Systems and methods for generating security improvement plans for entities

Information

  • Patent Grant
  • 12223060
  • Patent Number
    12,223,060
  • Date Filed
    Tuesday, April 25, 2023
    2 years ago
  • Date Issued
    Tuesday, February 11, 2025
    3 months ago
Abstract
A computer-implemented method is provided for statistical modeling of entities of a particular type. The method can include obtaining entity data including a plurality of entity data sets, each entity data set associated with a respective entity and including values for one or more static parameters indicative of a type of the entity. Each entity data set can include (i) values for input parameter(s) indicative of a security profile of the entity and (ii) a value of a security class parameter indicative of a security class of the entity based on the values of the input parameters. The method can include training a statistical classifier to infer a value of the security class parameter indicative of the security class of a particular entity of the particular type based on values of one or more of the input parameters indicative of a security profile of the particular entity.
Description
TECHNICAL FIELD

The following disclosure is directed to methods and systems for generating a security improvement plan for an entity and, more specifically, methods and systems for generating a security improvement plan for an entity based on security ratings of similar entities.


BACKGROUND

Ratings enable quantitative comparisons among entities (e.g., companies, students, automobiles, etc.). For example, ratings can be used by consumers to determine whether to buy from a particular company. In another example, ratings can be used by potential employees to determine whether to work at particular company. Thus, entities subject to a ratings scheme typically strive to improve their respective ratings to enhance their standing in their industry or community. One type of ratings scheme pertains to the security of an entity. Specifically, an entity (e.g., a company) can be rated based on past cybersecurity events and/or future cybersecurity risks. Aside from the company itself, there may be multiple stakeholders, e.g., insurance companies, business partners, and clients, that are invested in an improved security rating of the particular company.


Conventional methods utilize brittle rules or to use summary statistics from a vast data set to derive improvement plans. However, these methods can lead to crude or unrealistic plans for most entities.


SUMMARY

Disclosed herein are systems and methods for generating a security improvement plan for an entity with the goal of improving its security rating. An entity can include an organization, a company, a group, a school, a government, etc. An entity may be characterized by one or more static parameters, e.g., entity size, entity industry, entity location, etc., as these aspects of the entity do not typically change. It is understood that some of these aspects may indeed change over time (e.g., an entity may sell off a part of its business resulting in a decreased size, or it may venture into a new industry or location). In some embodiments, if a static parameter of an entity changes, the statistical classifier, as discussed below, may be retrained based on the changed value of the static parameter.


An improved security rating reflects improvements made to the security profile of the entity. Specifically, the security profile of an entity can be indicated by one or more input parameters, e.g., a number of botnet infections of the entity's computer network or a number of malware-infected servers associated with the entity. These input parameters are typically modifiable in that an entity can change or improve the value of the parameter, thereby improving its security rating. For example, an entity can strive to decrease the number of botnet infections or decrease the number of malware-infected servers. By doing so, an entity's security rating may increase, e.g., from 680 to 720, indicating an improved ability to withstand or prevent cybersecurity attacks. An improved security rating can also increase confidence of various stakeholders of the entity that the entity is more secure and/or protected from cybersecurity risks that it had previously been.


In many instances, for a given entity, the number of input parameters can be significant and, therefore, the space of possible improvement plans can be quite large. In some embodiments, the respective values of two or more input parameters may be correlated with one another. In some embodiments, the respective values of two or more input parameters may be interdependent. Though these relationships may exist, in many instances, the relationships may not be apparent or well-understood. This suggests that some or much of an entity's improvement plan space may not be sensible or achievable. In some cases, some of these improvement plans are unachievable by the particular entity because they are dependent on parameters that are difficult for the particular entity to modify. Therefore, determining an achievable improvement plan for an entity can be difficult due to the large space of possible plans and the implausibility of many areas of the space. Therefore, generating an achievable security improvement plan can depend on reducing the large space of possible improvement plans and eliminating unachievable portions of improvement plans.


Some embodiments of systems and methods described herein are configured to generate a feasible security improvement plan for the entity. A feasible security improvement plan is important to provide the entity with realistic, achievable goals with a reasonable expectation and/or a reasonable likelihood of achieving those goals. A security improvement plan can include value(s) for one or more modifiable input parameters of the entity such that the value(s) contribute to an increase in the security rating of the entity. The exemplary systems and method described herein can focus the space of possible improvement plans by using data related to similar entities that share the parameters of a particular entity for which the plan is generated.


In accordance with an embodiment of the disclosure, a computer-implemented method is provided for statistical modeling of entities of a particular type. The method can include obtaining entity data including a plurality of entity data sets, each entity data set associated with a respective entity and including values for one or more static parameters indicative of a type of the entity. The values of the static parameters for each of the entity data sets can indicate that the type of the entity matches the particular type, and each entity data set can include (i) values for one or more input parameters indicative of a security profile of the entity and (ii) a value of a security class parameter indicative of a security class of the entity based on the values of the input parameters. The method can include training a statistical classifier to infer a value of the security class parameter indicative of the security class of a particular entity of the particular type based on values of one or more of the input parameters indicative of a security profile of the particular entity. The training the statistical classifier can include fitting the statistical classifier to the plurality of entity data sets.


Various embodiments of the method can include one or more of the following features. The static parameters can include (i) entity size, (ii) entity industry, and/or (iii) entity location. The values of two or more static parameters for each of the entity data sets can indicate that the type of the entity matches the particular type. The method can include selecting a target value for the security class parameter indicative of the security class for the particular entity. The plurality of entity data sets can include one or more entity data sets for which the value of the security class parameter is lower than the target value and one or more entity data sets for which the value of the security class parameter is at or above than the target value. The plurality of entity data sets includes at least three entity data sets for which the value of the security class parameter is lower than the target value and at least three entity data set for which the value of the security class parameter is at or above than the target value.


The security profile can include security practices and/or a security record of an entity. One or more input parameters indicative of the security profile of the entity can include: (a) an amount of capital investment in security of the entity; (b) a measure of employee training in security of the entity; (c) a measure of organization of a team dedicated to information security; and/or (d) an amount of budget dedicated to information security. One or more input parameters indicative of the security profile of the entity can include: (i) a number and/or severity of botnet infection instances of a computer system associated with the entity; (ii) a number of spam propagation instances originating from a computer network associated with the entity; (iii) a number of malware servers associated with the entity; (iv) a number of potentially exploited devices associated with the entity; (v) a number of hosts authorized to send emails on behalf of each domain associated with the entity; (vi) a determination of whether a DomainKeys Identified Mail (DKIM) record exists for each domain associated with the entity and/or a key length of a public key associated with a Domain Name System (DNS) record of each domain associated with the entity; (vii) an evaluation of a Secure Sockets Layer (SSL) certificate and/or a Transport Layer Security (TLS) certificate associated with a computer system of the entity; (viii) a number and/or type of service of open ports of a computer network associated with the entity; (ix) an evaluation of security-related fields of an header section of HTTP response messages of hosts associated with the entity; (x) a rate at which vulnerabilities are patched in a computer network associated with the entity; (xi) an evaluation of file sharing traffic originating from a computer network associated with the entity; and/or (xii) a number of lost records and/or sensitivity of information in the lost records in a data breach of a computer system associated with the entity.


The security class can be a security rating of the entity. The value of the security class parameter can be indicative of a security class above or below a target security rating. The statistical classifier can be: (i) a K-nearest neighbor algorithm, (ii) a support vector machine (SVM) model, or (iii) random forest classifier. Each entity data set can include two or more input parameters indicative of the security profile of the entity. The method can include, for a first input parameter of the two or more input parameters: determining a relationship between at least one value of the first input parameter and at least one value of a second input parameter; and storing the relationship in a database. The method can include determining relationships between a plurality of values of the first input parameter and a plurality of values of the second input parameter. The plurality of values of the first input parameter can include one or more values of the first input parameter and the plurality of values of the second input parameter can include one or more values of the second input parameter.


The method can include receiving values of the two or more input parameters for the particular entity; adjusting the value of the first input parameter of the two or more input parameters; determining the value of the second input parameter of the two or more input parameters based on the stored relationship in the database; using the trained statistical classifier on the adjusted value of the first input parameter and the determined value of the second input parameter to infer a value of the security class parameter indicative of the security class of the particular entity; comparing the value of the security class parameter to a target value to determine whether the adjustment of the value of the first input parameter results in a value of the security class parameter at, above, or below the target value. If the adjustment of the value of the first input parameter results in a value above the target value, the method can include generating a security improvement plan based on the adjusted value of the first input parameter and the determined value of the second input parameter, such that, if executed by the particular entity, increases the value of the security class parameter of the particular entity to or above the target value.


The security improvement plan can include a target value for at least one input parameter for the particular entity, in which the target value is different than the value of the at least one input parameter. The method can include presenting the security improvement plan via a user interface. The security improvement plan can include a prescription to adjust at least one of the input parameters. The method can include determining an explanation for the prescription using one or more explanation techniques selected from the group consisting of: (i) local interpretable model-agnostic explanation (LIME), (ii) high-precision model-agnostic explanation, (iii) Skater model interpretation, or (iv) random forest feature tweaking. The method can include presenting the explanation via the user interface. The method can include, if the adjustment of the value of the first input parameter results in the value of the security class parameter being at or above the target value, determining a target value for the first input parameter by: receiving two or more values of the first input parameter from two or more entity data sets of entities having a value of the security class parameter greater than the target value; determining a mean of the two or more values; generating a security improvement plan prescribing the mean value for the first input parameter of the particular entity.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a flowchart of an exemplary method for statistical modeling of entities of a particular type. FIG. 1B is a diagram of the workflow for training the statistical model in FIG. 1A.



FIG. 2A is a flowchart of an exemplary method for using the trained statistical model. FIG. 2B is a flowchart of exemplary method for generating a security improvement plan. FIG. 2C is a diagram of the workflow for generating the security improvement plan of FIG. 2B.



FIG. 3 is a diagram of an exemplary security improvement plan for a particular entity.



FIG. 4 is a diagram of an exemplary computer system that may be used in implementing the systems and methods described herein.





DETAILED DESCRIPTION

Disclosed herein are exemplary embodiments of systems and methods for generating security improvement plans for entities. The security improvement plans can include values for one or more modifiable parameters (also referred to as “input parameters” herein) that a given entity can act upon to improve its security rating. Examples of security ratings and the determination of security ratings for entities can be found in commonly owned U.S. Pat. No. 9,973,524 issued May 15, 2018 and titled “Information Technology Security Assessment System,” the entirety of which is incorporated by reference herein. One example of a security rating (provided by BitSight Technologies, Inc., Boston, MA) has a scale from 300 (lowest) to 900 (highest). In some embodiments, lower security ratings signify high incidence of past security events and/or high risk of future security risk. Conversely, higher security ratings can signify low incidence of past security events and/or low risk of future security risk.


In the below disclosure, the following non-limiting example entity is utilized for illustrating the exemplary systems and methods described herein:

    • Corporation A is a financial services company (static parameter “industry”) having approximately 190 employees (static parameter “size”) in the northwest region of the United States (static parameter “location”).
    • Corporation A is seeking to increase its security rating from its current security rating of 560 to the target security rating of at least 720.


Similar Entities & Related Datasets

In some embodiments, the systems and methods described herein generate achievable security improvement plans by utilizing data associated with similar entities to the particular entity for which the plan is generated. In some embodiments, these similar entities can include those entities that have one or more static parameters that are shared with the particular entity. In some embodiments, the similarity between a first entity and a second entity is determined by a percentage of static parameters. For example, the first entity may share at least 50% of the static parameters with the second entity and therefore be considered to be “similar” to the second entity. In other examples, the first entity shares at least 70%, at least 80%, or at least 90% of the static parameters with the second entity to be considered “similar” to the second entity.


The below table provides an example set of entities sharing one or more static parameters with the exemplary “Corporation A,” as described above.









TABLE 1







List of entities, their associated static parameters, and similarity


to Corporation A. Note, in this example, that the similarity of


the size of entities may be determined by a predetermined category


of sizes for financial service companies (e.g., 1-50 employees,


51-200 employees, 201-500 employees, 501+ employees).










Static Parameters {industry,



Entity
size, location}
Similarity





Corporation B
{financial services, 200 employees,
2/3



southwest US}


Corporation F
{financial services, 150 employees,
3/3



northwest US}


Corporation K
{financial services, 540 employees,
2/3



northwest US}


Corporation Q
{financial services, 175 employees,
2/3



southeast US}


Corporation S
{financial services, 50 employees,
1/3



northeast US}









In the above example utilizing a 50% threshold in determining similarity between entities, only Corporation S lacks in similarity to Corporation A in most of the static parameters. Thus, only Corporation B, F, K, and Q would be used to train the statistical model to generate a security improvement panel for Corporation A, as described below.


In some embodiments, similar entities having security ratings above and below the target security rating are selected for generating the security improvement plan. Selecting entities having security ratings above the target security rating can contribute to determining which values for modifiable parameters that is likely to increase the particular entity's security rating. Selecting entities having security ratings below the target security rating can contribute to determining which values will not lead the particular entity to its target security rating (or above the target security rating). In some embodiments, similar entities having security ratings at, above, and below the target security rating are selected so that both of the above-described benefits are included in the generated security improvement plan. In some embodiments, a minimum number (e.g., at least three, at least 5, at least 10, etc.) of similar entities are selected for training the statistical model. In some embodiments, the number of similar entities having security ratings above the target security rating is approximately equal to the number of similar entities having security ratings below the target security rating. For example, approximately twenty similar entities may be selected having security ratings above the target security rating and approximately twenty similar entities may be selected below the security rating.


In some embodiments, for each of the similar entities, an entity data set is obtained. Continuing the above example, Table 2 lists the security ratings for the above ‘similar’ entities to Corporation A at a particular time.









