Pumped thermal energy storage (“PTES”) systems, also known as electro-thermal energy storage systems, are used to store and generate energy. PTES systems generally consist of a configurable thermodynamic cycle where thermal energy is transferred between a high temperature reservoir and a low temperature reservoir via working fluid in a working fluid circuit.
During a “charging” cycle of operation, the thermodynamic cycle, which is a heat pump cycle in a nominally forward direction, may be used to increase the thermal energy in the high temperature reservoir. In some instances, an electrical motor may be used to drive a compressor, which increases the pressure and temperature of the working fluid, whereby the thermal energy in the fluid is transferred to and stored in the high temperature reservoir by using a high temperature heat exchanger. Following the heat transfer to the high temperature reservoir, the fluid may be expanded through a turbine, which produces shaft work that may be used to drive the gas compressor. This working fluid expansion may lower the pressure and temperature of the working fluid. After exiting the turbine, the working fluid may pass through a low temperature heat exchanger that is connected to a low temperature reservoir and may affect transfer of heat from the low temperature reservoir to the working fluid. Upon exit from the low temperature heat exchanger, the working fluid may be returned to approximately its initial state (i.e., pressure and temperature).
During a “generating” cycle of operation, the directions of fluid and heat circulation are reversed. A pump may increase the pressure of the working fluid and move the working fluid through the high temperature heat exchanger, which transfers heat from the high temperature reservoir to the working fluid. The heated working fluid may be expanded by a turbine, producing shaft work. The shaft work from the turbine may exceed the compressor work, and the excess work may be converted to electrical power by a generator and distributed to an electrical grid electrically coupled to the generator. Following the turbine expansion, the working fluid may be cooled by passing through the low temperature heat exchanger that is connected to a low temperature reservoir before entering the pump. Upon exit of the low temperature heat exchanger, the working fluid may be returned to approximately its initial state (i.e., pressure and temperature).
One metric used to determine performance of a PTES system is round trip efficiency (“RTE”). Round trip efficiency is defined as the amount of electrical energy that may be produced during the generating cycle divided by the amount of electrical energy that was consumed during the charging cycle. Due to thermodynamic irreversibilities, pressure losses, and finite temperature approaches through the heat exchangers, the RTE values of PTES systems, as described above, are generally calculated at around 55-56%. Therefore, there is a need for an improved PTES system and method that results in a higher RTE, and greater electricity generation.
A charging system in a PTES may include a fluid circuit configured to circulate a working fluid therethrough, the fluid circuit may include: a first heat exchanger through which the working fluid circulates in use; a second heat exchanger through which the working fluid circulates in use; a third heat exchanger through which the working fluid circulates in use; a compressor through which the working fluid circulates in use, wherein the working fluid enters the second heat exchanger at a first temperature and the working fluid exits the second heat exchanger at a second temperature, wherein the working fluid enters the third heat exchanger at the second temperature and the working fluid exits the third heat exchanger at a third temperature, wherein the working fluid enters the compressor at the third temperature and a first pressure, and the working fluid exits the compressor at a fourth temperature and a second pressure, and wherein the working fluid enter the first heat exchanger at the fourth temperature and the working fluid exits the first heat exchanger at a fifth temperature, the fifth temperature being lower than the fourth temperature; a turbine positioned between the first heat exchanger and the second heat exchanger, the turbine configured to expand the working fluid to the first temperature and the first pressure; a high temperature reservoir connected to the first heat exchanger and configured to transfer thermal energy to and from the working fluid; a low temperature reservoir connected to the second heat exchanger and configured to transfer thermal energy to and from the working fluid; and a waste heat reservoir connected to the third heat exchanger and configured to transfer thermal energy to and from the working fluid.
A generation system in a PTES system, may include: a fluid circuit for the circulation of a working fluid therethrough, the working fluid may include a first portion and a second portion comingled together, the fluid circuit may include: a pump to circulate the working fluid within the fluid circuit, wherein the working fluid enters the pump at a first pressure, and the working fluid exits the pump at a second pressure, a first heat exchanger through which the working fluid circulates in use; a second heat exchanger through which the working fluid circulates in use; a first turbine positioned between the first heat exchanger and the second heat exchanger and wherein the first turbine is for expanding the working fluid to a third pressure, the third pressure greater than the first pressure and less than the second pressure; a separation location where the working fluid is separated into the first portion and the second portion, a second turbine positioned between the first heat exchanger and the second heat exchanger and wherein the second turbine if for expanding the first portion of the working fluid to the first pressure; an auxiliary line through which the second portion of the working fluid circulates between the turbine and the first heat exchanger, a third heat exchanger through which the working fluid circulates in use positioned between an outlet of the turbine and an inlet of a heat rejection heat exchanger, and in fluid communication with the auxiliary line, wherein the third heat exchanger removes thermal energy from the second portion of the working fluid; the heat rejection heat exchanger positioned between an outlet of the third heat exchanger and an inlet of the first heat exchanger, and in fluid communication with the auxiliary line, wherein the heat rejection heat exchanger removes thermal energy from the second portion of the working fluid; a high temperature reservoir connected to the first heat exchanger for transferring thermal energy to and from the working fluid; a low temperature reservoir connected to the second heat exchanger for transferring thermal energy to and from the working fluid and a waste heat reservoir connected to the third heat exchanger for transferring thermal energy to and from the working fluid.
A method for charging a pumped thermal energy system, may include: circulating a working fluid through a fluid circuit, wherein the fluid circuit may include a first heat exchanger, a second heat exchanger, and a third heat exchanger connected thereto; circulating the working fluid through the second heat exchanger; providing thermal energy from the second heat exchanger to the working fluid; circulating the working fluid through a recuperator; circulating the working fluid through the third heat exchanger, wherein a waste heat reservoir storing waste heat transfers thermal energy to the working fluid to increase its temperature; circulating the working fluid through a compressor; and circulating the working fluid through the first heat exchanger to transfer thermal energy from the working fluid to a high temperature reservoir connected to the first heat exchanger.
The present disclosure is best understood from the following detailed description when read with the accompanying Figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure describes several exemplary embodiments for implementing different features, structures, or functions of the invention. Exemplary embodiments of components, arrangements, and configurations are described below to simplify the present disclosure; however, these exemplary embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference numerals and/or letters in the various exemplary embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various exemplary embodiments and/or configurations discussed in the various Figures. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the exemplary embodiments presented below may be combined in any combination of ways, i.e., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
Additionally, certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Additionally, in the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to.” All numerical values in this disclosure may be exact or approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope. Furthermore, as it is used in the claims or specification, the term “or” is intended to encompass both exclusive and inclusive cases, i.e., “A or B” is intended to be synonymous with “at least one of A and B,” unless otherwise expressly specified herein.
The following disclosure is directed to improved PTES systems that may result in an increased RTE in one or more embodiments. As will be discussed in more detail herein, during the charging cycle, the PTES system may include three heat exchangers, a first, second, and third heat exchanger. The three heat exchangers may introduce thermal energy to and receive thermal energy from a working fluid within a fluid circuit of the PTES system. A high temperature reservoir, a low temperature reservoir, and a waste heat reservoir may each be associated with a particular heat exchanger, may provide the thermal energy to the heat exchangers, and may receive the thermal energy from the heat exchangers. The waste heat reservoir may store heat from the generating cycle of the PTES system. The working fluid may be split into portions and moved through one or more heat exchangers to receive and provide thermal energy to and from the one or more heat exchangers and associated reservoirs. During the charging cycle, providing thermal energy from the waste heat reservoir to the working fluid, after the working fluid moves through the heat exchanger associated with the low temperature reservoir, may increase the RTE of the PTES system
Referring to
The high temperature reservoir 110, which may contain the first material that may be utilized by the first heat exchanger 112, may transfer thermal energy to and from the first working fluid 22. The first material may be or include thermal oil, molten salt, water, particulate such as sand or gravel, concrete, encapsulated phase-change materials, bulk phase-change materials, a combination therein, or any other material suitable for use in the high temperature reservoir 110. The high temperature reservoir 110 may include a plurality of vessels, for example, a first high temperature vessel 109 and a second high temperature vessel 111 that may be in fluid communication with one another. However, the high temperature reservoir 110 may be a single vessel or three or more vessels in other embodiments. The first material may circulate between the first high temperature vessel 109 and the second high temperature vessel 111. The first material may be at a first high temperature in the first high temperature vessel 109 and at a second high temperature in the second high temperature vessel 111. The first high temperature may be higher than the second high temperature and vice-versa. The first material may circulate through the first heat exchanger 112 to transfer thermal energy to and from the first working fluid 22 of the PTES system 10. The first heat exchanger 112 may be a conventional heat exchanger, a printed circuit heat exchanger, a moving bed heat exchanger, a fluidized bed heat exchanger, or a packed bed thermocline.
The low temperature reservoir 106, which may include the second material that may be utilized by the second heat exchanger 108, may transfer thermal energy to and from the first working fluid 22. The second material may be or include water, glycol, ice, seawater, ethanol, low-temperature thermal oil, hydrocarbon fluid, a combination thereof, or any other material suitable for use in a low temperature reservoir 106. The low temperature reservoir 106 may include a plurality of vessels, for example, a first low temperature vessel 105 and a second low temperature vessel 107 that may be in fluid communication with one another. However, the low temperature reservoir 106 may be a single vessel or three or more vessels in other embodiments. The second material may circulate between the first low temperature vessel 105 and the second low temperature vessel 107. The second material may be at a first low temperature in the first low temperature vessel 105 and at a second low temperature in the second low temperature vessel 107. The first low temperature may be higher than the second low temperature and vice-versa. The second material may circulate through the second heat exchanger 108 to transfer thermal energy to and from the first working fluid 22 of the PTES system 10.
Similarly, the waste heat reservoir 164, which may include the third material that may be utilized by the third heat exchanger 27, may transfer thermal energy to and from the first working fluid 22. The third material may be or include thermal oil, molten salt, water, particulate such as sand or gravel, concrete, encapsulated phase-change materials, bulk phase-change materials, a combination therein, or any other material suitable for use in the waste heat reservoir 164. The waste heat reservoir 164 may include a plurality of vessels, for example, a first waste heat vessel 162 and a second waste heat vessel 163 that may be in fluid communication with one another. However, the waste heat reservoir 164 may be a single vessel or three or more vessels in other embodiments. The third material may circulate between the first waste heat vessel 162 and the second waste heat vessel 163. The third material may be at a first waste heat temperature in the first waste heat vessel 162 and at a second waste heat temperature in the second waste heat vessel 163. The first waste heat temperature may be higher than the second waste heat temperature and vice-versa. The third material may circulate through the third heat exchanger 27 to transfer thermal energy to and from the first working fluid 22 of the PTES system 10. The third heat exchanger 27 may be a conventional heat exchanger, a printed circuit heat exchanger, a moving bed heat exchanger, a fluidized bed heat exchanger, or a packed bed thermocline.
