1.5 MPa to about 4.5 MPa.


In the second heat exchanger 108, thermal energy may pass from the second material of the low temperature reservoir 106 to the first working fluid 22. The first working fluid 22 may therefore exit the second heat exchanger 108 at a higher temperature and may flow into a recuperator 26 where additional thermal energy may be transferred to and from the first working fluid 22. After the first working fluid 22 is discharged from the second heat exchanger 108, the temperature of the first working fluid 22 may be increased to a second state 2. The temperature of the first working fluid 22 after passing through the recuperator 26 may result in a third state 3. The first working fluid 22 may enter the third heat exchanger 27 to further increase the temperature of the first working fluid 22.


The third heat exchanger 27 may receive thermal energy from any heat source. For example, thermal energy may be transferred from the third material of the waste heat reservoir 164 through the third heat exchanger 27 and to the first working fluid 22 to further increase the temperature of the first working fluid 22. In other embodiments, thermal energy from a separate industrial process, not shown, may be transferred continuously or on an as needed basis from the separate industrial process to the third heat exchanger 27 for further transfer to the first working fluid 22. The separate industrial process can be any process that generates heat. For example, the separate industrial process can be a power generation process producing waste heat, for example steam; a chemical process such as petrochemical cracking processes or other chemical synthesis processes producing waste heat; or any process producing waste heat.


After exiting the third heat exchanger 27, the first working fluid 22 may be in a fourth state 4. The first working fluid 22 may enter the compressor 24 to increase the temperature and pressure of the first working fluid 22 to a fifth state 5. After exiting the compressor 24, the first working fluid 22 may be at a temperature of between about 300 C and about 360 C and at a pressure of between about 15 MPa and about 25 MPa. With the energy in the first working fluid 22 at the fifth state 5, the first working fluid 22 may be used to increase the thermal energy or charge the high temperature reservoir 110 by passing the first working fluid 22 the first heat exchanger 112. As the first working fluid 22 passes through the first heat exchanger 112, the energy within the first working fluid 22 decreases to a sixth state 6.


In the first heat exchanger 112, thermal energy may pass from the first working fluid 22 into the first material of the high temperature reservoir 110 where the thermal energy may be stored. The first working fluid 22 may therefore exit the first heat exchanger 112 at a lower temperature and may flow into a recuperator 26 where additional thermal energy may be transferred to and from the first working fluid 22. The recuperator 26 may be positioned between the second heat exchanger 108 and the compressor 24, and in fluid communication therein. The turbine 28 may be positioned between the recuperator 26 and the second heat exchanger 108.


After circulating through the recuperator 26 and emerging in the state 7, the first working fluid 22 may be expanded in the turbine 28 to return the first working fluid 22 to the first state 1. The pressure of the first working fluid 22 upon exit from the turbine 28 may be substantially the same as the pressure at the inlet of the compressor 24. In embodiments, a positive displacement expander, an expansion valve, or a fluid orifice may be used in conjunction or in place of the turbine 28 to expand the first working fluid 22. During the charging cycle 200 of operation, the PTES system 10 may expend electrical energy to charge or provide thermal energy to the high temperature reservoir 110 via a substantially reversible pump cycle.


The waste heat reservoir 164 may store thermal energy. The thermal energy may be introduced to the third material of the waste heat reservoir 164 from any heat source. As described below, the thermal energy may be introduced to the third material of the waste heat reservoir 164 from waste heat created in the generating cycle of the PTES system 10.



FIG. 3 is a schematic of the charging system 20 shown in FIG. 1 and a generating system 100 of the PTES system 10, according to one or more embodiments disclosed. The PTES system 10 may use a thermodynamic cycle to generate electrical power. The PTES system 10 may include the charging system 20 and the generating system 100. The generating system 100 may circulate the second working fluid 102 in a second fluid circuit 103 during a generating cycle 202 of the PTES system 10, and the charging system 20 may circulate the first working fluid 22 in the first fluid circuit 23 during a charging cycle 200 of the PTES system 10. Each of these cycles 200 and 202 are reflected in the pressure-enthalpy diagram of FIG. 2 as discussed herein. It should be understood that the first fluid circuit 23 and the second fluid circuit 103 may be combined into and operate as a single fluid circuit, not shown.


Returning to FIG. 3, the first working fluid 22 and the second working fluid 102 may be the same fluid or may be different fluids. The first and second working fluids 22 and 102 may flow through the first fluid circuit 23 and/or the second fluid circuit 103. The first working fluid 22 and the second working fluid 102 of the charging system 20 and the generating system 100, respectively, may be or include carbon dioxide (CO2), ammonia, water, propane, butane, pentane, r245fa, or other fluids suitable for use in the generating system 100 and/or the charging system 20. The first fluid circuit 23 and the second fluid circuit 103 may be closed. The PTES system 10 may use either the charging system 20 or the generating system 100 at a given time. The PTES system 10 may use the charging system 20 and the generating system 100 at the same time.


The high temperature reservoir 110, which may include the first material that is utilized by the first heat exchanger 112, may transfer thermal energy to and from the second working fluid 102 of the PTES system 10. Similarly, the low temperature reservoir 106, which may include the second material that is utilized by the second heat exchanger 108, may transfer thermal energy to and from the second working fluid 102 in the PTES system 10. The waste heat reservoir 164, which may include the third material that may be utilized by the third heat exchanger 27, may transfer thermal energy to and from the second working fluid 102 of the PTES system 10.


In the generating cycle 202 of operation, the PTES system 10 may transfer thermal energy transfer from the first heat exchanger 112 to generate electricity from the PTES system 10. The generating system 100 of the PTES system 10 may include a first pump 104 to circulate the second working fluid 102 through the second fluid circuit 103 of the PTES system 10. The first pump 104 may use electrical energy to perform work. The first pump 104 may be fluidly connected to the first heat exchanger 112, the second heat exchanger 108, and the third heat exchanger 27. The first pump 104 may facilitate the transfer of thermal energy between the high temperature reservoir 110 and the second working fluid 102 via the first heat exchanger 112, the first pump 104 may facilitate the transfer of thermal energy between the low temperature reservoir 106 and the second working fluid 102 via the second heat exchanger 108, and may facilitate the transfer of thermal energy between the waste heat reservoir 164 and the second working fluid 102 via the third heat exchanger 27.


As depicted, with reference to FIG. 2, and FIG. 3, the PTES system 10 may include a recuperator 114 positioned in the second fluid circuit 103 between and in fluid communication with the first pump 104 and the first heat exchanger 112. The recuperator 26 and the recuperator 114 may be separate recuperators as depicted or may be the same recuperator. The recuperator 114 may be in fluid communication with the first pump 104 and the first heat exchanger 112. Prior to discharge from the first pump 104, the second working fluid 102 may be at a temperature and pressure that may be low. The second fluid circuit 103 may be at a first pressure 212 of the second fluid circuit 103 at an inlet of the first pump 104, and the first pressure 212 may be the lowest pressure of the second fluid circuit 103 over the course of one cycle through the second fluid circuit 103. In embodiments, the first pressure 212 may be equal to from about 1.5 MPa to about 4.5 MPa.


After the second working fluid 102 is discharged from the first pump 104, the pressure and temperature of the second working fluid 102 may be increased. The second fluid circuit 103 have a second pressure 216 at an outlet of the first pump 104. The second pressure 216 may be the highest pressure of the second working fluid 102 over the course of one cycle through the second fluid circuit 103. In embodiments, the second pressure 216 may be about equal to from about 25 MPa to about 35 MPa. The temperature of the second working fluid 102 may be further increased as the second working fluid 102 circulates through the recuperator 114. The second working fluid 102 may enter an inlet 117 of the first heat exchanger 112 and thermal energy may be passed from the high temperature reservoir 110 to the second working fluid 102 to increase the temperature of the second working fluid 102. During one cycle of the generation cycle 200, the PTES system 10 may exhibit the greatest amount of enthalpy after exiting an outlet 113 of the first heat exchanger 112.


The generating system 100 may further include a first turbine 116 and a second turbine 118 that may each be fluidly connected to the second fluid circuit 103 and positioned between the first heat exchanger 112 and the recuperator 114. While FIG. 3 depicts the first turbine 116 and the second turbine 118 as separate components, the first turbine 116 and the second turbine 118 may be combined or replaced by a single multi-stage turbine, not shown.


In embodiments, the first turbine 116 may be positioned between the first heat exchanger 112 and the second turbine 118. After the second working fluid 102 exits the first heat exchanger 112, the second working fluid 102 may be expanded in the first turbine 116, producing shaft work. The expansion of the second working fluid 102 may decrease the pressure of the working fluid to a third pressure 214. The third pressure 214 may be greater than the first pressure 212 and less than the second pressure 216. The third pressure 214 may be about equal to from about 6 MPa to about 7 MPa. After exiting the first turbine 116 and before entering the second turbine 118, the second working fluid 102 may be separated into a first portion 120 and a second portion 122 at a separation point 124 in the second fluid circuit 103. For clarity, it should be noted that the second working fluid 102 may include commingled portions of the first portion 120 and the second portion 122 as the generating cycle repeats.


The first portion 120 may continue to the second turbine 118 where the first portion 120 may be further expanded, producing additional shaft work. The second expansion of the first portion 120 may further decrease the pressure of the second working fluid 102. The first portion may be at the first pressure 212 and returned to substantially the same pressure as that of the eighth state 8. The low pressure in the eighth state 8 may be about equal to from about 1.5 MPa to about 4.5 MPa. The combined turbine work from the first turbine 116 and the second turbine 118 may exceed the pump work from the generating cycle 202 of operation, and the excess energy may be converted to electrical power by a generator (not shown) and fed into an electrical grid (not shown).


Following the exit from the second turbine 118, the first portion 120 of the second working fluid 102 may circulate through the recuperator 114 thereby transferring some of its thermal energy to the second working fluid 102 passing through the recuperator 114. The second heat exchanger 108 may be in fluid communication with and positioned in the second fluid circuit 103 between the recuperator 114 and the first pump 104. Thermal energy may be transferred from the first portion 120 to the low temperature reservoir 106, which may return the first portion 120 of the second working fluid 102 to substantially the eighth state 8 (both in temperature and pressure) before once again entering the first pump 104. It should be noted that the eighth state 8 may have the same temperature and pressure as the first state 1 and the changes in enthalpy and pressure for the generating system 100 may operate approximately within the enthalpy and pressure ranges of the charging system 20.