TABLE 2







List of similar entities and their corresponding security ratings


at a particular time (e.g., 3 months ago, present date, etc.).










Entity
Security Rating







Corporation B
710



Corporation F
535



Corporation K
745



Corporation Q
680










In some embodiments, the security ratings of the similar entities include security ratings over a period, e.g., from a first time (e.g., 3 years ago, 1 year ago, 6 months ago, etc.) to a second time (e.g., 1 year ago, 6 months ago, present date, etc.). In some embodiments, the security ratings of entities may be averaged over some time period (e.g., within the last three months, last six months, last one year, etc.) to determine whether the entity should be selected. In some embodiments, other data related to security ratings can be obtained. For example, the other data can include data related to security events, components of the security ratings, analytics associated with the security ratings, etc. Examples of data related to security ratings can be found in U.S. patent application Ser. No. 16/360,641 titled “Systems and methods for forecasting cybersecurity ratings based on event-rate scenarios.”


Training the Statistical Model

In some exemplary methods discussed herein, to determine values for the modifiable input parameters for the security improvement plan of a particular entity, a statistical model can be trained. In some embodiments, the statistical model can be trained on a plurality of entity data sets of entities similar to the particular entity. Further, the plurality of entity data sets can be selected such that the similar entities have security ratings both above and below the target security rating.



FIG. 1A is a flowchart illustrating a method 100 for statistical modeling of entities of a particular type. FIG. 1B is a diagram illustrating workflow 106 of training the statistical classifier 108. Step 102 of method 100 includes obtaining entity data including a plurality of entity datasets. Each entity data set 110 can be associated with a respective entity and include value(s) for one or more static parameters 112 indicative of a type of the entity. For example, the static parameters 112 can include entity size, entity industry, and/or entity location. The values of the static parameters 112 for each entity data set can indicate whether the type of the entity matches the particular type associated with the particular entity (see discussion above under heading “Similar Entities & Related Datasets”).


In some embodiments, each entity data set can include (i) values for one or more input parameters 114 indicating the security profile of the entity and/or (ii) a value of a security class parameter 116 indicating the security class of the entity based on the value(s) of the input parameter(s) 114. The security profile may include the security practices and/or security record of an entity. In some embodiments, the input parameters 114 can include one or more of:

    • an amount of capital investment in security of the entity;
    • a measure of employee training in security of the entity;
    • a measure of organization of a team dedicated to information security;
    • an amount of budget dedicated to information security;
    • a number and/or severity of botnet infection instances of a computer system associated with the entity;
    • a number of spam propagation instances originating from a computer network associated with the entity;
    • a number of malware servers associated with the entity;
    • a number of potentially exploited devices associated with the entity;
    • a number of hosts authorized to send emails on behalf of each domain associated with the entity;
    • a determination of whether a DomainKeys Identified Mail (DKIM) record exists for each domain associated with the entity and/or a key length of a public key associated with a Domain Name System (DNS) record of each domain associated with the entity;
    • an evaluation of a Secure Sockets Layer (SSL) certificate and/or a Transport Layer Security (TLS) certificate associated with a computer system of the entity;
    • a number and/or type of service of open ports of a computer network associated with the entity;
    • an evaluation of security-related fields of an header section of HTTP response messages of hosts associated with the entity;
    • a rate at which vulnerabilities are patched in a computer network associated with the entity;
    • an evaluation of file sharing traffic originating from a computer network associated with the entity; or
    • a number of lost records and/or sensitivity of information in the lost records in a data breach of a computer system associated with the entity.


In some embodiments, an entity data set can include two or more input parameters 114 (e.g., of those listed above). Thus, in some cases, the exemplary methods described herein can further include determining a relationship between a value of the first input parameter and a value of the second input parameter. This relationship can be stored in a database. For example, the number of botnet infections of an entity may be correlated with the number of potentially exploited devices associated with the entity. This correlation can be stored and referenced in the future. In some embodiments, the database includes the relationship between a plurality of values for the first input parameter and a plurality of values for the second input parameter. Relationships between values of the first and second parameters can be of a linear, non-linear, inverse, or other type. In some cases, the relationships can be stochastic.


In some embodiments, the security class parameter 116 of an entity is associated with, related to, or equal to the security rating of that entity (e.g, on a scale from 300 to 900, as provided by BitSight Technologies, Inc., Boston, MA and discussed above). For example, a first value of the security class parameter 116 is associated with, related to, or equal to a first security rating (e.g., 600); a second value of the security class parameter 116 is associated with, related to, or equal to a second security rating (e.g., 601); and so on. In some embodiments, the security class parameter 116 is associated with ranges of the security rating of the entity. For example, a first value of the security class parameter 116 is associated with, related to, or equal to a first security rating range (e.g., 600-649); a second value of the security class parameter 116 is associated with, related to, or equal to a second security rating (e.g., 650-659); and so on. In some embodiments, the value of the security class parameter 116 can indicate whether the security rating of the entity is at, above, or below a target security rating. For example, a first value of security class parameter is associated with, related to, or equal to a first set of security ratings at or above the target security rating (e.g., for a target security rating of 720, the first set of security ratings is 720-900); a second value of security class parameter is associated with, related to, or equal to a second set of security ratings below the target security rating (e.g., for a target security rating of 720, the second set of security ratings is 300-719).


In some embodiments, the method 100 can include selecting a target value for security class parameter 116 indicative of the security class for the particular entity. Having selected a target value, the plurality of entity data sets are chosen such that they include entity data set(s) for which the value of the security class parameter 116 is lower than the target value and entity data set(s) for which the value of the security class parameter 116 is greater than the target value. For example, if the target value of the security class parameter 116 (e.g., the security rating) for the particular entity is 720, then the data sets of one or more entities having a security rating less than 720 and the data sets of one or more entities having a security rating greater than 720 are selected for training the statistical classifier 108. In some cases, it can be beneficial to include entity data sets of having security class parameter values both above and below the target value in the training of the statistical model so that the generated security improvement plan, as discussed further below, includes values for one or more input parameters that can help the particular entity achieve the target security rating (or above the target security rating). Additionally or alternatively, the generated security improvement plan can provide values that can harm the particular entity's security rating (in other words, to illustrate for the particular entity ‘what not to do’ in their security practices).


Step 104 of method 100 includes training a statistical classifier to infer a value of the security class parameter indicative of the security class for the particular entity based on values of one or more of the input parameters indicative of a security profile of the particular entity. The training can include fitting the statistical classifier 108 to the plurality of entity data sets 110. Examples of the statistical classifier 108 can include any suitable statistical model for this use and can include any one of the following algorithms or models: a K-nearest neighbor algorithm; a support vector machine (SVM) model; or a decision tree-based model. For example, the decision tree-based model can be a random decision forest classifier (also known as a ‘random forest’). In some embodiments, the SVM model can include a radial basis function (RBF) kernel.


Generating Improvement Plans


FIG. 2A illustrates a method 200 for using the trained statistical classifier of method 100. In step 202 of method 200, values of input parameter(s) for the particular entity are received. In step 204 of method 200, the value of the first input parameter is adjusted (e.g., increased or decreased). In step 206, the value of the second input parameter is determined based on the stored relationship in the database. Referring to the example provided above, if there is an increased number of botnet infections (the value of the first parameter), then there is an expected increase in the number of potentially exploited devices (the value of the second parameter) based on the stored relationship. Therefore, the number of potentially exploited devices is determined to increase as well.


In step 206, the trained statistical classifier (see discussion above under heading “Training the Statistical Model”) can be used on the adjusted value of the first input parameter and the determined value of the second input parameter to infer a value of the security class parameter of the entity. In step 208, the value of the security class parameter can be compared to a target value to determine whether the adjustment of the value of the first input parameter results in a value of the security class parameter above or below the target value. For example, the classifier may infer a value of the security class parameter (e.g., the security rating) to be 685 based on an increased number of botnet infections. If the target value of the security class parameter (e.g., the security rating) is 720, then the adjustment results in a value of the security class parameter below the target value (e.g., 685 compared to 720).



FIG. 2B illustrates a method 201 for generating a security improvement plan for the particular entity. FIG. 2C illustrates a workflow 211 for generating the security improvement plan using the trained classifier (refer to exemplary method 200 for description related to steps 202 through 210). In step 212 of method 201, a security improvement plan 222 can be generated for the particular entity. The security improvement plan can be based on the adjusted value of the first input parameter and the determined value of the second input parameter. If executed by the particular entity, the security improvement plan 222 can increase the value of the security class parameter of the particular entity to or above the target value. In an ideal scenario, the particular entity is expected to execute the generated security improvement plan 222 by attempting to attain each of the values of the modifiable input parameters. In some embodiments, the security improvement plan 222 is presented to a user (e.g., company representative, insurance representative, etc.) via a user interface. FIG. 3 is a diagram of an exemplary security improvement plan 214 for the particular entity.


In some embodiments, exemplary method 200 and/or exemplary method 201 can include determining the mean of two or more values of the first input parameter from two or more entity data sets of entities having a value of the security class parameter greater than the target value. Methods 200 and/or 201 can include the generation of a security improvement plan 222 prescribing the mean value for the first input parameter of the particular entity. In some embodiments, this technique can be repeated for each input parameter that is found to contribute to an improved security rating for the entity. For example, the contribution of an input parameter to the security rating can be determine by steps 202-210 of methods 200 or 201.


In some embodiments, the security improvement plan for the particular entity can include a prescription to adjust at least one input parameter. It can be beneficial to provide explanations to the particular entity as to why modifying the values of which parameters helps the entity achieve the desired security rating. The method 201 can include one or more explanation techniques, e.g., local interpretable model-agnostic explanation (LIME), high-precision model-agnostic explanation (referred to as ‘anchors’), Skater model interpretation, random forest feature tweaking, etc. In some embodiments, the explanations can be presented to the user via the user interface.


Computer-Based Implementations

In some examples, some or all of the processing described above can be carried out on a personal computing device, on one or more centralized computing devices, or via cloud-based processing by one or more servers. In some examples, some types of processing occur on one device and other types of processing occur on another device. In some examples, some or all of the data described above can be stored on a personal computing device, in data storage hosted on one or more centralized computing devices, or via cloud-based storage. In some examples, some data are stored in one location and other data are stored in another location. In some examples, quantum computing can be used. In some examples, functional programming languages can be used. In some examples, electrical memory, such as flash-based memory, can be used.



FIG. 4 is a block diagram of an example computer system 400 that may be used in implementing the technology described in this document. General-purpose computers, network appliances, mobile devices, or other electronic systems may also include at least portions of the system 400. The system 400 includes a processor 410, a memory 420, a storage device 430, and an input/output device 440. Each of the components 410, 420, 430, and 440 may be interconnected, for example, using a system bus 450. The processor 410 is capable of processing instructions for execution within the system 400. In some implementations, the processor 410 is a single-threaded processor. In some implementations, the processor 410 is a multi-threaded processor. The processor 410 is capable of processing instructions stored in the memory 420 or on the storage device 430.


The memory 420 stores information within the system 400. In some implementations, the memory 420 is a non-transitory computer-readable medium. In some implementations, the memory 420 is a volatile memory unit. In some implementations, the memory 420 is a nonvolatile memory unit.


The storage device 430 is capable of providing mass storage for the system 400. In some implementations, the storage device 430 is a non-transitory computer-readable medium. In various different implementations, the storage device 430 may include, for example, a hard disk device, an optical disk device, a solid-date drive, a flash drive, or some other large capacity storage device. For example, the storage device may store long-term data (e.g., database data, file system data, etc.). The input/output device 440 provides input/output operations for the system 400. In some implementations, the input/output device 440 may include one or more of a network interface devices, e.g., an Ethernet card, a serial communication device, e.g., an RS-232 port, and/or a wireless interface device, e.g., an 802.11 card, a 3G wireless modem, or a 4G wireless modem. In some implementations, the input/output device may include driver devices configured to receive input data and send output data to other input/output devices, e.g., keyboard, printer and display devices 460. In some examples, mobile computing devices, mobile communication devices, and other devices may be used.


In some implementations, at least a portion of the approaches described above may be realized by instructions that upon execution cause one or more processing devices to carry out the processes and functions described above. Such instructions may include, for example, interpreted instructions such as script instructions, or executable code, or other instructions stored in a non-transitory computer readable medium. The storage device 430 may be implemented in a distributed way over a network, such as a server farm or a set of widely distributed servers, or may be implemented in a single computing device.


Although an example processing system has been described in FIG. 4, embodiments of the subject matter, functional operations and processes described in this specification can be implemented in other types of digital electronic circuitry, in tangibly-embodied computer software or firmware, in computer hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Embodiments of the subject matter described in this specification can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions encoded on a tangible nonvolatile program carrier for execution by, or to control the operation of, data processing apparatus. Alternatively or in addition, the program instructions can be encoded on an artificially generated propagated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal that is generated to encode information for transmission to suitable receiver apparatus for execution by a data processing apparatus. The computer storage medium can be a machine-readable storage device, a machine-readable storage substrate, a random or serial access memory device, or a combination of one or more of them.


The term “system” may encompass all kinds of apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. A processing system may include special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit). A processing system may include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.


A computer program (which may also be referred to or described as a program, software, a software application, a module, a software module, a script, or code) can be written in any form of programming language, including compiled or interpreted languages, or declarative or procedural languages, and it can be deployed in any form, including as a standalone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program may, but need not, correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.


The processes and logic flows described in this specification can be performed by one or more programmable computers executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).


Computers suitable for the execution of a computer program can include, by way of example, general or special purpose microprocessors or both, or any other kind of central processing unit. Generally, a central processing unit will receive instructions and data from a read-only memory or a random access memory or both. A computer generally includes a central processing unit for performing or executing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Moreover, a computer can be embedded in another device, e.g., a mobile telephone, a personal digital assistant (PDA), a mobile audio or video player, a game console, a Global Positioning System (GPS) receiver, or a portable storage device (e.g., a universal serial bus (USB) flash drive), to name just a few.