Referring to
The turbine 28 and the compressor 24 may be in fluid communication with the first fluid circuit 23 and may be positioned in the first fluid circuit 23 between the first heat exchanger 112 and the second heat exchanger 108. Prior to entering the second heat exchanger 108, the first working fluid 22 may be at a first state 1, wherein the temperature and pressure of the first working fluid 22 may be low. The first fluid circuit 23 at the first state 1 may be at a first pressure 210 of the first fluid circuit 23 at an inlet of the second heat exchanger 108, and the first pressure 210 may be the lowest pressure of the first fluid circuit 23 over the course of one cycle through the first fluid circuit 23. In embodiments, the first pressure 210 may be about equal to from about 1.5 MPa to about 4.5 MPa.
In the second heat exchanger 108, thermal energy may pass from the second material of the low temperature reservoir 106 to the first working fluid 22. The first working fluid 22 may therefore exit the second heat exchanger 108 at a higher temperature and may flow into a recuperator 26 where additional thermal energy may be transferred to and from the first working fluid 22. After the first working fluid 22 is discharged from the second heat exchanger 108, the temperature of the first working fluid 22 may be increased to a second state 2. The temperature of the first working fluid 22 after passing through the recuperator 26 may result in a third state 3. The first working fluid 22 may enter the third heat exchanger 27 to further increase the temperature of the first working fluid 22.
The third heat exchanger 27 may receive thermal energy from any heat source. For example, thermal energy may be transferred from the third material of the waste heat reservoir 164 through the third heat exchanger 27 and to the first working fluid 22 to further increase the temperature of the first working fluid 22. In other embodiments, thermal energy from a separate industrial process, not shown, may be transferred continuously or on an as needed basis from the separate industrial process to the third heat exchanger 27 for further transfer to the first working fluid 22. The separate industrial process can be any process that generates heat. For example, the separate industrial process can be a power generation process producing waste heat, for example steam; a chemical process such as petrochemical cracking processes or other chemical synthesis processes producing waste heat; or any process producing waste heat.
After exiting the third heat exchanger 27, the first working fluid 22 may be in a fourth state 4. The first working fluid 22 may enter the compressor 24 to increase the temperature and pressure of the first working fluid 22 to a fifth state 5. After exiting the compressor 24, the first working fluid 22 may be at a temperature of between about 300 C and about 360 C and at a pressure of between about 15 MPa and about 25 MPa. With the energy in the first working fluid 22 at the fifth state 5, the first working fluid 22 may be used to increase the thermal energy or charge the high temperature reservoir 110 by passing the first working fluid 22 the first heat exchanger 112. As the first working fluid 22 passes through the first heat exchanger 112, the energy within the first working fluid 22 decreases to a sixth state 6.
In the first heat exchanger 112, thermal energy may pass from the first working fluid 22 into the first material of the high temperature reservoir 110 where the thermal energy may be stored. The first working fluid 22 may therefore exit the first heat exchanger 112 at a lower temperature and may flow into a recuperator 26 where additional thermal energy may be transferred to and from the first working fluid 22. The recuperator 26 may be positioned between the second heat exchanger 108 and the compressor 24, and in fluid communication therein. The turbine 28 may be positioned between the recuperator 26 and the second heat exchanger 108.
After circulating through the recuperator 26 and emerging in the state 7, the first working fluid 22 may be expanded in the turbine 28 to return the first working fluid 22 to the first state 1. The pressure of the first working fluid 22 upon exit from the turbine 28 may be substantially the same as the pressure at the inlet of the compressor 24. In embodiments, a positive displacement expander, an expansion valve, or a fluid orifice may be used in conjunction or in place of the turbine 28 to expand the first working fluid 22. During the charging cycle 200 of operation, the PTES system 10 may expend electrical energy to charge or provide thermal energy to the high temperature reservoir 110 via a substantially reversible pump cycle.
The waste heat reservoir 164 may store thermal energy. The thermal energy may be introduced to the third material of the waste heat reservoir 164 from any heat source. As described below, the thermal energy may be introduced to the third material of the waste heat reservoir 164 from waste heat created in the generating cycle of the PTES system 10.
Returning to
The high temperature reservoir 110, which may include the first material that is utilized by the first heat exchanger 112, may transfer thermal energy to and from the second working fluid 102 of the PTES system 10. Similarly, the low temperature reservoir 106, which may include the second material that is utilized by the second heat exchanger 108, may transfer thermal energy to and from the second working fluid 102 in the PTES system 10. The waste heat reservoir 164, which may include the third material that may be utilized by the third heat exchanger 27, may transfer thermal energy to and from the second working fluid 102 of the PTES system 10.
In the generating cycle 202 of operation, the PTES system 10 may transfer thermal energy transfer from the first heat exchanger 112 to generate electricity from the PTES system 10. The generating system 100 of the PTES system 10 may include a first pump 104 to circulate the second working fluid 102 through the second fluid circuit 103 of the PTES system 10. The first pump 104 may use electrical energy to perform work. The first pump 104 may be fluidly connected to the first heat exchanger 112, the second heat exchanger 108, and the third heat exchanger 27. The first pump 104 may facilitate the transfer of thermal energy between the high temperature reservoir 110 and the second working fluid 102 via the first heat exchanger 112, the first pump 104 may facilitate the transfer of thermal energy between the low temperature reservoir 106 and the second working fluid 102 via the second heat exchanger 108, and may facilitate the transfer of thermal energy between the waste heat reservoir 164 and the second working fluid 102 via the third heat exchanger 27.
As depicted, with reference to
After the second working fluid 102 is discharged from the first pump 104, the pressure and temperature of the second working fluid 102 may be increased. The second fluid circuit 103 have a second pressure 216 at an outlet of the first pump 104. The second pressure 216 may be the highest pressure of the second working fluid 102 over the course of one cycle through the second fluid circuit 103. In embodiments, the second pressure 216 may be about equal to from about 25 MPa to about 35 MPa. The temperature of the second working fluid 102 may be further increased as the second working fluid 102 circulates through the recuperator 114. The second working fluid 102 may enter an inlet 117 of the first heat exchanger 112 and thermal energy may be passed from the high temperature reservoir 110 to the second working fluid 102 to increase the temperature of the second working fluid 102. During one cycle of the generation cycle 200, the PTES system 10 may exhibit the greatest amount of enthalpy after exiting an outlet 113 of the first heat exchanger 112.
The generating system 100 may further include a first turbine 116 and a second turbine 118 that may each be fluidly connected to the second fluid circuit 103 and positioned between the first heat exchanger 112 and the recuperator 114. While
In embodiments, the first turbine 116 may be positioned between the first heat exchanger 112 and the second turbine 118. After the second working fluid 102 exits the first heat exchanger 112, the second working fluid 102 may be expanded in the first turbine 116, producing shaft work. The expansion of the second working fluid 102 may decrease the pressure of the working fluid to a third pressure 214. The third pressure 214 may be greater than the first pressure 212 and less than the second pressure 216. The third pressure 214 may be about equal to from about 6 MPa to about 7 MPa. After exiting the first turbine 116 and before entering the second turbine 118, the second working fluid 102 may be separated into a first portion 120 and a second portion 122 at a separation point 124 in the second fluid circuit 103. For clarity, it should be noted that the second working fluid 102 may include commingled portions of the first portion 120 and the second portion 122 as the generating cycle repeats.
The first portion 120 may continue to the second turbine 118 where the first portion 120 may be further expanded, producing additional shaft work. The second expansion of the first portion 120 may further decrease the pressure of the second working fluid 102. The first portion may be at the first pressure 212 and returned to substantially the same pressure as that of the eighth state 8. The low pressure in the eighth state 8 may be about equal to from about 1.5 MPa to about 4.5 MPa. The combined turbine work from the first turbine 116 and the second turbine 118 may exceed the pump work from the generating cycle 202 of operation, and the excess energy may be converted to electrical power by a generator (not shown) and fed into an electrical grid (not shown).
Following the exit from the second turbine 118, the first portion 120 of the second working fluid 102 may circulate through the recuperator 114 thereby transferring some of its thermal energy to the second working fluid 102 passing through the recuperator 114. The second heat exchanger 108 may be in fluid communication with and positioned in the second fluid circuit 103 between the recuperator 114 and the first pump 104. Thermal energy may be transferred from the first portion 120 to the low temperature reservoir 106, which may return the first portion 120 of the second working fluid 102 to substantially the eighth state 8 (both in temperature and pressure) before once again entering the first pump 104. It should be noted that the eighth state 8 may have the same temperature and pressure as the first state 1 and the changes in enthalpy and pressure for the generating system 100 may operate approximately within the enthalpy and pressure ranges of the charging system 20.
At a separation point 124 of the second working fluid 102, the second portion 122 of the second working fluid 102 may flow into an auxiliary line 121. The separation point 124 may be positioned between the first turbine 116 and the second turbine 118. The auxiliary line 121 may be positioned between the first turbine 116 and the inlet 117 of the first heat exchanger 112 and may be part of the second fluid circuit 103. The flow of the second portion 122 of the second working fluid 102 through the auxiliary line 121 may define an auxiliary flow path 204 of the PTES system. The auxiliary line 121 and the auxiliary flow path 204 may terminate at a combination point 130 that is positioned before an inlet 117 of the first heat exchanger 112. At the combination point 130, the second portion 122 may be combined with the first working fluid 102 such that the first portion 120 and the second portion 122 may be comingled.
In the multi-stage turbine, the first and second portions of the second working fluid 102 may be separated from the second working fluid 102 through the multi-stage turbine after a first expansion stage and prior to a subsequent expansion stage. The second working fluid 102 may enter an inlet of the multi-stage turbine at the second pressure 216 and the second working fluid 102 may be split into the first portion 120 and the second portion 122 within the multi-stage turbine. The first portion 120 of the second working fluid 102 may be expanded and exit a first outlet of the multi-stage turbine at the first pressure 212 and the second portion 122 of the second working fluid 102 may be expanded and exit a second outlet of the multi-stage turbine at the third pressure 214. Upon exit of the multi-stage turbine, the second portion 122 may flow into the auxiliary line 121 as described herein, and the first portion 120 may flow into the second heat exchanger 108.
The auxiliary line 121 may include the third heat exchanger 27, a heat rejection heat exchanger 126, and a second pump 128 that may be fluidly connected to the second fluid circuit 103 between the first turbine 116 and the first heat exchanger 112. The heat rejection heat exchanger 126 and the second pump 128 may be connected in series.
The second portion 122 of the second working fluid 102 may circulate through the third heat exchanger 27. The second portion 122 may transfer thermal energy to the third material of the waste heat reservoir 164 and may bring the second portion 122 to state 201. The thermal energy from the second portion 122 may be stored in the waste heat reservoir 164 for later use, for example, during the charging cycle 200. The second portion 122 may flow into the heat rejection heat exchanger 126. The second portion 122 may be cooled to near an ambient temperature in the heat rejection heat exchanger 126. The heat rejection heat exchanger 126 may reject the heat to the environment. ‘Near an ambient temperature’ may include a fluid temperature in the range of about zero to about 10 degrees Celsius (10 C), about zero to about 20 C, about zero to about 30 C, or a lower or higher temperature differential, of the temperature of the surrounding environment.