At a separation point 124 of the second working fluid 102, the second portion 122 of the second working fluid 102 may flow into an auxiliary line 121. The separation point 124 may be positioned between the first turbine 116 and the second turbine 118. The auxiliary line 121 may be positioned between the first turbine 116 and the inlet 117 of the first heat exchanger 112 and may be part of the second fluid circuit 103. The flow of the second portion 122 of the second working fluid 102 through the auxiliary line 121 may define an auxiliary flow path 204 of the PTES system. The auxiliary line 121 and the auxiliary flow path 204 may terminate at a combination point 130 that is positioned before an inlet 117 of the first heat exchanger 112. At the combination point 130, the second portion 122 may be combined with the first working fluid 102 such that the first portion 120 and the second portion 122 may be comingled.


In the multi-stage turbine, the first and second portions of the second working fluid 102 may be separated from the second working fluid 102 through the multi-stage turbine after a first expansion stage and prior to a subsequent expansion stage. The second working fluid 102 may enter an inlet of the multi-stage turbine at the second pressure 216 and the second working fluid 102 may be split into the first portion 120 and the second portion 122 within the multi-stage turbine. The first portion 120 of the second working fluid 102 may be expanded and exit a first outlet of the multi-stage turbine at the first pressure 212 and the second portion 122 of the second working fluid 102 may be expanded and exit a second outlet of the multi-stage turbine at the third pressure 214. Upon exit of the multi-stage turbine, the second portion 122 may flow into the auxiliary line 121 as described herein, and the first portion 120 may flow into the second heat exchanger 108.


The auxiliary line 121 may include the third heat exchanger 27, a heat rejection heat exchanger 126, and a second pump 128 that may be fluidly connected to the second fluid circuit 103 between the first turbine 116 and the first heat exchanger 112. The heat rejection heat exchanger 126 and the second pump 128 may be connected in series.


The second portion 122 of the second working fluid 102 may circulate through the third heat exchanger 27. The second portion 122 may transfer thermal energy to the third material of the waste heat reservoir 164 and may bring the second portion 122 to state 201. The thermal energy from the second portion 122 may be stored in the waste heat reservoir 164 for later use, for example, during the charging cycle 200. The second portion 122 may flow into the heat rejection heat exchanger 126. The second portion 122 may be cooled to near an ambient temperature in the heat rejection heat exchanger 126. The heat rejection heat exchanger 126 may reject the heat to the environment. ‘Near an ambient temperature’ may include a fluid temperature in the range of about zero to about 10 degrees Celsius (10 C), about zero to about 20 C, about zero to about 30 C, or a lower or higher temperature differential, of the temperature of the surrounding environment.


The heat transferred to the waste heat reservoir 164 and rejected by the heat rejection heat exchanger 126 may eliminate excess heat in the PTES system 10 that was created due to irreversible thermodynamic process during the charging cycle 200 and the generating cycle 202. The combination of the third pressure 214 and lower temperature may result in a high-density fluid state at an outlet of the heat rejection heat exchanger 126. Because the heat rejection process of the heat rejection heat exchanger 126 may be decoupled from the recuperator 114 via the auxiliary generating cycle 204, a greater amount of residual enthalpy may be recovered by the PTES system 10. After the second portion 122 exits the heat rejection heat exchanger 126, the second portion 122 may enter the second pump 128 where the pressure of the second portion 122 of the working fluid may be increased to the second pressure 216. Because the second portion 122 is in a high-density fluid state, the work required to raise the pressure of the second portion 122 may be significantly reduced. After the second portion 122 of the working fluid exits the second pump 128, the second portion is at a state that may be close to that of state of the second working fluid 102 after is leaves the recuperator 114. Therefore, the second portion 122 may be combined with the second working fluid 102 at the combination point 130.



FIG. 4 is a schematic of an alternative example charging system 400 of the PTES system 10 shown in FIG. 3, according to one or more embodiments disclosed. FIG. 5 is a pressure enthalpy diagram for the alternative example charging system 400 of FIG. 4 operating with the PTES system 10 of FIG. 3. Referring to FIG. 4 and FIG. 5, the waste heat reservoir 164 may store thermal energy from the PTES system 10 introduced during a given generating cycle described herein. As depicted in FIG. 5, the thermal energy may have been stored in the waste heat reservoir 164 during the portion of the generating cycle that lowered the second portion 122 temperature, with reference to FIG. 3, to the state depicted on FIG. 5 as temperature and pressure 501. The charging system 400 may include a fourth heat exchanger 29 fluidly connected to the first fluid circuit 23. The first working fluid 22 may be split into a first portion 420 and a second portion 422 after discharge from the second heat exchanger 108 and before entering the recuperator 26. Thermal energy from the waste heat reservoir 164 may be transferred to the second portion 422 to increase the temperature of the second portion 422 of the first working fluid 22. The recuperator 26 may increase the temperature of the second portion 420. Overall energy savings may be realized by utilizing some of the thermal energy from the waste heat reservoir 164 through the heat exchanger 29 to raise the temperature of the second portion 422. The first portion 420 and the second portion 422 may be combined at a combination point 430 and may be in the third state 3 of the charging cycle 200. The first working fluid 22 may move through the third heat exchanger 27 to gain additional thermal energy from the waste heat reservoir 164 prior to entering the compressor 24. After exiting the waste heat reservoir 164, the first working fluid 22 may be in the fourth state 4 of the charging cycle 200. The charging system 400 may otherwise function in a substantially similar manner to the charging system 20 in FIG. 1.



FIG. 6 is a schematic of another alternate example charging system 600 of the PTES system 10 shown in FIG. 3, according to one or more embodiments disclosed. FIG. 7 is a pressure enthalpy diagram for the alternative example charging system 600 of FIG. 6 operating with the PTES system 10 of FIG. 3, according to one or more embodiments disclosed. Referring to FIG. 6 and FIG. 7, the waste heat reservoir 164 may store thermal energy from the PTES system 10 introduced during a given charging cycle described herein. As depicted in FIG. 6, the thermal energy may have been stored in the waste heat reservoir 164 during the portion of the generation cycle that lowered the second portion 122 temperature, with reference to FIG. 3, to the state depicted in FIG. 7 as temperature and pressure 701. The first working fluid 22 may be split into a first portion 620 and a second portion 622 after discharge from the second heat exchanger 108 and before entering the recuperator 26. Thermal energy from the waste heat reservoir 164 may be transferred to the second portion 622 to increase the temperature of the second portion 622 of the first working fluid 22. The recuperator 26 may increase the temperature of the first portion 620. Overall energy savings may be realized by utilizing thermal energy from the waste heat reservoir 164 through the heat exchanger 27 to raise the temperature of the second portion 622. The first portion 620 and the second portion 622 may be combined at a combination point 630 and may be in the fourth state 4 of the charging cycle 200. The charging system 600 may otherwise function in a substantially similar manner to the charging system 20 in FIG. 1.


As discussed earlier, one metric of overall cycle performance of PTES systems is round-trip efficiency (“RTE”). The RTE may be defined as the amount of electrical energy that can be produced during one cycle of a generating cycle of a PTES system divided by the amount of electrical energy that was consumed during one cycle of a charging cycle of a PTES system. In each of the PTES systems described above, the RTE may be improved in comparison to traditional PTES systems and a greater amount of electricity from the PTES systems may be recovered. While traditional PTES systems usually have an estimated RTE of 55-56%, the PTES system 10 with charging system 20, 400, and 600 disclosed herein may result in an estimated RTE of about 56% to about 61% or about 56% to about 66% or higher.



FIG. 8 is a flowchart depicting methods for charging the PTES system 10, according to one or more embodiments disclosed. A method 800 for charging a pumped thermal energy system is disclosed. In 810, the method 800 may include circulating a working fluid through a fluid circuit. The fluid circuit may include a first heat exchanger, a second heat exchanger, and a third heat exchanger connected thereto. A pump, turbine, and/or compressor may be used therewith to circulate the fluid therethrough.


In 812, the method 800 may include circulating the working fluid through the second heat exchanger. The working fluid may be circulated by the pump, turbine, and/or compressor. The pump may circulate the working fluid without changing its pressure. The pump, turbine, and/or compressor may circulate the working fluid and may change its pressure and/or temperature.


In 814, the method 800 may include transferring thermal energy from a second or low temperature reservoir to the second heat exchanger to facilitate thermal energy transfer with the working fluid. Accordingly, as the working fluid moves through the second heat exchanger, the thermal energy of the working fluid may be increased.


In 816, the method 800 may include circulating the working fluid through a recuperator to increase the thermal energy of the working fluid.


In 818, the method 800 may include circulating the working fluid through the third heat exchanger. The thermal energy from a third or waste heat reservoir may be transferred to the working fluid by the third heat exchanger. As the working fluid moves through the third heat exchanger, the thermal energy of the working fluid may be increased.


In 820, the method 800 may include compressing the working fluid through a compressor. As the working fluid moves through the compressor, the temperature and pressure of the working fluid may be increased.


In 822, the method 800 may include circulating the working fluid through the first heat exchanger to transfer thermal energy from the working fluid to a first or high temperature reservoir storing the thermal energy within the high temperature reservoir. As the working fluid moves through the first heat exchanger, the first reservoir may be heated, and the thermal energy may be stored within the first reservoir for later use during a generation cycle. Accordingly, the thermal energy of the working fluid may be decreased.


In 824, the method 800 may include circulating the working fluid through the recuperator to transfer energy to and from the working fluid. Circulating the working fluid through the recuperator, the thermal energy in the working fluid may be further reduced.


In 826, the method 800 may include expanding the working fluid via a turbine fluidly connected to the fluid circuit. The turbine may be positioned between the first heat exchanger and the second heat exchanger of the fluid circuit. Moving the working fluid through the turbine may expand the working fluid to a lower temperature and pressure.


In 828, the method 800 may include separating the working fluid into a first portion and a second portion after moving the working fluid through the second heat exchanger. Transferring thermal energy to the first portion by circulating the first portion through the recuperator. Transferring thermal energy to the second portion by circulating the second portion through the third heat exchanger. The first portion and the second portion may be recombined at a point between the recuperator and the compressor. The working fluid may be separated into the first portion and the second portion after the working fluid is moved through the recuperator.