Computer readable media suitable for storing computer program instructions and data include all forms of nonvolatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.


To provide for interaction with a user, embodiments of the subject matter described in this specification can be implemented on a computer having a display device, e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying information to the user and a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, or tactile input. In addition, a computer can interact with a user by sending documents to and receiving documents from a device that is used by the user; for example, by sending web pages to a web browser on a user's user device in response to requests received from the web browser.


Embodiments of the subject matter described in this specification can be implemented in a computing system that includes a back end component, e.g., as a data server, or that includes a middleware component, e.g., an application server, or that includes a front end component, e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the subject matter described in this specification, or any combination of one or more such back end, middleware, or front end components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include a local area network (“LAN”) and a wide area network (“WAN”), e.g., the Internet.


The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.


While this specification contains many specific implementation details, these should not be construed as limitations on the scope of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.


Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.


Particular embodiments of the subject matter have been described. Other embodiments are within the scope of the following claims. For example, the actions recited in the claims can be performed in a different order and still achieve desirable results. As one example, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In certain implementations, multitasking and parallel processing may be advantageous. Other steps or stages may be provided, or steps or stages may be eliminated, from the described processes. Accordingly, other implementations are within the scope of the following claims.


Terminology

The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.


The term “approximately”, the phrase “approximately equal to”, and other similar phrases, as used in the specification and the claims (e.g., “X has a value of approximately Y” or “X is approximately equal to Y”), should be understood to mean that one value (X) is within a predetermined range of another value (Y). The predetermined range may be plus or minus 20%, 10%, 5%, 3%, 1%, 0.1%, or less than 0.1%, unless otherwise indicated.


The indefinite articles “a” and “an,” as used in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.” The phrase “and/or,” as used in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.


As used in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.


The use of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof, is meant to encompass the items listed thereafter and additional items.


Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed. Ordinal terms are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term), to distinguish the claim elements.

Claims
  • 1. A computer-implemented method for generating a security improvement plan for a particular organization, the method comprising: adjusting a value of a first input parameter of at least two input parameters indicative of a security profile of a particular organization;determining a value of a second input parameter of the input parameters based on a relationship between the value of the first input parameter and the value of the second input parameter;using a trained statistical classifier on the adjusted value of the first input parameter and the determined value of the second input parameter to infer an adjusted value of a security class parameter indicative of a security class of the particular organization; andgenerating a security improvement plan based on the adjusted value of the first input parameter and the determined value of the second input parameter, wherein execution of the security improvement plan is configured to cause an increase in the value of the security class parameter of the particular organization.
  • 2. The method of claim 1, further comprising: comparing the adjusted value of the security class parameter to a target value to determine whether the adjustment of the value of the first input parameter results in a value of the security class parameter at, above, or below the target value.
  • 3. The method of claim 2, wherein generating the security improvement plan comprises: generating the security improvement plan based on the adjusted value of the first input parameter and the determined value of the second input parameter, wherein execution of the security improvement plan is configured to cause an increase in the value of the security class parameter of the particular organization at or above the target value.
  • 4. The method of claim 1, wherein the security improvement plan comprises a target value for at least one input parameter of the input parameters for the particular organization, the target value being different than a value of the at least one input parameter.
  • 5. The method of claim 1, further comprising: presenting the security improvement plan via a user interface.
  • 6. The method of claim 1, wherein the security improvement plan includes a prescription to adjust at least one of the input parameters, the method further comprising: determining an explanation for the prescription using one or more explanation techniques
  • 7. The method of claim 6, further comprising: presenting the explanation via a user interface.
  • 8. The method of claim 1, further comprising: determining a target value for the first input parameter by: receiving two or more values of the first input parameter from two or more organization data sets of entities having a value of the security class parameter greater than the target value; anddetermining a mean value of the two or more values,wherein generating the security improvement plan comprises prescribing the mean value for the first input parameter of the particular organization.
  • 9. The method of claim 1, wherein the relationship between the value of the first input parameter and the value of the second input parameter is stored in a database, and wherein the method comprises: retrieving the stored relationship from the database.
  • 10. The method of claim 1, further comprising: receiving an organization data set for the particular organization comprising a value for the input parameters indicative of the security profile of the particular organization.
  • 11. The method of claim 1, wherein the security profile comprises security practices and/or a security record of the particular organization.
  • 12. The method of claim 1, wherein the input parameters indicative of the security profile of the particular organization comprise at least one of: an amount of capital investment in security of the organization;a measure of employee training in security of the organization;a measure of organization of a team dedicated to information security; oran amount of budget dedicated to information security.
  • 13. The method of claim 1, wherein the input parameters indicative of the security profile of the particular organization comprise at least one of: a number and/or severity of botnet infection instances of a computer system associated with the organization;a number of spam propagation instances originating from a computer network associated with the organization;a number of malware servers associated with the organization;a number of potentially exploited devices associated with the organization;a number of hosts authorized to send emails on behalf of each domain associated with the organization;a determination of whether a DomainKeys Identified Mail (DKIM) record exists for each domain associated with the organization and/or a key length of a public key associated with a Domain Name System (DNS) record of each domain associated with the organization;an evaluation of a Secure Sockets Layer (SSL) certificate and/or a Transport Layer Security (TLS) certificate associated with a computer system of the organization;a number and/or type of service of open ports of a computer network associated with the organization;an evaluation of security-related fields of an header section of HTTP response messages of hosts associated with the organization;a rate at which vulnerabilities are patched in a computer network associated with the organization;an evaluation of file sharing traffic originating from a computer network associated with the organization; ora number of lost records and/or sensitivity of information in the lost records in a data breach of a computer system associated with the organization.
  • 14. The method of claim 1, wherein the statistical classifier was trained by: obtaining organization data including a plurality of organization data sets, each organization data set associated with a respective organization and including: (i) a value for at least one static parameter indicative of a type of the organization, wherein the values of the static parameter indicates that the type of the organization matches the particular type;(ii) a value for at least one input parameter indicative of a security profile of the organization;(iii) a value of a security class parameter indicative of a security class of the organization based on the value of the at least one input parameter;training the statistical classifier to infer a value of the security class parameter indicative of the security class of a particular organization of the particular type based on values of the at least one input parameter indicative of a security profile of the particular organization, wherein training the statistical classifier comprises fitting the statistical classifier to the plurality of organization data sets.
  • 15. The method of claim 14, wherein each organization data set includes two or more input parameters indicative of the security profile of the organization, the method further comprising: for a first input parameter of the two or more input parameters, determining the relationship between at least one value of the first input parameter and at least one value of a second input parameter.
  • 16. The method of claim 15, further comprising: determining relationships between a plurality of values of the first input parameter and a plurality of values of the second input parameter, wherein the plurality of values of the first input parameter comprises the at least one value of the first input parameter and the plurality of values of the second input parameter comprises the at least one value of the second input parameter.
  • 17. The method of claim 14, wherein the values of two or more static parameters for each of the organization data sets indicate that the type of the organization matches the particular type.
  • 18. The method of claim 14, further comprising: selecting a target value for the security class parameter indicative of the security class for the particular organization,wherein the plurality of organization data sets includes at least one organization data set for which the value of the security class parameter is lower than the target value and at least one organization data set for which the value of the security class parameter is at or above than the target value.
  • 19. The method of claim 18, wherein the plurality of organization data sets includes at least three organization data sets for which the value of the security class parameter is lower than the target value and at least three organization data set for which the value of the security class parameter is at or above than the target value.
  • 20. The method of claim 1, wherein the security class is a security rating of the particular organization.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 17/307,577, filed May 4, 2021 and titled “System and Methods for Generating Security Improvement Plans For Entities”, which is a continuation of U.S. patent application Ser. No. 16/922,673, filed Jul. 7, 2020 and titled “System and Methods for Generating Security Improvement Plans For Entities”, now U.S. Pat. No. 11,030,325, which is a continuation of U.S. patent application Ser. No. 16/514,771, filed Jul. 17, 2019 and titled “System and Methods for Generating Security Improvement Plans For Entities”, now U.S. Pat. No. 10,726,136, which are incorporated herein by reference in their entireties.

