Technical Field
The present disclosure relates generally to the field of combustion furnaces and methods of use to produce glass, and more specifically to systems and methods for reducing foam or its impact during manufacture of glass using submerged combustion melters.
Background Art
Submerged combustion melting (SCM) involves melting glass batch materials to produce molten glass by passing oxygen, oxygen-air mixtures or air along with a liquid, gaseous fuel, or particulate fuel in the glass batch, directly into a molten pool of glass usually through burners submerged in a glass melt pool. The introduction of high flow rates of oxidant and fuel into the molten glass, and the expansion of the gases cause rapid melting of the glass batch and much turbulence. However, one drawback to submerged combustion is the tendency of the molten glass to foam. The foam may stabilize in a top layer when the molten mass is routed through conditioning and/or distribution channels/systems downstream of the submerged combustion melter. The foam layer may impede the ability to apply heat to the glass using combustion burners, and may also impede the rate at which further bubbles in the melt rise and thus effect expulsion of the bubbles and mass flow rate of the melt in the channels. In extreme cases, the foam generated may interfere with the traditional energy application methods employed, which may cause systems to require shutdown, maintenance and may result in a process upset. Attempts to reduce the foam problem through process adjustments have not met with complete success in reducing foam to an acceptable amount.
It would be an advance in the glass manufacturing art if foam could be reduced, or the effect of the foam reduced, during glass manufactured using a submerged combustion melter and methods.
In accordance with the present disclosure, systems and methods are described which reduce or overcome one or more of the above problems.
A first aspect of the disclosure is a system comprising:
a submerged combustion melter comprising a floor, a roof, and a wall structure connecting the floor and roof, the melter comprising one or more submerged combustion burners and a molten glass outlet, the melter configured to produce an initial foamy molten glass having a density and comprising bubbles, at least some of the bubbles forming a bubble layer on top of the foamy molten glass; and
one or more non-submerged auxiliary burners positioned in the roof and/or wall structure and configured to deliver their combustion products to impact at least a portion of the bubbles in the bubble layer with sufficient force and/or heat to burst at least some of the bubbles and form a reduced foam molten glass.
A second aspect of the disclosure is a system comprising:
a submerged combustion melter comprising a floor, a roof, and a wall structure connecting the floor and roof, the melter comprising one or more submerged combustion burners and a molten glass outlet, the melter configured to produce an initial foamy molten glass having a density and comprising bubbles, at least some of the bubbles forming a bubble layer on top of the foamy molten glass; and
a downstream component fluidly connected to the melter for accepting at least a portion of the foamy molten glass, the downstream component comprising a flow channel, a downstream component roof, and a downstream component wall structure connecting the downstream component flow channel and downstream component roof, the downstream component comprising one or more non-submerged downstream component auxiliary burners positioned in the downstream component roof and/or downstream component wall structure and configured to deliver their combustion products to impact at least a portion of bubbles in the bubble layer on the foamy molten glass with sufficient force and/or heat to burst at least some of the bubbles.
A third aspect of the disclosure is a system comprising:
a submerged combustion melter comprising a floor, a roof, and a wall structure connecting the floor and roof, the melter comprising one or more submerged combustion burners and a molten glass outlet, the melter configured to produce an initial foamy molten glass having a density and comprising bubbles, at least some of the bubbles forming a bubble layer on top of the foamy molten glass;
one or more non-submerged auxiliary burners positioned in the roof and/or wall structure and configured to deliver combustion products to impact at least a portion of the bubbles in the bubble layer with sufficient force and heat to burst at least some of the bubbles and form a reduced foam molten glass; and
a downstream component fluidly connected to the melter for accepting at least a portion of the reduced foam molten glass, the downstream component comprising a flow channel, a downstream component roof, and a downstream component wall structure connecting the downstream component flow channel and downstream component roof, the downstream component comprising one or more non-submerged downstream component auxiliary burners positioned in the downstream component roof and/or downstream component wall structure and configured to deliver their combustion products to impact at least a portion of bubbles remaining in the bubble layer on the reduced foam molten glass with sufficient force and/or heat to burst at least some of the remaining bubbles.
A fourth aspect of the disclosure is a method comprising:
melting glass-forming materials in a submerged combustion melter comprising a floor, a roof, and a wall structure connecting the floor and roof, the melter comprising one or more submerged combustion burners and a molten glass outlet;
producing an initial foamy molten glass having a density and comprising bubbles, at least some of the bubbles forming a bubble layer on top of the foamy molten glass; and
routing combustion products from one or more non-submerged auxiliary burners positioned in the roof and/or wall structure to impact at least a portion of the bubbles in the bubble layer with sufficient force and/or heat to burst at least some of the bubbles and form a reduced foam molten glass.
A fifth aspect of the disclosure is a method comprising:
melting glass-forming materials in a submerged combustion melter comprising a floor, a roof, and a wall structure connecting the floor and roof, the melter comprising one or more submerged combustion burners and a molten glass outlet;
producing an initial foamy molten glass having a density and comprising bubbles, at least some of the bubbles forming a bubble layer on top of the foamy molten glass; and routing at least a portion of the foamy molten glass and bubble layer into a downstream component fluidly connected to the melter, the downstream component comprising a flow channel, a downstream component roof, and a downstream component wall structure connecting the downstream component flow channel and downstream component roof; and
routing combustion products from at least one downstream component non-submerged auxiliary burners positioned in the downstream component roof and/or downstream component wall structure to impact at least a portion of bubbles in the bubble layer on the foamy molten glass with sufficient force and/or heat to burst at least some of the bubbles.
A sixth aspect of the disclosure is a method comprising:
melting glass-forming materials in a submerged combustion melter comprising a floor, a roof, and a wall structure connecting the floor and roof, the melter comprising one or more submerged combustion burners and a molten glass outlet;
producing an initial foamy molten glass having a density and comprising bubbles, at least some of the bubbles forming a bubble layer on top of the foamy molten glass;
routing combustion products from one or more non-submerged auxiliary burners positioned in the roof and/or wall structure to impact at least a portion of the bubbles in the bubble layer with sufficient force and/or heat to burst at least some of the bubbles and form a reduced foam molten glass; and
routing at least a portion of the reduced foam molten glass to a downstream component fluidly connected to the melter, the downstream component comprising a flow channel, a downstream component roof, and a downstream component wall structure connecting the downstream component flow channel and downstream component roof; and
routing combustion products from one or more non-submerged downstream component auxiliary burners positioned in the downstream component roof and/or downstream component wall structure to impact at least a portion of bubbles remaining in the bubble layer on the reduced foam molten glass with sufficient force and/or heat to burst at least some of the remaining bubbles.
Systems and methods of the disclosure will become more apparent upon review of the brief description of the drawings, the detailed description of the disclosure, and the claims that follow.
The manner in which the objectives of the disclosure and other desirable characteristics can be obtained is explained in the following description and attached drawings in which:
It is to be noted, however, that the appended drawings are not to scale and illustrate only typical embodiments of this disclosure, and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
In the following description, numerous details are set forth to provide an understanding of the disclosed systems and methods. However, it will be understood by those skilled in the art that the systems and methods covered by the claims may be practiced without these details and that numerous variations or modifications from the specifically described embodiments may be possible and are deemed within the claims. All U.S. published patent applications and U.S. patents referenced herein are hereby explicitly incorporated herein by reference. In the event definitions of terms in the referenced patents and applications conflict with how those terms are defined in the present application, the definitions for those terms that are provided in the present application shall be deemed controlling.
As explained briefly in the Background, one drawback to submerged combustion is the tendency of the molten glass to foam, either from glass-forming reactions, combustion products, or both. The foam may stabilize in a top layer when the molten mass is routed through equipment downstream of the submerged combustion melter, such as forehearths, conditioning channels, distribution channels, and the like. The foam layer may impede the ability to apply heat to the glass using combustion burners in the melter and in such downstream equipment, and may also impede the rate at which further bubbles in the melt rise and thus effect expulsion of the bubbles and mass flow rate of the melt in the channels. In extreme cases, the foam generated may interfere with the traditional energy application methods employed, which may cause systems to require shutdown, maintenance and may result in a process upset. Attempts to reduce the foam problem through process adjustments have not met with complete success in reducing foam to an acceptable amount.
Applicants have discovered systems and methods that may reduce or eliminate such problems.
Various terms are used throughout this disclosure. “Submerged” as used herein means that combustion gases emanate from burners under the level of the molten glass; the burners may be floor-mounted, wall-mounted, or in melter embodiments comprising more than one submerged combustion burner, any combination thereof (for example, two floor mounted burners and one wall mounted burner).
The terms “foam” and “foamy” include froths, spume, suds, heads, fluffs, fizzes, lathers, effervesces, layer and the like. The term “bubble” means a thin, shaped, gas-filled film of molten glass. The shape may be spherical, hemispherical, rectangular, ovoid, and the like. Gas in the gas-filled bubbles may comprise oxygen or other oxidants, nitrogen, argon, noble gases, combustion products (including but not limited to, carbon dioxide, carbon monoxide, NOx, SOx, H2S, and water), reaction products of glass-forming ingredients (for example, but not limited to, sand (primarily SiO2), clay, limestone (primarily CaCO3), burnt dolomitic lime, borax and boric acid, and the like. Bubbles may include solids particles, for example soot particles, either in the film, the gas inside the film, or both.