In 830 the method 800 may include circulating the second portion through a fourth heat exchanger to transfer thermal energy from the third reservoir to the second portion. The first portion and the second portion may be recombined at a point between the recuperator and the third heat exchanger. The recombined portions may be circulated through the third heat exchanger and then moved through the compressor.


The present disclosure further relates to any one or more of the following numbered embodiments:


1. A charging system in a pumped thermal energy storage (“PTES”) system, comprising: a fluid circuit for circulating a working fluid therethrough, the fluid circuit comprising: a first heat exchanger through which the working fluid circulates in use; a second heat exchange through which the working fluid circulates in use; a third heat exchanger through which the working fluid circulates in use; a compressor through which the working fluid circulates in use, wherein the working fluid enters the second heat exchanger at a first temperature and the working fluid exits the second heat exchanger at a second temperature, wherein the working fluid enters the third heat exchanger at the second temperature and the working fluid exits the third heat exchanger at a third temperature, wherein the working fluid enters the compressor at the third temperature and a first pressure, and the working fluid exits the compressor at a fourth temperature and a second pressure, and wherein the working fluid enter the first heat exchanger at the fourth temperature and the working fluid exits the first heat exchanger at a fifth temperature, the fifth temperature being lower than the fourth temperature; a turbine positioned between the first heat exchanger and the second heat exchanger, the turbine for expanding the working fluid to the first temperature and the first pressure; a high temperature reservoir connected to the first heat exchanger for transferring thermal energy to and from the working fluid; and a low temperature reservoir connected to the second heat exchanger for transferring thermal energy to and from the working fluid; and a heat source connected to the third heat exchanger for transferring thermal energy to and from the working fluid.


2. The charging system of embodiment 1, wherein the heat source comprises a waste heat from a PTES generating cycle stored in a waste heat reservoir.


3. The charging system of embodiments 1 or 2, wherein the heat source comprises thermal energy from a separate industrial process.


4. The charging system according to any embodiments 1 to 3, wherein the working fluid is split into a first portion and a second portion after exiting the second heat exchanger and prior to entering the compressor.


5. The charging system according to any embodiments 1 to 4, wherein the fluid circuit further comprises a recuperator positioned between the second heat exchanger and the third heat exchanger.


6. The charging system according to any embodiments 1 to 5, wherein the working fluid is split into a first portion and a second portion prior to entering the recuperator.


7. The charging system according to any embodiment 1 to 6, wherein the first portion is circulated through the recuperator, the second portion is circulated through the third heat exchanger and wherein the first and second portions are recombined at a location in the fluid circuit between the recuperator and the compressor.


8. The charging system according to any embodiments 1 to 7, wherein the fluid circuit further comprises a fourth heat exchanger wherein the first portion is circulated through the recuperator, the second portion is circulated through the fourth heat exchanger, and wherein the first and second portions are recombined at a location in the fluid circuit between the recuperator and the third heat exchanger.


9. The charging system according to any embodiments 1 to 8, wherein the fluid circuit further comprises a generating system in the PTES.


10. A generation system in a pumped thermal energy storage (“PTES”) system, comprising: a fluid circuit for the circulation of a working fluid therethrough, the working fluid comprising a first portion and a second portion comingled together, the fluid circuit comprising: a pump to circulate the working fluid within the fluid circuit, wherein the working fluid enters the pump at a first pressure, and the working fluid exits the pump at a second pressure, a first heat exchanger through which the working fluid circulates in use; a second heat exchanger through which the working fluid circulates in use; a first turbine positioned between the first heat exchanger and the second heat exchanger and wherein the first turbine is for expanding the working fluid to a third pressure, the third pressure greater than the first pressure and less than the second pressure; a separation location where the working fluid is separated into the first portion and the second portion, a second turbine positioned between the first heat exchanger and the second heat exchanger and wherein the second turbine if for expanding the first portion of the working fluid to the first pressure; an auxiliary line through which the second portion of the working fluid circulates between the turbine and the first heat exchanger, a third heat exchanger through which the working fluid circulates in use positioned between an outlet of the turbine and an inlet of a heat rejection heat exchanger, and in fluid communication with the auxiliary line, wherein the third heat exchanger removes thermal energy from the second portion of the working fluid; the heat rejection heat exchanger positioned between an outlet of the third heat exchanger and an inlet of the first heat exchanger, and in fluid communication with the auxiliary line, wherein the heat rejection heat exchanger removes thermal energy from the second portion of the working fluid; a high temperature reservoir connected to the first heat exchanger for transferring thermal energy to and from the working fluid; a low temperature reservoir connected to the second heat exchanger for transferring thermal energy to and from the working fluid; and a waste heat reservoir connected to the third heat exchanger for transferring thermal energy to and from the working fluid.


11. The generation system of embodiment 10, wherein the waste heat reservoir stores a waste heat from the PTES system


12. The generation system of embodiments 10 or 11, wherein the heat rejection heat exchanger decreases the temperature of the second portion of the working fluid to within zero to 10 C of an ambient temperature of a surrounding environment.


13. The generation system according to any embodiment 10 to 12, wherein the heat rejection heat exchanger releases the thermal energy of the second portion of the working fluid to the surrounding environment.


14. The generation system according to any embodiment 10 to 13, wherein the working fluid is split into the first portion and the second portion after exiting the first turbine.


15. The generation system according to any embodiments 10 to 14, wherein the auxiliary line includes a second pump positioned between the heat rejection heat exchanger and the first heat exchanger, the second pump for increasing the pressure of the second portion of the working fluid.


16. The generation system according to any embodiments 10 to 15, wherein the fluid circuit includes a recuperator positioned between the second turbine and the second heat exchanger.


17. The generation system according to any embodiments 10 to 16, wherein the third heat exchanger is in fluid communication with the heat rejection heat exchanger.


18. A method for charging a pumped thermal energy system, comprising: circulating a working fluid through a fluid circuit, wherein the fluid circuit comprises a first heat exchanger, a second heat exchanger, and a third heat exchanger connected thereto; circulating the working fluid through the second heat exchanger; providing thermal energy from the second heat exchanger to the working fluid; circulating the working fluid through a recuperator; circulating the working fluid through the third heat exchanger, wherein a waste heat reservoir storing waste heat transfers thermal energy to the working fluid to increase its temperature; circulating the working fluid through a compressor; and circulating the working fluid through the first heat exchanger to transfer thermal energy from the working fluid to a high temperature reservoir connected to the first heat exchanger.


19. The method of embodiment 18, further comprising circulating the working fluid through a recuperator that is positioned in the fluid circuit between the first heat exchanger and the second heat exchanger.


20. The method of embodiments 18 or 19, further comprising providing thermal energy from a low temperature reservoir to the second heat exchanger to facilitate thermal energy transfer with the working fluid.


The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.

Claims
  • 1. A charging system in a pumped thermal energy storage (“PTES”) system, comprising: a fluid circuit for circulating a working fluid therethrough, the fluid circuit comprising: a first heat exchanger through which the working fluid circulates in use;a second heat exchanger through which the working fluid circulates in use;a third heat exchanger through which the working fluid circulates in use;a recuperator positioned between the second heat exchanger and the third heat exchanger through which the working fluid circulates in use; anda compressor through which the working fluid circulates in use, wherein: the working fluid enters the second heat exchanger at a first temperature and the working fluid exits the second heat exchanger at a second temperature,the working fluid enters the recuperator at the second temperature and the working fluid exits the recuperator at a third temperature,the working fluid enters the third heat exchanger at the third temperature and the working fluid exits the third heat exchanger at a fourth temperature,the working fluid enters the compressor at the fourth temperature and a first pressure, and the working fluid exits the compressor at a fifth temperature and a second pressure, andthe working fluid enters the first heat exchanger at the fifth temperature and the working fluid exits the first heat exchanger at a sixth temperature, the sixth temperature being lower than the fifth temperature;a turbine positioned between the first heat exchanger and the second heat exchanger, the turbine for expanding the working fluid to the first temperature and the first pressure;a high temperature reservoir connected to the first heat exchanger for transferring thermal energy to and from the working fluid;a low temperature reservoir connected to the second heat exchanger for transferring thermal energy to and from the working fluid; anda heat source connected to the third heat exchanger for transferring thermal energy to and from the working fluid.
  • 2. The charging system of claim 1, wherein the heat source comprises a waste heat from a PTES generating cycle stored in a waste heat reservoir.
  • 3. The charging system of claim 1, wherein the heat source comprises thermal energy from a separate industrial process.
  • 4. The charging system of claim 1, wherein the working fluid is split into a first portion and a second portion after exiting the second heat exchanger and prior to entering the compressor.
  • 5. The charging system of claim 1, wherein the working fluid is split into a first portion and a second portion prior to entering the recuperator.
  • 6. The charging system of claim 5, wherein the fluid circuit further comprises a fourth heat exchanger wherein the first portion is circulated through the recuperator, the second portion is circulated through the fourth heat exchanger, and wherein the first and second portions are recombined at a location in the fluid circuit between the recuperator and the third heat exchanger.
  • 7. The charging system of claim 1, wherein the fluid circuit further comprises a generating system in the PTES.
  • 8. A generation system in a pumped thermal energy storage (“PTES”) system, comprising: a fluid circuit for the circulation of a working fluid therethrough, the working fluid comprising a first portion and a second portion comingled together, the fluid circuit comprising: a pump to circulate the working fluid within the fluid circuit, wherein the working fluid enters the pump at a first pressure, and the working fluid exits the pump at a second pressure,a first heat exchanger through which the working fluid circulates in use;a second heat exchanger through which the working fluid circulates in use;a first turbine positioned between the first heat exchanger and the second heat exchanger and wherein the first turbine is for expanding the working fluid to a third pressure, the third pressure greater than the first pressure and less than the second pressure;a separation location where the working fluid is separated into the first portion and the second portion,a second turbine positioned between the first heat exchanger and the second heat exchanger and wherein the second turbine is for expanding the first portion of the working fluid to the first pressure;an auxiliary line through which the second portion of the working fluid circulates between the first turbine and the first heat exchanger;a third heat exchanger through which the working fluid circulates in use positioned between an outlet of the first turbine and an inlet of a heat rejection heat exchanger, and in fluid communication with the auxiliary line, wherein the third heat exchanger removes thermal energy from the second portion of the working fluid; andthe heat rejection heat exchanger positioned between an outlet of the third heat exchanger and an inlet of the first heat exchanger, and in fluid communication with the auxiliary line, wherein the heat rejection heat exchanger removes thermal energy from the second portion of the working fluid;a high temperature reservoir connected to the first heat exchanger for transferring thermal energy to and from the working fluid;a low temperature reservoir connected to the second heat exchanger for transferring thermal energy to and from the working fluid; anda waste heat reservoir connected to the third heat exchanger for transferring thermal energy to and from the working fluid.
  • 9. The generation system of claim 8, wherein the waste heat reservoir stores a waste heat from the PTES system.
  • 10. The generation system of claim 8, wherein the heat rejection heat exchanger decreases the temperature of the second portion of the working fluid to within zero to 10 C of an ambient temperature of a surrounding environment.
  • 11. The generation system of claim 10, wherein the heat rejection heat exchanger releases the thermal energy of the second portion of the working fluid to the surrounding environment.
  • 12. The generation system of claim 8, wherein the working fluid is split into the first portion and the second portion after exiting the first turbine.
  • 13. The generation system of claim 8, wherein the auxiliary line includes a second pump positioned between the heat rejection heat exchanger and the first heat exchanger, the second pump for increasing the pressure of the second portion of the working fluid.
  • 14. The generation system of claim 8, wherein the fluid circuit includes a recuperator positioned between the second turbine and the second heat exchanger.
  • 15. A method for charging a pumped thermal energy system, comprising: circulating a working fluid through a fluid circuit, wherein the fluid circuit comprises a first heat exchanger, a second heat exchanger, a third heat exchanger, and a recuperator positioned between the second heat exchanger and the third heat exchanger connected thereto;circulating the working fluid through the second heat exchanger, the working fluid entering the second heat exchanger at a first temperature and the working fluid exiting the second heat exchanger at a second temperature;providing thermal energy from the second heat exchanger to the working fluid;circulating the working fluid through the recuperator;circulating the working fluid through the third heat exchanger, wherein: a waste heat reservoir storing waste heat transfers thermal energy to the working fluid to increase its temperature; andthe working fluid enters the third heat exchanger at a third temperature and the working fluid exits the third heat exchanger at a fourth temperature;circulating the working fluid through a compressor, the working fluid entering the compressor at the fourth temperature and a first pressure and the working fluid exits the compressor at a fifth temperature and a second pressure; andcirculating the working fluid through the first heat exchanger to transfer thermal energy from the working fluid to a high temperature reservoir connected to the first heat exchanger.
  • 16. The method of claim 15, further comprising providing thermal energy from a low temperature reservoir to the second heat exchanger to facilitate thermal energy transfer with the working fluid.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Prov. Appl. No. 62/690,803, filed Jun. 27, 2018. This application is incorporated herein by reference in its entirety to the extent consistent with the present application.