US Referenced Citations (571)
Number Name Date Kind
5867799 Lang et al. Feb 1999 A
6016475 Miller et al. Jan 2000 A
6578066 Logan et al. Jun 2003 B1
6745150 Breiman Jun 2004 B1
6785732 Bates et al. Aug 2004 B1
6792401 Nigro et al. Sep 2004 B1
7062572 Hampton Jun 2006 B1
D525264 Chotai et al. Jul 2006 S
D525629 Chotai et al. Jul 2006 S
7100195 Underwood Aug 2006 B1
7124055 Breiman Oct 2006 B2
7194769 Lippmann et al. Mar 2007 B2
7257630 Cole et al. Aug 2007 B2
7290275 Baudoin et al. Oct 2007 B2
7343626 Gallagher Mar 2008 B1
7389262 Lange Jun 2008 B1
D604740 Matheny et al. Nov 2009 S
7650570 Torrens et al. Jan 2010 B2
7747778 King et al. Jun 2010 B1
7748038 Olivier et al. Jun 2010 B2
7827607 Sobel et al. Nov 2010 B2
D630645 Tokunaga et al. Jan 2011 S
7971252 Lippmann et al. Jun 2011 B2
8000698 Wolman et al. Aug 2011 B2
8042184 Batenin Oct 2011 B1
8056132 Chang et al. Nov 2011 B1
D652048 Joseph Jan 2012 S
8150538 Dubinsky Apr 2012 B2
8239939 Dunagan et al. Aug 2012 B2
D667022 LoBosco et al. Sep 2012 S
8266695 Clay, IV Sep 2012 B1
8321791 Dixon et al. Nov 2012 B2
8359651 Wu et al. Jan 2013 B1
8370933 Buckler Feb 2013 B1
8370938 Daswani et al. Feb 2013 B1
8429630 Nickolov et al. Apr 2013 B2
D682287 Cong et al. May 2013 S
D688260 Pearcy et al. Aug 2013 S
8504556 Rice et al. Aug 2013 B1
8505094 Xuewen et al. Aug 2013 B1
D691164 Lim et al. Oct 2013 S
D694252 Helm Nov 2013 S
D694253 Helm Nov 2013 S
8578496 Krishnappa Nov 2013 B1
8578499 Zhu et al. Nov 2013 B1
8584233 Yang et al. Nov 2013 B1
8601575 Mullarkey et al. Dec 2013 B2
8621621 Burns et al. Dec 2013 B1
8661146 Alex et al. Feb 2014 B2
D700616 Chao Mar 2014 S
8677481 Lee Mar 2014 B1
8683584 Daswani et al. Mar 2014 B1
8752183 Heiderich et al. Jun 2014 B1
8775402 Baskerville et al. Jul 2014 B2
8776240 Wu et al. Jul 2014 B1
8806646 Daswani et al. Aug 2014 B1
8825662 Kingman et al. Sep 2014 B1
8839432 Patil Sep 2014 B1
8850570 Ramzan Sep 2014 B1
8898776 Molnar et al. Nov 2014 B2
8949988 Adams et al. Feb 2015 B2
8949990 Hsieh et al. Feb 2015 B1
8966639 Roytman et al. Feb 2015 B1
D730918 Park et al. Jun 2015 S
9049222 He et al. Jun 2015 B1
9053210 Elnikety et al. Jun 2015 B2
9075990 Yang Jul 2015 B1
D740847 Yampolskiy et al. Oct 2015 S
D740848 Bolts et al. Oct 2015 S
D741351 Kito et al. Oct 2015 S
D746832 Pearcy et al. Jan 2016 S
9241252 Dua et al. Jan 2016 B2
9244899 Greenbaum Jan 2016 B1
9294498 Yampolskiy et al. Mar 2016 B1
D754690 Park et al. Apr 2016 S
D754696 Follett et al. Apr 2016 S
9323930 Satish Apr 2016 B1
D756371 Bertnick et al. May 2016 S
D756372 Bertnick et al. May 2016 S
D756392 Yun et al. May 2016 S
D759084 Yampolskiy et al. Jun 2016 S
D759689 Olson et al. Jun 2016 S
9372994 Yampolskiy et al. Jun 2016 B1
9373144 Ng et al. Jun 2016 B1
D760782 Kendler et al. Jul 2016 S
9384206 Bono et al. Jul 2016 B1
9401926 Dubow et al. Jul 2016 B1
9407658 Kuskov et al. Aug 2016 B1
9413774 Liu et al. Aug 2016 B1
9420049 Talmor et al. Aug 2016 B1
9424333 Bisignani et al. Aug 2016 B1
9432383 Johns et al. Aug 2016 B2
9438615 Gladstone et al. Sep 2016 B2
9479526 Yang Oct 2016 B1
D771103 Eder Nov 2016 S
D771695 Yampolskiy et al. Nov 2016 S
D772276 Yampolskiy et al. Nov 2016 S
9501647 Yampolskiy et al. Nov 2016 B2
D773507 Sagrillo et al. Dec 2016 S
9530016 Pomerantz Dec 2016 B1
D775635 Raji et al. Jan 2017 S
D776136 Chen et al. Jan 2017 S
D776153 Yampolskiy et al. Jan 2017 S
D777177 Chen et al. Jan 2017 S
9548988 Roundy et al. Jan 2017 B1
9560072 Xu Jan 2017 B1
D778927 Bertnick et al. Feb 2017 S
D778928 Bertnick et al. Feb 2017 S
D779512 Kimura et al. Feb 2017 S
D779514 Baris et al. Feb 2017 S
D779531 List et al. Feb 2017 S
9578048 Hunt et al. Feb 2017 B1
D780770 Sum et al. Mar 2017 S
D785009 Lim et al. Apr 2017 S
D785010 Bachman et al. Apr 2017 S
D785016 Berwick et al. Apr 2017 S
9620079 Curtis Apr 2017 B2
D787530 Huang May 2017 S
D788128 Wada May 2017 S
9641547 Yampolskiy et al. May 2017 B2
9646110 Byrne et al. May 2017 B2
D789947 Sun Jun 2017 S
D789957 Wu et al. Jun 2017 S
9680855 Schultz et al. Jun 2017 B2
9680858 Boyer et al. Jun 2017 B1
D791153 Rice et al. Jul 2017 S
D791834 Eze et al. Jul 2017 S
D792427 Weaver et al. Jul 2017 S
D795891 Kohan et al. Aug 2017 S
9736019 Hardison et al. Aug 2017 B2
9742796 Salsamendi Aug 2017 B1
D796523 Bhandari et al. Sep 2017 S
D801989 Iketsuki et al. Nov 2017 S
D803237 Wu et al. Nov 2017 S
9813440 Hoover et al. Nov 2017 B1
9825976 Gomez et al. Nov 2017 B1
9825984 Hoover et al. Nov 2017 B1
D804528 Martin et al. Dec 2017 S
D806735 Olsen et al. Jan 2018 S
D806737 Chung et al. Jan 2018 S
D809523 Lipka et al. Feb 2018 S
D809989 Lee et al. Feb 2018 S
D812633 Saneii Mar 2018 S
D814483 Gavaskar et al. Apr 2018 S
D815119 Chalker et al. Apr 2018 S
D815148 Martin et al. Apr 2018 S
D816105 Rudick et al. Apr 2018 S
D816116 Selassie Apr 2018 S
9954893 Zhao et al. Apr 2018 B1
D817970 Chang et al. May 2018 S
D817977 Kato et al. May 2018 S
D818475 Yepez et al. May 2018 S
9973524 Boyer et al. May 2018 B2
D819687 Yampolskiy et al. Jun 2018 S
10044750 Livshits et al. Aug 2018 B2
10079854 Scott et al. Sep 2018 B1
10084817 Saher et al. Sep 2018 B2
10142364 Baukes et al. Nov 2018 B2
D835631 Yepez et al. Dec 2018 S
10180966 Lang et al. Jan 2019 B1
10185924 McClintock et al. Jan 2019 B1
10210329 Malik et al. Feb 2019 B1
10217071 Mo et al. Feb 2019 B2
10230753 Yampolskiy et al. Mar 2019 B2
10230764 Ng et al. Mar 2019 B2
10235524 Ford Mar 2019 B2
10242180 Haefner et al. Mar 2019 B2
D847169 Sombreireiro et al. Apr 2019 S
10257219 Geil et al. Apr 2019 B1
10305854 Alizadeh-Shabdiz et al. May 2019 B2
10331502 Hart Jun 2019 B1
10339321 Tedeschi Jul 2019 B2
10339484 Pai et al. Jul 2019 B2
10348755 Shavell et al. Jul 2019 B1
10412083 Zou et al. Sep 2019 B2
D863335 Hardy et al. Oct 2019 S
D863345 Hardy et al. Oct 2019 S
10453142 Mun Oct 2019 B2
10469515 Helmsen et al. Nov 2019 B2
10482239 Liu et al. Nov 2019 B1
10491619 Yampolskiy et al. Nov 2019 B2
10491620 Yampolskiy et al. Nov 2019 B2
10521583 Bagulho Monteiro Pereira Dec 2019 B1
D872574 Deylamian et al. Jan 2020 S
10540374 Singh et al. Jan 2020 B2
D874506 Kang et al. Feb 2020 S
10572945 McNair Feb 2020 B1
D880512 Greenwald et al. Apr 2020 S
D894939 Braica Sep 2020 S
10764298 Light et al. Sep 2020 B1
10776483 Bagulho Monteiro Pereira Sep 2020 B2
10796260 Brannon et al. Oct 2020 B2
10805331 Boyer et al. Oct 2020 B2
D903693 Li et al. Dec 2020 S
D905712 Li et al. Dec 2020 S
D908139 Hardy et al. Jan 2021 S
10896394 Brannon et al. Jan 2021 B2
10909488 Hecht et al. Feb 2021 B2
D918955 Madden, Jr. et al. May 2021 S
D920343 Bowland May 2021 S
D920353 Boutros et al. May 2021 S
D921031 Tessier et al. Jun 2021 S
D921662 Giannino et al. Jun 2021 S
D921674 Kmak et al. Jun 2021 S
D921677 Kmak et al. Jun 2021 S
D922397 Modi et al. Jun 2021 S
D924909 Nasu et al. Jul 2021 S
11126723 Bagulho Monteiro Pereira Sep 2021 B2
11334832 Dumoulin et al. May 2022 B2
11379773 Vescio Jul 2022 B2
11455322 Yang et al. Sep 2022 B2
11652834 Gladstone et al. May 2023 B2
11727114 Bagulho Monteiro Pereira Aug 2023 B2
20010044798 Nagral et al. Nov 2001 A1
20020083077 Vardi Jun 2002 A1
20020133365 Grey et al. Sep 2002 A1
20020164983 Raviv et al. Nov 2002 A1
20030011601 Itoh et al. Jan 2003 A1
20030050862 Bleicken et al. Mar 2003 A1
20030074248 Braud et al. Apr 2003 A1
20030123424 Jung Jul 2003 A1
20030187967 Walsh et al. Oct 2003 A1
20040003284 Campbell et al. Jan 2004 A1
20040010709 Baudoin et al. Jan 2004 A1
20040024859 Bloch et al. Feb 2004 A1
20040088570 Roberts et al. May 2004 A1
20040098375 DeCarlo May 2004 A1
20040111358 Lange et al. Jun 2004 A1
20040133561 Burke Jul 2004 A1
20040133689 Vasisht Jul 2004 A1
20040193907 Patanella Sep 2004 A1
20040193918 Green et al. Sep 2004 A1
20040199791 Poletto et al. Oct 2004 A1
20040199792 Tan et al. Oct 2004 A1
20040221296 Ogielski et al. Nov 2004 A1
20040250122 Newton Dec 2004 A1
20040250134 Kohler et al. Dec 2004 A1
20050065807 DeAngelis et al. Mar 2005 A1
20050066195 Jones Mar 2005 A1
20050071450 Allen et al. Mar 2005 A1
20050076245 Graham et al. Apr 2005 A1
20050080720 Betz et al. Apr 2005 A1
20050108415 Turk et al. May 2005 A1
20050131830 Juarez et al. Jun 2005 A1
20050138413 Lippmann et al. Jun 2005 A1
20050160002 Roetter et al. Jul 2005 A1
20050228899 Wendkos et al. Oct 2005 A1
20050234767 Bolzman et al. Oct 2005 A1
20050278726 Cano et al. Dec 2005 A1
20050278786 Tippett et al. Dec 2005 A1
20060036335 Banter et al. Feb 2006 A1
20060075490 Boney et al. Apr 2006 A1
20060075494 Bertman et al. Apr 2006 A1
20060107226 Matthews et al. May 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060212925 Shull et al. Sep 2006 A1
20060230039 Shull et al. Oct 2006 A1
20060253458 Dixon et al. Nov 2006 A1
20060253581 Dixon et al. Nov 2006 A1
20060271564 Meng Muntz et al. Nov 2006 A1
20070016948 Dubrovsky et al. Jan 2007 A1
20070067845 Wiemer et al. Mar 2007 A1
20070113282 Ross May 2007 A1
20070136622 Price et al. Jun 2007 A1
20070143851 Nicodemus et al. Jun 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070179955 Croft et al. Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070214151 Thomas et al. Sep 2007 A1
20070282730 Carpenter et al. Dec 2007 A1
20080017526 Prescott et al. Jan 2008 A1
20080033775 Dawson et al. Feb 2008 A1
20080047018 Baudoin et al. Feb 2008 A1
20080091834 Norton Apr 2008 A1
20080097980 Sullivan Apr 2008 A1
20080127338 Cho et al. May 2008 A1
20080140495 Bhamidipaty et al. Jun 2008 A1
20080140728 Fraser et al. Jun 2008 A1
20080148408 Kao et al. Jun 2008 A1
20080162931 Lord et al. Jul 2008 A1
20080172382 Prettejohn Jul 2008 A1
20080175266 Alperovitch et al. Jul 2008 A1
20080208995 Takahashi et al. Aug 2008 A1
20080209565 Baudoin et al. Aug 2008 A2
20080222287 Bahl et al. Sep 2008 A1
20080222736 Boodaei et al. Sep 2008 A1
20080262895 Hofmeister et al. Oct 2008 A1
20080270458 Gvelesiani Oct 2008 A1
20090019525 Yu et al. Jan 2009 A1
20090024663 McGovern Jan 2009 A1
20090044272 Jarrett Feb 2009 A1
20090064337 Chien Mar 2009 A1
20090094265 Vlachos et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090125427 Atwood et al. May 2009 A1
20090132861 Costa et al. May 2009 A1
20090150999 Dewey et al. Jun 2009 A1
20090161629 Purkayastha et al. Jun 2009 A1
20090193054 Karimisetty et al. Jul 2009 A1
20090204235 Dubinsky Aug 2009 A1
20090216700 Bouchard et al. Aug 2009 A1
20090228830 Herz et al. Sep 2009 A1
20090265787 Baudoin et al. Oct 2009 A9
20090276835 Jackson et al. Nov 2009 A1
20090293128 Lippmann et al. Nov 2009 A1
20090299802 Brennan Dec 2009 A1
20090300768 Krishnamurthy et al. Dec 2009 A1
20090319420 Sanchez et al. Dec 2009 A1
20090323632 Nix Dec 2009 A1
20090328063 Corvera et al. Dec 2009 A1
20100017880 Masood Jan 2010 A1
20100024033 Kang et al. Jan 2010 A1
20100042605 Cheng et al. Feb 2010 A1
20100057582 Arfin et al. Mar 2010 A1
20100114634 Christiansen et al. May 2010 A1
20100114757 Jeng et al. May 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100186088 Banerjee et al. Jul 2010 A1
20100205042 Mun Aug 2010 A1
20100218256 Thomas et al. Aug 2010 A1
20100235910 Ku et al. Sep 2010 A1
20100251000 Lyne et al. Sep 2010 A1
20100251371 Brown Sep 2010 A1
20100262444 Atwal et al. Oct 2010 A1
20100275263 Bennett et al. Oct 2010 A1
20100281124 Westman et al. Nov 2010 A1
20100281151 Ramankutty et al. Nov 2010 A1
20100309206 Xie et al. Dec 2010 A1
20110099620 Stavrou et al. Apr 2011 A1
20110106920 Longo May 2011 A1
20110137704 Mitra et al. Jun 2011 A1
20110145168 Dirnstorfer et al. Jun 2011 A1
20110145576 Bettan Jun 2011 A1
20110148880 De Peuter Jun 2011 A1
20110185403 Dolan et al. Jul 2011 A1
20110185427 Aciicmez et al. Jul 2011 A1
20110213742 Lemmond Sep 2011 A1
20110219455 Bhagwan et al. Sep 2011 A1
20110225085 Takeshita et al. Sep 2011 A1
20110231395 Vadlamani et al. Sep 2011 A1
20110239294 Kim et al. Sep 2011 A1