As used herein the term “combustion gases” means substantially gaseous mixtures of combusted fuel, any excess oxidant, and combustion products, such as oxides of carbon (such as carbon monoxide, carbon dioxide), oxides of nitrogen, oxides of sulfur, and water. Combustion products may include liquids and solids, for example soot and unburned liquid fuels.
“Oxidant” as used herein includes air and gases having the same molar concentration of oxygen as air, oxygen-enriched air (air having oxygen concentration of oxygen greater than 21 mole percent), and “pure” oxygen, such as industrial grade oxygen, food grade oxygen, and cryogenic oxygen. Oxygen-enriched air may have 50 mole percent or more oxygen, and in certain embodiments may be 90 mole percent or more oxygen. Oxidants may be supplied from a pipeline, cylinders, storage facility, cryogenic air separation unit, membrane permeation separator, or adsorption unit.
The term “fuel”, according to this disclosure, means a combustible composition comprising a major portion of, for example, methane, natural gas, liquefied natural gas, propane, atomized oil or the like (either in gaseous or liquid form). Fuels useful in the disclosure may comprise minor amounts of non-fuels therein, including oxidants, for purposes such as premixing the fuel with the oxidant, or atomizing liquid fuels. As used herein the term “fuel” includes gaseous fuels, liquid fuels, flowable solids, such as powdered carbon or particulate material, waste materials, slurries, and mixtures or other combinations thereof. When the fuel comprises gaseous fuel, the gaseous fuel may be selected from the group consisting of methane, natural gas, liquefied natural gas, propane, carbon monoxide, hydrogen, steam-reformed natural gas, atomized oil or mixtures thereof.
The sources of oxidant and fuel may be one or more conduits, pipelines, storage facility, cylinders, or, in embodiments where the oxidant is air, ambient air. Oxygen-enriched oxidants may be supplied from a pipeline, cylinder, storage facility, cryogenic air separation unit, membrane permeation separator, or adsorption unit such as a vacuum swing adsorption unit.
Conduits used in burners useful in the systems and methods of the present disclosure may be comprised of metal, ceramic, ceramic-lined metal, or combination thereof. Suitable metals include stainless steels, for example, but not limited to, 306 and 316 steel, as well as titanium alloys, aluminum alloys, and the like. Suitable materials for the refractory cooled panels, melter and channel refractory liners, and refractory burner blocks (if used) are fused zirconia (ZrO2), fused cast AZS (alumina-zirconia-silica), rebonded AZS, or fused cast alumina (Al2O3). The burner and melter geometry, and type of glass to be produced may dictate the choice of a particular material, among other parameters.
The terms “cooled” and “coolant” may include use of any heat transfer fluid and may be any gaseous, liquid, or some combination of gaseous and liquid composition that functions or is capable of being modified to function as a heat transfer fluid. Gaseous heat transfer fluids may be selected from air, including ambient air and treated air (for example, air treated to remove moisture), inorganic gases, such as nitrogen, argon, and helium, organic gases such as fluoro-, chloro- and chlorofluorocarbons, including perfluorinated versions, such as tetrafluoromethane, and hexafluoroethane, and tetrafluoroethylene, and the like, and mixtures of inert gases with small portions of non-inert gases, such as hydrogen. Heat transfer liquids may be selected from liquids that may be organic, inorganic, or some combination thereof, for example, salt solutions, glycol solutions, oils and the like. Other possible heat transfer fluids include steam (if cooler than the expected glass melt temperature), carbon dioxide, or mixtures thereof with nitrogen. Heat transfer fluids may be compositions comprising both gas and liquid phases, such as the higher chlorofluorocarbons.
Certain fluid-cooled auxiliary burners useful in systems and methods of this disclosure may include first and second concentric conduits, the first conduit fluidly connected at one end to a source of fuel, the second conduit fluidly connected to a source of oxidant, and a third substantially concentric conduit comprising a first end, a second end, and an internal surface, the internal surface of the third conduit forming, with an exterior surface of the second conduit, a secondary annulus external to a primary annulus between the first and second conduits. The first end of the third conduit may extend beyond the first end of the second conduit, the first end of the second conduit may extend beyond the first end of the first conduit, and the secondary annulus may be capped by an end cap connecting the first end of the second conduit and the first end of the third conduit.
In certain systems one or more of the non-submerged auxiliary burners may comprise a fuel inlet conduit having an exit nozzle, the conduit and nozzle inserted into a cavity of a ceramic burner block, the ceramic burner block in turn inserted into either the roof or the wall structure, or both the roof and wall structure.
In certain systems, one or more of the non-submerged auxiliary burners may be adjustable with respect to direction of flow of the combustion products. Adjustment may be via automatic, semi-automatic, or manual control. Certain system embodiments may comprise an auxiliary burner mount that mounts the auxiliary burner in the wall structure or roof comprising a refractory, or refractory-lined ball joint. Other burner mounts may comprise rails mounted in slots in the wall or roof. In yet other embodiments the auxiliary burners may be mounted outside of the melter or downstream component, on supports that allow adjustment of the combustion products flow direction. Useable supports include those comprising ball joints, cradles, rails, and the like.
Certain systems may comprise a downstream component fluidly connected to the melter for accepting at least a portion of the reduced foam molten glass, the downstream component comprising a flow channel, a downstream component roof, and a downstream component wall structure connecting the flow channel and downstream component roof. Certain systems may comprise one or more non-submerged downstream component auxiliary burners positioned in the downstream component roof and/or downstream component wall structure and configured to deliver their combustion products to impact at least a portion of bubbles remaining in the bubble layer on the reduced foam molten glass flowing through the downstream component, with sufficient force and/or heat to burst at least some of the remaining bubbles.
In certain systems at least one of the downstream component auxiliary burners may be adjustable with respect to direction of flow of the combustion products from the downstream component auxiliary burner.
Certain systems may comprise one or more downstream component auxiliary burners protruding through the wall structure and one or more auxiliary burners protruding through the roof of the downstream component.
In certain systems and methods the auxiliary burners in the melter and/or the auxiliary burners in the downstream component may be configured to have a fuel velocity ranging from about 150 ft./second to about 1000 ft./second (about 46 meters/second to about 305 meters/second) and an oxidant velocity ranging from about 150 ft./second to about 1000 ft./second (about 46 meters/second to about 305 meters/second). The fuel and oxidant velocities may be the same or different in a given burner, and from burner to burner.
In certain systems and methods the downstream component may be selected from the group consisting of a distribution channel, a conditioning channel, and a forehearth.
Certain system and method embodiments of this disclosure may include submerged combustion melters comprising fluid-cooled panels. In yet other embodiments a feed slot may be provided that may be covered and integral with a fluid-cooled panel of a wall of the melter, such as disclosed in Applicant's U.S. Pat. No. 8,650,914. In certain other embodiments, the slot may be integral with an exhaust port or roof of the melter. In certain embodiments, the slot may comprise one or more hinged doors or panels. In certain other embodiments the slot may comprise one or more sliding doors or panels. Certain embodiments may comprise both hinged and sliding doors or panels. The hinged and sliding doors may be water cooled, or cooled by other fluids.
In certain system and method embodiments, he submerged combustion melter may include one or more submerged combustion burners comprising one or more oxy-fuel combustion burners, such as described in Applicant's U.S. Pat. No. 8,875,544.
Certain system and method embodiments of this disclosure may be controlled by one or more controllers. For example, burner combustion (flame) temperature may be controlled by monitoring one or more parameters selected from velocity of the fuel, velocity of the primary oxidant, mass and/or volume flow rate of the fuel, mass and/or volume flow rate of the primary oxidant, energy content of the fuel, temperature of the fuel as it enters the burner, temperature of the primary oxidant as it enters the burner, temperature of the effluent, pressure of the primary oxidant entering the burner, humidity of the oxidant, burner geometry, combustion ratio, and combinations thereof. Certain systems and methods of this disclosure may also measure and/or monitor feed rate of batch or other feed materials, such as glass batch, cullet, mat or wound roving, mass of feed, and use these measurements for control purposes. Exemplary systems and methods of the disclosure may comprise a combustion controller which receives one or more input parameters selected from velocity of the fuel, velocity of oxidant, mass and/or volume flow rate of the fuel, mass and/or volume flow rate of oxidant, energy content of the fuel, temperature of the fuel as it enters the burner, temperature of the oxidant as it enters the burner, pressure of the oxidant entering the burner, humidity of the oxidant, burner geometry, oxidation ratio, temperature of the burner combustion products, temperature of melt, and combinations thereof, and may employ a control algorithm to control combustion temperature based on one or more of these input parameters.