US Referenced Citations (557)
Number Name Date Kind
1433883 Friderich Oct 1922 A
1969526 Rosch Feb 1934 A
2575478 Wilson Nov 1951 A
2634375 Guimbal Apr 1953 A
2691280 Albert Oct 1954 A
3095274 Crawford Jun 1963 A
3105748 Stahl Oct 1963 A
3118277 Wormser Jan 1964 A
3237403 Feher Mar 1966 A
3277955 Laszlo Oct 1966 A
3310954 Sijtstra et al. Mar 1967 A
3401277 Larson Sep 1968 A
3620584 Rosensweig Nov 1971 A
3622767 Koepcke Nov 1971 A
3630022 Jubb Dec 1971 A
3736745 Karig Jun 1973 A
3772879 Engdahl Nov 1973 A
3791137 Jubb Feb 1974 A
3828610 Swearingen Aug 1974 A
3830062 Morgan et al. Aug 1974 A
3831381 Swearingen Aug 1974 A
3939328 Davis Feb 1976 A
3971211 Wethe Jul 1976 A
3977197 Brantley, Jr. Aug 1976 A
3982379 Gilli Sep 1976 A
3986359 Manning et al. Oct 1976 A
3991588 Laskaris Nov 1976 A
3998058 Park Dec 1976 A
4003786 Cahn Jan 1977 A
4005580 Swearingen Feb 1977 A
4009575 Hartman, Jr. Mar 1977 A
4015962 Tompkins Apr 1977 A
4029255 Heiser Jun 1977 A
4030312 Wallin Jun 1977 A
4037413 Heller et al. Jul 1977 A
4049407 Bottum Sep 1977 A
4070870 Bahel Jan 1978 A
4071897 Groves, Jr. et al. Jan 1978 A
4089744 Cahn May 1978 A
4099381 Rappoport Jul 1978 A
4110987 Cahn et al. Sep 1978 A
4119140 Cates Oct 1978 A
4150547 Hobson Apr 1979 A
4152901 Munters May 1979 A
4164848 Gilli Aug 1979 A
4164849 Mangus Aug 1979 A
4170435 Swearingen Oct 1979 A
4178762 Binstock et al. Dec 1979 A
4182960 Reuyl Jan 1980 A
4183220 Shaw Jan 1980 A
4198827 Terry et al. Apr 1980 A
4208882 Lopes Jun 1980 A
4221185 Scholes Sep 1980 A
4233085 Roderick Nov 1980 A
4236869 Laurello Dec 1980 A
4245476 Shaw Jan 1981 A
4248049 Briley Feb 1981 A
4257232 Bell Mar 1981 A
4285203 Vakil Aug 1981 A
4287430 Guido Sep 1981 A
4336692 Ecker Jun 1982 A
4347711 Noe Sep 1982 A
4347714 Kinsell Sep 1982 A
4364239 Chappelle et al. Dec 1982 A
4372125 Dickenson Feb 1983 A
4374467 Briley Feb 1983 A
4384568 Palmatier May 1983 A
4390082 Swearingen Jun 1983 A
4391101 Labbe Jul 1983 A
4420947 Yoshino Dec 1983 A
4428190 Bronicki Jan 1984 A
4433554 Rojey Feb 1984 A
4439687 Wood Mar 1984 A
4439994 Briley Apr 1984 A
4445180 Davis Apr 1984 A
4448033 Briccetti May 1984 A
4450363 Russell May 1984 A
4455836 Binstock Jun 1984 A
4467609 Loomis Aug 1984 A
4467621 O'Brien Aug 1984 A
4471622 Kuwahara Sep 1984 A
4475353 Lazare Oct 1984 A
4489562 Snyder Dec 1984 A
4489563 Kalina Dec 1984 A
4498289 Osgerby Feb 1985 A
4507936 Yoshino Apr 1985 A
4516403 Tanaka May 1985 A
4538960 Iino et al. Sep 1985 A
4549401 Spliethoff Oct 1985 A
4555905 Endou Dec 1985 A
4558228 Larjola Dec 1985 A
4573321 Knaebel Mar 1986 A
4578953 Krieger Apr 1986 A
4589255 Martens May 1986 A
4636578 Feinberg Jan 1987 A
4665975 Johnson May 1987 A
4674297 Vobach Jun 1987 A
4694189 Haraguchi Sep 1987 A
4697981 Brown et al. Oct 1987 A
4700543 Krieger Oct 1987 A
4730977 Haaser Mar 1988 A
4756162 Dayan Jul 1988 A
4765143 Crawford Aug 1988 A
4773212 Griffin Sep 1988 A
4798056 Franklin Jan 1989 A
4813242 Wicks Mar 1989 A
4821514 Schmidt Apr 1989 A
4867633 Gravelle Sep 1989 A
4884942 Pennink Dec 1989 A
4888954 Silvestri, Jr. Dec 1989 A
4892459 Guelich Jan 1990 A
4986071 Voss Jan 1991 A
4993483 Harris Feb 1991 A
5000003 Wicks Mar 1991 A
5050375 Dickinson Sep 1991 A
5080047 Williams et al. Jan 1992 A
5083425 Hendriks et al. Jan 1992 A
5098194 Kuo Mar 1992 A
5102295 Pope Apr 1992 A
5104284 Hustak, Jr. Apr 1992 A
5164020 Wagner Nov 1992 A
5176321 Doherty Jan 1993 A
5203159 Koizumi et al. Apr 1993 A
5228310 Vandenberg Jul 1993 A
5248239 Andrews Sep 1993 A
5291509 Mizoguchi et al. Mar 1994 A
5291960 Brandenburg Mar 1994 A
5320482 Palmer et al. Jun 1994 A
5321944 Bronicki et al. Jun 1994 A
5335510 Rockenfeller Aug 1994 A
5358378 Holscher Oct 1994 A
5360057 Rockenfeller Nov 1994 A
5384489 Bellac Jan 1995 A
5392606 Labinov Feb 1995 A
5440882 Kalina Aug 1995 A
5444972 Moore Aug 1995 A
5483797 Rigal et al. Jan 1996 A
5487822 Demaray et al. Jan 1996 A
5488828 Brossard Feb 1996 A
5490386 Keller Feb 1996 A
5503222 Dunne Apr 1996 A
5531073 Bronicki Jul 1996 A
5538564 Kaschmitter Jul 1996 A
5542203 Luoma Aug 1996 A
5544479 Yan et al. Aug 1996 A
5570578 Saujet Nov 1996 A
5588298 Kalina Dec 1996 A
5600967 Meckler Feb 1997 A
5609465 Batson et al. Mar 1997 A
5634340 Grennan Jun 1997 A
5647221 Garris, Jr. Jul 1997 A
5649426 Kalina Jul 1997 A
5676382 Dahlheimer Oct 1997 A
5680753 Hollinger Oct 1997 A
5685152 Sterling Nov 1997 A
5704206 Kaneko et al. Jan 1998 A
5738164 Hildebrand Apr 1998 A
5754613 Hashiguchi May 1998 A
5771700 Cochran Jun 1998 A
5782081 Pak et al. Jul 1998 A
5789822 Calistrat Aug 1998 A
5799490 Bronicki et al. Sep 1998 A
5813215 Weisser Sep 1998 A
5833876 Schnur Nov 1998 A
5862666 Liu Jan 1999 A
5873260 Linhardt Feb 1999 A
5874039 Edelson Feb 1999 A
5884470 Frutschi Mar 1999 A
5894836 Wu Apr 1999 A
5899067 Hageman May 1999 A
5901783 Dobak, III et al. May 1999 A
5903060 Norton May 1999 A
5918460 Connell Jul 1999 A
5941238 Tracy Aug 1999 A
5943869 Cheng Aug 1999 A
5946931 Lomax Sep 1999 A
5954342 Mikhalev et al. Sep 1999 A
5973050 Johnson Oct 1999 A
6037683 Lulay Mar 2000 A
6041604 Nicodemus Mar 2000 A
6058695 Ranasinghe May 2000 A
6058930 Shingleton May 2000 A
6059450 McClure May 2000 A
6062815 Holt May 2000 A
6065280 Ranasinghe May 2000 A
6066797 Toyomura May 2000 A
6070405 Jerye Jun 2000 A
6082110 Rosenblatt Jul 2000 A
6105368 Hansen Aug 2000 A
6112547 Spauschus Sep 2000 A
6129507 Ganelin Oct 2000 A
6158237 Riffat Dec 2000 A
6164655 Bothien Dec 2000 A
6202782 Hatanaka Mar 2001 B1
6223846 Schechter May 2001 B1
6233938 Nicodemus May 2001 B1
6233955 Egara May 2001 B1
6282900 Bell Sep 2001 B1
6282917 Mongan Sep 2001 B1
6295818 Ansley Oct 2001 B1
6298653 Lawlor Oct 2001 B1
6299690 Mongeon Oct 2001 B1
6341781 Matz Jan 2002 B1
6347520 Ranasinghe et al. Feb 2002 B1
6374630 Jones Apr 2002 B1
6393851 Wightman May 2002 B1
6432320 Bonsignore Aug 2002 B1
6434955 Ng Aug 2002 B1
6442951 Maeda Sep 2002 B1
6446425 Lawlor Sep 2002 B1
6446465 Dubar Sep 2002 B1
6463730 Keller Oct 2002 B1
6484490 Olsen Nov 2002 B1
6490812 Bennett et al. Dec 2002 B1
6530224 Conchieri Mar 2003 B1
6539720 Rouse et al. Apr 2003 B2
6539728 Korin Apr 2003 B2
6563855 Nishi et al. May 2003 B1
6571548 Bronicki Jun 2003 B1
6581384 Benson Jun 2003 B1
6588499 Fahlsing Jul 2003 B1
6598397 Hanna Jul 2003 B2
6644062 Hays Nov 2003 B1
6657849 Andresakis Dec 2003 B1
6668554 Brown Dec 2003 B1
6684625 Kline Feb 2004 B2
6695974 Withers Feb 2004 B2
6715294 Anderson Apr 2004 B2
6734585 Tornquist May 2004 B2
6735948 Kalina May 2004 B1
6739142 Korin May 2004 B2
6751959 McClanahan et al. Jun 2004 B1
6769256 Kalina Aug 2004 B1
6799892 Leuthold Oct 2004 B2
6808179 Bhattacharyya Oct 2004 B1
6810335 Lysaght Oct 2004 B2
6817185 Coney Nov 2004 B2
6857268 Stinger Feb 2005 B2
6892522 Brasz et al. May 2005 B2
6910334 Kalina Jun 2005 B2
6918254 Baker Jul 2005 B2
6921518 Johnston Jul 2005 B2
6941757 Kalina Sep 2005 B2
6960839 Zimron Nov 2005 B2
6960840 Willis Nov 2005 B2
6962054 Linney Nov 2005 B1
6962056 Brasz et al. Nov 2005 B2
6964168 Pierson Nov 2005 B1
6968690 Kalina Nov 2005 B2
6986251 Radcliff Jan 2006 B2
7013205 Hafner et al. Mar 2006 B1
7021060 Kalina Apr 2006 B1
7022294 Johnston Apr 2006 B2
7033553 Johnston Apr 2006 B2
7036315 Kang May 2006 B2
7041272 Keefer May 2006 B2
7047744 Robertson May 2006 B1
7048782 Couch May 2006 B1
7062913 Christensen Jun 2006 B2
7096665 Stinger Aug 2006 B2