20110239300 Klein et al. Sep 2011 A1
20110249002 Duplessis et al. Oct 2011 A1
20110282997 Prince et al. Nov 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110296519 Ide et al. Dec 2011 A1
20120008974 Kawai et al. Jan 2012 A1
20120036263 Madden et al. Feb 2012 A1
20120036580 Gorny et al. Feb 2012 A1
20120059823 Barber et al. Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120089745 Turakhia Apr 2012 A1
20120158725 Molloy et al. Jun 2012 A1
20120166458 Laudanski et al. Jun 2012 A1
20120174219 Hernandez et al. Jul 2012 A1
20120198558 Liu et al. Aug 2012 A1
20120215892 Wanser et al. Aug 2012 A1
20120221376 Austin Aug 2012 A1
20120254993 Sallam Oct 2012 A1
20120255021 Sallam Oct 2012 A1
20120255027 Kanakapura et al. Oct 2012 A1
20120290498 Jones Nov 2012 A1
20120291129 Shulman et al. Nov 2012 A1
20130014253 Neou et al. Jan 2013 A1
20130055070 Sacks et al. Feb 2013 A1
20130055386 Kim et al. Feb 2013 A1
20130060351 Imming et al. Mar 2013 A1
20130080505 Nielsen et al. Mar 2013 A1
20130086521 Grossele et al. Apr 2013 A1
20130086681 Jaroch Apr 2013 A1
20130086687 Chess et al. Apr 2013 A1
20130091574 Howes et al. Apr 2013 A1
20130124644 Hunt et al. May 2013 A1
20130124653 Vick et al. May 2013 A1
20130142050 Luna Jun 2013 A1
20130145437 Zaitsev Jun 2013 A1
20130173791 Longo Jul 2013 A1
20130212479 Willis et al. Aug 2013 A1
20130227078 Wei et al. Aug 2013 A1
20130227697 Zandani Aug 2013 A1
20130238527 Jones Sep 2013 A1
20130263270 Cote et al. Oct 2013 A1
20130276056 Epstein Oct 2013 A1
20130282406 Snyder et al. Oct 2013 A1
20130291105 Yan Oct 2013 A1
20130298244 Kumar et al. Nov 2013 A1
20130305368 Ford Nov 2013 A1
20130318594 Hoy et al. Nov 2013 A1
20130333038 Chien Dec 2013 A1
20130347116 Flores et al. Dec 2013 A1
20140006129 Heath Jan 2014 A1
20140019196 Wiggins et al. Jan 2014 A1
20140052998 Bloom et al. Feb 2014 A1
20140101006 Pitt Apr 2014 A1
20140108474 David et al. Apr 2014 A1
20140114755 Mezzacca Apr 2014 A1
20140114843 Klein et al. Apr 2014 A1
20140130158 Wang et al. May 2014 A1
20140137254 Ou et al. May 2014 A1
20140137257 Martinez et al. May 2014 A1
20140146370 Banner et al. May 2014 A1
20140173066 Newton et al. Jun 2014 A1
20140173736 Liu Jun 2014 A1
20140189098 MaGill et al. Jul 2014 A1
20140189864 Wang et al. Jul 2014 A1
20140204803 Nguyen et al. Jul 2014 A1
20140237545 Mylavarapu et al. Aug 2014 A1
20140244317 Roberts et al. Aug 2014 A1
20140282261 Ranz et al. Sep 2014 A1
20140283056 Bachwani et al. Sep 2014 A1
20140283067 Call et al. Sep 2014 A1
20140283068 Call et al. Sep 2014 A1
20140283069 Call et al. Sep 2014 A1
20140288996 Rence et al. Sep 2014 A1
20140304816 Klein et al. Oct 2014 A1
20140330616 Lyras Nov 2014 A1
20140334336 Chen et al. Nov 2014 A1
20140337086 Asenjo et al. Nov 2014 A1
20140337633 Yang et al. Nov 2014 A1
20140344332 Giebler Nov 2014 A1
20150033331 Stern et al. Jan 2015 A1
20150033341 Schmidtler et al. Jan 2015 A1
20150052607 Al Hamami Feb 2015 A1
20150074579 Gladstone et al. Mar 2015 A1
20150081860 Kuehnel et al. Mar 2015 A1
20150088783 Mun Mar 2015 A1
20150156084 Kaminsky et al. Jun 2015 A1
20150180883 Aktas et al. Jun 2015 A1
20150195299 Zoldi et al. Jul 2015 A1
20150207776 Morin et al. Jul 2015 A1
20150213259 Du et al. Jul 2015 A1
20150248280 Pillay et al. Sep 2015 A1
20150261955 Huang et al. Sep 2015 A1
20150264061 Ibatullin et al. Sep 2015 A1
20150288706 Marshall Oct 2015 A1
20150288709 Singhal et al. Oct 2015 A1
20150310188 Ford et al. Oct 2015 A1
20150310213 Ronen et al. Oct 2015 A1
20150317672 Espinoza et al. Nov 2015 A1
20150331932 Georges et al. Nov 2015 A1
20150339479 Wang et al. Nov 2015 A1
20150347754 Born Dec 2015 A1
20150347756 Hidayat et al. Dec 2015 A1
20150350229 Mitchell Dec 2015 A1
20150381649 Schultz et al. Dec 2015 A1
20160014081 Don, Jr. et al. Jan 2016 A1
20160023639 Cajiga et al. Jan 2016 A1
20160028746 Tonn Jan 2016 A1
20160036849 Zakian Feb 2016 A1
20160065613 Cho et al. Mar 2016 A1
20160078382 Watkins et al. Mar 2016 A1
20160088015 Sivan et al. Mar 2016 A1
20160104071 Brueckner Apr 2016 A1
20160119373 Fausto et al. Apr 2016 A1
20160140466 Sidebottom et al. May 2016 A1
20160142419 Antipa et al. May 2016 A1
20160142428 Pastore et al. May 2016 A1
20160147992 Zhao et al. May 2016 A1
20160162602 Bradish et al. Jun 2016 A1
20160171415 Yampolskiy et al. Jun 2016 A1
20160173520 Foster et al. Jun 2016 A1
20160173522 Yampolskiy et al. Jun 2016 A1
20160182537 Tatourian et al. Jun 2016 A1
20160189301 Ng et al. Jun 2016 A1
20160191554 Kaminsky Jun 2016 A1
20160205126 Boyer et al. Jul 2016 A1
20160212101 Reshadi et al. Jul 2016 A1
20160239772 Dahlberg Aug 2016 A1
20160241560 Reshadi et al. Aug 2016 A1
20160248797 Yampolskiy et al. Aug 2016 A1
20160253500 Alme et al. Sep 2016 A1
20160259945 Yampolskiy et al. Sep 2016 A1
20160335232 Born et al. Nov 2016 A1
20160337387 Hu et al. Nov 2016 A1
20160344769 Li Nov 2016 A1
20160344801 Akkarawittayapoom Nov 2016 A1
20160359875 Kim et al. Dec 2016 A1
20160364496 Li Dec 2016 A1
20160373485 Kamble Dec 2016 A1
20160378978 Singla et al. Dec 2016 A1
20170048267 Yampolskiy et al. Feb 2017 A1
20170063901 Muddu et al. Mar 2017 A1
20170063923 Yang et al. Mar 2017 A1
20170104783 Vanunu et al. Apr 2017 A1
20170126719 Mason May 2017 A1
20170142148 Bu Er et al. May 2017 A1
20170161253 Silver Jun 2017 A1
20170161409 Martin Jun 2017 A1
20170213292 Sweeney et al. Jul 2017 A1
20170221072 AthuluruTlrumala et al. Aug 2017 A1
20170223002 Sabin et al. Aug 2017 A1
20170236078 Rasumov Aug 2017 A1
20170237764 Rasumov Aug 2017 A1
20170264623 Ficarra et al. Sep 2017 A1
20170277892 MacDermid Sep 2017 A1
20170279843 Schultz et al. Sep 2017 A1
20170289109 Caragea Oct 2017 A1
20170300911 Alnajem Oct 2017 A1
20170316324 Barrett et al. Nov 2017 A1
20170318045 Johns et al. Nov 2017 A1
20170324555 Wu et al. Nov 2017 A1
20170324766 Gonzalez Nov 2017 A1
20170337487 Nock Nov 2017 A1
20180013716 Connell et al. Jan 2018 A1
20180041521 Zhang et al. Feb 2018 A1
20180052999 Mitola, III Feb 2018 A1
20180088968 Myhre et al. Mar 2018 A1
20180103043 Kupreev et al. Apr 2018 A1
20180121659 Sawhney et al. May 2018 A1
20180123934 Gissing et al. May 2018 A1
20180124091 Sweeney et al. May 2018 A1
20180124110 Hunt et al. May 2018 A1
20180139180 Napchi et al. May 2018 A1
20180146004 Belfiore, Jr. et al. May 2018 A1
20180157468 Stachura Jun 2018 A1
20180191768 Broda et al. Jul 2018 A1
20180218157 Price et al. Aug 2018 A1
20180219910 Greenshpan et al. Aug 2018 A1
20180285414 Kondiles et al. Oct 2018 A1
20180322584 Crabtree et al. Nov 2018 A1
20180324201 Lowry et al. Nov 2018 A1
20180332076 Callahan et al. Nov 2018 A1
20180336348 Ng et al. Nov 2018 A1
20180337938 Kneib et al. Nov 2018 A1
20180337941 Kraning et al. Nov 2018 A1
20180349641 Barday et al. Dec 2018 A1
20180365519 Pollard et al. Dec 2018 A1
20180375896 Wang et al. Dec 2018 A1
20180375953 Casassa Mont et al. Dec 2018 A1
20190034845 Mo et al. Jan 2019 A1
20190052650 Hu et al. Feb 2019 A1
20190065545 Hazel et al. Feb 2019 A1
20190065748 Foster et al. Feb 2019 A1
20190079869 Baldi et al. Mar 2019 A1
20190089711 Faulkner Mar 2019 A1
20190098025 Lim Mar 2019 A1
20190124091 Ujiie et al. Apr 2019 A1
20190140925 Pon et al. May 2019 A1
20190141060 Lim May 2019 A1
20190147378 Mo et al. May 2019 A1
20190166152 Steele et al. May 2019 A1
20190166156 King-Wilson May 2019 A1
20190179490 Barday et al. Jun 2019 A1
20190215331 Anakata et al. Jul 2019 A1
20190238439 Pugh et al. Aug 2019 A1
20190297106 Geil et al. Sep 2019 A1
20190303574 Lamay et al. Oct 2019 A1
20190303584 Yang et al. Oct 2019 A1
20190362280 Vescio Nov 2019 A1
20190379632 Dahlberg et al. Dec 2019 A1
20190391707 Ristow et al. Dec 2019 A1
20190392252 Fighel et al. Dec 2019 A1
20200012794 Saldanha et al. Jan 2020 A1
20200053127 Brotherton et al. Feb 2020 A1
20200065213 Poghosyan et al. Feb 2020 A1
20200074084 Dorrans et al. Mar 2020 A1
20200092172 Kumaran et al. Mar 2020 A1
20200097845 Shaikh et al. Mar 2020 A1
20200104488 Li et al. Apr 2020 A1
20200106798 Lin Apr 2020 A1
20200120118 Shu et al. Apr 2020 A1
20200125734 Light et al. Apr 2020 A1
20200134175 Marwah et al. Apr 2020 A1
20200183655 Barday et al. Jun 2020 A1
20200186546 Dichiu Jun 2020 A1
20200272763 Brannon et al. Aug 2020 A1
20200285737 Kraus et al. Sep 2020 A1
20200356689 McEnroe et al. Nov 2020 A1
20200356695 Brannon et al. Nov 2020 A1
20210064746 Koide et al. Mar 2021 A1
20210073377 Coull et al. Mar 2021 A1
Foreign Referenced Citations (2)
Number Date Country
WO-2017142694 Jan 2019 WO
WO-2019023045 Jan 2019 WO
Non-Patent Literature Citations (265)
Entry
“Agreed Upon Procedures,” Version 4.0, BITS, The Financial Institution Shared Assessments Program, Assessment Guide, Sep. 2008, 56 pages.
“Amazon Mechanical Turk,” accessed on the internet at https://www.mturk.com/, (Nov. 9, 2018), 7 pages.
“An Executive View of IT Governance,” IT Governance Institute, 2009, 32 pages.
“Assessing Risk in Turbulent Times,” A Workshop for Information Security Executives, Glassmeyter/McNamee Center for Digital Strategies, Tuck School of Business at Dartmouth, Institute for Information Infrastructure Protection, 2009, 17 pages.
“Assuring a Trusted and Resilient Information and Communications Infrastructure,” Cyberspace Policy Review, May 2009, 76 pages.
“Computer Network Graph,” http://www.opte.org, accessed on the internet at http://www.opte.org, (Nov. 9, 2018), 1 page.
“Creating Transparency with Palantir,” accessed on the internet at https://www.youtube.com/watch?v=8cbGChfagUA; Jul. 5, 2012; 1 page.
“Master Security Criteria,” Version 3.0, BITS Financial Services Security Laboratory, Oct. 2001, 47 pages.
“Neo4j (neo4j.com),” accessed on the internet at https://web.archive.org/web/20151220150341/http://neo4j.com:80/developer/guide-data-visualization/; Dec. 20, 2015; 1 page.
“Palantir Cyber: Uncovering malicious behavior at petabyte scale,” accessed on the internet at https://www.youtube.com/watch?v= EhYezV06EE; Dec. 21, 2012; 1 page.
“Palantir.com,” accessed on the internet at http://www.palantir.com/; Dec. 2015; 2 pages.
“Plugging the Right Holes,” Lab Notes, MIT Lincoln Library, Posted Jul. 2008, retrieved Sep. 14, 2010 from http://www.ll.miLedufpublicationsflabnotesfpluggingtherightho! . . . , 2 pages.
“Rapid7 Nexpose Vulnerability Scanner,” accessed on the internet at https://web.archive.org/web/20170520082737/https://www.rapid7.com/products/nexpose/; May 20, 2017.
“Report on Controls Placed in Operation and Test of Operating Effectiveness,” EasCorp, Jan. 1 through Dec. 31, 2008, prepared by Crowe Horwath, 58 pages.
“Shared Assessments: Getting Started,” BITS, 2008, 4 pages.
“Tenable Nessus Network Vulnerability Scanner,” accessed on the internet at https://www.tenable.com/products/nessus/nessus-professional, (Nov. 9, 2018), 13 pages.
“Twenty Critical Controls for Effective Cyber Defense: Consensus Audit,” Version 2.3, Nov. 13, 2009, retrieved on Apr. 9, 2010 from http://www.sans.org/critical-security-controls/print.php., 52 pages.
2009 Data Breach Investigations Report, study conducted by Verizon Business RISK Team, 52 pages.
U.S. Appl. No. 13/240,572 as of Nov. 18, 2015, 45 pages.
Artz, Michael Lyle, “NetSPA: A Network Security Planning Architecture,” Massachusetts Institute of Technology, May 24, 2002, 97 pages.
Azman, Mohamed et al. Wireless Daisy Chain and Tree Topology Networks for Smart Cities. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber= 8869252 (Year: 2019).
Basinya, Evgeny A.; Yushmanov, Anton A. Development of a Comprehensive Security System. 2019 Dynamics of Systems, Mechanisms and Machines (Dynamics). https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8944700 (Year: 2019).
Bhilare et al., “Protecting Intellectual Property and Sensitive Information in Academic Campuses from Trusted Insiders: Leveraging Active Directory”, SIGUCC, Oct. 2009 (5 pages).