The heat transferred to the waste heat reservoir 164 and rejected by the heat rejection heat exchanger 126 may eliminate excess heat in the PTES system 10 that was created due to irreversible thermodynamic process during the charging cycle 200 and the generating cycle 202. The combination of the third pressure 214 and lower temperature may result in a high-density fluid state at an outlet of the heat rejection heat exchanger 126. Because the heat rejection process of the heat rejection heat exchanger 126 may be decoupled from the recuperator 114 via the auxiliary generating cycle 204, a greater amount of residual enthalpy may be recovered by the PTES system 10. After the second portion 122 exits the heat rejection heat exchanger 126, the second portion 122 may enter the second pump 128 where the pressure of the second portion 122 of the working fluid may be increased to the second pressure 216. Because the second portion 122 is in a high-density fluid state, the work required to raise the pressure of the second portion 122 may be significantly reduced. After the second portion 122 of the working fluid exits the second pump 128, the second portion is at a state that may be close to that of state of the second working fluid 102 after is leaves the recuperator 114. Therefore, the second portion 122 may be combined with the second working fluid 102 at the combination point 130.
As discussed earlier, one metric of overall cycle performance of PTES systems is round-trip efficiency (“RTE”). The RTE may be defined as the amount of electrical energy that can be produced during one cycle of a generating cycle of a PTES system divided by the amount of electrical energy that was consumed during one cycle of a charging cycle of a PTES system. In each of the PTES systems described above, the RTE may be improved in comparison to traditional PTES systems and a greater amount of electricity from the PTES systems may be recovered. While traditional PTES systems usually have an estimated RTE of 55-56%, the PTES system 10 with charging system 20, 400, and 600 disclosed herein may result in an estimated RTE of about 56% to about 61% or about 56% to about 66% or higher.
In 812, the method 800 may include circulating the working fluid through the second heat exchanger. The working fluid may be circulated by the pump, turbine, and/or compressor. The pump may circulate the working fluid without changing its pressure. The pump, turbine, and/or compressor may circulate the working fluid and may change its pressure and/or temperature.
In 814, the method 800 may include transferring thermal energy from a second or low temperature reservoir to the second heat exchanger to facilitate thermal energy transfer with the working fluid. Accordingly, as the working fluid moves through the second heat exchanger, the thermal energy of the working fluid may be increased.
In 816, the method 800 may include circulating the working fluid through a recuperator to increase the thermal energy of the working fluid.
In 818, the method 800 may include circulating the working fluid through the third heat exchanger. The thermal energy from a third or waste heat reservoir may be transferred to the working fluid by the third heat exchanger. As the working fluid moves through the third heat exchanger, the thermal energy of the working fluid may be increased.
In 820, the method 800 may include compressing the working fluid through a compressor. As the working fluid moves through the compressor, the temperature and pressure of the working fluid may be increased.
In 822, the method 800 may include circulating the working fluid through the first heat exchanger to transfer thermal energy from the working fluid to a first or high temperature reservoir storing the thermal energy within the high temperature reservoir. As the working fluid moves through the first heat exchanger, the first reservoir may be heated, and the thermal energy may be stored within the first reservoir for later use during a generation cycle. Accordingly, the thermal energy of the working fluid may be decreased.
In 824, the method 800 may include circulating the working fluid through the recuperator to transfer energy to and from the working fluid. Circulating the working fluid through the recuperator, the thermal energy in the working fluid may be further reduced.
In 826, the method 800 may include expanding the working fluid via a turbine fluidly connected to the fluid circuit. The turbine may be positioned between the first heat exchanger and the second heat exchanger of the fluid circuit. Moving the working fluid through the turbine may expand the working fluid to a lower temperature and pressure.
In 828, the method 800 may include separating the working fluid into a first portion and a second portion after moving the working fluid through the second heat exchanger. Transferring thermal energy to the first portion by circulating the first portion through the recuperator. Transferring thermal energy to the second portion by circulating the second portion through the third heat exchanger. The first portion and the second portion may be recombined at a point between the recuperator and the compressor. The working fluid may be separated into the first portion and the second portion after the working fluid is moved through the recuperator.
In 830 the method 800 may include circulating the second portion through a fourth heat exchanger to transfer thermal energy from the third reservoir to the second portion. The first portion and the second portion may be recombined at a point between the recuperator and the third heat exchanger. The recombined portions may be circulated through the third heat exchanger and then moved through the compressor.
The present disclosure further relates to any one or more of the following numbered embodiments:
1. A charging system in a pumped thermal energy storage (“PTES”) system, comprising: a fluid circuit for circulating a working fluid therethrough, the fluid circuit comprising: a first heat exchanger through which the working fluid circulates in use; a second heat exchange through which the working fluid circulates in use; a third heat exchanger through which the working fluid circulates in use; a compressor through which the working fluid circulates in use, wherein the working fluid enters the second heat exchanger at a first temperature and the working fluid exits the second heat exchanger at a second temperature, wherein the working fluid enters the third heat exchanger at the second temperature and the working fluid exits the third heat exchanger at a third temperature, wherein the working fluid enters the compressor at the third temperature and a first pressure, and the working fluid exits the compressor at a fourth temperature and a second pressure, and wherein the working fluid enter the first heat exchanger at the fourth temperature and the working fluid exits the first heat exchanger at a fifth temperature, the fifth temperature being lower than the fourth temperature; a turbine positioned between the first heat exchanger and the second heat exchanger, the turbine for expanding the working fluid to the first temperature and the first pressure; a high temperature reservoir connected to the first heat exchanger for transferring thermal energy to and from the working fluid; and a low temperature reservoir connected to the second heat exchanger for transferring thermal energy to and from the working fluid; and a heat source connected to the third heat exchanger for transferring thermal energy to and from the working fluid.
2. The charging system of embodiment 1, wherein the heat source comprises a waste heat from a PTES generating cycle stored in a waste heat reservoir.
3. The charging system of embodiments 1 or 2, wherein the heat source comprises thermal energy from a separate industrial process.
4. The charging system according to any embodiments 1 to 3, wherein the working fluid is split into a first portion and a second portion after exiting the second heat exchanger and prior to entering the compressor.
5. The charging system according to any embodiments 1 to 4, wherein the fluid circuit further comprises a recuperator positioned between the second heat exchanger and the third heat exchanger.
6. The charging system according to any embodiments 1 to 5, wherein the working fluid is split into a first portion and a second portion prior to entering the recuperator.
7. The charging system according to any embodiment 1 to 6, wherein the first portion is circulated through the recuperator, the second portion is circulated through the third heat exchanger and wherein the first and second portions are recombined at a location in the fluid circuit between the recuperator and the compressor.
8. The charging system according to any embodiments 1 to 7, wherein the fluid circuit further comprises a fourth heat exchanger wherein the first portion is circulated through the recuperator, the second portion is circulated through the fourth heat exchanger, and wherein the first and second portions are recombined at a location in the fluid circuit between the recuperator and the third heat exchanger.
9. The charging system according to any embodiments 1 to 8, wherein the fluid circuit further comprises a generating system in the PTES.
10. A generation system in a pumped thermal energy storage (“PTES”) system, comprising: a fluid circuit for the circulation of a working fluid therethrough, the working fluid comprising a first portion and a second portion comingled together, the fluid circuit comprising: a pump to circulate the working fluid within the fluid circuit, wherein the working fluid enters the pump at a first pressure, and the working fluid exits the pump at a second pressure, a first heat exchanger through which the working fluid circulates in use; a second heat exchanger through which the working fluid circulates in use; a first turbine positioned between the first heat exchanger and the second heat exchanger and wherein the first turbine is for expanding the working fluid to a third pressure, the third pressure greater than the first pressure and less than the second pressure; a separation location where the working fluid is separated into the first portion and the second portion, a second turbine positioned between the first heat exchanger and the second heat exchanger and wherein the second turbine if for expanding the first portion of the working fluid to the first pressure; an auxiliary line through which the second portion of the working fluid circulates between the turbine and the first heat exchanger, a third heat exchanger through which the working fluid circulates in use positioned between an outlet of the turbine and an inlet of a heat rejection heat exchanger, and in fluid communication with the auxiliary line, wherein the third heat exchanger removes thermal energy from the second portion of the working fluid; the heat rejection heat exchanger positioned between an outlet of the third heat exchanger and an inlet of the first heat exchanger, and in fluid communication with the auxiliary line, wherein the heat rejection heat exchanger removes thermal energy from the second portion of the working fluid; a high temperature reservoir connected to the first heat exchanger for transferring thermal energy to and from the working fluid; a low temperature reservoir connected to the second heat exchanger for transferring thermal energy to and from the working fluid; and a waste heat reservoir connected to the third heat exchanger for transferring thermal energy to and from the working fluid.
11. The generation system of embodiment 10, wherein the waste heat reservoir stores a waste heat from the PTES system
12. The generation system of embodiments 10 or 11, wherein the heat rejection heat exchanger decreases the temperature of the second portion of the working fluid to within zero to 10 C of an ambient temperature of a surrounding environment.
13. The generation system according to any embodiment 10 to 12, wherein the heat rejection heat exchanger releases the thermal energy of the second portion of the working fluid to the surrounding environment.
14. The generation system according to any embodiment 10 to 13, wherein the working fluid is split into the first portion and the second portion after exiting the first turbine.
15. The generation system according to any embodiments 10 to 14, wherein the auxiliary line includes a second pump positioned between the heat rejection heat exchanger and the first heat exchanger, the second pump for increasing the pressure of the second portion of the working fluid.
16. The generation system according to any embodiments 10 to 15, wherein the fluid circuit includes a recuperator positioned between the second turbine and the second heat exchanger.
17. The generation system according to any embodiments 10 to 16, wherein the third heat exchanger is in fluid communication with the heat rejection heat exchanger.
18. A method for charging a pumped thermal energy system, comprising: circulating a working fluid through a fluid circuit, wherein the fluid circuit comprises a first heat exchanger, a second heat exchanger, and a third heat exchanger connected thereto; circulating the working fluid through the second heat exchanger; providing thermal energy from the second heat exchanger to the working fluid; circulating the working fluid through a recuperator; circulating the working fluid through the third heat exchanger, wherein a waste heat reservoir storing waste heat transfers thermal energy to the working fluid to increase its temperature; circulating the working fluid through a compressor; and circulating the working fluid through the first heat exchanger to transfer thermal energy from the working fluid to a high temperature reservoir connected to the first heat exchanger.
19. The method of embodiment 18, further comprising circulating the working fluid through a recuperator that is positioned in the fluid circuit between the first heat exchanger and the second heat exchanger.
20. The method of embodiments 18 or 19, further comprising providing thermal energy from a low temperature reservoir to the second heat exchanger to facilitate thermal energy transfer with the working fluid.
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.
This application claims the benefit of U.S. Prov. Appl. No. 62/690,803, filed Jun. 27, 2018. This application is incorporated herein by reference in its entirety to the extent consistent with the present application.