7096679 Manole Aug 2006 B2
7124587 Linney Oct 2006 B1
7174715 Armitage Feb 2007 B2
7194863 Ganev Mar 2007 B2
7197876 Kalina Apr 2007 B1
7200996 Cogswell Apr 2007 B2
7234314 Wiggs Jun 2007 B1
7249588 Russell Jul 2007 B2
7278267 Yamada Oct 2007 B2
7279800 Bassett Oct 2007 B2
7287381 Pierson Oct 2007 B1
7305829 Mirolli Dec 2007 B2
7313926 Gurin Jan 2008 B2
7340894 Miyahara et al. Mar 2008 B2
7340897 Zimron Mar 2008 B2
7343746 Pierson Mar 2008 B2
7406830 Valentian Aug 2008 B2
7416137 Hagen et al. Aug 2008 B2
7453242 Ichinose Nov 2008 B2
7458217 Kalina Dec 2008 B2
7458218 Kalina Dec 2008 B2
7464551 Althaus et al. Dec 2008 B2
7469542 Kalina Dec 2008 B2
7516619 Pelletier Apr 2009 B2
7600394 Kalina Oct 2009 B2
7621133 Tomlinson Nov 2009 B2
7654354 Otterstrom Feb 2010 B1
7665291 Anand Feb 2010 B2
7665304 Sundel Feb 2010 B2
7673681 Vinegar et al. Mar 2010 B2
7685820 Litwin et al. Mar 2010 B2
7685821 Kalina Mar 2010 B2
7730713 Nakano Jun 2010 B2
7735335 Uno Jun 2010 B2
7770376 Brostmeyer Aug 2010 B1
7775758 Legare Aug 2010 B2
7827791 Pierson Nov 2010 B2
7838470 Shaw Nov 2010 B2
7841179 Kalina Nov 2010 B2
7841306 Myers Nov 2010 B2
7854587 Ito Dec 2010 B2
7866157 Ernst Jan 2011 B2
7900450 Gurin Mar 2011 B2
7950230 Nishikawa May 2011 B2
7950243 Gurin May 2011 B2
7971424 Masada Jul 2011 B2
7972529 Machado Jul 2011 B2
7997076 Ernst Aug 2011 B2
8015790 Zhang et al. Sep 2011 B2
8096128 Held et al. Jan 2012 B2
8099198 Gurin Jan 2012 B2
8099972 Dupraz Jan 2012 B2
8146360 Myers Apr 2012 B2
8235647 Pisseloup et al. Aug 2012 B2
8281593 Held Oct 2012 B2
8289710 Spearing et al. Oct 2012 B2
8297065 Vaisman et al. Oct 2012 B2
8375719 Rhodes et al. Feb 2013 B2
8387248 Rolt et al. Mar 2013 B2
8419936 Berger et al. Apr 2013 B2
8544274 Ernst Oct 2013 B2
8584463 Hemrle et al. Nov 2013 B2
8613195 Held et al. Dec 2013 B2
8661820 Mak Mar 2014 B2
8813497 Hart et al. Aug 2014 B2
8820083 Davidson et al. Sep 2014 B2
8869531 Held Oct 2014 B2
8973398 Coyle Mar 2015 B2
9038390 Kreuger May 2015 B1
9180421 Kwang et al. Nov 2015 B2
9523312 Allam et al. Dec 2016 B2
9638065 Vermeersch et al. May 2017 B2
9810451 O'Donnell et al. Nov 2017 B2
9845667 Mokheimer et al. Dec 2017 B2
9874112 Giegel Jan 2018 B2
9932861 Preuss et al. Apr 2018 B2
10077683 Close Sep 2018 B2
20010015061 Viteri et al. Aug 2001 A1
20010020444 Johnston Sep 2001 A1
20010027642 Tsuji Oct 2001 A1
20010030952 Roy Oct 2001 A1
20020029558 Tamaro Mar 2002 A1
20020053196 Lerner et al. May 2002 A1
20020066270 Rouse et al. Jun 2002 A1
20020078696 Korin Jun 2002 A1
20020078697 Lifson Jun 2002 A1
20020082747 Kramer Jun 2002 A1
20020148225 Lewis Oct 2002 A1
20030000213 Christensen Jan 2003 A1
20030061823 Alden Apr 2003 A1
20030154718 Nayar Aug 2003 A1
20030182946 Sami Oct 2003 A1
20030213246 Coll et al. Nov 2003 A1
20030221438 Rane et al. Dec 2003 A1
20040011038 Stinger Jan 2004 A1
20040011039 Stinger et al. Jan 2004 A1
20040020185 Brouillette et al. Feb 2004 A1
20040020206 Sullivan et al. Feb 2004 A1
20040021182 Green et al. Feb 2004 A1
20040035117 Rosen Feb 2004 A1
20040083731 Lasker May 2004 A1
20040083732 Hanna et al. May 2004 A1
20040088992 Brasz et al. May 2004 A1
20040097388 Brask et al. May 2004 A1
20040105980 Sudarshan et al. Jun 2004 A1
20040107700 McClanahan et al. Jun 2004 A1
20040159110 Janssen Aug 2004 A1
20040211182 Gould Oct 2004 A1
20040247211 Hamke Dec 2004 A1
20050022963 Garrabrant et al. Feb 2005 A1
20050056001 Frutschi Mar 2005 A1
20050072182 Taniguchi et al. Apr 2005 A1
20050096676 Gifford, III et al. May 2005 A1
20050109387 Marshall May 2005 A1
20050118025 Hiegemann et al. Jun 2005 A1
20050137777 Kolavennu et al. Jun 2005 A1
20050162018 Realmuto et al. Jul 2005 A1
20050167169 Gering et al. Aug 2005 A1
20050183421 Vaynberg et al. Aug 2005 A1
20050196676 Singh et al. Sep 2005 A1
20050198959 Schubert Sep 2005 A1
20050227187 Schilling Oct 2005 A1
20050252235 Critoph et al. Nov 2005 A1
20050257812 Wright et al. Nov 2005 A1
20050262848 Joshi et al. Dec 2005 A1
20050276685 Wiggins et al. Dec 2005 A1
20060010868 Smith Jan 2006 A1
20060060333 Chordia et al. Mar 2006 A1
20060066113 Ebrahim et al. Mar 2006 A1
20060080960 Rajendran et al. Apr 2006 A1
20060112693 Sundel Jun 2006 A1
20060112702 Martin et al. Jun 2006 A1
20060182680 Keefer et al. Aug 2006 A1
20060211871 Dai et al. Sep 2006 A1
20060213218 Uno et al. Sep 2006 A1
20060222523 Valentian et al. Oct 2006 A1
20060225421 Yamanaka et al. Oct 2006 A1
20060225459 Meyer Oct 2006 A1
20060249020 Tonkovich et al. Nov 2006 A1
20060254281 Badeer et al. Nov 2006 A1
20070001766 Ripley et al. Jan 2007 A1
20070007771 Biddle et al. Jan 2007 A1
20070017192 Bednarek et al. Jan 2007 A1
20070019708 Shiflett et al. Jan 2007 A1
20070027038 Kamimura et al. Feb 2007 A1
20070056290 Dahm Mar 2007 A1
20070089449 Gurin Apr 2007 A1
20070108200 McKinzie, II May 2007 A1
20070119175 Ruggieri et al. May 2007 A1
20070130952 Copen Jun 2007 A1
20070151244 Gurin Jul 2007 A1
20070161095 Gurin Jul 2007 A1
20070163261 Strathman Jul 2007 A1
20070195152 Kawai et al. Aug 2007 A1
20070204620 Pronske et al. Sep 2007 A1
20070227472 Takeuchi et al. Oct 2007 A1
20070234722 Kalina Oct 2007 A1
20070245733 Pierson et al. Oct 2007 A1
20070246206 Gong et al. Oct 2007 A1
20080000225 Kalina Jan 2008 A1
20080006040 Peterson et al. Jan 2008 A1
20080010967 Griffin et al. Jan 2008 A1
20080023666 Gurin Jan 2008 A1
20080053095 Kalina Mar 2008 A1
20080066470 MacKnight Mar 2008 A1
20080134681 Nayef et al. Jun 2008 A1
20080135253 Vinegar et al. Jun 2008 A1
20080163618 Paul Jul 2008 A1
20080163625 O'Brien Jul 2008 A1
20080173444 Stone et al. Jul 2008 A1
20080173450 Goldberg et al. Jul 2008 A1
20080174115 Lambirth Jul 2008 A1
20080211230 Gurin Sep 2008 A1
20080217321 Vinegar et al. Sep 2008 A1
20080250789 Myers et al. Oct 2008 A1
20080252078 Myers Oct 2008 A1
20080282702 Collins Nov 2008 A1
20080282715 Aue et al. Nov 2008 A1
20090021251 Simon Jan 2009 A1
20090071156 Nishikawa et al. Mar 2009 A1
20090085709 Meinke Apr 2009 A1
20090107144 Moghtaderi et al. Apr 2009 A1
20090139234 Gurin Jun 2009 A1
20090139781 Straubel Jun 2009 A1
20090173337 Tamaura et al. Jul 2009 A1
20090173486 Copeland Jul 2009 A1
20090179429 Ellis et al. Jul 2009 A1
20090180903 Martin et al. Jul 2009 A1
20090205892 Jensen et al. Aug 2009 A1
20090211251 Peterson et al. Aug 2009 A1
20090211253 Radcliff et al. Aug 2009 A1
20090257902 Ernens Oct 2009 A1
20090266075 Westmeier et al. Oct 2009 A1
20090293503 Vandor Dec 2009 A1
20090320477 Juchymenko Dec 2009 A1
20100024421 Litwin Feb 2010 A1
20100077792 Gurin Apr 2010 A1
20100083662 Kalina Apr 2010 A1
20100102008 Hedberg Apr 2010 A1
20100122533 Kalina May 2010 A1
20100143094 Pisseloup et al. Jun 2010 A1
20100146949 Stobart et al. Jun 2010 A1
20100146973 Kalina Jun 2010 A1
20100156112 Held et al. Jun 2010 A1
20100162721 Welch et al. Jul 2010 A1
20100205962 Kalina Aug 2010 A1
20100212316 Waterstripe et al. Aug 2010 A1
20100218513 Vaisman et al. Sep 2010 A1
20100218930 Proeschel Sep 2010 A1
20100263380 Biederman et al. Oct 2010 A1
20100287920 Duparchy Nov 2010 A1
20100287934 Glynn et al. Nov 2010 A1
20100300093 Doty Dec 2010 A1
20100319346 Ast et al. Dec 2010 A1
20100326076 Ast et al. Dec 2010 A1
20110027064 Pal et al. Feb 2011 A1
20110030404 Gurin Feb 2011 A1
20110048012 Ernst et al. Mar 2011 A1
20110051880 Al-Mayahi et al. Mar 2011 A1