BitSight, “Cyber Security Myths Versus Reality: How Optimism Bias Contributes to Inaccurate Perceptions of Risk”, Jun. 2015, Dimensional Research, pp. 1-9.
Borgatti, et al., “On Social Network Analysis in a Supply Chain Context,” Journal of Supply Chain Management; 45(2): 5-22; Apr. 2009, 18 pages.
Boyer, Stephen, et al., Playing with Blocks: SCAP-Enable Higher-Level Analyses, MIT Lincoln Laboratory, 5th Annual IT Security Automation Conference, Oct. 26-29, 2009, 35 pages.
Browne, Niall, et al., “Shared Assessments Program AUP and SAS70 Frequently Asked Questions,” BITS, 4 pages.
Buckshaw, Donald L., “Use of Decision Support Techniques for Information System Risk Management,” submitted for publication in Wiley's Encyclopedia of Quantitative Risk Assessment in Jan. 2007, 11 pages.
Buehler, Kevin S., et al., “Running with risk,” The McKinsey Quarterly, No. 4, 2003, pp. 40-49.
Camelo, “Botnet Cluster Identification,” Sep. 2014, 90 pages.
Camelo, “Condenser: A Graph-based Approach for Detecting Botnets,” AnubisNetworks R&D, Amadora, Portugal and CENTRIA, Universidade NOVA de Lisboa, Portugal, 8 pages, (Oct. 31, 2014).
Carstens, et al., “Modeling Company Risk and Importance in Supply Graphs,” European Semantic Web Conference 2017: The Semantic Web, pp. 18-31, (May 7, 2017).
Chernyshev, M. et al., “On 802.11 Access Point Locatability and Named Entity Recognition in Service Set Identifiers”, IEEE Trans. on Info. and Sec., vol. 11 No. 3 (Mar. 2016).
Chu, Matthew, et al., “Visualizing Attack Graphs, Reachability, and Trust Relationships with Navigator,” MIT Lincoln Library, VizSEC '10, Ontario, Canada, Sep. 14, 2010, 12 pages.
Chuvakin, “SIEM: Moving beyond compliance”, RSA White Paper (2010) (16 pages).
Computer Network Graph—Bees, http://bioteams.com/2007/04/30/visualizing_complex_networks.html, date accessed Sep. 28, 2016, 2 pages.
Computer Network Graph—Univ. of Michigan, http://people.cst.cmich.edu/liao1q/research.shtml, date accessed Sep. 28, 2016, 5 pages.
Crowther, Kenneth G., et al., “Principles for Better Information Security through More Accurate, Transparent Risk Scoring,” Journal of Homeland Security and Emergency Management, vol. 7, Issue 1, Article 37, 2010, 20 pages.
Davis, Lois M., et al., “The National Computer Security Survey (NCSS) Final Methodology,” Technical report prepared for the Bureau of Justice Statistics, Safety and Justice Program, RAND Infrastructure, Safety and Environment (ISE), 2008, 91 pages.
Dillon-Merrill, PhD., Robin L, et al., “Logic Trees: Fault, Success, Attack, Event, Probability, and Decision Trees,” Wiley Handbook of Science and Technology for Homeland Security, 13 pages, (Mar. 15, 2009).
Dun & Bradstreet Corp. Stock Report, Standard & Poor's, Jun. 6, 2009, 8 pages.
Dun & Bradstreet, The DUNSRight Quality Process: Power Behind Quality Information, 24 pages.
Edmonds, Robert, “ISC Passive DNS Architecture”, Internet Systems Consortium, Inc., Mar. 2012, 18 pages.
Equifax Inc. Stock Report, Standard & Poor's, Jun. 6, 2009, 8 pages.
Gephi (gephi.org), accessed on the internet at https://web.archive.org/web/20151216223216/https://gephi.org/; Dec. 16, 2015; 1 page.
Gilgur, et al., “Percentile-Based Approach to Forecasting Workload Growth” Proceedings of CMG'15 Performance and Capacity International Conference by the Computer Measurement Group. No. 2015 (Year:2015), 16 pages.
Gundert, Levi, “Big Data in Security—Part III: Graph Analytics,” accessed on the Internet at https://blogs.cisco.com/security/big-data-in-security-part-iii-graph-analytics; Cisco Blog, Dec. 2013, 8 pages.
Hachem, Sara; Toninelli, Alessandra; Pathak, Animesh; Issany, Valerie. Policy-Based Access Control in Mobile Social Ecosystems. 2011 IEEE International Symposium on Policies for Distributed Systems and Networks (POLICY). Http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5976796. 8 pages, (Jun. 6, 2011).
Hacking Exposed 6, S. McClure et al., copyright 2009, 37 pages.
Ingols, Kyle, et al., “Modeling Modern Network Attacks and Countermeasures Using Attack Graphs,” MIT Lincoln Laboratory, 16 pages, (Dec. 7, 2009).
Ingols, Kyle, et al., “Practical Attack Graph Generation for Network Defense,” MIT Lincoln Library, IEEE Computer Society, Proceedings of the 22nd Annual Computer Security Applications Conference (ACSAC'06), 2006, 10 pages.
Ingols, Kyle, et al., “Practical Experiences Using SCAP to Aggregate CND Data,” MIT Lincoln Library, Presentation to NIST SCAP Conference, Sep. 24, 2008, 59 pages.
Jean, “Cyber Security: How to use graphs to do an attack analysis,” accessed on the internet at https://linkurio.us/blog/cyber-security-use-graphs-attack-analysis/; Aug. 2014, 11 pages.
Jin et al, “Identifying and tracking suspicious activities through IP gray space analysis”, MineNet, Jun. 12, 2007 (6 pages).
Johnson, Eric, et al., “Information Risk and the Evolution of the Security Rating Industry,” Mar. 24, 2009, 27 pages.
Joslyn, et al., “Massive Scale Cyber Traffic Analysis: A Driver for Graph Database Research,” Proceedings of the First International Workshop on Graph Data Management Experience and Systems (GRADES 2013), 6 pages.
KC Claffy, “Internet measurement and data analysis: topology, workload, performance and routing statistics,” accessed on the Internet at http://www.caida.org/publications/papers/1999/Nae/Nae.html., NAE '99 workshop, 1999, 22 pages.
Li et al., “Finding the Linchpins of the Dark Web: a Study on Topologically Dedicated Hosts on Malicious Web Infrastructures”, IEEE, 2013 (15 pages).
Lippmann, Rich, et al., NetSPA: a Network Security Planning Architecture, MIT Lincoln Laboratory, 11 pages.
Lippmann, Richard, et al., “Validating and Restoring Defense in Depth Using Attack Graphs,” MIT Lincoln Laboratory, 10 pages, (Oct. 23, 2006).
Lippmann, RP., et al., “An Annotated Review of Papers on Attack Graphs,” Project Report IA-1, Lincoln Laboratory, Massachusetts Institute of Technology, Mar. 31, 2005, 39 pages.
Lippmann, RP., et al., “Evaluating and Strengthening Enterprise Network Security Using Attack Graphs,” Project Report IA-2, MIT Lincoln Laboratory, Oct. 5, 2005, 96 pages.
Luo, Hui; Henry, Paul. A Secure Public Wireless LAN Access Technique That Supports Walk-Up Users. GLOBECOM '03. IEEE Global Telecommunications Conference. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber= 1258471 (Year: 2003).
Maltego XL, accessed on the Internet at https://www.paterva.com/web7/buy/maltego-clients/maltego-xl.php, 5 pages, (Nov. 7, 2018).
Massimo Candela, “Real-time BGP Visualisation with BGPlay,” accessed on the Internet at https://labs.ripe.net/Members/massimo_candela/real-time-bgp-visualisationwith-bgplay), Sep. 30, 2015, 8 pages.
MaxMind, https://www.maxmind.com/en/about-maxmind, https://www.maxmind.com/en/geoip2-isp-database, date accessed Sep. 28, 2016, 3 pages.
McNab, “Network Security Assessment,” copyright 2004, 13 pages.
McNab, “Network Security Assessment,” copyright 2004, 56 pages.
Method Documentation, CNSS Risk Assessment Tool Version 1.1, Mar. 31, 2009, 24 pages.
Mile 2 CPTE Maltego Demo, accessed on the internet at https://www.youtube.com/watch?v=o2oNKOUzPOU; Jul. 12, 2012; 1 page.
Moradi, et al., “Quantitative Models for Supply Chain Management,” IGI Global, 2012, 29 pages.
Morningstar Direct, dated to Nov. 12, 2020, morningstardirect.com [online]. Retrieved Feb. 26, 2021 from internet URL:https://web.archive.org/web/20201112021943/https://www.morningstar.com/products/direct, (Year: 2020).
Netcraft, www.netcraft.com, date accessed Sep. 28, 2016, 2 pages.
NetScanTools Pro, http://www.netscantools.com/nstpromain.html, date accessed Sep. 28, 2016, 2 pages.
Noel, et al., “Big-Data Architecture for Cyber Attack Graphs, Representing Security Relationships in NoSQL Graph Databases,” The MITRE Corporation, 2014, 6 pages.
Nye, John, “Avoiding Audit Overlap,” Moody's Risk Services, Presentation, Source Boston, Mar. 14, 2008, 19 pages.
U.S. Appl. No. 14/021,585.
U.S. Appl. No. 13/240,572.
U.S. Appl. No. 14/944,484.
U.S. Appl. No. 61/386,156.
Paxson, Vern, “How The Pursuit of Truth Led Me To Selling Viagra,” EECS Department, University of California, International Computer Science Institute, Lawrence Berkeley National Laboratory, Aug. 13, 2009, 68 pages.
Proposal and Award Policies and Procedures Guide, Part I—Proposal Preparation & Submission Guidelines GPG, The National Science Foundation, Feb. 2009, 68 pages.
Provos et al., “The Ghost In the Browser Analysis of Web-based Malware”, 2007 (9 pages).
Rare Events, Oct. 2009, JASON, The MITRE Corporation, Oct. 2009, 104 pages.
Rees, L. P. et al., “Decision support for cybersecurity risk planning.” Decision Support Systems 51.3 (2011): pp. 493-505.
Report to the Congress on Credit Scoring and Its Effects on the Availability and Affordability of Credit, Board of Governors of the Federal Reserve System, Aug. 2007, 304 pages.
RFC 1834, https://tools.ietf.org/html/rfc1834, date accessed Sep. 28, 2016, 7 pages.
RFC 781, https://tools.ietf.org/html/rfc781, date accessed Sep. 28, 2016, 3 pages.
RFC 950, https://tools.ietf.org/html/rfc950, date accessed Sep. 28, 2016, 19 pages.
RFC 954, https://tools.ietf.org/html/rfc954, date accessed Sep. 28, 2016, 5 pages.
SamSpade Network Inquiry Utility, https://www.sans.org/reading-room/whitepapers/tools/sam-spade-934, date accessed Sep. 28, 2016, 19 pages.
Santos, J. R. et al., “A framework for linking cybersecurity metrics to the modeling of macroeconomic interdependencies.” Risk Analysis: An International Journal (2007) 27.5, pp. 1283-1297.
SBIR Phase I: Enterprise Cyber Security Scoring, CyberAnalytix, LLC, http://www.nsf.gov/awardsearch/showAward. do?AwardNumber=I013603, Apr. 28, 2010, 2 pages.
Search Query Report form IP.com (performed Apr. 27, 2020).
Search Query Report from IP.com (performed Jul. 29, 2022).
Security Warrior, Cyrus Peikari, Anton, Chapter 8: Reconnaissance, 6 pages, (Jan. 2004).
Seigneur et al., A Survey of Trust and Risk Metrics for a BYOD Mobile Worker World: Third International Conference on Social Eco-Informatics, 2013, 11 pages.
Seneviratne et al., “SSIDs in the Wild: Extracting Semantic Information from WiFi SSIDs” HAL archives-ouvertes.fr, HAL Id: hal-01181254, Jul. 29, 2015, 5 pages.
Snort Intrusion Monitoring System, http://archive.oreilly.com/pub/h/1393, date accessed Sep. 28, 2016, 3 pages.
Srivastava, Divesh; Velegrakis, Yannis. Using Queries to Associate Metadata with Data. IEEE 23rd International Conference on Data Engineering. Pub. Date: 2007. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4221823, 3 pages.
Stone-Gross, Brett, et al., “FIRE: Finding Rogue Networks,” 10 pages, (Dec. 7, 2009).
Taleb, Nassim N., et al., “The Six Mistakes Executives Make in Risk Management,” Harvard Business Review, Oct. 2009, 5 pages.
The CIS Security Metrics vl.0.0, The Center for Internet Security, May 11, 2009, 90 pages.
The Fair Credit Reporting Act (FCRA) of the Federal Trade Commission (FTC), Jul. 30, 2004, 86 pages.
The Financial Institution Shared Assessments Program, Industry Positioning and Mapping Document, BITS, Oct. 2007, 44 pages.
Wagner, et al., “Assessing the vulnerability of supply chains using graph theory,” Int. J. Production Economics 126 (2010) 121-129.
Wikipedia, https://en.wikipedia.org/wiki/Crowdsourcing, date accessed Sep. 28, 2016, 25 pages.
Williams, Leevar, et al., “An Interactive Attack Graph Cascade and Reachability Display,” MIT Lincoln Laboratory, 17 pages, (Jan. 2007).
Williams, Leevar, et al., “GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool,” MIT Lincoln Library, VizSEC 2009, pp. 44-59, (Sep. 15, 2008).
Winship, C., “Models for sample selection bias”, Annual review of sociology, 18(1) (Aug. 1992), pp. 327-350.