Number | Name | Date | Kind |
---|---|---|---|
1433883 | Friderich | Oct 1922 | A |
1969526 | Rosch | Feb 1934 | A |
2575478 | Wilson | Nov 1951 | A |
2634375 | Guimbal | Apr 1953 | A |
2691280 | Albert | Oct 1954 | A |
3095274 | Crawford | Jun 1963 | A |
3105748 | Stahl | Oct 1963 | A |
3118277 | Wormser | Jan 1964 | A |
3237403 | Feher | Mar 1966 | A |
3277955 | Laszlo | Oct 1966 | A |
3310954 | Sijtstra et al. | Mar 1967 | A |
3401277 | Larson | Sep 1968 | A |
3620584 | Rosensweig | Nov 1971 | A |
3622767 | Koepcke | Nov 1971 | A |
3630022 | Jubb | Dec 1971 | A |
3736745 | Karig | Jun 1973 | A |
3772879 | Engdahl | Nov 1973 | A |
3791137 | Jubb | Feb 1974 | A |
3828610 | Swearingen | Aug 1974 | A |
3830062 | Morgan et al. | Aug 1974 | A |
3831381 | Swearingen | Aug 1974 | A |
3939328 | Davis | Feb 1976 | A |
3971211 | Wethe | Jul 1976 | A |
3977197 | Brantley, Jr. | Aug 1976 | A |
3982379 | Gilli | Sep 1976 | A |
3986359 | Manning et al. | Oct 1976 | A |
3991588 | Laskaris | Nov 1976 | A |
3998058 | Park | Dec 1976 | A |
4003786 | Cahn | Jan 1977 | A |
4005580 | Swearingen | Feb 1977 | A |
4009575 | Hartman, Jr. | Mar 1977 | A |
4015962 | Tompkins | Apr 1977 | A |
4029255 | Heiser | Jun 1977 | A |
4030312 | Wallin | Jun 1977 | A |
4037413 | Heller et al. | Jul 1977 | A |
4049407 | Bottum | Sep 1977 | A |
4070870 | Bahel | Jan 1978 | A |
4071897 | Groves, Jr. et al. | Jan 1978 | A |
4089744 | Cahn | May 1978 | A |
4099381 | Rappoport | Jul 1978 | A |
4110987 | Cahn et al. | Sep 1978 | A |
4119140 | Cates | Oct 1978 | A |
4150547 | Hobson | Apr 1979 | A |
4152901 | Munters | May 1979 | A |
4164848 | Gilli | Aug 1979 | A |
4164849 | Mangus | Aug 1979 | A |
4170435 | Swearingen | Oct 1979 | A |
4178762 | Binstock et al. | Dec 1979 | A |
4182960 | Reuyl | Jan 1980 | A |
4183220 | Shaw | Jan 1980 | A |
4198827 | Terry et al. | Apr 1980 | A |
4208882 | Lopes | Jun 1980 | A |
4221185 | Scholes | Sep 1980 | A |
4233085 | Roderick | Nov 1980 | A |
4236869 | Laurello | Dec 1980 | A |
4245476 | Shaw | Jan 1981 | A |
4248049 | Briley | Feb 1981 | A |
4257232 | Bell | Mar 1981 | A |
4285203 | Vakil | Aug 1981 | A |
4287430 | Guido | Sep 1981 | A |
4336692 | Ecker | Jun 1982 | A |
4347711 | Noe | Sep 1982 | A |
4347714 | Kinsell | Sep 1982 | A |
4364239 | Chappelle et al. | Dec 1982 | A |
4372125 | Dickenson | Feb 1983 | A |
4374467 | Briley | Feb 1983 | A |
4384568 | Palmatier | May 1983 | A |
4390082 | Swearingen | Jun 1983 | A |
4391101 | Labbe | Jul 1983 | A |
4420947 | Yoshino | Dec 1983 | A |
4428190 | Bronicki | Jan 1984 | A |
4433554 | Rojey | Feb 1984 | A |
4439687 | Wood | Mar 1984 | A |
4439994 | Briley | Apr 1984 | A |
4445180 | Davis | Apr 1984 | A |
4448033 | Briccetti | May 1984 | A |
4450363 | Russell | May 1984 | A |
4455836 | Binstock | Jun 1984 | A |
4467609 | Loomis | Aug 1984 | A |
4467621 | O'Brien | Aug 1984 | A |
4471622 | Kuwahara | Sep 1984 | A |
4475353 | Lazare | Oct 1984 | A |
4489562 | Snyder | Dec 1984 | A |
4489563 | Kalina | Dec 1984 | A |
4498289 | Osgerby | Feb 1985 | A |
4507936 | Yoshino | Apr 1985 | A |
4516403 | Tanaka | May 1985 | A |
4538960 | Iino et al. | Sep 1985 | A |
4549401 | Spliethoff | Oct 1985 | A |
4555905 | Endou | Dec 1985 | A |
4558228 | Larjola | Dec 1985 | A |
4573321 | Knaebel | Mar 1986 | A |
4578953 | Krieger | Apr 1986 | A |
4589255 | Martens | May 1986 | A |
4636578 | Feinberg | Jan 1987 | A |
4665975 | Johnson | May 1987 | A |
4674297 | Vobach | Jun 1987 | A |
4694189 | Haraguchi | Sep 1987 | A |
4697981 | Brown et al. | Oct 1987 | A |
4700543 | Krieger | Oct 1987 | A |
4730977 | Haaser | Mar 1988 | A |
4756162 | Dayan | Jul 1988 | A |
4765143 | Crawford | Aug 1988 | A |
4773212 | Griffin | Sep 1988 | A |
4798056 | Franklin | Jan 1989 | A |
4813242 | Wicks | Mar 1989 | A |
4821514 | Schmidt | Apr 1989 | A |
4867633 | Gravelle | Sep 1989 | A |
4884942 | Pennink | Dec 1989 | A |
4888954 | Silvestri, Jr. | Dec 1989 | A |
4892459 | Guelich | Jan 1990 | A |
4986071 | Voss | Jan 1991 | A |
4993483 | Harris | Feb 1991 | A |
5000003 | Wicks | Mar 1991 | A |
5050375 | Dickinson | Sep 1991 | A |
5080047 | Williams et al. | Jan 1992 | A |
5083425 | Hendriks et al. | Jan 1992 | A |
5098194 | Kuo | Mar 1992 | A |
5102295 | Pope | Apr 1992 | A |
5104284 | Hustak, Jr. | Apr 1992 | A |
5164020 | Wagner | Nov 1992 | A |
5176321 | Doherty | Jan 1993 | A |
5203159 | Koizumi et al. | Apr 1993 | A |
5228310 | Vandenberg | Jul 1993 | A |
5248239 | Andrews | Sep 1993 | A |
5291509 | Mizoguchi et al. | Mar 1994 | A |
5291960 | Brandenburg | Mar 1994 | A |
5320482 | Palmer et al. | Jun 1994 | A |
5321944 | Bronicki et al. | Jun 1994 | A |
5335510 | Rockenfeller | Aug 1994 | A |
5358378 | Holscher | Oct 1994 | A |
5360057 | Rockenfeller | Nov 1994 | A |
5384489 | Bellac | Jan 1995 | A |
5392606 | Labinov | Feb 1995 | A |
5440882 | Kalina | Aug 1995 | A |
5444972 | Moore | Aug 1995 | A |
5483797 | Rigal et al. | Jan 1996 | A |
5487822 | Demaray et al. | Jan 1996 | A |
5488828 | Brossard | Feb 1996 | A |
5490386 | Keller | Feb 1996 | A |
5503222 | Dunne | Apr 1996 | A |
5531073 | Bronicki | Jul 1996 | A |
5538564 | Kaschmitter | Jul 1996 | A |
5542203 | Luoma | Aug 1996 | A |
5544479 | Yan et al. | Aug 1996 | A |
5570578 | Saujet | Nov 1996 | A |
5588298 | Kalina | Dec 1996 | A |
5600967 | Meckler | Feb 1997 | A |
5609465 | Batson et al. | Mar 1997 | A |
5634340 | Grennan | Jun 1997 | A |
5647221 | Garris, Jr. | Jul 1997 | A |
5649426 | Kalina | Jul 1997 | A |
5676382 | Dahlheimer | Oct 1997 | A |
5680753 | Hollinger | Oct 1997 | A |
5685152 | Sterling | Nov 1997 | A |
5704206 | Kaneko et al. | Jan 1998 | A |
5738164 | Hildebrand | Apr 1998 | A |
5754613 | Hashiguchi | May 1998 | A |
5771700 | Cochran | Jun 1998 | A |
5782081 | Pak et al. | Jul 1998 | A |
5789822 | Calistrat | Aug 1998 | A |
5799490 | Bronicki et al. | Sep 1998 | A |
5813215 | Weisser | Sep 1998 | A |
5833876 | Schnur | Nov 1998 | A |
5862666 | Liu | Jan 1999 | A |
5873260 | Linhardt | Feb 1999 | A |
5874039 | Edelson | Feb 1999 | A |
5884470 | Frutschi | Mar 1999 | A |
5894836 | Wu | Apr 1999 | A |
5899067 | Hageman | May 1999 | A |
5901783 | Dobak, III et al. | May 1999 | A |
5903060 | Norton | May 1999 | A |
5918460 | Connell | Jul 1999 | A |
5941238 | Tracy | Aug 1999 | A |
5943869 | Cheng | Aug 1999 | A |
5946931 | Lomax | Sep 1999 | A |
5954342 | Mikhalev et al. | Sep 1999 | A |
5973050 | Johnson | Oct 1999 | A |
6037683 | Lulay | Mar 2000 | A |
6041604 | Nicodemus | Mar 2000 | A |
6058695 | Ranasinghe | May 2000 | A |
6058930 | Shingleton | May 2000 | A |
6059450 | McClure | May 2000 | A |
6062815 | Holt | May 2000 | A |
6065280 | Ranasinghe | May 2000 | A |
6066797 | Toyomura | May 2000 | A |
6070405 | Jerye | Jun 2000 | A |
6082110 | Rosenblatt | Jul 2000 | A |
6105368 | Hansen | Aug 2000 | A |
6112547 | Spauschus | Sep 2000 | A |
6129507 | Ganelin | Oct 2000 | A |
6158237 | Riffat | Dec 2000 | A |
6164655 | Bothien | Dec 2000 | A |
6202782 | Hatanaka | Mar 2001 | B1 |
6223846 | Schechter | May 2001 | B1 |
6233938 | Nicodemus | May 2001 | B1 |
6233955 | Egara | May 2001 | B1 |
6282900 | Bell | Sep 2001 | B1 |
6282917 | Mongan | Sep 2001 | B1 |
6295818 | Ansley | Oct 2001 | B1 |
6298653 | Lawlor | Oct 2001 | B1 |
6299690 | Mongeon | Oct 2001 | B1 |
6341781 | Matz | Jan 2002 | B1 |
6347520 | Ranasinghe et al. | Feb 2002 | B1 |
6374630 | Jones | Apr 2002 | B1 |
6393851 | Wightman | May 2002 | B1 |
6432320 | Bonsignore | Aug 2002 | B1 |
6434955 | Ng | Aug 2002 | B1 |
6442951 | Maeda | Sep 2002 | B1 |
6446425 | Lawlor | Sep 2002 | B1 |
6446465 | Dubar | Sep 2002 | B1 |
6463730 | Keller | Oct 2002 | B1 |
6484490 | Olsen | Nov 2002 | B1 |
6490812 | Bennett et al. | Dec 2002 | B1 |
6530224 | Conchieri | Mar 2003 | B1 |
6539720 | Rouse et al. | Apr 2003 | B2 |
6539728 | Korin | Apr 2003 | B2 |
6563855 | Nishi et al. | May 2003 | B1 |
6571548 | Bronicki | Jun 2003 | B1 |
6581384 | Benson | Jun 2003 | B1 |
6588499 | Fahlsing | Jul 2003 | B1 |
6598397 | Hanna | Jul 2003 | B2 |
6644062 | Hays | Nov 2003 | B1 |
6657849 | Andresakis | Dec 2003 | B1 |
6668554 | Brown | Dec 2003 | B1 |
6684625 | Kline | Feb 2004 | B2 |
6695974 | Withers | Feb 2004 | B2 |
6715294 | Anderson | Apr 2004 | B2 |
6734585 | Tornquist | May 2004 | B2 |
6735948 | Kalina | May 2004 | B1 |
6739142 | Korin | May 2004 | B2 |
6751959 | McClanahan et al. | Jun 2004 | B1 |