20110061384 Held et al. Mar 2011 A1
20110061387 Held et al. Mar 2011 A1
20110088399 Briesch et al. Apr 2011 A1
20110100002 Muir et al. May 2011 A1
20110100611 Ohler et al. May 2011 A1
20110113781 Frey et al. May 2011 A1
20110164957 Rivas et al. Jul 2011 A1
20110179799 Allam et al. Jul 2011 A1
20110185729 Held Aug 2011 A1
20110192163 Kasuya Aug 2011 A1
20110203278 Kopecek et al. Aug 2011 A1
20110214424 Wood Sep 2011 A1
20110219760 McBride et al. Sep 2011 A1
20110259010 Bronicki et al. Oct 2011 A1
20110270451 Sakaguchi et al. Nov 2011 A1
20110286724 Goodman Nov 2011 A1
20110288688 Lehan Nov 2011 A1
20110299972 Morris Dec 2011 A1
20110308253 Ritter Dec 2011 A1
20120042650 Ernst et al. Feb 2012 A1
20120047892 Held et al. Mar 2012 A1
20120055153 Murata et al. Mar 2012 A1
20120067046 Drenik et al. Mar 2012 A1
20120067055 Held Mar 2012 A1
20120080161 Kelly Apr 2012 A1
20120111003 Kasuya et al. May 2012 A1
20120125002 Lehar et al. May 2012 A1
20120128463 Held May 2012 A1
20120131918 Held May 2012 A1
20120131919 Held May 2012 A1
20120131920 Held May 2012 A1
20120131921 Held May 2012 A1
20120159922 Gurin Jun 2012 A1
20120159956 Gurin Jun 2012 A1
20120167873 Venetos et al. Jul 2012 A1
20120174558 Gurin Jul 2012 A1
20120186219 Gurin Jul 2012 A1
20120240616 Ritter et al. Sep 2012 A1
20120247134 Gurin Oct 2012 A1
20120247455 Gurin et al. Oct 2012 A1
20120255304 Li et al. Oct 2012 A1
20120261090 Durmaz et al. Oct 2012 A1
20120261104 Kelly et al. Oct 2012 A1
20120306206 Agrawal et al. Dec 2012 A1
20120319410 Ambrosek et al. Dec 2012 A1
20130019597 Kalina Jan 2013 A1
20130033037 Held et al. Feb 2013 A1
20130036736 Hart et al. Feb 2013 A1
20130074497 Mori et al. Mar 2013 A1
20130087301 Hemrle et al. Apr 2013 A1
20130113221 Held May 2013 A1
20130134720 Fukasaku et al. May 2013 A1
20130145759 Sonwane et al. Jun 2013 A1
20140041387 Benson Feb 2014 A1
20140090405 Held et al. Apr 2014 A1
20140102098 Bowan et al. Apr 2014 A1
20140102103 Yamamoto et al. Apr 2014 A1
20140150992 Koontz et al. Jun 2014 A1
20140208750 Vermeersch Jul 2014 A1
20140208751 Bowan Jul 2014 A1
20140216034 Numata et al. Aug 2014 A1
20140223907 Fujioka et al. Aug 2014 A1
20140224447 Reznik et al. Aug 2014 A1
20140298813 Brunhuber Oct 2014 A1
20150069758 Davidson et al. Mar 2015 A1
20150369086 Johnson et al. Dec 2015 A1
20160017759 Gayawal et al. Jan 2016 A1
20160040557 Vermeersch et al. Feb 2016 A1
20160102608 Lynn Apr 2016 A1
20160237904 Scarboro et al. Aug 2016 A1
20170058202 Noureldin et al. Mar 2017 A1
20170081980 Davidson Mar 2017 A1
20170350658 Kerth et al. Dec 2017 A1
20170362963 Hostler et al. Dec 2017 A1
20180187628 Apte Jul 2018 A1
20180340712 Peter et al. Nov 2018 A1
20190170026 Matsukuma et al. Jun 2019 A1
20200003081 Held Jan 2020 A1
Foreign Referenced Citations (120)
Number Date Country
2794150 Nov 2011 CA
1165238 Nov 1997 CN
1432102 Jul 2003 CN
101614139 Dec 2009 CN
202055876 Nov 2011 CN
202544943 Nov 2012 CN
202718721 Feb 2013 CN
2632777 Feb 1977 DE
19906087 Aug 2000 DE
10052993 May 2002 DE
102007020086 Apr 2007 DE
10 2011005722 Mar 2011 DE
0003980 Feb 1979 EP
0286565 Apr 1988 EP
1484489 Aug 2004 EP
1577549 Sep 2005 EP
1977174 Oct 2008 EP
1998013 Dec 2008 EP
2157317 Feb 2010 EP
2241737 Oct 2010 EP
2312129 Apr 2011 EP
2357324 Sep 2011 EP
2390473 Nov 2011 EP
2419621 Feb 2012 EP
2446122 May 2012 EP
2478201 Jul 2012 EP
2500530 Sep 2012 EP
2550436 Jan 2013 EP
2698506 Feb 2014 EP
856985 Dec 1960 GB
2010974 Jul 1979 GB
2075608 Nov 1981 GB
58-193051 Nov 1983 JP
60-040707 Mar 1985 JP
61-152914 Jul 1986 JP
01-240705 Sep 1989 JP
H03182638 Aug 1991 JP
05-321612 Dec 1993 JP
06-331225 Nov 1994 JP
08-028805 Feb 1996 JP
09-100702 Apr 1997 JP
2641581 May 1997 JP
09-209716 Aug 1997 JP
2858750 Dec 1998 JP
H11-270352 May 1999 JP
2000-257407 Sep 2000 JP
3119718 Dec 2000 JP
2001-193419 Jul 2001 JP
2002-097965 Apr 2002 JP
2003-529715 Oct 2003 JP
2004-239250 Aug 2004 JP
2004-332626 Nov 2004 JP
2005-030727 Feb 2005 JP
2005-533972 Nov 2005 JP
2006-037760 Feb 2006 JP
2006-177266 Jul 2006 JP
2007-198200 Sep 2007 JP
4343738 Oct 2009 JP
2011-017268 Jan 2011 JP
100191080 Jun 1999 KR
10 2007 0086244 Aug 2007 KR
10-0766101 Oct 2007 KR
10-0844634 Jul 2008 KR
10-20100067927 Jun 2010 KR
1020110018769 Feb 2011 KR
1069914 Sep 2011 KR
1103549 Jan 2012 KR
10-2012-0058582 Jun 2012 KR
2012-0068670 Jun 2012 KR
2012-0128753 Nov 2012 KR
2012-0128755 Nov 2012 KR
WO 199105145 Apr 1991 WO
WO 9212366 Jul 1992 WO
WO 1996009500 Mar 1996 WO
WO 00-71944 Nov 2000 WO
WO 2001044658 Jun 2001 WO
WO 02090721 Nov 2002 WO
WO 02090747 Nov 2002 WO
WO 2006060253 Jun 2006 WO
WO 2006137957 Dec 2006 WO
WO 2007056241 May 2007 WO
WO 2007079245 Jul 2007 WO
WO 2007082103 Jul 2007 WO
WO 2007112090 Oct 2007 WO
WO 2008014774 Feb 2008 WO
WO 2008039725 Apr 2008 WO
WO 2008101711 Aug 2008 WO
WO 2009045196 Apr 2009 WO
WO 2009058992 May 2009 WO
WO 2010006942 Feb 2010 WO
WO 2010017981 Feb 2010 WO
WO 2010017981 Feb 2010 WO
WO 2010074173 Jul 2010 WO
WO 2010083198 Jul 2010 WO
WO 2010121255 Oct 2010 WO
WO 2010126980 Nov 2010 WO
WO 2010151560 Dec 2010 WO
WO 2011017450 Feb 2011 WO
WO 2011017476 Feb 2011 WO
WO 2011017599 Feb 2011 WO
WO 2011034984 Mar 2011 WO
WO 2011094294 Aug 2011 WO
WO 2011119650 Sep 2011 WO
WO 2012036678 Mar 2012 WO
WO 2012074905 Jun 2012 WO
WO 2012074907 Jun 2012 WO
WO 2012074911 Jun 2012 WO
WO 2012074940 Jun 2012 WO
WO 2013055391 Apr 2013 WO
WO 2013059687 Apr 2013 WO
WO 2013059695 Apr 2013 WO
WO 2013070249 May 2013 WO
WO 2013074907 May 2013 WO
WO 2014164620 Mar 2014 WO
WO 2014114531 Jul 2014 WO
WO 2014138035 Sep 2014 WO
WO 2014159520 Oct 2014 WO
WO 2016150455 Sep 2016 WO
WO 2018217969 Nov 2018 WO
WO 202090721 Jul 2020 WO
Non-Patent Literature Citations (108)
Entry
Alpy, N., et al., “French Atomic Energy Commission views as regards SCO2 Cycle Development priorities and related R&D approach,” Presentation, Symposium on SC02 Power Cycles, Apr. 29-30, 2009, Troy, NY, 20 pages.
Angeling, G., and Invernizzi, C.M., “Carbon Dioxide Power Cycles using Liquid Natural Gas as Heat Sink”, Applied Thermal Engineering Mar. 3, 2009, 43 pages.
Bryant, John C., Saari, Henry, and Zanganeh, Kourosh, “An Analysis and Comparison of the Simple and Recompression Supercritical CO2 Cycles” Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 8 pages.
Chapman, Daniel J., Arias, Diego A., “An Assessment of the Supercritical Carbon Dioxide Cycle for Use in a Solar Parabolic Trough Power Plant”, Presentation, Abengoa Solar, Apr. 29-30, 2009, Troy, NY, 20 pages.
Chapman, Daniel J., Arias, Diego A., “An Assessment of the Supercritical Carbon Dioxide Cycle for Use in a Solar Parabolic Trough Power Plant”, Paper, Abengoa Solar, Apr. 29-30, 2009, Troy, NY, 5 pages.
Chen, Yang, Lundqvist, P., Johansson, A., Platell, P., “A Comparative Study of the Carbon Dioxide Transcritical Power Cycle Compared with an Organic Rankine Cycle with R123 as Working Fluid in Waste Heat Recovery”, Science Direct, Applied Thermal Engineering, Jun. 12, 2006, 6 pages.
Chen, Yang, “Thermodynamic Cycles Using Carbon Dioxide as Working Fluid”, Doctoral Thesis, School of Industrial Engineering and Management, Stockholm, Oct. 2011, 150 pages., (3 parts).
Chinese Search Report for Application No. 201080035382.1, 2 pages.
Chinese Search Report for Application No. 201080050795.7, 2 pages.