U.S. Appl. No. 15/377,574 U.S. Pat. No. 9,705,932, Methods and Systems for Creating, De-Duplicating, and Accessing Data Using and Object Storage System, filed Dec. 13, 2016.
U.S. Appl. No. 14/021,585 U.S. Pat. No. 9,438,615 Published as: US2015/0074579, Security Risk Management, filed Sep. 9, 2013.
U.S. Appl. No. 15/216,955 U.S. Pat. No. 10,326,786 Published as: US 2016/0330231, Methods for Using Organizational Behavior for Risk Ratings, filed Jul. 22, 2016.
U.S. Appl. No. 15/239,063 U.S. Pat. No. 10,341,370 Published as: US2017/0093901, Security Risk Management, filed Aug. 17, 2016.
U.S. Appl. No. 16/405,121 U.S. Pat. No. 10,785,245, Published as: US2019/0260791, Methods for Using Organizational Behavior for Risk Ratings, filed May 7, 2019.
U.S. Appl. No. 17/025,930 U.S. Pat. No. 11,652,834 Published as: US2021/0006581, Methods for Using Organizational Behavior for Risk Ratings, filed Sep. 18, 2020.
U.S. Appl. No. 18/297,863 Published as: US2023/0247041, Methods for Using Organizational Behavior for Risk Ratings, filed Apr. 10, 2023.
U.S. Appl. No. 13/240,572 U.S. Pat. No. 10,805,331 Published as: US2016/0205126, Information Technology Security Assessment System, filed Sep. 22, 2011.
U.S. Appl. No. 14/944,484 U.S. Pat. No. 9,973,524 Published as: US2016/0323308, Information Technology Security Assessment System, filed Nov. 18, 2015.
U.S. Appl. No. 17/069,151 U.S. Pat. No. 11,777,976 Published as: US2021/0211454, Information Technology Security Assessment System, filed Oct. 13, 2020.
U.S. Appl. No. 18/453,488 Published as: US2023/0403295, Information Technology Security Assessment System, filed Aug. 22, 2023.
U.S. Appl. No. 18/461,087 Published as: US2023/0421600, Information Technology Security Assessment System, filed Sep. 5, 2023.
U.S. Appl. No. 15/142,677 U.S. Pat. No. 9,830,569 Published as: US2016/0239772, Security Assessment Using Service Provider Digital Asset Information, filed Apr. 29, 2016.
U.S. Appl. No. 18/637,577, Information Technology Security Assessment System, filed Apr. 17, 2024.
U.S. Appl. No. 15/134,845 U.S. Pat. No. 9,680,858, Annotation Platform for a Security Risk System, filed Apr. 21, 2016.
U.S. Appl. No. 15/044,952 U.S. Pat. No. 11,182,720 Published as: US2017/0236077, Relationships Among Technology Assets and Services and the Entitites Responsible for Them, filed Feb. 16, 2016.
U.S. Appl. No. 15/089,375 U.S. Pat. No. 10,176,445 Published as: US2017/0236079, Relationships Among Technology Assets and Services and the Entitites Responsible for Them, filed Apr.1, 2016.
U.S. Appl. No. 29/598,298 U.S. Pat. No. D. 835,631, Computer Display Screen With Graphical User Interface, filed Mar. 24, 2017.
U.S. Appl. No. 29/598,299 U.S. Pat. No. D. 818,475, Computer Display With Security Ratings Graphical User Interface, filed Mar. 24, 2017.
U.S. Appl. No. 29/599,622 U.S. Pat. No. D. 847,169, Computer Display With Security Ratings Graphical User Interface, filed Apr. 5, 2017.
U.S. Appl. No. 29/599,620 U.S. Pat. No. D. 846,562, Computer Display With Security Ratings Graphical User Interface, filed Apr. 5, 2017.
U.S. Appl. No. 16/015,686 U.S. Pat. No. 10,425,380 Published as: US2018/0375822, Methods for Mapping IP Addresses and Domains to Organizations Using User Activity Data, filed Jun. 22, 2018.
U.S. Appl. No. 16/543,075 U.S. Pat. No. 10,554,619 Published as: US Published as: US2019/0379632, Methods for Mapping IP Addresses and Domains to Organizations Using User Activity Data, filed Aug. 16, 2019.
U.S. Appl. No. 18/365,384 Published as: US2023/0396644, Correlated Risk in Cybersecurity, filed Aug. 4, 2023.
U.S. Appl. No. 16/170,680 U.S. Pat. No. 10,521,583, Systems and Methods for Remote Detection of Software Through Browser Webinjects, filed Oct. 25, 2018.
U.S. Appl. No. 16/688,647 U.S. Pat. No. 10,776,483 Published as: US2020/0134174, Systems and Methods for Remote Detection of Software Through Browser Webinjects, filed Nov. 19, 2019.
U.S. Appl. No. 17/000,135 U.S. Pat. No. 11,126,723 Published as: US2021/0004457, Systems and Methods for Remote Detection of Software Through Browser Webinjects, filed Aug. 21, 2020.
U.S. Appl. No. 17/401,683 U.S. Pat. No. 11,727,114 Published as: US2021/0374243, Systems and Methods for Remote Detection of Software Through Browser Webinjects, filed Aug. 13, 2021.
U.S. Appl. No. 18/333,768, Published as: US2023/0325502, Systems and Methods for Remote Detection of Software Through Browser Webinjects, filed Jun. 13, 2023.
U.S. Appl. No. 15/954,921 U.S. Pat. No. 10,812,520 Published as: US2019/0319979, Systems and Methods for External Detection of Misconfigured Systems, filed Apr. 17, 2018.
U.S. Appl. No. 29/666,942 U.S. Pat. No. D. 892,135, Computer Display With Graphical User Interface, filed Oct. 17, 2018.
U.S. Appl. No. 29/677,306 U.S. Pat. No. D. 905,702, Computer Display Screen With Corporate Hierarchy Graphical User Interface, filed Jan. 18, 2019.
U.S. Appl. No. 16/775,840 U.S. Pat. No. 10,791,140, Systems and Methods for Assessing Cybersecurity State of Entities Based on Computer Network Characterization, filed Jan. 29, 2020.
U.S. Appl. No. 17/018,587 U.S. Pat. No. 11,050,779, Systems and Methods for Assessing Cybersecurity State of Entities Based on Computer Network Characterization, filed Sep. 11, 2020.
U.S. Appl. No. 16/779,437 U.S. Pat. No. 10,893,067 Published as: US2021/0243221, Systems and Methods for Rapidly Generating Security Ratings, filed Jan. 31, 2020.
U.S. Appl. No. 29/815,855 U.S. Pat. No. D. 1,010,666, Computer Display With a Graphical User Interface for Cybersecurity Risk Management, filed Nov. 17, 2021.
U.S. Appl. No. 29/736,641 U.S. Pat. No. D. 937,870, Computer Display With Peer Analytics Graphical User Interface, filed Jun. 2, 2020.
U.S. Appl. No. 17/039,675 U.S. Pat. No. 11,032,244 Published as: US2021/0099428, Systems and Methods for Determining Asset Importance in Security Risk Management, filed Jun. 2, 2020.
U.S. Appl. No. 17/945,337 Published as US2023/0091953, Systems and Methods for Precomputation of Digital Asset Inventories, filed Sep. 15, 2022.
U.S. Appl. No. 17/856,217 Published as: US2023/0004655, Systems and Methods for Accelerating Cybersecurity Assessments, filed Jul. 1, 2022.
U.S. Appl. No. 18/328,142, Systems and Methods for Modeling Cybersecurity Breach Costs, filed Jun. 2, 2023.
U.S. Appl. No. 15/271,655 Published as: US 2018/0083999, Self-Published Security Risk Management, filed Sep. 21, 2016.
U.S. Appl. No. 15/377,574 U.S. Pat. No. 9,705,932, Methods and Systems for Creating, De-Deplicating, and Accessing Data Using an Object Storage System, Dec. 13, 2016.
U.S. Appl. No. 14/021,585 U.S. Pat. No. 9,438,615 Published as: US2015/0074579, Security Risk Management, Sep. 9, 2013.
U.S. Appl. No. 15/216,955 U.S. Pat. No. 10,326,786 Published as: US2016/0330231, Methods for Using Organizational Behavior for Risking Ratings, Jul. 22, 2016.
U.S. Appl. No. 15/239,063 U.S. Pat. No. 10,326,786 Published as: US2016/0330231, Methods for Using Organizational Behavior for Risk Ratings, Jul. 22, 2016.
U.S. Appl. No. 16/405,121 U.S. Pat. No. 10,785,245 Published as: US2019/0260791, Methods for Using Organizational Behavior for Risk Ratings, May 7, 2019.
U.S. Appl. No. 17/025,930 U.S. Pat. No. 11,652,834 Published as: US2021/0006581, Methods for Using Organizational Behavior for Risk Ratings, Sep. 18, 2020.
U.S. Appl. No. 18/297,863 Published as: US2023/0247041, Methods for Using Organizational Behavior for Risk Ratings, Apr. 10, 2023.
U.S. Appl. No. 13/240,572 U.S. Pat. No. 10,805,331 Published as: US2016/0205123, Information Technology Security Assessment System, Sep. 22, 2011.
U.S. Appl. No. 14/944,484 U.S. Pat. No. 9,973,524 Published as: US2016/0323308, Information Technology Security Assessment System, Nov. 18, 2015.
U.S. Appl. No. 17/069,151 U.S. Pat. No. 11,777,976 Published as: US2021/0211454, Information Technology Security Assessment System, Oct. 13, 2020.
U.S. Appl. No. 18/453,488 Published as: US2023/0403295, Information Technology Security Assessment System, Aug. 22, 2023.
U.S. Appl. No. 18/461,087 Published as: US2023/0421600, Information Technology Security Assessment System, Sep. 5, 2023.
U.S. Appl. No. 15/142,677 U.S. Pat. No. 9,830,569 Published as: US2016/0239772, Security Assessment Using Service Provider Digital Asset Information, Apr. 29, 2016.
U.S. Appl. No. 18/637,577, Information Technology Security Assessment System, Apr. 17, 2024.
U.S. Appl. No. 15/134,845 U.S. Pat. No. 9,830,569, Annotation Platform for a Security Risk System, Apr. 21, 2016.
U.S. Appl. No. 15/044,952 U.S. Pat. No. 11,182,720 Published as: US2017/0236077, Relationships Among Technology Assets and Services and the Entities Responsible for them, Feb. 16, 2016.
U.S. Appl. No. 15/089,375 U.S. Pat. No. 10,176,445 Published as: US2017/0236079, Relationships Among Technology Assets and Services and the Entities Responsible for them, Apr. 1, 2016.
U.S. Appl. No. 29/598,298 D835,631, Computer Display Screen with Graphical User Interface, Mar. 24, 2017.
U.S. Appl. No. 29/598,299 D818,475, Computer Display with Security Ratings Graphical User Interface, Mar. 24, 2017.
U.S. Appl. No. 29/599,622 D847,169 Computer Display with Security Ratings Graphical User Interface, Apr. 5, 2017.
U.S. Appl. No. 29/599,620 D846,562, Computer Display with Security Ratings Graphical User Interface, Apr. 5, 2017.
U.S. Appl. No. 16/015,686 U.S. Pat. No. 10,425,380 Published as: US2018/0375822, Methods for MApping IP Addresses and Domains to Organizations Using User Activity Data, Jun. 22, 2018.
U.S. Appl. No. 16/543,075 U.S. Pat No. 10,554,619 Published as: US2019/0379632, Methods for Mapping IP Addresses and Domains to Organizations Using User Activity Data, filed Aug. 16, 2019.
U.S. Appl. No. 16/738,825 U.S. Pat. No. 10,893,021 Published as: US2020/0153787, Methods for Mapping IP Addresses and Domains to Organizations Using User Activity Data, filed Jan. 9, 2020.
U.S. Appl. No. 17/146,064, U.S. Pat. No. 11,627,109 Published as: US2021/0218702, Methods for Mapping IP Addresses and Domains to Organizations Using User Activity Data, filed Jan. 11, 2021.
U.S. Appl. No. 15/918,286 U.S. Pat. No. 10,257,219, Correlated Risk in Cybersecurity, filed Mar. 12, 2018.
U.S. Appl. No. 16/292,956 U.S. Pat. No. 10,594,723 Published as: US2019/0297106, Correlated Risk in Cybersecurity, filed Mar. 5, 2019.
U.S. Appl. No. 16/795,056 U.S. Pat. No. 10,931,705 Published as: US2020/0195681, Correlated Risk in Cybersecurity filed Feb. 19, 2020.
U.S. Appl. No. 17/179,630 U.S. Pat. No. 11,770,401 Published as: US2021/0176269, Correlated Risk in Cybersecurity filed Feb. 19, 2021.
U.S. Appl. No. 18/365,384, Published as: US2023/0396644, Correlated Risk in Cybersecurity, Aug. 4, 2023.
U.S. Appl. No. 16/170,680, U.S. Pat. No. 10,521,583, Systems and Methods for Remote Detection of Software Through Browser Webinjects, Oct. 25, 2018.
U.S. Appl. No. 16/688,647, U.S. Pat. No. 10,776,483, Published as: US2020/0134174, Systems and Methods for Remote Detection of Software Through Browser Webinjects, Nov. 19, 2019.
U.S. Appl. No. 17/000,135, U.S. Pat. No. 11,126,723, Published as: US2021/0004457, Systems and Methods for Remote Detection of Software Through Browser Webinjects, Aug. 21, 2020.
U.S. Appl. No. 17/401,683, U.S. Pat. No. 11,727,114, Published as: US2021/0374243, Systems and Methods for Remote Detection of Software Through Browser Webinjects, Aug. 13, 2021.
U.S. Appl. No. 18/333,768, Published as: US2023/0325502, Systems and Methods for Remote Detection of Software Through Browser Webinjects, Jun. 13, 2023.
U.S. Appl. No. 15/954,921, U.S. Pat. No. 10,812,520, Published as: US2019/0319979, Systems and Methods for External Detection of Misconfigured Systems, filed April 17, 2018.
U.S. Appl. No. 17/014,495, U.S. Pat. No. 11,671,441, Published as: US2020/0404017, Systems and Methods for External Detection of Misconfigured Systems, filed Sep. 8, 2020.