6769256 | Kalina | Aug 2004 | B1 |
6799892 | Leuthold | Oct 2004 | B2 |
6808179 | Bhattacharyya | Oct 2004 | B1 |
6810335 | Lysaght | Oct 2004 | B2 |
6817185 | Coney | Nov 2004 | B2 |
6857268 | Stinger | Feb 2005 | B2 |
6892522 | Brasz et al. | May 2005 | B2 |
6910334 | Kalina | Jun 2005 | B2 |
6918254 | Baker | Jul 2005 | B2 |
6921518 | Johnston | Jul 2005 | B2 |
6941757 | Kalina | Sep 2005 | B2 |
6960839 | Zimron | Nov 2005 | B2 |
6960840 | Willis | Nov 2005 | B2 |
6962054 | Linney | Nov 2005 | B1 |
6962056 | Brasz et al. | Nov 2005 | B2 |
6964168 | Pierson | Nov 2005 | B1 |
6968690 | Kalina | Nov 2005 | B2 |
6986251 | Radcliff | Jan 2006 | B2 |
7013205 | Hafner et al. | Mar 2006 | B1 |
7021060 | Kalina | Apr 2006 | B1 |
7022294 | Johnston | Apr 2006 | B2 |
7033553 | Johnston | Apr 2006 | B2 |
7036315 | Kang | May 2006 | B2 |
7041272 | Keefer | May 2006 | B2 |
7047744 | Robertson | May 2006 | B1 |
7048782 | Couch | May 2006 | B1 |
7062913 | Christensen | Jun 2006 | B2 |
7096665 | Stinger | Aug 2006 | B2 |
7096679 | Manole | Aug 2006 | B2 |
7124587 | Linney | Oct 2006 | B1 |
7174715 | Armitage | Feb 2007 | B2 |
7194863 | Ganev | Mar 2007 | B2 |
7197876 | Kalina | Apr 2007 | B1 |
7200996 | Cogswell | Apr 2007 | B2 |
7234314 | Wiggs | Jun 2007 | B1 |
7249588 | Russell | Jul 2007 | B2 |
7278267 | Yamada | Oct 2007 | B2 |
7279800 | Bassett | Oct 2007 | B2 |
7287381 | Pierson | Oct 2007 | B1 |
7305829 | Mirolli | Dec 2007 | B2 |
7313926 | Gurin | Jan 2008 | B2 |
7340894 | Miyahara et al. | Mar 2008 | B2 |
7340897 | Zimron | Mar 2008 | B2 |
7343746 | Pierson | Mar 2008 | B2 |
7406830 | Valentian | Aug 2008 | B2 |
7416137 | Hagen et al. | Aug 2008 | B2 |
7453242 | Ichinose | Nov 2008 | B2 |
7458217 | Kalina | Dec 2008 | B2 |
7458218 | Kalina | Dec 2008 | B2 |
7464551 | Althaus et al. | Dec 2008 | B2 |
7469542 | Kalina | Dec 2008 | B2 |
7516619 | Pelletier | Apr 2009 | B2 |
7600394 | Kalina | Oct 2009 | B2 |
7621133 | Tomlinson | Nov 2009 | B2 |
7654354 | Otterstrom | Feb 2010 | B1 |
7665291 | Anand | Feb 2010 | B2 |
7665304 | Sundel | Feb 2010 | B2 |
7673681 | Vinegar et al. | Mar 2010 | B2 |
7685820 | Litwin et al. | Mar 2010 | B2 |
7685821 | Kalina | Mar 2010 | B2 |
7730713 | Nakano | Jun 2010 | B2 |
7735335 | Uno | Jun 2010 | B2 |
7770376 | Brostmeyer | Aug 2010 | B1 |
7775758 | Legare | Aug 2010 | B2 |
7827791 | Pierson | Nov 2010 | B2 |
7838470 | Shaw | Nov 2010 | B2 |
7841179 | Kalina | Nov 2010 | B2 |
7841306 | Myers | Nov 2010 | B2 |
7854587 | Ito | Dec 2010 | B2 |
7866157 | Ernst | Jan 2011 | B2 |
7900450 | Gurin | Mar 2011 | B2 |
7950230 | Nishikawa | May 2011 | B2 |
7950243 | Gurin | May 2011 | B2 |
7971424 | Masada | Jul 2011 | B2 |
7972529 | Machado | Jul 2011 | B2 |
7997076 | Ernst | Aug 2011 | B2 |
8015790 | Zhang et al. | Sep 2011 | B2 |
8096128 | Held et al. | Jan 2012 | B2 |
8099198 | Gurin | Jan 2012 | B2 |
8099972 | Dupraz | Jan 2012 | B2 |
8146360 | Myers | Apr 2012 | B2 |
8235647 | Pisseloup et al. | Aug 2012 | B2 |
8281593 | Held | Oct 2012 | B2 |
8289710 | Spearing et al. | Oct 2012 | B2 |
8297065 | Vaisman et al. | Oct 2012 | B2 |
8375719 | Rhodes et al. | Feb 2013 | B2 |
8387248 | Rolt et al. | Mar 2013 | B2 |
8419936 | Berger et al. | Apr 2013 | B2 |
8544274 | Ernst | Oct 2013 | B2 |
8584463 | Hemrle et al. | Nov 2013 | B2 |
8613195 | Held et al. | Dec 2013 | B2 |
8661820 | Mak | Mar 2014 | B2 |
8813497 | Hart et al. | Aug 2014 | B2 |
8820083 | Davidson et al. | Sep 2014 | B2 |
8869531 | Held | Oct 2014 | B2 |
8973398 | Coyle | Mar 2015 | B2 |
9038390 | Kreuger | May 2015 | B1 |
9180421 | Kwang et al. | Nov 2015 | B2 |
9523312 | Allam et al. | Dec 2016 | B2 |
9638065 | Vermeersch et al. | May 2017 | B2 |
9810451 | O'Donnell et al. | Nov 2017 | B2 |
9845667 | Mokheimer et al. | Dec 2017 | B2 |
9874112 | Giegel | Jan 2018 | B2 |
9932861 | Preuss et al. | Apr 2018 | B2 |
10077683 | Close | Sep 2018 | B2 |
20010015061 | Viteri et al. | Aug 2001 | A1 |
20010020444 | Johnston | Sep 2001 | A1 |
20010027642 | Tsuji | Oct 2001 | A1 |
20010030952 | Roy | Oct 2001 | A1 |
20020029558 | Tamaro | Mar 2002 | A1 |
20020053196 | Lerner et al. | May 2002 | A1 |
20020066270 | Rouse et al. | Jun 2002 | A1 |
20020078696 | Korin | Jun 2002 | A1 |
20020078697 | Lifson | Jun 2002 | A1 |
20020082747 | Kramer | Jun 2002 | A1 |
20020148225 | Lewis | Oct 2002 | A1 |
20030000213 | Christensen | Jan 2003 | A1 |
20030061823 | Alden | Apr 2003 | A1 |
20030154718 | Nayar | Aug 2003 | A1 |
20030182946 | Sami | Oct 2003 | A1 |
20030213246 | Coll et al. | Nov 2003 | A1 |
20030221438 | Rane et al. | Dec 2003 | A1 |
20040011038 | Stinger | Jan 2004 | A1 |
20040011039 | Stinger et al. | Jan 2004 | A1 |
20040020185 | Brouillette et al. | Feb 2004 | A1 |
20040020206 | Sullivan et al. | Feb 2004 | A1 |
20040021182 | Green et al. | Feb 2004 | A1 |
20040035117 | Rosen | Feb 2004 | A1 |
20040083731 | Lasker | May 2004 | A1 |
20040083732 | Hanna et al. | May 2004 | A1 |
20040088992 | Brasz et al. | May 2004 | A1 |
20040097388 | Brask et al. | May 2004 | A1 |
20040105980 | Sudarshan et al. | Jun 2004 | A1 |
20040107700 | McClanahan et al. | Jun 2004 | A1 |
20040159110 | Janssen | Aug 2004 | A1 |
20040211182 | Gould | Oct 2004 | A1 |
20040247211 | Hamke | Dec 2004 | A1 |
20050022963 | Garrabrant et al. | Feb 2005 | A1 |
20050056001 | Frutschi | Mar 2005 | A1 |
20050072182 | Taniguchi et al. | Apr 2005 | A1 |
20050096676 | Gifford, III et al. | May 2005 | A1 |
20050109387 | Marshall | May 2005 | A1 |
20050118025 | Hiegemann et al. | Jun 2005 | A1 |
20050137777 | Kolavennu et al. | Jun 2005 | A1 |
20050162018 | Realmuto et al. | Jul 2005 | A1 |
20050167169 | Gering et al. | Aug 2005 | A1 |
20050183421 | Vaynberg et al. | Aug 2005 | A1 |
20050196676 | Singh et al. | Sep 2005 | A1 |
20050198959 | Schubert | Sep 2005 | A1 |
20050227187 | Schilling | Oct 2005 | A1 |
20050252235 | Critoph et al. | Nov 2005 | A1 |
20050257812 | Wright et al. | Nov 2005 | A1 |
20050262848 | Joshi et al. | Dec 2005 | A1 |
20050276685 | Wiggins et al. | Dec 2005 | A1 |
20060010868 | Smith | Jan 2006 | A1 |
20060060333 | Chordia et al. | Mar 2006 | A1 |
20060066113 | Ebrahim et al. | Mar 2006 | A1 |
20060080960 | Rajendran et al. | Apr 2006 | A1 |
20060112693 | Sundel | Jun 2006 | A1 |
20060112702 | Martin et al. | Jun 2006 | A1 |
20060182680 | Keefer et al. | Aug 2006 | A1 |
20060211871 | Dai et al. | Sep 2006 | A1 |
20060213218 | Uno et al. | Sep 2006 | A1 |
20060222523 | Valentian et al. | Oct 2006 | A1 |
20060225421 | Yamanaka et al. | Oct 2006 | A1 |
20060225459 | Meyer | Oct 2006 | A1 |
20060249020 | Tonkovich et al. | Nov 2006 | A1 |
20060254281 | Badeer et al. | Nov 2006 | A1 |
20070001766 | Ripley et al. | Jan 2007 | A1 |
20070007771 | Biddle et al. | Jan 2007 | A1 |
20070017192 | Bednarek et al. | Jan 2007 | A1 |
20070019708 | Shiflett et al. | Jan 2007 | A1 |
20070027038 | Kamimura et al. | Feb 2007 | A1 |
20070056290 | Dahm | Mar 2007 | A1 |
20070089449 | Gurin | Apr 2007 | A1 |
20070108200 | McKinzie, II | May 2007 | A1 |
20070119175 | Ruggieri et al. | May 2007 | A1 |
20070130952 | Copen | Jun 2007 | A1 |
20070151244 | Gurin | Jul 2007 | A1 |
20070161095 | Gurin | Jul 2007 | A1 |
20070163261 | Strathman | Jul 2007 | A1 |
20070195152 | Kawai et al. | Aug 2007 | A1 |
20070204620 | Pronske et al. | Sep 2007 | A1 |
20070227472 | Takeuchi et al. | Oct 2007 | A1 |
20070234722 | Kalina | Oct 2007 | A1 |
20070245733 | Pierson et al. | Oct 2007 | A1 |
20070246206 | Gong et al. | Oct 2007 | A1 |
20080000225 | Kalina | Jan 2008 | A1 |
20080006040 | Peterson et al. | Jan 2008 | A1 |
20080010967 | Griffin et al. | Jan 2008 | A1 |
20080023666 | Gurin | Jan 2008 | A1 |
20080053095 | Kalina | Mar 2008 | A1 |
20080066470 | MacKnight | Mar 2008 | A1 |
20080134681 | Nayef et al. | Jun 2008 | A1 |
20080135253 | Vinegar et al. | Jun 2008 | A1 |
20080163618 | Paul | Jul 2008 | A1 |
20080163625 | O'Brien | Jul 2008 | A1 |
20080173444 | Stone et al. | Jul 2008 | A1 |
20080173450 | Goldberg et al. | Jul 2008 | A1 |
20080174115 | Lambirth | Jul 2008 | A1 |
20080211230 | Gurin | Sep 2008 | A1 |
20080217321 | Vinegar et al. | Sep 2008 | A1 |
20080250789 | Myers et al. | Oct 2008 | A1 |
20080252078 | Myers | Oct 2008 | A1 |
20080282702 | Collins | Nov 2008 | A1 |
20080282715 | Aue et al. | Nov 2008 | A1 |
20090021251 | Simon | Jan 2009 | A1 |
20090071156 | Nishikawa et al. | Mar 2009 | A1 |