Chordia, Lalit, “Optimizing Equipment for Supercritical Applications”, Thar Energy LLC, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 7 pages.
Colegrove, et al., “Structured Steam Turbines for the Combined-Cycle Market”, GE Power Systems, GER-4201, 05/01, 18 pages.
Combs, Osie V., “An Investigation of the Supercritical CO2 Cycle (Feher cycle) for Shipboard Application”, Massachusetts Institute of Technology, May 1977, 290 pages.
Di Bella, Francis A., “Gas Turbine Engine Exhaust Waste Heat Recovery Navy Shipboard Module Development”, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 8 pages.
DOSTAL, V., et al., A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, March 10, 2004, 326 pages., (7 parts).
Dostal, Vaclav and Kulhanek, Martin, “Research on the Supercritical Carbon Dioxide Cycles in the Czech Republic”, Czech Technical University in Prague, Symposium on SC02 Power Cycles, Apr. 29-30, 2009, Troy, NY, 8 pages.
Dostal, Vaclav, and Dostal, Jan, “Supercritical CO2 Regeneration Bypass Cycle—Comparison to Traditional Layouts”, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 5 pages.
Ebenezer, Salako A.; “Removal of Carbon Dioxide from Natural Gas for LNG Production”, Institute of Petroleum Technology Norwegian University of Science and Technology, Dec. 2005, Trondheim, Norway, 74 pages.
Eisemann, Kevin, and Fuller, Robert L., “Supercritical CO2 Brayton Cycle Design and System Start-up Options”, Barber Nichols, Inc., Paper, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 7 pages.
Eisemann, Kevin, and Fuller, Robert L., “Supercritical CO2 Brayton Cycle Design and System Start-up Options”, Presentation, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 11 pages.
Feher, E.G., et al., “Investigation of Supercritical (Feher) Cycle”, Astropower Laboratory, Missile & Space Systems Division, Oct. 1968, 152 pages.
Fuller, Robert L., and Eisemann, Kevin, “Centrifugal Compressor Off-Design Performance for Super-Critical CO2”, Barber Nichols, Inc. Presentation, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 20 pages.
Fuller, Robert L., and Eisemann, Kevin, “Centrifugal Compressor Off-Design Performance for Super-Critical CO2”, Paper, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 12 pages.
Gokhstein, D.P. and Verkhivker, G.P. “Use of Carbon Dioxide as a Heat Carrier and Working Substance in Atomic Power Stations”, Soviet Atomic Energy, Apr. 1969, vol. 26, Issue 4, pp. 430-432.
Gokhstein, D.P.; Taubman, E.I.; Konyaeva, G.P., “Thermodynamic Cycles of Carbon Dioxide Plant with an Additional Turbine After the Regenerator”, Energy Citations Database, Mar. 1973, 1 Page, Abstract only.
Gowrishankar, K., “Adaptive Fuzzy Controller to Control Turbine Speed”, Rajiv Gandhi College Of Engg. & tech., Puducherry, India, 7 pages.
Hjartarson, Heimir; “Waste Heat Utilization at Elkem Ferrosilicon Plant in Iceland”, University of Iceland, 2009, 102 pages.
Hjartarson, et al.; “Waste Heat Utilization from a Submerged ARC Furnace Producing Ferrosilicon”, The Twelfth International Ferroalloys Congress Sustainable Future;, Helsinki, Finland ,Jun. 6-9, 2010, 10 pages.
Hejzlar, P. et al., “Assessment of Gas Cooled Gas Reactor with Indirect Supercritical CO2 Cycle” Massachusetts Institute of Technology, Jan. 2006, 10 pages.
Hoffman, John R., and Feher, E.G., “150 kwe Supercritical Closed Cycle System”, Transactions of the ASME, Jan. 1971, pp. 70-80.
Jeong, Woo Seok, et al., “Performance of S—CO2 Brayton Cycle with Additive Gases for SFR Application”, Korea Advanced Institute of Science and Technology, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 5 pages.
Johnson, Gregory A., & Mcdowell, Michael, “Issues Associated with Coupling Supercritical CO2 Power Cycles to Nuclear, Solar and Fossil Fuel Heat Sources”, Hamilton Sundstrand, Energy Space & Defense-Rocketdyne, Apr. 29-30, 2009, Troy, NY, Presentation, 18 pages.
Kawakubo, Tomoki, “Unsteady Roto-Stator Interaction of a Radial-Inflow Turbine with Variable Nozzle Vanes”, ASME Turbo Expo 2010: Power for Land, Sea, and Air; vol. 7: Turbomachinery, Parts A, B, and C; Glasgow, UK, Jun. 14-18, 2010, Paper No. GT2010-23677, pp. 2075-2084, (1 page, Abstract only).
Kulhanek, Martin, “Thermodynamic Analysis and Comparison of S—CO2 Cycles”, Presentation, Czech Technical University in Prague, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 14 pages.
Kulhanek, Martin, “Thermodynamic Analysis and Comparison of S—CO2 Cycles”, Paper, Czech Technical University in Prague, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 7 pages.
Kulhanek, Martin., and Dostal, Vaclav, “Supercritical Carbon Dioxide Cycles Thermodynamic Analysis and Comparison”, Abstract, Faculty Conference held in Prague, Mar. 24, 2009, 13 pages.
Ma, Zhiwen and Turchi, Craig S., “Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems”, National Renewable Energy Laboratory, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 4 pages.
Mohamed, Omar, et al., “Modelling Study of Supercritical Power Plant and Parameter Identified Using Genetic Algorithms”, Proceedings of the World Congress on Engineering 2010 vol. II, WCE 2010, Jun. 30-Jul. 2, 2010, London, U.K., 6 pages.
Moisseytsev, Anton, and Sienicki, Jim, “Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor”, Supercritical CO2 Power Cycle Symposium, Troy, NY, Apr. 29, 2009, 26 pages.
Munoz De Escalona, Jose M., “The Potential of the Supercritical Carbon Dioxide Cycle in High Temperature Fuel Cell Hybrid Systems”, Paper, Thermal Power Group, University of Seville, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 6 pages.
Munoz De Escalona, Jose M., et al., “The Potential of the Supercritical Carbon Dioxide Cycle in High Temperature Fuel Cell Hybrid Systems”, Presentation, Thermal Power Group, University of Seville, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 19 pages.
Muto, Y., et al., “Application of Supercritical CO2 Gas Turbine for the Fossil Fired Thermal Plant”, Journal of Energy and Power Engineering, Sep. 30, 2010, vol. 4, No. 9, 9 pages.
Muto, Yasushi, and Kato, Yasuyoshi, “Optimal Cycle Scheme of Direct Cycle Supercritical CO2 Gas Turbine for Nuclear Power Generation Systems”, International Conference on Power Engineering—2007, Oct. 23-27, 2007, Hangzhou, China, pp. 86-87.
Noriega, Bahamonde J.S., “Design Method for s-CO2 Gas Turbine Power Plants”, Master of Science Thesis, Delft University of Technology, Oct. 2012, 122 pages., (3 parts).
Oh, Chang, et al., “Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility”, Presentation, Nuclear Energy Research Initiative Report, Oct. 2004, 38 pages.
Oh, Chang; et al., “Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility”, Presentation, Nuclear Energy Research Initiative Report, Final Report, Mar. 2006, 97 pages.
Parma, Ed, et al., “Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept” Presentation for Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 40 pages.
Parma, Ed, et al., “Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept”, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 9 pages.
Parma, Edward J., et al., “Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept”, Presentation, Sandia National Laboratories, May 2011, 55 pages.
PCT/US2011/029486—International Preliminary Reporton Patentability dated Sep. 25, 2012, 6 pages.
PCT/US2011/029486—International Search Report and Written Opinion dated Nov. 16, 2011, 9 pages.