U.S. Appl. No. 18/302,925 Published as: US2023/0269267, Systems and Methods for External Detection of Misconfigured Systems, filed Apr. 19, 2023.
U.S. Appl. No. 16/549,764 Published as: US/2021/0058421, Systems and Methods for Inferring Entity Relationships via Network Communications of Users or User Devices, filed Aug. 23, 2019.
U.S. Appl. No. 16/787,650 U.S. Pat. No. 10,749,893, Systems and Methods for Inferring Entity Relationships via Network Communications of Users or User Devices, filed Feb. 11, 2020.
U.S. Appl. No. 18/429,539, Systems and Methods for Inferring Entity Relationships via Network Communications of Users or User Devices, filed Feb. 1, 2024.
U.S. Appl. No. 16/583,991, U.S. Pat. No. 10,848,382, Systems and Methods for Network Asset Discovery and Association Thereof with Entities, filed Sep. 26, 2019.
U.S. Appl. No. 17/085,550 U.S. Pat. No. 11,329,878 Published as: US/2021/0099347, Systems and Methods for Network Asset Discovery and Association Thereof with Entities ,filed Oct. 30, 2020.
U.S. Appl. No. 29/666,942, D892,135, Computer Display with Graphical User Interface, filed Oct. 17, 2018.
U.S. Appl. No. 16/360,641, U.S. Pat. No. 11,200,323 Published as: US2020/0125734, Systems and Methods for Forecasting Cybersecurity Ratings Based on Event-Rate Scenarios, filed Mar. 21, 2019.
U.S. Appl. No. 17/523,166, U.S. Pat. No. 11,783,052, Published as: US/2022/0121753, Systems and Methods for Forecasting Cybersecurity Ratings Based on Event-Rate Scenarios, filed Nov. 10, 2021.
U.S. Appl. No. 16/514,771, U.S. Pat. No. 10,726,136, Systems and Methods for Generating Security Improvement Plans for Entities, filed Jul. 17, 2019.
U.S. Appl. No. 16/922,673, U.S. Pat. No. 11,030,325, Published as: US/2021/0019424, Systems and Methods for Generating Security Improvement Plans for Entities, filed Jul. 7, 2020.
U.S. Appl. No. 17/307,577, U.S. Pat. No. 11,675,912, Published as: US/2021/0211454, Systems and Methods for Generating Security Improvement Plans for Entities, filed May 4, 2021.
U.S. Appl. No. 29/677,306, D905702, Computer Display Screen with Corporate Hierarchy Graphical User Interface, filed Jan. 18, 2019.
U.S. Appl. No. 16/775,840, U.S. Pat. No. 10,791,140, Systems and Methods for Assessing Cybersecurity State of Entites Based on Computer Network Characterization, filed Jan. 29, 2020.
U.S. Appl. No. 17/018,587, U.S. Pat. No. 11,050,779, Systems and Methods for Assessing Cybersecurity State of Entites Based on Computer Network Characterization, filed Sep. 11, 2020.
U.S. Appl. No. 16/779,437, U.S. Pat. No. 10,893,067 Published as: US2021/0243221, filed Jan. 31, 2020.
U.S. Appl. No. 17/132,512 U.S. Pat. No. 11,595,427 Published as: US2021/0243221, Systems and Methods for Rapidly Generating Security Ratings, filed Dec. 23, 2020.
U.S. Appl. No. 18/158,594 U.S. Pat. No. 11,777,983, Systems and Methods for Rapidly Generating Security Ratings, filed Jan. 24, 2023.
U.S. Appl. No. 18/454,959 Published as: US2024/129332, Systems and Methods for Rapidly Generating Security Ratings, filed Aug. 24, 2023.
U.S. Appl. No. 17/119,822 U.S. Pat. No. 11,122,073, Systems and Methods for Cybersecurity Risk Mitigation and Management, filed Dec. 11, 2020.
U.S. Appl. No. 29/815,855, D1010666, Computer Display With a Graphical User Interface for Cybersecurity Risk Management, filed Nov. 17, 2021.
U.S. Appl. No. 17/392,521 U.S. Pat. No. 11,689,555 Published as US2022/0191232, Systems and Methods for Cybersecurity Risk Mitigation and Management, filed Aug. 3, 2021.
U.S. Appl. No. 18/141,654 Published as US2023/0269265, Systems and Methods for Cybersecurity Risk Mitigation and Management, filed May 1, 2023.
U.S. Appl. No. 29/916,503, Computer Display with a Graphical User Interface, filed Nov. 13, 2023.
U.S. Appl. No. 29/916,519, Computer Display with a Graphical User Interface, filed Nov. 13, 2023.
U.S. Appl. No. 16/802,232 U.S. Pat. No. 10,764,298, Systems and Methods for Improving a Security Profile of an Entity Based on Peer Security Profiles, filed Feb. 26, 2020.
U.S. Appl. No. 16/942,452, U.S. Pat. No. 11,265,330 Published as: US2021/0266324, Systems and Methods for Improving a Security Profile of an Entity Based on Peer Security Profiles, filed Jul. 29, 2020.
U.S. Appl. No. 29/725,724, Computer Display with Risk Vectors Graphical User Interface, filed Feb. 26, 2020.
U.S. Appl. No. 29/736,641 D937870, Computer Display with Peer Analytics Graphical User Interface, filed Jun. 2, 2020.
U.S. Appl. No. 17/039,675, U.S. Pat. No. 11,032,244 Published as: US2021/0099428, Systems and Methods for Determining Asset Importance in Security Risk Management, filed Sep. 30, 2020.
U.S. Appl. No. 17/320,997 Published as US2021/0344647, Systems and Methods for Determining Asset Importance in Security Risk Management, filed May 14, 2021.
U.S. Appl. No. 18/422,470, Systems and Methods for Determining Asset Importance in Security Risk Management, filed Jan. 25, 2024.
U.S. Appl. No. 16/884,607, U.S. Pat. No. 11,023,585, Systems and Methods for Managing Cybersecurity Alerts, filed May 27, 2020.
U.S. Appl. No. 17/236,594 U.S. Pat. No. 11,720,679 Published as: US2021/0374246, Systems and Methods for Managing Cybersecurity Alerts, filed Apr. 21, 2021.
U.S. Appl. No. 18/335,384 Published as: US2023/0325505, Systems and Methods for Managing Cybersecurity Alerts, filed Jun. 15, 2023.
U.S. Appl. No. 17/710,168, Published as: US2022/0318400, Systems and Methods for Assessing Cybersecurity Risk in a Work from Home Environment, filed Mar. 31, 2022.
U.S. Appl. No. 18/770,949, Systems and Methods for Assessing Cybersecurity Risk in a Work from Home Environment, filed Jul. 12, 2024.
U.S. Appl. No. 17/945,337 Published as: US2023/0091953, Systems and Methods for Precomputation of Digital Asset in Inventories, filed Sep. 15, 2022.
U.S. Appl. No. 18/359,183 Published as: US2024/0045950, Systems and Methods for Assessing Cybersecurity Efficacy of Entities Against Common Control and Maturity Frameworks Using Externally-Observed Datasets, filed Jul. 26, 2023.
U.S. Appl. No. 17/856,217 Published as: US2023/00404655, Systems and Methods for Accelerating Cybersecurity Assessments, filed Jul. 1, 2022.
U.S. Appl. No. 18/162,154 Published as: US2023/0244794, Systems and Methods for Assessment of Cyber Resilience, filed Jan. 31, 2023.
U.S. Appl. No. 18/328,142, Systems and Mehtods for Modeling Cybersecurity Breach Costs, filed Jun. 2, 2023.
U.S. Appl. No. 18/678,378, Systems and Methods for Predicting Cybersecruity Risk Based on Entity Firmographics, filed May 30, 2024.
Khalil, J. et al., “Discovering Malicious Domains through Passive DNS Data Graph Analysis,” Conference Paper, (Jun. 2016), 13 pages.
'834 Patent Claim Chart, BitSight Technologies, Inc. v. NormShield Inc. d/b/a Black Kite Inc., Case No. 1:23-cv-12055-MJJ, D.I. 39-11 (Dec. 11, 2023), 28 pages.
“Maltego User Guide” webpage http://ctas.paterva.com/view/Userguide, 35 pages, Jun. 6, 2012, retrieved from Internet Archive Wayback Machine https://web.archive.org/web/20120606172056/http://ctas.paterva.com/view/Userguide on Sep. 6, 2024.
Anderson, H., “Nessus, Part 3: Analysing Reports,” webpage http://www.securityfocus.com/infocus/1759, 5 pages, Oct. 20, 2006, retrieved from Internet Archive Wayback Machine https://web.archive.org/web/20061020202310/http://www.securityfocus.com/infocus/1759 on Aug. 16, 2024.
Aug. 29, 2024 Email from Melissa Nezhnik, 3 pages.
Curriculum Vitae of Kevin Almeroth Ph.D., 40 pages.
Declaration of Dr. Kevin Almeroth, 109 pages.
Declaration of Dr. Kevin Almeroth, 95 pages.
Declaration of Kevin Almeroth, Ph.D., 127 pages.
Declaration of Kevin Almeroth, Ph.D., 131 pages.
Declaration of Nathaniel Frank-White, 52 pages.
Declaration of Sylvia Hall-Ellis, Ph.D., 548 pages.
Gates, C., “New School Information Gathering,” (2008), available at https://www.carnalOwnage.com/papers/17_Gates.pdf, 84 pages.
Gates, C., “Toorcon X Gates: New School Information Gathering,” available at http://vimeo.com/2745624, 2 pages, retrieved on Aug. 13, 2024.
Gates, C., “Toorcon X Gates: New School Information Gathering,” 2 pages, Mar. 2, 2009, retrieved from Internet Archive Wayback Machine https://web.archive.org/web/20090302045813/vimeo.com//2745624 on Aug. 13, 2024.
Levy, E., “The Making of a Spam Zombie Army,” IEEE Computer & Security (2003), pp. 58-59.
Matta Security Limited, “An Introduction to Internet Attack & Penetration,” available at http:/www.trustmatta.com/downloads/pdf/, Matta_Attack_and_Penetration_Introduction.pdf, (2001- 2002), 14 pages.
Mcnab, C., “Network Security Assessment,” O'Reilly Media, Inc., Second Edition, (2008), 506 pages.
Moore & Valsmith, et al., “Tactical Exploitation,” 37 pages, Feb. 8, 2010, retrieved from Internet Archive Wayback Machine https://web.archive.org/web/20100208161237/https:/www.blackhat.com/presentations/bh-USA-07/Moore_and_Valsmith/Whitepaper/bh-usa-07-moore_and_valsmith-WP.pdf.
“MW Metadata”, webpage https://mattw.io/youtube-metadata, 7 pages, retrieved on Aug. 21, 2024.
Nessus, “Documentation,” webpage http://www.nessus.org/documentation/, 2 pages, Feb. 19, 2007, retrieved from Internet Archive Wayback Machine https://web.archive.org/web/20070219213924/http://www.nessus.org/documentation/ on Aug. 16, 2024.
Nessus, “Plugins: Symantec Anti Virus Corporate Edition Check,” webpage http://www.nessus.org/plugins/index.php?view=single&id=21725, 2 pages, Feb. 22, 2007, retrieved from Internet Archive Wayback Machine https://web.archive.org/web/20070222133717/http://www.nessus.org/plugins/index.php?view=single&id=21725 on Aug. 13, 2024.
Nessus, “Plugins: The remote host is infected by a virus”, webpage http://www.nessus.org/plugins/index.php?view=single&id=11329, 2 pages, Feb. 22, 2007, retrieved from Internet Archive Wayback Machine https://web.archive.org/web/20070222091638/http://www.nessus.org/plugins/index.php?view=single&id=11329 on Aug. 13, 2024.
Nessus, “Plugins: The remote host is infected by msblast.exe”, webpage http://www.nessus.org/plugins/index.php?view=single&id=11818, 1 page, Sep. 24, 2006, retrieved from Internet Archive Wayback Machine https://web.archive.org/web/20060924205758/http://www.nessus.org/plugins/index.php?view=single&id=11818 on Aug. 13, 2024.
Prosecution History for U.S. Pat. No. 10,805,331, 1060 pages.
Prosecution History for U.S. Pat. No. 11,652,834, 344 pages.
Prosecution History for U.S. Pat. No. 9,438,615, 232 pages.
Prosecution History for U.S. Pat. No. 9,973,524, 424 pages.
Social-Engineer, LLC, “Social Engineering Using Maltego,” webpage <www.youtube.com/watch?v=qiv4-wy3mxo>, 2 pages, Sep. 14, 2009, retrieved on Aug. 13, 2024.
Stoneburner, G. et al., “Risk Management Guide for Information Technology Systems,” NIST, available at https://www.archives.gov/files/era/recompete/sp800-30.pdf, Jul. 2002, 55 pages.
Knowles, D. et al., “W32.Blaster.Worm: Technical Details” webpage http://www.symantec.com/security_response/writeup.jsp?docid=2003-081113-0229-99&tabid=2, 3 pages, May 3, 2007, retrieved from Internet Archive Wayback Machine https://web.archive.org/web/20070503023514/http://www.symantec.com/security_response/writeup.jsp?docid=2003-081113-0229-99&tabid=2 on Aug. 16, 2024.
Tenable Network Security, Inc., “Nessus 3.0 Client Guide,” available at http://nessus.org/documentation/nessus_3.0_client_guide.pdf, Mar. 6, 2007, 32 pages.
Social-Engineer, LLC, Screen captures from “Social Engineering Using Maltego,” webpage <www.youtube.com/watch?v=giv4-wy3mxo>. 43 pages, Sep. 14, 2009.
Related Publications (1)
Number Date Country
20230267215 A1 Aug 2023 US
Continuations (3)
Number Date Country
Parent 17307577 May 2021 US
Child 18138803 US
Parent 16922673 Jul 2020 US
Child 17307577 US
Parent 16514771 Jul 2019 US
Child 16922673 US