20090085709 | Meinke | Apr 2009 | A1 |
20090107144 | Moghtaderi et al. | Apr 2009 | A1 |
20090139234 | Gurin | Jun 2009 | A1 |
20090139781 | Straubel | Jun 2009 | A1 |
20090173337 | Tamaura et al. | Jul 2009 | A1 |
20090173486 | Copeland | Jul 2009 | A1 |
20090179429 | Ellis et al. | Jul 2009 | A1 |
20090180903 | Martin et al. | Jul 2009 | A1 |
20090205892 | Jensen et al. | Aug 2009 | A1 |
20090211251 | Peterson et al. | Aug 2009 | A1 |
20090211253 | Radcliff et al. | Aug 2009 | A1 |
20090257902 | Ernens | Oct 2009 | A1 |
20090266075 | Westmeier et al. | Oct 2009 | A1 |
20090293503 | Vandor | Dec 2009 | A1 |
20090320477 | Juchymenko | Dec 2009 | A1 |
20100024421 | Litwin | Feb 2010 | A1 |
20100077792 | Gurin | Apr 2010 | A1 |
20100083662 | Kalina | Apr 2010 | A1 |
20100102008 | Hedberg | Apr 2010 | A1 |
20100122533 | Kalina | May 2010 | A1 |
20100143094 | Pisseloup et al. | Jun 2010 | A1 |
20100146949 | Stobart et al. | Jun 2010 | A1 |
20100146973 | Kalina | Jun 2010 | A1 |
20100156112 | Held et al. | Jun 2010 | A1 |
20100162721 | Welch et al. | Jul 2010 | A1 |
20100205962 | Kalina | Aug 2010 | A1 |
20100212316 | Waterstripe et al. | Aug 2010 | A1 |
20100218513 | Vaisman et al. | Sep 2010 | A1 |
20100218930 | Proeschel | Sep 2010 | A1 |
20100263380 | Biederman et al. | Oct 2010 | A1 |
20100287920 | Duparchy | Nov 2010 | A1 |
20100287934 | Glynn et al. | Nov 2010 | A1 |
20100300093 | Doty | Dec 2010 | A1 |
20100319346 | Ast et al. | Dec 2010 | A1 |
20100326076 | Ast et al. | Dec 2010 | A1 |
20110027064 | Pal et al. | Feb 2011 | A1 |
20110030404 | Gurin | Feb 2011 | A1 |
20110048012 | Ernst et al. | Mar 2011 | A1 |
20110051880 | Al-Mayahi et al. | Mar 2011 | A1 |
20110061384 | Held et al. | Mar 2011 | A1 |
20110061387 | Held et al. | Mar 2011 | A1 |
20110088399 | Briesch et al. | Apr 2011 | A1 |
20110100002 | Muir et al. | May 2011 | A1 |
20110100611 | Ohler et al. | May 2011 | A1 |
20110113781 | Frey et al. | May 2011 | A1 |
20110164957 | Rivas et al. | Jul 2011 | A1 |
20110179799 | Allam et al. | Jul 2011 | A1 |
20110185729 | Held | Aug 2011 | A1 |
20110192163 | Kasuya | Aug 2011 | A1 |
20110203278 | Kopecek et al. | Aug 2011 | A1 |
20110214424 | Wood | Sep 2011 | A1 |
20110219760 | McBride et al. | Sep 2011 | A1 |
20110259010 | Bronicki et al. | Oct 2011 | A1 |
20110270451 | Sakaguchi et al. | Nov 2011 | A1 |
20110286724 | Goodman | Nov 2011 | A1 |
20110288688 | Lehan | Nov 2011 | A1 |
20110299972 | Morris | Dec 2011 | A1 |
20110308253 | Ritter | Dec 2011 | A1 |
20120042650 | Ernst et al. | Feb 2012 | A1 |
20120047892 | Held et al. | Mar 2012 | A1 |
20120055153 | Murata et al. | Mar 2012 | A1 |
20120067046 | Drenik et al. | Mar 2012 | A1 |
20120067055 | Held | Mar 2012 | A1 |
20120080161 | Kelly | Apr 2012 | A1 |
20120111003 | Kasuya et al. | May 2012 | A1 |
20120125002 | Lehar et al. | May 2012 | A1 |
20120128463 | Held | May 2012 | A1 |
20120131918 | Held | May 2012 | A1 |
20120131919 | Held | May 2012 | A1 |
20120131920 | Held | May 2012 | A1 |
20120131921 | Held | May 2012 | A1 |
20120159922 | Gurin | Jun 2012 | A1 |
20120159956 | Gurin | Jun 2012 | A1 |
20120167873 | Venetos et al. | Jul 2012 | A1 |
20120174558 | Gurin | Jul 2012 | A1 |
20120186219 | Gurin | Jul 2012 | A1 |
20120240616 | Ritter et al. | Sep 2012 | A1 |
20120247134 | Gurin | Oct 2012 | A1 |
20120247455 | Gurin et al. | Oct 2012 | A1 |
20120255304 | Li et al. | Oct 2012 | A1 |
20120261090 | Durmaz et al. | Oct 2012 | A1 |
20120261104 | Kelly et al. | Oct 2012 | A1 |
20120306206 | Agrawal et al. | Dec 2012 | A1 |
20120319410 | Ambrosek et al. | Dec 2012 | A1 |
20130019597 | Kalina | Jan 2013 | A1 |
20130033037 | Held et al. | Feb 2013 | A1 |
20130036736 | Hart et al. | Feb 2013 | A1 |
20130074497 | Mori et al. | Mar 2013 | A1 |
20130087301 | Hemrle et al. | Apr 2013 | A1 |
20130113221 | Held | May 2013 | A1 |
20130134720 | Fukasaku et al. | May 2013 | A1 |
20130145759 | Sonwane et al. | Jun 2013 | A1 |
20140041387 | Benson | Feb 2014 | A1 |
20140090405 | Held et al. | Apr 2014 | A1 |
20140102098 | Bowan et al. | Apr 2014 | A1 |
20140102103 | Yamamoto et al. | Apr 2014 | A1 |
20140150992 | Koontz et al. | Jun 2014 | A1 |
20140208750 | Vermeersch | Jul 2014 | A1 |
20140208751 | Bowan | Jul 2014 | A1 |
20140216034 | Numata et al. | Aug 2014 | A1 |
20140223907 | Fujioka et al. | Aug 2014 | A1 |
20140224447 | Reznik et al. | Aug 2014 | A1 |
20140298813 | Brunhuber | Oct 2014 | A1 |
20150069758 | Davidson et al. | Mar 2015 | A1 |
20150369086 | Johnson et al. | Dec 2015 | A1 |
20160017759 | Gayawal et al. | Jan 2016 | A1 |
20160040557 | Vermeersch et al. | Feb 2016 | A1 |
20160102608 | Lynn | Apr 2016 | A1 |
20160237904 | Scarboro et al. | Aug 2016 | A1 |
20170058202 | Noureldin et al. | Mar 2017 | A1 |
20170081980 | Davidson | Mar 2017 | A1 |
20170350658 | Kerth et al. | Dec 2017 | A1 |
20170362963 | Hostler et al. | Dec 2017 | A1 |
20180187628 | Apte | Jul 2018 | A1 |
20180340712 | Peter et al. | Nov 2018 | A1 |
20190170026 | Matsukuma et al. | Jun 2019 | A1 |
20200003081 | Held | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
2794150 | Nov 2011 | CA |
1165238 | Nov 1997 | CN |
1432102 | Jul 2003 | CN |
101614139 | Dec 2009 | CN |
202055876 | Nov 2011 | CN |
202544943 | Nov 2012 | CN |
202718721 | Feb 2013 | CN |
2632777 | Feb 1977 | DE |
19906087 | Aug 2000 | DE |
10052993 | May 2002 | DE |
102007020086 | Apr 2007 | DE |
10 2011005722 | Mar 2011 | DE |
0003980 | Feb 1979 | EP |
0286565 | Apr 1988 | EP |
1484489 | Aug 2004 | EP |
1577549 | Sep 2005 | EP |
1977174 | Oct 2008 | EP |
1998013 | Dec 2008 | EP |
2157317 | Feb 2010 | EP |
2241737 | Oct 2010 | EP |
2312129 | Apr 2011 | EP |
2357324 | Sep 2011 | EP |
2390473 | Nov 2011 | EP |
2419621 | Feb 2012 | EP |
2446122 | May 2012 | EP |
2478201 | Jul 2012 | EP |
2500530 | Sep 2012 | EP |
2550436 | Jan 2013 | EP |
2698506 | Feb 2014 | EP |
856985 | Dec 1960 | GB |
2010974 | Jul 1979 | GB |
2075608 | Nov 1981 | GB |
58-193051 | Nov 1983 | JP |
60-040707 | Mar 1985 | JP |
61-152914 | Jul 1986 | JP |
01-240705 | Sep 1989 | JP |
H03182638 | Aug 1991 | JP |
05-321612 | Dec 1993 | JP |
06-331225 | Nov 1994 | JP |
08-028805 | Feb 1996 | JP |
09-100702 | Apr 1997 | JP |
2641581 | May 1997 | JP |
09-209716 | Aug 1997 | JP |
2858750 | Dec 1998 | JP |
H11-270352 | May 1999 | JP |
2000-257407 | Sep 2000 | JP |
3119718 | Dec 2000 | JP |
2001-193419 | Jul 2001 | JP |
2002-097965 | Apr 2002 | JP |
2003-529715 | Oct 2003 | JP |
2004-239250 | Aug 2004 | JP |
2004-332626 | Nov 2004 | JP |
2005-030727 | Feb 2005 | JP |
2005-533972 | Nov 2005 | JP |
2006-037760 | Feb 2006 | JP |
2006-177266 | Jul 2006 | JP |
2007-198200 | Sep 2007 | JP |
4343738 | Oct 2009 | JP |
2011-017268 | Jan 2011 | JP |
100191080 | Jun 1999 | KR |
10 2007 0086244 | Aug 2007 | KR |
10-0766101 | Oct 2007 | KR |
10-0844634 | Jul 2008 | KR |
10-20100067927 | Jun 2010 | KR |
1020110018769 | Feb 2011 | KR |
1069914 | Sep 2011 | KR |
1103549 | Jan 2012 | KR |
10-2012-0058582 | Jun 2012 | KR |
2012-0068670 | Jun 2012 | KR |
2012-0128753 | Nov 2012 | KR |
2012-0128755 | Nov 2012 | KR |
WO 199105145 | Apr 1991 | WO |
WO 9212366 | Jul 1992 | WO |
WO 1996009500 | Mar 1996 | WO |
WO 00-71944 | Nov 2000 | WO |
WO 2001044658 | Jun 2001 | WO |
WO 02090721 | Nov 2002 | WO |
WO 02090747 | Nov 2002 | WO |
WO 2006060253 | Jun 2006 | WO |
WO 2006137957 | Dec 2006 | WO |
WO 2007056241 | May 2007 | WO |
WO 2007079245 | Jul 2007 | WO |
WO 2007082103 | Jul 2007 | WO |
WO 2007112090 | Oct 2007 | WO |
WO 2008014774 | Feb 2008 | WO |
WO 2008039725 | Apr 2008 | WO |
WO 2008101711 | Aug 2008 | WO |
WO 2009045196 | Apr 2009 | WO |
WO 2009058992 | May 2009 | WO |
WO 2010006942 | Feb 2010 | WO |
WO 2010017981 | Feb 2010 | WO |
WO 2010017981 | Feb 2010 | WO |
WO 2010074173 | Jul 2010 | WO |
WO 2010083198 | Jul 2010 | WO |
WO 2010121255 | Oct 2010 | WO |
WO 2010126980 | Nov 2010 | WO |
WO 2010151560 | Dec 2010 | WO |
WO 2011017450 | Feb 2011 | WO |
WO 2011017476 | Feb 2011 | WO |
WO 2011017599 | Feb 2011 | WO |
WO 2011034984 | Mar 2011 | WO |
WO 2011094294 | Aug 2011 | WO |
WO 2011119650 | Sep 2011 | WO |
WO 2012036678 | Mar 2012 | WO |
WO 2012074905 | Jun 2012 | WO |
WO 2012074907 | Jun 2012 | WO |
WO 2012074911 | Jun 2012 | WO |
WO 2012074940 | Jun 2012 | WO |
WO 2013055391 | Apr 2013 | WO |
WO 2013059687 | Apr 2013 | WO |
WO 2013059695 | Apr 2013 | WO |
WO 2013070249 | May 2013 | WO |