Certain system and method embodiments may comprise using vibration and/or oscillation of the submerged combustion melter to predict melt viscosity and/or other properties of the initial foamy melt emanating from the melter, as disclosed in Applicant's U.S. Pat. No. 8,973,400.
Certain other systems and methods may comprise using a submerged combustion melter comprising a large diameter exhaust port connecting to a large diameter chamber positioned between the melting chamber and an exhaust stack, as disclosed in Applicant's U.S. Pat. No. 8,707,740. Certain melters of this type may be devoid of a sump.
Yet other systems and methods may include a cooling and annealing lehr downstream of the melter outlet, the lehr having an inlet and an outlet, and a transport apparatus allowing movement of the initial foamy molten glass through the lehr to a processing apparatus, as described in Applicant's U.S. Pat. No. 8,997,525. Certain systems and methods may route a denser flow of molten glass to a production apparatus for manufacturing dense glass products, the production apparatus selected from the group consisting of continuous fiber production apparatus, discontinuous fiber production apparatus, and glass shaping apparatus.
Specific non-limiting system and method embodiments in accordance with the present disclosure will now be presented in conjunction with
Extending between fuel conduit 12 and oxidant conduit 13 are three spacers 15 spaced about 120 degree apart as illustrated in
An angle α is indicated in
Both auxiliary burner embodiments 100 and 200 illustrated schematically in
Roof 320 is illustrated schematically as having a cut-out portion 328, making it possible to view the internals of SC melter 602. In accordance with embodiments of the present disclosure, flame and/or combustion products 322, 324 from sidewall-mounted auxiliary wall burners 302, 304, and flame and/or combustion products 326 from roof-mounted auxiliary burner 306 are shown impinging on and either bursting some of the bubbles in a layer of bubbles 330, and/or heating the bubble layer sufficiently to burst at least some of the bubbles. The film forming the outside surfaces of the bubbles, formed as they are from liquefied glass-forming materials, then flows back into the bulk of the molten material. It should be noted that embodiment 600 is merely illustrative, and that certain embodiments may have only one auxiliary burner, for example only auxiliary burner 302, or only auxiliary burner 306.
Also illustrated in
Another feature of systems and methods of the present disclosure is illustrated schematically in
Referring more particularly to
Auxiliary burners 750 and 752 are mounted in burner blocks 712 with the forward end 726 of each burner extending into an aperture 728 in each burner block 712. Quick disconnects (not illustrated in
It should be understood that embodiment 700 is only one example of many possible downstream components and channel shapes. Suitable shaped channel or trough 702 of refractory material may have any longitudinal shape (straight, L-shaped, curved, for example S-shaped), and may have one or more parallel and/or series arranged regions. Trough 702 may have any lateral (cross-sectional) shape, such as rectangular, oval, round, V-shaped, U-shaped, and the like. Depth of trough 702 may vary, but exemplary embodiments may have a depth that is commensurate with SC melter depth, and such that the foamy molten glass will be able to move into the trough. The cross-sectional shape may be the same or different along the length of the trough.
The flow rate of the foamy or reduced foam molten glass through trough 702 will in turn depend on many factors, including the dimensions of trough 702, size of SC melter 602, whether or not there is a weir or like device (such as a skimmer hanging from a roof of trough 702), temperature of the melts, viscosity of the melts, and like parameters, but in general the flow rate of molten glass in trough 702 may range from about 0.5 lb./min to about 5000 lbs./min or more (about 0.23 kg/min to about 2300 kg/min or more), or from about 10 lbs./min to about 500 lbs./min (from about 4.5 kg/min to about 227 kg/min), or from about 100 lbs./min to 300 lbs./min (from about 45 kg/min to about 136 kg/min).
Submerged combustion melter 602 in embodiments described herein may be any of the currently known submerged combustion melter designs, or may be one of those described in Applicant's U.S. Pat. No. 8,769,992, incorporated herein by reference. Submerged combustion melters useful in the practice of the methods and apparatus of this description may take any number of forms, including those described in Applicant's U.S. Pat. No. 8,769,992, which describes sidewalls forming an expanding melting zone formed by a first trapezoidal region, and a narrowing melting zone formed by a second trapezoidal region, wherein a common base between the trapezoid defines the location of the maximum width of the melter. Submerged combustion melter 602 may include a roof, side walls, a floor or bottom, one or more submerged combustion burners, an exhaust chute, one or more molten glass outlets, and optionally fluid-cooled panels comprising some or all of the side walls. Submerged combustion melter 602 is typically supported on a plant floor.
Submerged combustion melter 602 may be fed a variety of feed materials by one or more roll stands, which in turn supports one or more rolls of glass mat, as described in Applicant's U.S. Pat. No. 8,650,914, incorporated herein by reference. In certain embodiments powered nip rolls may include cutting knives or other cutting components to cut or chop the mat (or roving, in those embodiments processing roving) into smaller length pieces prior to entering melter 602. Also provided in certain embodiments may be a glass batch feeder. Glass batch feeders are well-known in this art and require no further explanation. Certain embodiments may comprise a process control scheme for the submerged combustion melter and burners. For example, as explained in the '970 application, a master process controller may be configured to provide any number of control logics, including feedback control, feed-forward control, cascade control, and the like. The disclosure is not limited to a single master process controller, as any combination of controllers could be used. The term “control”, used as a transitive verb, means to verify or regulate by comparing with a standard or desired value. Control may be closed loop, feedback, feed-forward, cascade, model predictive, adaptive, heuristic and combinations thereof. The term “controller” means a device at least capable of accepting input from sensors and meters in real time or near—real time, and sending commands directly to burner control elements, and/or to local devices associated with burner control elements and glass mat feeding devices able to accept commands. A controller may also be capable of accepting input from human operators; accessing databases, such as relational databases; sending data to and accessing data in databases, data warehouses or data marts; and sending information to and accepting input from a display device readable by a human. A controller may also interface with or have integrated therewith one or more software application modules, and may supervise interaction between databases and one or more software application modules. The controller may utilize Model Predictive Control (MPC) or other advanced multivariable control methods used in multiple input/multiple output (MIMO) systems. As mentioned previously, the methods of Applicant's U.S. Pat. No. 8,973,400, using the vibrations and oscillations of the melter itself, may prove useful predictive control inputs.
Those having ordinary skill in this art will appreciate that there are many possible variations of the melter, channels, troughs, burners, and adjustment mechanisms to adjust combustion product direction described herein, and will be able to devise alternatives and improvements to those described herein that are nevertheless considered to be within the claims of the present patent.
Submerged combustion burners useful in the SC melter apparatus described herein include those described in U.S. Pat. Nos. 4,539,034; 3,170,781; 3,237,929; 3,260,587; 3,606,825; 3,627,504; 3,738,792; 3,764,287; and 7,273,583, and Applicant's U.S. Pat. No. 8,875,544. One useful burner, for example, is described in the 583 patent as comprising a method and apparatus providing heat energy to a bath of molten material and simultaneously creating a well-mixed molten material. The burner functions by firing a burning gaseous or liquid fuel-oxidant mixture into a volume of molten material. The burners described in the 583 patent provide a stable flame at the point of injection of the fuel-oxidant mixture into the melt to prevent the formation of frozen melt downstream as well as to prevent any resultant explosive combustion; constant, reliable, and rapid ignition of the fuel-oxidant mixture such that the mixture burns quickly inside the molten material and releases the heat of combustion into the melt; and completion of the combustion process in bubbles rising to the surface of the melt. In one embodiment, the burners described in the 583 patent comprises an inner fluid supply tube having a first fluid inlet end and a first fluid outlet end and an outer fluid supply tube having a second fluid inlet end and a second fluid outlet end coaxially disposed around the inner fluid supply tube and forming an annular space between the inner fluid supply tube and the outer fluid supply tube. A burner nozzle is connected to the first fluid outlet end of the inner fluid supply tube. The outer fluid supply tube is arranged such that the second fluid outlet end extends beyond the first fluid outlet end, creating, in effect, a combustion space or chamber bounded by the outlet to the burner nozzle and the extended portion of the outer fluid supply tube. The burner nozzle is sized with an outside diameter corresponding to the inside diameter of the outer fluid supply tube and forms a centralized opening in fluid communication with the inner fluid supply tube and at least one peripheral longitudinally oriented opening in fluid communication with the annular space between the inner and outer fluid supply tubes. In certain embodiments, a longitudinally adjustable rod is disposed within the inner fluid supply tube having one end proximate the first fluid outlet end. As the adjustable rod is moved within the inner fluid supply tube, the flow characteristics of fluid through the inner fluid supply tube are modified. A cylindrical flame stabilizer element is attached to the second fluid outlet end. The stable flame is achieved by supplying oxidant to the combustion chamber through one or more of the openings located on the periphery of the burner nozzle, supplying fuel through the centralized opening of the burner nozzle, and controlling the development of a self-controlled flow disturbance zone by freezing melt on the top of the cylindrical flame stabilizer element.