PCT/US2010/049042—International Search Report and Written Opinion dated Nov. 17, 2010, 11 pages.
PCT/US2010/049042—International Preliminary Reporton Patentability dated Mar. 29, 2012, 18 pages.
PCT/US2010/031614—International Search Report dated Jul. 12, 2010, 3 pages.
PCT/US2010/031614—International Preliminary Report on Patentability dated Oct. 27, 2011, 9 pages.
PCT/US2010/039559—International Preliminary Reporton Patentability dated Jan. 12, 2012, 7 pages.
PCT/US2010/039559—Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration dated Sep. 1, 2010, 6 pages.
PCT/US2010/044681—International Search Report and Written Opinion dated Oct. 7, 2010, 10 pages.
PCT/US2010/044681—International Preliminary Report on Patentability dated Feb. 16, 2012, 9 pages.
PCT/US2010/044476—International Search Report dated Sep. 29, 2010, 23 pages.
PCT/US2007/001120—International Search Report dated Apr. 25, 2008, 7 pages.
PCT/US2006/049623—Written Opinion of ISA dated Jan. 4, 2008, 4 pages.
PCT/US2007/079318—International Preliminary Report on Patentability dated July 7, 2008, 5 pages.
PCT/US2013/055547—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jan. 24, 2014, 11 pages.
PCT/US2013/064470—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jan. 22, 2014, 10 pages.
PCT/US2013/064471—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jan. 24, 2014, 10 pages.
PCT/US2014/023026—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jul. 22, 2014, 11 pages.
PCT/US2014/013170—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated May 9, 2014, 12 pages.
PCT/US2011/062266—International Search Report and Written Opinion dated Jul. 9, 2012, 12 pages.
PCT/US2011/062198—International Search Report and Written Opinion dated Jul. 2, 2012, 9 pages.
PCT/US2011/062198—Extended European Search Report dated May 6, 2014, 9 pages.
PCT/US2011/062201—International Search Report and Written Opinion dated Jun. 26, 2012, 9 pages.
PCT/US2011/062201—Extended European Search Report dated May 28, 2014, 8 pages.
PCT/US2011/062204—International Search Report dated Nov. 1, 2012, 10 pages.
PCT/US2011/62207—International Search Report and Written Opinion dated Jun. 28, 2012, 7 pages.
PCT/US2014/013154—International Search Report dated May 23, 2014, 4 pages.
PCT/US2014/024548—International Search Report and Written Opinion dated Sep. 5, 2014, 11 pages.
PCT/US2013/064475—International Search Report and Written Opinion dated Jan. 16, 2014, 11 pages.
PCT/US2014/024254—International Search Report and Written Opinion dated Aug. 13, 2014, 10 pages.
PCT/US2014/026173—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jul. 9, 2014, 10 pages.
PCT/US2012/000470—International Search Report dated Mar. 8, 2013, 10 pages.
PCT/US2012/061151—International Search Report and Written Opinion dated Feb. 25, 2013, 9 pages.
PCT/US2012/061159—International Search Report dated Mar. 2, 2013, 10 pages.
PCT/US2014/024305—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Aug. 26, 2014, 11 pages.
PCT/US2014/023990—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jul. 17, 2014, 10 pages.
PCT/US2015/57701—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Dec. 22, 2015, 11 pages.
PCT/US2015/57756—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jul. 27, 2017, 41 pages.
PCT/US2014/020242—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Aug. 5, 2014, 9 pages.
PCT/US2018/034289—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Oct. 2, 2018, 22 pages.
“Steam Turbines”, PDHengineer.com Course No. M-3006.
Steam Turbines (Energy Engineering) http://what-when-how.com/energy-engineering/steam-turbines-energv-engineering/, Oct. 25, 2012, 14 pages.
Persichilli, Michael, et al., “Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 can Displace Steam” Echogen Power Systems LLC, Power-Gen India & Central Asia 2012, Apr. 19-21, 2012, New Delhi, India, 15 pages.
Pruess, Karsten, “Enhanced Geothermal Systems (EGS): Comparing Water and CO2 as Heat Transmission Fluids”, Proceedings, New Zealand Geothermal Workshop 2007 Auckland, New Zealand, Nov. 19-21, 2007, 13 pages.
Pruess, Karsten, “Enhanced Geothermal Systems (EGS): Using CO2 as Working Fluid—A Novel Approach for Generating Renewable Energy with Simultaneous Sequestration of Carbon”, Submitted to Geothermics, Jun. 2006, 26 pages.
Renz, Manfred, “The New Generation Kalina Cycle”, Contribution to the Conference: “Electricity Generation from Enhanced Geothermal Systems”, Sep. 14, 2006, Strasbourg, France, 18 pages.
Saari, Henry, et al., “Supercritical CO2 Advanced Brayton Cycle Design”, Presentation, Carleton University, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 21 pages.
San Andres, Luis, “Start-Up Response of Fluid Film Lubricated Cryogenic Turbopumps (Preprint)”, AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, Jul. 8-11, 2007, 38 pages.
Sarkar, J., and Bhattacharyya, Souvik, “Optimization of Recompression S-CO2 Power Cycle with Reheating” Energy Conversion and Management 50 (May 17, 2009), pp. 1939-1945.
Thorin, Eva, “Power Cycles with Ammonia-Water Mixtures as Working Fluid”, Doctoral Thesis, Department of Chemical Engineering and Technology Energy Processes, Royal Institute of Technology, Stockholm, Sweden, 2000, 66 pages.
Tom, Samsun Kwok Sun, “The Feasibility of Using Supercritical Carbon Dioxide as a Coolant for the Candu Reactor”, The University of British Columbia, Jan. 1978, 156 pages.
“Two-flow rotors”; http://www.answers.com/topic/steam-turbine#ixzz2AJsKAwHX.
VGB PowerTech Service GmbH, “CO2 Capture and Storage”, A VGB Report on the State of the Art, Aug. 25, 2004, 112 pages.
Vidhi, Rachana, et al., “Study of Supercritical Carbon Dioxide Power Cycle for Power Conversion from Low Grade Heat Sources”, Presentation, University of South Florida and Oak Ridge National Laboratory, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 17 pages.
Vidhi, Rachana, et al., “Study of Supercritical Carbon Dioxide Power Cycle for Power Conversion from Low Grade Heat Sources”, Paper, University of South Florida and Oak Ridge National Laboratory, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 8 pages.
Wright, Steven A., et al., “Modeling and Experimental Results for Condensing Supercritical CO2 Power Cycles”, Sandia Report, Jan. 2011, 47 pages.
Wright, Steven A., et al., “Supercritical CO2 Power Cycle Development Summary at Sandia National Laboratories”, May 24-25, 2011, (1 page, Abstract only).
Wright, Steven, “Mighty Mite”, Mechanical Engineering, Jan. 2012, pp. 41-43.
Yoon, Ho Joon, et al., “Preliminary Results of Optimal Pressure Ratio for Supercritical CO2 Brayton Cycle coupled with Small Modular Water Cooled Reactor”, Presentation, Korea Advanced Institute of Science and Technology and Khalifa University of Science, Technology and Research, Boulder, CO, May 25, 2011, 18 pages.
Yoon, Ho Joon, et al., “Preliminary Results of Optimal Pressure Ratio for Supercritical CO2 Brayton Cycle coupled with Small Modular Water Cooled Reactor”, Paper, Korea Advanced Institute of Science and Technology and Khalifa University of Science, Technology and Research, May 24-25, 2011, Boulder, CO, 7 pages.
Related Publications (1)
Number Date Country
20200003081 A1 Jan 2020 US
Provisional Applications (1)
Number Date Country
62690803 Jun 2018 US