WO 2013074907 | May 2013 | WO |
WO 2014164620 | Mar 2014 | WO |
WO 2014114531 | Jul 2014 | WO |
WO 2014138035 | Sep 2014 | WO |
WO 2014159520 | Oct 2014 | WO |
WO 2016150455 | Sep 2016 | WO |
WO 2018217969 | Nov 2018 | WO |
WO 202090721 | Jul 2020 | WO |
Entry |
---|
Alpy, N., et al., “French Atomic Energy Commission views as regards SCO2 Cycle Development priorities and related R&D approach,” Presentation, Symposium on SC02 Power Cycles, Apr. 29-30, 2009, Troy, NY, 20 pages. |
Angeling, G., and Invernizzi, C.M., “Carbon Dioxide Power Cycles using Liquid Natural Gas as Heat Sink”, Applied Thermal Engineering Mar. 3, 2009, 43 pages. |
Bryant, John C., Saari, Henry, and Zanganeh, Kourosh, “An Analysis and Comparison of the Simple and Recompression Supercritical CO2 Cycles” Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 8 pages. |
Chapman, Daniel J., Arias, Diego A., “An Assessment of the Supercritical Carbon Dioxide Cycle for Use in a Solar Parabolic Trough Power Plant”, Presentation, Abengoa Solar, Apr. 29-30, 2009, Troy, NY, 20 pages. |
Chapman, Daniel J., Arias, Diego A., “An Assessment of the Supercritical Carbon Dioxide Cycle for Use in a Solar Parabolic Trough Power Plant”, Paper, Abengoa Solar, Apr. 29-30, 2009, Troy, NY, 5 pages. |
Chen, Yang, Lundqvist, P., Johansson, A., Platell, P., “A Comparative Study of the Carbon Dioxide Transcritical Power Cycle Compared with an Organic Rankine Cycle with R123 as Working Fluid in Waste Heat Recovery”, Science Direct, Applied Thermal Engineering, Jun. 12, 2006, 6 pages. |
Chen, Yang, “Thermodynamic Cycles Using Carbon Dioxide as Working Fluid”, Doctoral Thesis, School of Industrial Engineering and Management, Stockholm, Oct. 2011, 150 pages., (3 parts). |
Chinese Search Report for Application No. 201080035382.1, 2 pages. |
Chinese Search Report for Application No. 201080050795.7, 2 pages. |
Chordia, Lalit, “Optimizing Equipment for Supercritical Applications”, Thar Energy LLC, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 7 pages. |
Colegrove, et al., “Structured Steam Turbines for the Combined-Cycle Market”, GE Power Systems, GER-4201, 05/01, 18 pages. |
Combs, Osie V., “An Investigation of the Supercritical CO2 Cycle (Feher cycle) for Shipboard Application”, Massachusetts Institute of Technology, May 1977, 290 pages. |
Di Bella, Francis A., “Gas Turbine Engine Exhaust Waste Heat Recovery Navy Shipboard Module Development”, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 8 pages. |
DOSTAL, V., et al., A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, March 10, 2004, 326 pages., (7 parts). |
Dostal, Vaclav and Kulhanek, Martin, “Research on the Supercritical Carbon Dioxide Cycles in the Czech Republic”, Czech Technical University in Prague, Symposium on SC02 Power Cycles, Apr. 29-30, 2009, Troy, NY, 8 pages. |
Dostal, Vaclav, and Dostal, Jan, “Supercritical CO2 Regeneration Bypass Cycle—Comparison to Traditional Layouts”, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 5 pages. |
Ebenezer, Salako A.; “Removal of Carbon Dioxide from Natural Gas for LNG Production”, Institute of Petroleum Technology Norwegian University of Science and Technology, Dec. 2005, Trondheim, Norway, 74 pages. |
Eisemann, Kevin, and Fuller, Robert L., “Supercritical CO2 Brayton Cycle Design and System Start-up Options”, Barber Nichols, Inc., Paper, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 7 pages. |
Eisemann, Kevin, and Fuller, Robert L., “Supercritical CO2 Brayton Cycle Design and System Start-up Options”, Presentation, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 11 pages. |
Feher, E.G., et al., “Investigation of Supercritical (Feher) Cycle”, Astropower Laboratory, Missile & Space Systems Division, Oct. 1968, 152 pages. |
Fuller, Robert L., and Eisemann, Kevin, “Centrifugal Compressor Off-Design Performance for Super-Critical CO2”, Barber Nichols, Inc. Presentation, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 20 pages. |
Fuller, Robert L., and Eisemann, Kevin, “Centrifugal Compressor Off-Design Performance for Super-Critical CO2”, Paper, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 12 pages. |
Gokhstein, D.P. and Verkhivker, G.P. “Use of Carbon Dioxide as a Heat Carrier and Working Substance in Atomic Power Stations”, Soviet Atomic Energy, Apr. 1969, vol. 26, Issue 4, pp. 430-432. |
Gokhstein, D.P.; Taubman, E.I.; Konyaeva, G.P., “Thermodynamic Cycles of Carbon Dioxide Plant with an Additional Turbine After the Regenerator”, Energy Citations Database, Mar. 1973, 1 Page, Abstract only. |
Gowrishankar, K., “Adaptive Fuzzy Controller to Control Turbine Speed”, Rajiv Gandhi College Of Engg. & tech., Puducherry, India, 7 pages. |
Hjartarson, Heimir; “Waste Heat Utilization at Elkem Ferrosilicon Plant in Iceland”, University of Iceland, 2009, 102 pages. |
Hjartarson, et al.; “Waste Heat Utilization from a Submerged ARC Furnace Producing Ferrosilicon”, The Twelfth International Ferroalloys Congress Sustainable Future;, Helsinki, Finland ,Jun. 6-9, 2010, 10 pages. |
Hejzlar, P. et al., “Assessment of Gas Cooled Gas Reactor with Indirect Supercritical CO2 Cycle” Massachusetts Institute of Technology, Jan. 2006, 10 pages. |
Hoffman, John R., and Feher, E.G., “150 kwe Supercritical Closed Cycle System”, Transactions of the ASME, Jan. 1971, pp. 70-80. |
Jeong, Woo Seok, et al., “Performance of S—CO2 Brayton Cycle with Additive Gases for SFR Application”, Korea Advanced Institute of Science and Technology, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 5 pages. |
Johnson, Gregory A., & Mcdowell, Michael, “Issues Associated with Coupling Supercritical CO2 Power Cycles to Nuclear, Solar and Fossil Fuel Heat Sources”, Hamilton Sundstrand, Energy Space & Defense-Rocketdyne, Apr. 29-30, 2009, Troy, NY, Presentation, 18 pages. |
Kawakubo, Tomoki, “Unsteady Roto-Stator Interaction of a Radial-Inflow Turbine with Variable Nozzle Vanes”, ASME Turbo Expo 2010: Power for Land, Sea, and Air; vol. 7: Turbomachinery, Parts A, B, and C; Glasgow, UK, Jun. 14-18, 2010, Paper No. GT2010-23677, pp. 2075-2084, (1 page, Abstract only). |
Kulhanek, Martin, “Thermodynamic Analysis and Comparison of S—CO2 Cycles”, Presentation, Czech Technical University in Prague, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 14 pages. |
Kulhanek, Martin, “Thermodynamic Analysis and Comparison of S—CO2 Cycles”, Paper, Czech Technical University in Prague, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 7 pages. |
Kulhanek, Martin., and Dostal, Vaclav, “Supercritical Carbon Dioxide Cycles Thermodynamic Analysis and Comparison”, Abstract, Faculty Conference held in Prague, Mar. 24, 2009, 13 pages. |
Ma, Zhiwen and Turchi, Craig S., “Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems”, National Renewable Energy Laboratory, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 4 pages. |
Mohamed, Omar, et al., “Modelling Study of Supercritical Power Plant and Parameter Identified Using Genetic Algorithms”, Proceedings of the World Congress on Engineering 2010 vol. II, WCE 2010, Jun. 30-Jul. 2, 2010, London, U.K., 6 pages. |
Moisseytsev, Anton, and Sienicki, Jim, “Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor”, Supercritical CO2 Power Cycle Symposium, Troy, NY, Apr. 29, 2009, 26 pages. |
Munoz De Escalona, Jose M., “The Potential of the Supercritical Carbon Dioxide Cycle in High Temperature Fuel Cell Hybrid Systems”, Paper, Thermal Power Group, University of Seville, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 6 pages. |
Munoz De Escalona, Jose M., et al., “The Potential of the Supercritical Carbon Dioxide Cycle in High Temperature Fuel Cell Hybrid Systems”, Presentation, Thermal Power Group, University of Seville, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 19 pages. |
Muto, Y., et al., “Application of Supercritical CO2 Gas Turbine for the Fossil Fired Thermal Plant”, Journal of Energy and Power Engineering, Sep. 30, 2010, vol. 4, No. 9, 9 pages. |
Muto, Yasushi, and Kato, Yasuyoshi, “Optimal Cycle Scheme of Direct Cycle Supercritical CO2 Gas Turbine for Nuclear Power Generation Systems”, International Conference on Power Engineering—2007, Oct. 23-27, 2007, Hangzhou, China, pp. 86-87. |
Noriega, Bahamonde J.S., “Design Method for s-CO2 Gas Turbine Power Plants”, Master of Science Thesis, Delft University of Technology, Oct. 2012, 122 pages., (3 parts). |