The location of the injection point for the fuel-oxidant mixture below the surface of the melting material enhances mixing of the components being melted and increases homogeneity of the melt. Thermal NOx emissions are greatly reduced due to the lower flame temperatures resulting from the melt-quenched flame and further due to insulation of the high temperature flame from the atmosphere.
In certain embodiments the SC burners may be floor-mounted burners. In certain embodiments, the SC burners may be positioned in rows substantially perpendicular to the longitudinal axis (in the melt flow direction) of melter 602. In certain embodiments, the SC burners may be positioned to emit combustion products into molten glass in a melting zone of melter 602 in a fashion so that the gases penetrate the melt generally perpendicularly to the floor. In other embodiments, one or more burners may emit combustion products into the melt at an angle to the floor, as taught in Applicant's U.S. Pat. No. 8,769,992. As noted at Col. 6, lines 32-37 in the '992 patent, this angle may be more or less than 45 degrees, but in certain embodiments may be 30 degrees, or 40 degrees, or 50 degrees, or 60 degrees, or 70 degrees, or 80 degrees. As noted in Col. 7, lines 23-37 of the '992 patent, if there is an inclined floor region of melter 602, then the SC burner angle may be adjusted accordingly to avoid refractory wear and/or avoid lesser quality melt due to a portion of the refractory becoming part of the melt.
Submerged combustion melters useful in systems and methods in accordance with the present disclosure may also comprise one or more wall-mounted submerged combustion burners, and/or one or more roof-mounted (non-auxiliary) burners. Roof-mounted burners may be useful to pre-heat the melter apparatus melting zone, and serve as ignition sources for one or more submerged combustion burners. Melters having only wall-mounted, submerged-combustion burners are also considered within the present disclosure. Roof-mounted burners may be oxy-fuel burners, but as they are only used in certain situations, are more likely to be air/fuel burners. Most often they would be shut-off after pre-heating the melter and/or after starting one or more submerged combustion burners. In certain embodiments, if there is a possibility of carryover of particles to the exhaust, one or more roof-mounted burners could be used to form a curtain to prevent particulate carryover. In certain embodiments, all submerged combustion burners are oxy/fuel burners (where “oxy” means oxygen, or oxygen-enriched air, as described earlier), but this is not necessarily so in all embodiments; some or all of the submerged combustion burners may be air/fuel burners. Furthermore, heating may be supplemented by electrical heating in certain melter embodiments, in certain melter zones, and in the lehr. In certain embodiments the oxy-fuel burners may comprise one or more submerged combustion burners each having co-axial fuel and oxidant tubes forming an annular space there between, wherein the outer tube extends beyond the end of the inner tube, as taught in U.S. Pat. No. 7,273,583, incorporated herein by reference. Burners may be flush-mounted with the melter floor in certain embodiments. In other embodiments, such as disclosed in the '583 patent, a portion of one or more of the burners may extend slightly into the melt above the melter floor.
In certain embodiments, melter side walls may have a free-flowing form, devoid of angles. In certain other embodiments, side walls may be configured so that an intermediate location may comprise an intermediate region of melter 602 having constant width, extending from a first trapezoidal region to the beginning of a narrowing melting region. Other embodiments of suitable melters are described in the above-mentioned '754 application.
As mentioned herein, useful melters may include refractory fluid-cooled panels. Liquid-cooled panels may be used, having one or more conduits or tubing therein, supplied with liquid through one conduit, with another conduit discharging warmed liquid, routing heat transferred from inside the melter to the liquid away from the melter. Liquid-cooled panels may also include a thin refractory liner, which minimizes heat losses from the melter, but allows formation of a thin frozen glass shell to form on the surfaces and prevent any refractory wear and associated glass contamination. Other useful cooled panels include air-cooled panels, comprising a conduit that has a first, small diameter section, and a large diameter section. Warmed air transverses the conduits such that the conduit having the larger diameter accommodates expansion of the air as it is warmed. Air-cooled panels are described more fully in U.S. Pat. No. 6,244,197. In certain embodiments, the refractory fluid cooled-panels are cooled by a heat transfer fluid selected from the group consisting of gaseous, liquid, or combinations of gaseous and liquid compositions that functions or is capable of being modified to function as a heat transfer fluid. Gaseous heat transfer fluids may be selected from air, including ambient air and treated air (for air treated to remove moisture), inert inorganic gases, such as nitrogen, argon, and helium, inert organic gases such as fluoro-, chloro- and chlorofluorocarbons, including perfluorinated versions, such as tetrafluoromethane, and hexafluoroethane, and tetrafluoroethylene, and the like, and mixtures of inert gases with small portions of non-inert gases, such as hydrogen. Heat transfer liquids may be selected from inert liquids which may be organic, inorganic, or some combination thereof, for example, salt solutions, glycol solutions, oils and the like. Other possible heat transfer fluids include steam (if cooler than the oxygen manifold temperature), carbon dioxide, or mixtures thereof with nitrogen. Heat transfer fluids may be compositions comprising both gas and liquid phases, such as the higher chlorofluorocarbons.
The refractory or refractory-lined channels or troughs described in accordance with the present disclosure may be constructed using refractory cooled panels. Both the melter and trough floors and side walls may include a thin refractory lining, as discussed herein. The thin refractory coating may be 1 centimeter, 2 centimeters, 3 centimeters or more in thickness, however, greater thickness may entail more expense without resultant greater benefit. The refractory lining may be one or multiple layers. Alternatively, melters and channels described herein may be constructed using cast concretes such as disclosed in U.S. Pat. No. 4,323,718. The thin refractory linings discussed herein may comprise materials described in the 718 patent. Two cast concrete layers are described in the 718 patent, the first being a hydraulically setting insulating composition (for example, that known under the trade designation CASTABLE BLOC-MIX-G, a product of Fleischmann Company, Frankfurt/Main, Federal Republic of Germany). This composition may be poured in a form of a wall section of desired thickness, for example a layer 5 cm thick, or 10 cm, or greater. This material is allowed to set, followed by a second layer of a hydraulically setting refractory casting composition (such as that known under the trade designation RAPID BLOCK RG 158, a product of Fleischmann company, Frankfurt/Main, Federal Republic of Germany) may be applied thereonto. Other suitable materials for the refractory cooled panels, melter and channel refractory liners, and refractory block burners (if used) are fused zirconia (ZrO2), fused cast AZS (alumina-zirconia-silica), rebonded AZS, or fused cast alumina (Al2O3). The choice of a particular material is dictated among other parameters by the melter geometry and type of glass to be produced.
The total quantities of fuel and oxidant used by the SC burners in systems of the present disclosure may be such that the flow of oxygen may range from about 0.9 to about 1.2 of the theoretical stoichiometric flow of oxygen necessary to obtain the complete combustion of the fuel flow. Another expression of this statement is that the combustion ratio may range from about 0.9 to about 1.2. In certain embodiments, the equivalent fuel content of the feed material must be taken into account. For example, organic binders in glass fiber mat scrap materials will increase the oxidant requirement above that required strictly for fuel being combusted. In consideration of these embodiments, the combustion ratio may be increased above 1.2, for example to 1.5, or to 2, or 2.5, or even higher, depending on the organic content of the feed materials.
The velocity of the fuel gas in the various SC burners depends on the burner geometry used, but generally is at least about 15 m/s. The upper limit of fuel velocity depends primarily on the desired mixing of the melt in the melter apparatus, melter geometry, and the geometry of the burner; if the fuel velocity is too low, the flame temperature may be too low, providing inadequate melting, which is not desired, and if the fuel flow is too high, flame might impinge on the melter floor, roof or wall, and/or heat will be wasted, which is also not desired.
For auxiliary burners burning natural gas, the auxiliary burners may have a fuel firing rate ranging from about 10 to about 1000 scfh (from about 280 L/hr. to about 28,000 LAO; an oxygen firing rate ranging from about 15 to about 2500 scfh (from about 420 L/hr. to about 71,000 L/hr.); a combustion ratio ranging from about 1.5 to about 2.5; nozzle velocity ratio (ratio of velocity of fuel to oxygen at the fuel nozzle tip) ranging from about 0.5 to about 2.5; fuel gas velocity ranging from about 150 to about 1000 ft./sec (from about 46 m/sec to about 300 m/sec); and oxygen velocity ranging from about 150 to about 1000 ft./sec (from about 46 m/sec to about 300 m/sec). Of course these numbers depend on the heating value of the fuel, amount of oxygen in the “oxygen” stream, temperatures and pressures of the fuel and oxidant, and the like, among other parameters. In one typical operation, the auxiliary burner would have a combustion ration of 2.05:1; a velocity ratio of 1; firing rate of natural gas of 500 scfh (14,000 L·hr.) and 1075 scfh (30,400 L/hr.) oxygen; natural gas and oxygen velocities each of 270 ft./sec (80 m/sec); natural gas pressure of 1 psig (6.9 KPa); and oxygen pressure of 0.6 psig (4.1 Kpa), pressures measured at the entrance to the combustion chamber.
Although only a few exemplary embodiments of this disclosure have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel apparatus and processes described herein. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, no clauses are intended to be in the means-plus-function format allowed by 35 U.S.C. § 112, paragraph 6 unless “means for” is explicitly recited together with an associated function. “Means for” clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures.
This application is a division of prior U.S. application Ser. No. 14/606,875, filed Jan. 27, 2015, now U.S. Pat. No. 9,573,831 issued Feb. 21, 2019, which is a division of U.S. application Ser. No. 13/268,130 filed Oct. 7, 2011, now U.S. Pat. No. 9,021,838 issued May 5, 2015. This application is related to Applicant's United States non-provisional U.S. application Ser. No. 12/817,754, filed Jun. 17, 2010, now U.S. Pat. No. 8,769,992, issued Jul. 8, 2014; Ser. No. 12/888,970, filed Sep. 23, 2010, now U.S. Pat. No. 8,650,914, issued Feb. 18, 2014; Ser. No. 13/267,990, filed Oct. 7, 2011, now U.S. Pat. No. 8,997,525 issued Apr. 7, 2015; Ser. No. 13/268,028, filed Oct. 7, 2011, now U.S. Pat. No. 8,875,544 issued Nov. 4, 2014; and Ser. No. 13/268,098, filed Oct. 7, 2011, now U.S. Pat. No. 8,707,740 issued Apr. 29, 2014, all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1579353 | Good | Apr 1926 | A |
1610376 | Hitner | Dec 1926 | A |
1636151 | Schofield | Jul 1927 | A |
1679295 | Dodge | Jul 1928 | A |
1706857 | Mathe | Mar 1929 | A |
1716433 | Ellis | Jun 1929 | A |
1875474 | McKinley | Sep 1932 | A |
1883023 | Slick | Oct 1932 | A |
1937321 | Howard | Nov 1933 | A |
1944855 | Wadman | Jan 1934 | A |
1989103 | McKelvey et al. | Jan 1935 | A |
2042560 | Stewart | Jun 1936 | A |
2057393 | Powell | Oct 1936 | A |
2064546 | Kutchka | Dec 1936 | A |
2174533 | See et al. | Oct 1939 | A |
2118479 | McCaskey | Jan 1940 | A |
2269459 | Kleist | Jan 1942 | A |
2432942 | See et al. | Dec 1947 | A |
2455907 | Slayter | Jan 1948 | A |
2597858 | Howard | May 1952 | A |
2658094 | Nonken | Nov 1953 | A |
2677003 | Arbeit et al. | Apr 1954 | A |
2679749 | Poole | Jun 1954 | A |
2691689 | Arbeit et al. | Oct 1954 | A |
2718096 | Henry et al. | Sep 1955 | A |
2773545 | Petersen | Dec 1956 | A |
2781756 | Kobe | Feb 1957 | A |
2867972 | Holderreed et al. | Jan 1959 | A |
2878644 | Fenn | Mar 1959 | A |
2890166 | Heinze | Jun 1959 | A |
2902029 | Hill | Sep 1959 | A |
2981250 | Stewart | Apr 1961 | A |
3020165 | Davis | Feb 1962 | A |
3056283 | Tiede | Oct 1962 | A |
3073683 | Switzer et al. | Jan 1963 | A |
3084392 | Labino | Apr 1963 | A |
3088812 | Bitterlich et al. | May 1963 | A |
3104947 | Switzer et al. | Sep 1963 | A |
3129087 | Hagy | Apr 1964 | A |
3160578 | Saxton et al. | Dec 1964 | A |
3165452 | Williams | Jan 1965 | A |
3170781 | Keefer | Feb 1965 | A |
3174820 | See et al. | Mar 1965 | A |
3190625 | Edgard et al. | Jun 1965 | A |
3215189 | Bauer | Nov 1965 | A |
3224855 | Plumat | Dec 1965 | A |
3226220 | Plumat | Dec 1965 | A |
3237929 | Plumat et al. | Mar 1966 | A |
3239325 | Roberson et al. | Mar 1966 | A |
3241548 | See et al. | Mar 1966 | A |
3245769 | Eck et al. | Apr 1966 | A |
3248205 | Dolf et al. | Apr 1966 | A |
3248206 | Apple et al. | Apr 1966 | A |
3260587 | Dolf et al. | Jul 1966 | A |
3268313 | Burgman et al. | Aug 1966 | A |
3285834 | Guerrieri et al. | Nov 1966 | A |
3294512 | Penberthy | Dec 1966 | A |
3325298 | Brown | Jun 1967 | A |
3375095 | Poole | Mar 1968 | A |
3380463 | Trethewey | Apr 1968 | A |
3385686 | Plumat et al. | May 1968 | A |
3402025 | Garrett et al. | Sep 1968 | A |
3407805 | Bougard | Oct 1968 | A |
3407862 | Mustian, Jr. | Oct 1968 | A |
3420510 | Griem | Jan 1969 | A |
3421873 | Burgman et al. | Jan 1969 | A |
3421876 | Schmidt | Jan 1969 | A |
3432399 | Schutt | Mar 1969 | A |
3442633 | Perry | May 1969 | A |
3445214 | Oremesher | May 1969 | A |
3498779 | Hathaway | Mar 1970 | A |
3499743 | Fanica et al. | Mar 1970 | A |
3510393 | Burgman et al. | May 1970 | A |
3519412 | Olink | Jul 1970 | A |
3525674 | Barnebey | Aug 1970 | A |
3533770 | Adler et al. | Oct 1970 | A |
3547611 | Williams | Dec 1970 | A |
3563683 | Hess | Feb 1971 | A |
3573016 | Rees | Mar 1971 | A |
3592151 | Webber | Jul 1971 | A |
3592623 | Shepherd | Jul 1971 | A |
3600149 | Chen et al. | Aug 1971 | A |
3606825 | Johnson | Sep 1971 | A |
3617234 | Hawkins et al. | Nov 1971 | A |
3627504 | Johnson et al. | Dec 1971 | A |
3632335 | Womer | Jan 1972 | A |
3649235 | Harris | Mar 1972 | A |
3692017 | Glachant et al. | Sep 1972 | A |
3717139 | Guillet et al. | Feb 1973 | A |
3738792 | Feng | Jun 1973 | A |
3741656 | Shapiro | Jun 1973 | A |
3741742 | Jennings | Jun 1973 | A |
3746527 | Knavish et al. | Jul 1973 | A |
3747588 | Malmin | Jul 1973 | A |
3754879 | Phaneuf | Aug 1973 | A |
3756800 | Phaneuf | Sep 1973 | A |
3763915 | Perry et al. | Oct 1973 | A |
3764287 | Brocious | Oct 1973 | A |
3771988 | Starr | Nov 1973 | A |
3788832 | Nesbitt | Jan 1974 | A |
3818893 | Kataoka et al. | Jun 1974 | A |
3835909 | Douglas et al. | Sep 1974 | A |
3840002 | Douglas et al. | Oct 1974 | A |
3856496 | Nesbitt et al. | Dec 1974 | A |
3885945 | Rees et al. | May 1975 | A |
3907585 | Francel et al. | Sep 1975 | A |
3913560 | Lazarre et al. | Oct 1975 | A |
3929445 | Zippe | Dec 1975 | A |
3936290 | Cerutti et al. | Feb 1976 | A |
3951635 | Rough | Apr 1976 | A |
3976464 | Wardlaw | Aug 1976 | A |
4001001 | Knavish et al. | Jan 1977 | A |
4004903 | Daman et al. | Jan 1977 | A |
4028083 | Patznick et al. | Jun 1977 | A |
4083711 | Jensen | Apr 1978 | A |
4101304 | Marchand | Jul 1978 | A |
4110098 | Mattmuller | Aug 1978 | A |
4153438 | Stream | May 1979 | A |
4185982 | Schwenninger | Jan 1980 | A |
4203761 | Rose | May 1980 | A |
4205966 | Horikawa | Jun 1980 | A |
4208201 | Rueck | Jun 1980 | A |
4226564 | Takahashi et al. | Oct 1980 | A |
4238226 | Sanzenbacher et al. | Dec 1980 | A |
4249927 | Fakuzaki et al. | Feb 1981 | A |
4270740 | Sanzenbacher et al. | Jun 1981 | A |
4282023 | Hammel et al. | Aug 1981 | A |
4303435 | Sleighter | Dec 1981 | A |
4309204 | Brooks | Jan 1982 | A |
4316734 | Spinosa et al. | Feb 1982 | A |
4323718 | Buhring et al. | Apr 1982 | A |
4349376 | Dunn et al. | Sep 1982 | A |
4360373 | Pecoraro | Nov 1982 | A |
4397692 | Ramge et al. | Aug 1983 | A |
4398925 | Trinh et al. | Aug 1983 | A |
4405351 | Sheinkop | Sep 1983 | A |
4406683 | Demarest | Sep 1983 | A |