Oh, Chang, et al., “Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility”, Presentation, Nuclear Energy Research Initiative Report, Oct. 2004, 38 pages. |
Oh, Chang; et al., “Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility”, Presentation, Nuclear Energy Research Initiative Report, Final Report, Mar. 2006, 97 pages. |
Parma, Ed, et al., “Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept” Presentation for Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 40 pages. |
Parma, Ed, et al., “Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept”, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 9 pages. |
Parma, Edward J., et al., “Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept”, Presentation, Sandia National Laboratories, May 2011, 55 pages. |
PCT/US2011/029486—International Preliminary Reporton Patentability dated Sep. 25, 2012, 6 pages. |
PCT/US2011/029486—International Search Report and Written Opinion dated Nov. 16, 2011, 9 pages. |
PCT/US2010/049042—International Search Report and Written Opinion dated Nov. 17, 2010, 11 pages. |
PCT/US2010/049042—International Preliminary Reporton Patentability dated Mar. 29, 2012, 18 pages. |
PCT/US2010/031614—International Search Report dated Jul. 12, 2010, 3 pages. |
PCT/US2010/031614—International Preliminary Report on Patentability dated Oct. 27, 2011, 9 pages. |
PCT/US2010/039559—International Preliminary Reporton Patentability dated Jan. 12, 2012, 7 pages. |
PCT/US2010/039559—Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration dated Sep. 1, 2010, 6 pages. |
PCT/US2010/044681—International Search Report and Written Opinion dated Oct. 7, 2010, 10 pages. |
PCT/US2010/044681—International Preliminary Report on Patentability dated Feb. 16, 2012, 9 pages. |
PCT/US2010/044476—International Search Report dated Sep. 29, 2010, 23 pages. |
PCT/US2007/001120—International Search Report dated Apr. 25, 2008, 7 pages. |
PCT/US2006/049623—Written Opinion of ISA dated Jan. 4, 2008, 4 pages. |
PCT/US2007/079318—International Preliminary Report on Patentability dated July 7, 2008, 5 pages. |
PCT/US2013/055547—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jan. 24, 2014, 11 pages. |
PCT/US2013/064470—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jan. 22, 2014, 10 pages. |
PCT/US2013/064471—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jan. 24, 2014, 10 pages. |
PCT/US2014/023026—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jul. 22, 2014, 11 pages. |
PCT/US2014/013170—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated May 9, 2014, 12 pages. |
PCT/US2011/062266—International Search Report and Written Opinion dated Jul. 9, 2012, 12 pages. |
PCT/US2011/062198—International Search Report and Written Opinion dated Jul. 2, 2012, 9 pages. |
PCT/US2011/062198—Extended European Search Report dated May 6, 2014, 9 pages. |
PCT/US2011/062201—International Search Report and Written Opinion dated Jun. 26, 2012, 9 pages. |
PCT/US2011/062201—Extended European Search Report dated May 28, 2014, 8 pages. |
PCT/US2011/062204—International Search Report dated Nov. 1, 2012, 10 pages. |
PCT/US2011/62207—International Search Report and Written Opinion dated Jun. 28, 2012, 7 pages. |
PCT/US2014/013154—International Search Report dated May 23, 2014, 4 pages. |
PCT/US2014/024548—International Search Report and Written Opinion dated Sep. 5, 2014, 11 pages. |
PCT/US2013/064475—International Search Report and Written Opinion dated Jan. 16, 2014, 11 pages. |
PCT/US2014/024254—International Search Report and Written Opinion dated Aug. 13, 2014, 10 pages. |
PCT/US2014/026173—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jul. 9, 2014, 10 pages. |
PCT/US2012/000470—International Search Report dated Mar. 8, 2013, 10 pages. |
PCT/US2012/061151—International Search Report and Written Opinion dated Feb. 25, 2013, 9 pages. |
PCT/US2012/061159—International Search Report dated Mar. 2, 2013, 10 pages. |
PCT/US2014/024305—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Aug. 26, 2014, 11 pages. |
PCT/US2014/023990—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jul. 17, 2014, 10 pages. |
PCT/US2015/57701—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Dec. 22, 2015, 11 pages. |
PCT/US2015/57756—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jul. 27, 2017, 41 pages. |
PCT/US2014/020242—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Aug. 5, 2014, 9 pages. |
PCT/US2018/034289—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Oct. 2, 2018, 22 pages. |
“Steam Turbines”, PDHengineer.com Course No. M-3006. |
Steam Turbines (Energy Engineering) http://what-when-how.com/energy-engineering/steam-turbines-energv-engineering/, Oct. 25, 2012, 14 pages. |
Persichilli, Michael, et al., “Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 can Displace Steam” Echogen Power Systems LLC, Power-Gen India & Central Asia 2012, Apr. 19-21, 2012, New Delhi, India, 15 pages. |
Pruess, Karsten, “Enhanced Geothermal Systems (EGS): Comparing Water and CO2 as Heat Transmission Fluids”, Proceedings, New Zealand Geothermal Workshop 2007 Auckland, New Zealand, Nov. 19-21, 2007, 13 pages. |
Pruess, Karsten, “Enhanced Geothermal Systems (EGS): Using CO2 as Working Fluid—A Novel Approach for Generating Renewable Energy with Simultaneous Sequestration of Carbon”, Submitted to Geothermics, Jun. 2006, 26 pages. |
Renz, Manfred, “The New Generation Kalina Cycle”, Contribution to the Conference: “Electricity Generation from Enhanced Geothermal Systems”, Sep. 14, 2006, Strasbourg, France, 18 pages. |
Saari, Henry, et al., “Supercritical CO2 Advanced Brayton Cycle Design”, Presentation, Carleton University, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 21 pages. |
San Andres, Luis, “Start-Up Response of Fluid Film Lubricated Cryogenic Turbopumps (Preprint)”, AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, Jul. 8-11, 2007, 38 pages. |
Sarkar, J., and Bhattacharyya, Souvik, “Optimization of Recompression S-CO2 Power Cycle with Reheating” Energy Conversion and Management 50 (May 17, 2009), pp. 1939-1945. |
Thorin, Eva, “Power Cycles with Ammonia-Water Mixtures as Working Fluid”, Doctoral Thesis, Department of Chemical Engineering and Technology Energy Processes, Royal Institute of Technology, Stockholm, Sweden, 2000, 66 pages. |
Tom, Samsun Kwok Sun, “The Feasibility of Using Supercritical Carbon Dioxide as a Coolant for the Candu Reactor”, The University of British Columbia, Jan. 1978, 156 pages. |
“Two-flow rotors”; http://www.answers.com/topic/steam-turbine#ixzz2AJsKAwHX. |
VGB PowerTech Service GmbH, “CO2 Capture and Storage”, A VGB Report on the State of the Art, Aug. 25, 2004, 112 pages. |
Vidhi, Rachana, et al., “Study of Supercritical Carbon Dioxide Power Cycle for Power Conversion from Low Grade Heat Sources”, Presentation, University of South Florida and Oak Ridge National Laboratory, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 17 pages. |
Vidhi, Rachana, et al., “Study of Supercritical Carbon Dioxide Power Cycle for Power Conversion from Low Grade Heat Sources”, Paper, University of South Florida and Oak Ridge National Laboratory, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 8 pages. |
Wright, Steven A., et al., “Modeling and Experimental Results for Condensing Supercritical CO2 Power Cycles”, Sandia Report, Jan. 2011, 47 pages. |
Wright, Steven A., et al., “Supercritical CO2 Power Cycle Development Summary at Sandia National Laboratories”, May 24-25, 2011, (1 page, Abstract only). |
Wright, Steven, “Mighty Mite”, Mechanical Engineering, Jan. 2012, pp. 41-43. |
Yoon, Ho Joon, et al., “Preliminary Results of Optimal Pressure Ratio for Supercritical CO2 Brayton Cycle coupled with Small Modular Water Cooled Reactor”, Presentation, Korea Advanced Institute of Science and Technology and Khalifa University of Science, Technology and Research, Boulder, CO, May 25, 2011, 18 pages. |
Yoon, Ho Joon, et al., “Preliminary Results of Optimal Pressure Ratio for Supercritical CO2 Brayton Cycle coupled with Small Modular Water Cooled Reactor”, Paper, Korea Advanced Institute of Science and Technology and Khalifa University of Science, Technology and Research, May 24-25, 2011, Boulder, CO, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20200003081 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62690803 | Jun 2018 | US |