4413882 | Bailey et al. | Nov 1983 | A |
4424071 | Steitz et al. | Jan 1984 | A |
4432780 | Propster et al. | Feb 1984 | A |
4455762 | Saeman | Jun 1984 | A |
4461576 | King | Jul 1984 | A |
4488537 | Laurent | Dec 1984 | A |
4508970 | Ackerman | Apr 1985 | A |
4539034 | Hanneken | Sep 1985 | A |
4542106 | Sproull | Sep 1985 | A |
4545800 | Won et al. | Oct 1985 | A |
4549896 | Streicher et al. | Oct 1985 | A |
4599100 | Demarest | Jul 1986 | A |
4605437 | Sugiura et al. | Aug 1986 | A |
4622007 | Gitman | Nov 1986 | A |
4626199 | Bounini | Dec 1986 | A |
4632687 | Kunkle et al. | Dec 1986 | A |
4634461 | Demarest, Jr. et al. | Jan 1987 | A |
4652289 | Drouet et al. | Mar 1987 | A |
4657586 | Masterson et al. | Apr 1987 | A |
4718931 | Boettner | Jan 1988 | A |
4723708 | Berger et al. | Feb 1988 | A |
4735642 | Jensen et al. | Apr 1988 | A |
4738938 | Kunkle et al. | Apr 1988 | A |
4758259 | Jensen | Jul 1988 | A |
4780122 | Schwenninger et al. | Oct 1988 | A |
4794860 | Welton | Jan 1989 | A |
4798616 | Knavish et al. | Jan 1989 | A |
4812372 | Kithany | Mar 1989 | A |
4814387 | Donat | Mar 1989 | A |
4816056 | Tsai et al. | Mar 1989 | A |
4818265 | Krumwiede et al. | Apr 1989 | A |
4877436 | Sheinkop | Oct 1989 | A |
4877449 | Khinkis | Oct 1989 | A |
4878829 | Anderson | Nov 1989 | A |
4882736 | Pieper | Nov 1989 | A |
4886539 | Gerutti et al. | Dec 1989 | A |
4900337 | Zortea et al. | Feb 1990 | A |
4919700 | Pecoraro et al. | Apr 1990 | A |
4927886 | Backderf et al. | May 1990 | A |
4932035 | Pieper | Jun 1990 | A |
4953376 | Merlone | Sep 1990 | A |
4963731 | King | Oct 1990 | A |
4969942 | Schwenninger et al. | Nov 1990 | A |
4973346 | Kobayashi et al. | Nov 1990 | A |
5011086 | Sonnleitner | Apr 1991 | A |
5032230 | Shepherd | Jul 1991 | A |
5052874 | Johanson | Oct 1991 | A |
5062789 | Gitman | Nov 1991 | A |
5097802 | Clawson | Mar 1992 | A |
5168109 | Backderf et al. | Dec 1992 | A |
5169424 | Grinnen et al. | Dec 1992 | A |
5194747 | Culpepper et al. | Mar 1993 | A |
5199866 | Joshi et al. | Apr 1993 | A |
5204082 | Schendel | Apr 1993 | A |
5299929 | Yap | Apr 1994 | A |
5360171 | Yap | Nov 1994 | A |
5374595 | Dumbaugh et al. | Dec 1994 | A |
5405082 | Brown et al. | Apr 1995 | A |
5412882 | Zippe et al. | May 1995 | A |
5449286 | Snyder et al. | Sep 1995 | A |
5473885 | Hunter, Jr. et al. | Dec 1995 | A |
5483548 | Coble | Jan 1996 | A |
5490775 | Joshi et al. | Feb 1996 | A |
5522721 | Drogue et al. | Jun 1996 | A |
5545031 | Joshi et al. | Aug 1996 | A |
5575637 | Slavejkov et al. | Nov 1996 | A |
5586999 | Kobayashi | Dec 1996 | A |
5595703 | Swaelens et al. | Jan 1997 | A |
5606965 | Panz et al. | Mar 1997 | A |
5613994 | Muniz et al. | Mar 1997 | A |
5615668 | Panz et al. | Apr 1997 | A |
5636623 | Panz et al. | Jun 1997 | A |
5672827 | Jursich | Sep 1997 | A |
5713668 | Lunghofer et al. | Feb 1998 | A |
5718741 | Hull et al. | Feb 1998 | A |
5724901 | Guy et al. | Mar 1998 | A |
5736476 | Warzke et al. | Apr 1998 | A |
5743723 | Iatrides et al. | Apr 1998 | A |
5765964 | Calcote et al. | Jun 1998 | A |
5814121 | Travis | Sep 1998 | A |
5829962 | Drasek et al. | Nov 1998 | A |
5833447 | Bodelin et al. | Nov 1998 | A |
5849058 | Takeshita et al. | Dec 1998 | A |
5863195 | Feldermann | Jan 1999 | A |
5887978 | Lunghofer et al. | Mar 1999 | A |
5944507 | Feldermann | Aug 1999 | A |
5944864 | Hull et al. | Aug 1999 | A |
5954498 | Joshi et al. | Sep 1999 | A |
5975886 | Phillippe | Nov 1999 | A |
5979191 | Jian | Nov 1999 | A |
5984667 | Phillippe et al. | Nov 1999 | A |
5993203 | Koppang | Nov 1999 | A |
6029910 | Joshi et al. | Feb 2000 | A |
6036480 | Hughes et al. | Mar 2000 | A |
6039787 | Edlinger | Mar 2000 | A |
6044667 | Chenoweth | Apr 2000 | A |
6045353 | VonDrasek et al. | Apr 2000 | A |
6068468 | Phillipe et al. | May 2000 | A |
6071116 | Phillipe et al. | Jun 2000 | A |
6074197 | Phillippe | Jun 2000 | A |
6077072 | Marin et al. | Jun 2000 | A |
6085551 | Pieper et al. | Jul 2000 | A |
6109062 | Richards | Aug 2000 | A |
6113389 | Joshi et al. | Sep 2000 | A |
6116896 | Joshi et al. | Sep 2000 | A |
6120889 | Turner et al. | Sep 2000 | A |
6123542 | Joshi et al. | Sep 2000 | A |
6126438 | Joshi et al. | Oct 2000 | A |
6154481 | Sorg et al. | Nov 2000 | A |
6156285 | Adams et al. | Dec 2000 | A |
6171100 | Joshi et al. | Jan 2001 | B1 |
6178777 | Chenoweth | Jan 2001 | B1 |
6183848 | Turner et al. | Feb 2001 | B1 |
6210151 | Joshi et al. | Apr 2001 | B1 |
6210703 | Novich | Apr 2001 | B1 |
6237369 | LeBlanc et al. | May 2001 | B1 |
6241514 | Joshi et al. | Jun 2001 | B1 |
6244197 | Coble | Jun 2001 | B1 |
6244857 | VonDrasek et al. | Jun 2001 | B1 |
6247315 | Marin et al. | Jun 2001 | B1 |
6250136 | Igreja | Jun 2001 | B1 |
6250916 | Phillipe et al. | Jun 2001 | B1 |
6274164 | Novich | Aug 2001 | B1 |
6276924 | Joshi et al. | Aug 2001 | B1 |
6276928 | Joshi et al. | Aug 2001 | B1 |
6293277 | Panz et al. | Sep 2001 | B1 |
6314760 | Chenoweth | Nov 2001 | B1 |
6314896 | Marin et al. | Nov 2001 | B1 |
6318126 | Takei et al. | Nov 2001 | B1 |
6332339 | Kawaguchi et al. | Dec 2001 | B1 |
6338337 | Panz et al. | Jan 2002 | B1 |
6339610 | Hoyer et al. | Jan 2002 | B1 |
6344747 | Lunghofer et al. | Feb 2002 | B1 |
6357264 | Richards | Mar 2002 | B1 |
6386271 | Kawamoto et al. | May 2002 | B1 |
6398547 | Joshi et al. | Jun 2002 | B1 |
6404799 | Mori et al. | Jun 2002 | B1 |
6418755 | Chenoweth | Jul 2002 | B2 |
6422041 | Simpson et al. | Jul 2002 | B1 |
6454562 | Joshi et al. | Sep 2002 | B1 |
6460376 | Jeanvoine et al. | Oct 2002 | B1 |
6470710 | Takei et al. | Oct 2002 | B1 |
6536238 | Kawaguchi et al. | Mar 2003 | B2 |
6536651 | Ezumi et al. | Mar 2003 | B2 |
6558606 | Kuikarni et al. | May 2003 | B1 |
6578779 | Dion | Jun 2003 | B2 |
6660106 | Babel et al. | Dec 2003 | B1 |
6694791 | Johnson et al. | Feb 2004 | B1 |
6701617 | Li et al. | Mar 2004 | B2 |
6701751 | Arechaga et al. | Mar 2004 | B2 |
6705118 | Simpson et al. | Mar 2004 | B2 |
6708527 | Ibarlucea et al. | Mar 2004 | B1 |
6711942 | Getman et al. | Mar 2004 | B2 |
6715319 | Barrow et al. | Apr 2004 | B2 |
6722161 | LeBlanc | Apr 2004 | B2 |
6736129 | Sjith | May 2004 | B1 |
6739152 | Jeanvoine et al. | May 2004 | B2 |
6796147 | Borysowicz et al. | Sep 2004 | B2 |
6797351 | Kulkarni et al. | Sep 2004 | B2 |
6854290 | Hayes et al. | Feb 2005 | B2 |
6857999 | Jeanvoine | Feb 2005 | B2 |
6883349 | Jeanvoine | Apr 2005 | B1 |
6918256 | Gutmark et al. | Jul 2005 | B2 |
7027467 | Baev et al. | Apr 2006 | B2 |
7116888 | Aitken et al. | Oct 2006 | B1 |
7134300 | Hayes et al. | Nov 2006 | B2 |
7168395 | Engdahl | Jan 2007 | B2 |
7175423 | Pisano et al. | Feb 2007 | B1 |
7231788 | Karetta et al. | Jun 2007 | B2 |
7273583 | Rue et al. | Sep 2007 | B2 |
7330634 | Aitken et al. | Feb 2008 | B2 |
7383698 | Ichinose et al. | Jun 2008 | B2 |
7392668 | Adams et al. | Jul 2008 | B2 |
7428827 | Maugendre et al. | Sep 2008 | B2 |
7441686 | Odajima et al. | Oct 2008 | B2 |
7448231 | Jeanvoine et al. | Nov 2008 | B2 |
7454925 | DeAngelis et al. | Nov 2008 | B2 |
7509819 | Baker et al. | Mar 2009 | B2 |
7565819 | Jeanvoine et al. | Jul 2009 | B2 |
7578988 | Jacques et al. | Aug 2009 | B2 |
7581948 | Borders et al. | Sep 2009 | B2 |
7622677 | Barberree et al. | Nov 2009 | B2 |
7624595 | Jeanvoine et al. | Dec 2009 | B2 |
7748592 | Koga et al. | Jul 2010 | B2 |
7767606 | McGinnis et al. | Aug 2010 | B2 |
7778290 | Sacks et al. | Aug 2010 | B2 |
7781562 | Crawford et al. | Aug 2010 | B2 |
7802452 | Borders et al. | Sep 2010 | B2 |
7832365 | Hannum et al. | Nov 2010 | B2 |
7845314 | Smith | Dec 2010 | B2 |
7855267 | Crawford et al. | Dec 2010 | B2 |
7946136 | Watkinson | May 2011 | B2 |
8033254 | Hannum et al. | Oct 2011 | B2 |
8279899 | Kitabayashi | Oct 2012 | B2 |
8285411 | Hull et al. | Oct 2012 | B2 |
8402787 | Pernode et al. | Mar 2013 | B2 |
8424342 | Kiefer et al. | Apr 2013 | B2 |
8487262 | Damm et al. | Jul 2013 | B2 |
8650914 | Charbonneau | Feb 2014 | B2 |
8707739 | Huber et al. | Apr 2014 | B2 |
8707740 | Huber et al. | Apr 2014 | B2 |
8769992 | Huber | Jul 2014 | B2 |
8875544 | Charbonneau | Nov 2014 | B2 |
8973400 | Charbonneau et al. | Mar 2015 | B2 |
8973405 | Charbonneau et al. | Mar 2015 | B2 |
8991215 | Shock et al. | Mar 2015 | B2 |
8997525 | Shock et al. | Apr 2015 | B2 |
9021838 | Charbonneau et al. | May 2015 | B2 |
9032760 | Charbonneau et al. | May 2015 | B2 |
9096452 | Charbonneau et al. | Aug 2015 | B2 |
9096453 | Charbonneau | Aug 2015 | B2 |
20010039813 | Simpson et al. | Nov 2001 | A1 |
20020086077 | Noller et al. | Jul 2002 | A1 |
20020124598 | Borysowicz et al. | Sep 2002 | A1 |
20020134112 | Barrow et al. | Sep 2002 | A1 |
20020152770 | Becher et al. | Oct 2002 | A1 |
20020162358 | Jeanvoine et al. | Nov 2002 | A1 |
20020166343 | LeBlanc | Nov 2002 | A1 |
20030000250 | Arechaga et al. | Jan 2003 | A1 |
20030015000 | Hayes et al. | Jan 2003 | A1 |
20030029197 | Jeanvoine et al. | Feb 2003 | A1 |
20030037571 | Kobayashi et al. | Feb 2003 | A1 |
20040025569 | Damm et al. | Feb 2004 | A1 |
20040099009 | Linz et al. | May 2004 | A1 |
20040128098 | Neuhaus et al. | Jul 2004 | A1 |
20040131988 | Baker et al. | Jul 2004 | A1 |
20040168474 | Jeanvoine et al. | Sep 2004 | A1 |
20040174920 | Popenov et al. | Sep 2004 | A1 |
20040224833 | Jeanvoine et al. | Nov 2004 | A1 |
20050039491 | Maugendre et al. | Feb 2005 | A1 |
20050061030 | Ichinose et al. | Mar 2005 | A1 |
20050083989 | Leister et al. | Apr 2005 | A1 |
20050103323 | Engdal | May 2005 | A1 |
20050236747 | Rue et al. | Oct 2005 | A1 |
20060000239 | Jeanvoine et al. | Jan 2006 | A1 |
20060101859 | Tagaki et al. | May 2006 | A1 |
20060122450 | Kim et al. | Jun 2006 | A1 |
20060144089 | Eichholz et al. | Jul 2006 | A1 |
20060162387 | Schmitt et al. | Jul 2006 | A1 |
20060174655 | Kobayashi et al. | Aug 2006 | A1 |
20060177785 | Varagani et al. | Aug 2006 | A1 |
20060233512 | Aitken et al. | Oct 2006 | A1 |
20060257097 | Aitken et al. | Nov 2006 | A1 |
20060287482 | Crawford et al. | Dec 2006 | A1 |
20060293494 | Crawford et al. | Dec 2006 | A1 |
20060293495 | Crawford et al. | Dec 2006 | A1 |
20070051136 | Watkinson | Mar 2007 | A1 |
20070106054 | Crawford et al. | May 2007 | A1 |
20070122332 | Jacques et al. | May 2007 | A1 |
20070130994 | Boratav et al. | Jun 2007 | A1 |
20070137259 | Borders et al. | Jun 2007 | A1 |
20070212546 | Jeanvoine et al. | Sep 2007 | A1 |
20070220922 | Bauer et al. | Sep 2007 | A1 |
20070266737 | Rodek et al. | Nov 2007 | A1 |
20070278404 | Spanke et al. | Dec 2007 | A1 |
20080035078 | Li | Feb 2008 | A1 |
20080227615 | McGinnis et al. | Sep 2008 | A1 |
20080256981 | Jacques et al. | Oct 2008 | A1 |
20080276652 | Bauer et al. | Nov 2008 | A1 |
20080278404 | Blalock et al. | Nov 2008 | A1 |
20080293857 | Crawford et al. | Nov 2008 | A1 |
20080302136 | Bauer et al. | Dec 2008 | A1 |
20090042709 | Jeanvoine et al. | Feb 2009 | A1 |
20090044568 | Lewis | Feb 2009 | A1 |
20090120133 | Fraley et al. | May 2009 | A1 |
20090176639 | Jacques et al. | Jul 2009 | A1 |
20090220899 | Spangelo et al. | Sep 2009 | A1 |
20090235695 | Pierrot et al. | Sep 2009 | A1 |
20090320525 | Johnson | Dec 2009 | A1 |
20100064732 | Jeanvoine et al. | Mar 2010 | A1 |
20100068665 | Leroux et al. | Mar 2010 | A1 |
20100087574 | Crawford et al. | Apr 2010 | A1 |
20100089383 | Cowles | Apr 2010 | A1 |
20100120979 | Crawford et al. | May 2010 | A1 |
20100139325 | Watkinson | Jun 2010 | A1 |
20100143601 | Hawtof et al. | Jun 2010 | A1 |
20100162757 | Brodie | Jul 2010 | A1 |
20100162772 | McGinnis | Jul 2010 | A1 |
20100227971 | Crawford et al. | Sep 2010 | A1 |
20100236323 | D'Angelico et al. | Sep 2010 | A1 |
20100242543 | Ritter et al. | Sep 2010 | A1 |
20100300153 | Zhang et al. | Dec 2010 | A1 |
20100304314 | Rouchy et al. | Dec 2010 | A1 |
20100307196 | Richardson | Dec 2010 | A1 |
20100313604 | Watson et al. | Dec 2010 | A1 |
20100319404 | Borders et al. | Dec 2010 | A1 |
20100326137 | Rouchy et al. | Dec 2010 | A1 |
20110016922 | Kitamura et al. | Jan 2011 | A1 |
20110048125 | Jackson et al. | Mar 2011 | A1 |
20110054091 | Crawford et al. | Mar 2011 | A1 |
20110061642 | Rouchy et al. | Mar 2011 | A1 |
20110088432 | Purnode et al. | Apr 2011 | A1 |
20110107670 | Galley et al. | May 2011 | A1 |
20110236846 | Rue et al. | Sep 2011 | A1 |
20110308280 | Huber | Dec 2011 | A1 |
20120033792 | Kulik et al. | Feb 2012 | A1 |
20120077135 | Charbonneau | Mar 2012 | A1 |
20120104306 | Kamiya et al. | May 2012 | A1 |
20120216567 | Boughton et al. | Aug 2012 | A1 |
20120216568 | Fisher et al. | Aug 2012 | A1 |
20120216576 | Boughton et al. | Aug 2012 | A1 |
20130072371 | Jansen et al. | Mar 2013 | A1 |
20130086944 | Shock et al. | Apr 2013 | A1 |
20130086949 | Charbonneau | Apr 2013 | A1 |
20130086950 | Huber et al. | Apr 2013 | A1 |
20130086951 | Charbonneau et al. | Apr 2013 | A1 |
20130086952 | Charbonneau et al. | Apr 2013 | A1 |
20130123990 | Kulik et al. | May 2013 | A1 |
20130279532 | Ohmstede et al. | Oct 2013 | A1 |
20130283861 | Mobley et al. | Oct 2013 | A1 |
20130327092 | Charbonneau | Dec 2013 | A1 |
20140007622 | Shock et al. | Jan 2014 | A1 |
20140090421 | Shock et al. | Apr 2014 | A1 |
20140090422 | Charbonneau et al. | Apr 2014 | A1 |
20140090423 | Charbonneau et al. | Apr 2014 | A1 |
20140144185 | Shock et al. | May 2014 | A1 |
20160116214 | Kirschen | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
254 502 | May 1948 | CH |
10 38 721 | Sep 1958 | DE |
11 05 116 | Apr 1961 | DE |
36 29 965 | Mar 1988 | DE |
40 00 358 | Mar 1993 | DE |
44 24 814 | Jan 1996 | DE |
196 19 919 | Aug 1997 | DE |
100 29 983 | Jan 2002 | DE |
100 29 983 | Sep 2003 | DE |
10 2005 033330 | Aug 2006 | DE |
0 181 248 | Oct 1989 | EP |
1 337 789 | Dec 2004 | EP |
1 990 321 | Nov 2008 | EP |
2 105 415 | Sep 2009 | EP |
2 133 315 | Dec 2009 | EP |
2 138 465 | Dec 2009 | EP |
1 986 966 | Apr 2010 | EP |
1 667 934 | Feb 2011 | EP |
2 397 446 | Dec 2011 | EP |
2 404 880 | Jan 2012 | EP |
2 433 911 | Mar 2012 | EP |
2 578 548 | Apr 2013 | EP |
2 740 860 | Sep 1997 | FR |
191301772 | Jan 1914 | GB |
191407633 | Mar 1914 | GB |
164073 | May 1921 | GB |
250 536 | Jul 1926 | GB |
909 806 | Nov 1962 | GB |
959 895 | Jun 1964 | GB |
1449439 | Sep 1976 | GB |
1 514 317 | Jun 1978 | GB |
2 424 644 | Oct 2006 | GB |
1208172 | Jul 1989 | IT |
S58 199728 | Nov 1983 | JP |
H08 290918 | Nov 1996 | JP |
2000 0050572 | Aug 2000 | KR |
100465272 | Dec 2004 | KR |
114827 | Jul 1999 | RO |
425 853 | Apr 1974 | SU |
986873 | Jul 1983 | SU |
8200460 | Feb 1982 | WO |
1998055411 | Dec 1998 | WO |
2008103291 | Aug 2008 | WO |
2009091558 | Jul 2009 | WO |
2010011701 | Jan 2010 | WO |
2010045196 | Apr 2010 | WO |
2012005768 | Jan 2012 | WO |
2012048790 | Apr 2012 | WO |
2012125665 | Sep 2012 | WO |
2013152012 | Oct 2013 | WO |
2013 162986 | Oct 2013 | WO |
2013 188082 | Dec 2013 | WO |
2013188167 | Dec 2013 | WO |
Entry |
---|
“Gamma Irradiators for Radiation Processing” Booklet, International Atomic Energy Agency, Vienna, Austria. |
Furman, BJ, ME 120 Experimental Methods Vibration Measurement, San Jose University Department of Mechanical and Aerospace Engineering. |
Higley, BA, Glass Melter System Technologies for Vitrification of High-Sodium Content Low-Level, Radioactive, Liquid Wastes—Phase I: SBS Demonstration With Simulated Low-Level Waste—Final Test Report, Westinghouse Hanford Company. |
Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet Apr. 2009, Department of Energy Environmental Management Consolidated Business Center by THOR Treatment Technologies, LLC. |
Gerber, J., “Les Densimetres Industriels,” Petrole et Techniques, Association Francaise des Techniciens du Petrole, Jun. 1, 1989, pp. 26-27, No. 349, Paris, France. |
Rue et al, “Submerged Combustion Melting of Glass,” International Journal of Applied Glass Science, Nov. 9, 2011, pp. 262-274, vol. 2, No. 4. |
National Laboratory, US DOE Contract No. DE-AC09-08SR22470, Oct. 2011. |
“AccuTru Temperature Measurement,” AccuTru International Corporation, 2003. |
“Glass Technologies—The Legacy of a Successful Public-Private Partnership”, 2007, U.S. Department of Energy, pp. 1-32. |
“Glass Melting Technology—A Technical and Economic Assessment,” 2004, U.S. Department of Energy, pp. 1-292. |
Muijsenberg, H. P. H., Neff, G., Muller, J., Chmelar, J., Bodi, R. and Matustikj, F. (2008) “An Advanced Control System to Increase Glass Quality and Glass Production Yields Based on GS ESLLI Technology”, in A Collection of Papers Presented at the 66th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, vol. 27, Issue 1 (ed W. M. Kriven), John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9780470291306.ch3. |
Rue, “Energy-Efficient Glass Melting—The Next Generation Melter”, Gas Technology Institute, Project No. 20621 Final Report (2008). |
Muijsenberg, E., Eisenga, M. and Buchmayer, J. (2010) “Increase of Glass Production Efficiency and Energy Efficiency with Model-Based Predictive Control”, in 70th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, vol. 31, Issue 1 (ed C. H. Drummond), John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9780470769843.ch15. |
Sims, Richard, “Batch charging technologies—a review”, www.glassonweb.com, Nikolaus Sorg Gmbh & Co KG (May 2011). |
“Canty Process Technology” brochure, date unknown, at American Institute of Chemical Engineers, Spring Meeting, Houston, TX. |
“Glass Melting”, Battelle PNNL MST Handbook, U.S. Department of Energy, Pacific Northwest Laboratory, retrieved from the Internet Apr. 20, 2012. |
“Roll Compaction”, brochure from The Fitzpatrick Company, Elmhurst, Illinois, retrieved from the Internet Apr. 20, 2012. |
“Glass Industry of the Future”, United States Department of Energy, report 02-0A50113-03, pp. 1-17, Sep. 30, 2008. |
Stevenson, “Foam Engineering: Fundamentals and Applications”, Chapter 16, pp. 336-389, John Wiley & Sons (Mar. 13, 2012). |
Clare et al., “Density and Surface Tension of Borate Containing Silicate Melts”, Glass Technology—European Journal of Glass Science and Technology, Part A, pp. 59-62, vol. 44, No. 2, Apr. 1, 2003. |
Seward, T.P., “Modeling of Glass Making Processes for Improved Efficiency”, DE-FG07-96EE41262, Final Report, Mar. 31, 2003. |
Conradt et al, Foaming behavior on glass melts, Glastechniche Berichte 60 (1987) Nr. 6, S. 189-201 Abstract Fraunhofer ISC. |
Kim et al., “Foaming in Glass Melts Produced by Sodium Sulfate Decomposition under Isothermal Conditions”, Journal of the American Ceramic Society, 74(3), pp. 551-555, 1991. |
Kim et al., “Foaming in Glass Melts Produced by Sodium Sulfate Decomposition under Ramp Heating Conditions”, Journal of the American Ceramic Society, 75(11), pp. 2959-2963, 1992. |
Kim et al., “Effect of Furnace Atmosphere on E-glass Foaming”, Journal of Non-Crystalline Solids, 352(50/51), pp. 5287-5295, 2006. |
Van Limpt et al., “Modelling the evaporation of boron species. Part 1. Alkali-free borosilicate glass melts”, Glass Technology—European Journal of Glass Science and Technology, Part A, 52(3): pp. 77-87, 2011. |
Olabin, V.M. et al, “Submerged Combustion Furnace for Glass Melts,” Ceramic Engineering and Science Proceedings, Jan. 1, 1996, pp. 84-92, vol. 17—No. 2, American Ceramic Society Inc., US. |
Number | Date | Country | |
---|---|---|---|
20170113958 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14606875 | Jan 2015 | US |
Child | 15399504 | US | |
Parent | 13268130 | Oct 2011 | US |
Child | 14606875 | US |