Systems and methods for guiding motion capture actors using a motion reference system

Information

  • Patent Grant
  • 10818060
  • Patent Number
    10,818,060
  • Date Filed
    Tuesday, September 5, 2017
    7 years ago
  • Date Issued
    Tuesday, October 27, 2020
    4 years ago
  • Inventors
    • Greenberg; Jason E. (Los Angeles, CA, US)
    • Adelmeyer; Kristina Rae (Burbank, CA, US)
    • Swenty; Jeff J. (North Hills, CA, US)
  • Original Assignees
  • Examiners
    • Wills; Diane M
    Agents
    • Novel IP
Abstract
The system provides movement guidance to an actor using a motion capture movement reference system. The motion capture movement reference system includes a light strip having an elongated substrate with lights positioned in series along a length of the elongated substrate and a computing device configured to program the lights with an illumination protocol. Operationally, a user inputs into the computing device one or more variables to establish a number of lights to simultaneously activate and/or a rate of activating and deactivating the lights along the length of the elongated substrate. The light strip is programmed based upon the one or more variables. When the lights are activated and deactivated along the length of the elongated substrate, an actor chases the lights.
Description
FIELD

The present application relates to a motion capture system. More particularly, the present application relates to an LED-based motion reference system that generates pulses of light moving at predetermined speeds to provide a reference guide for a human actor.


BACKGROUND

Motion capture (mocap) is the process of recording the movement of real objects, such as a human actor, in order to create source data that is used to conform the movement onto a computer graphics animation character or digital avatar of the object. A typical motion capture system uses one or more digital cameras to record the movement of the actor while illuminating a number of markers attached at a number of locations on a suit that the actor wears. A digital representation or rendering of the actor in motion is thereafter generated by analyzing the coordinates of the markers in the captured images and mapping them onto a corresponding computer graphics animation character.


Mocap offers advantages over traditional computer animation of a 3D model such as: enabling a preview of the spatial representation of the actor's movements in real-time or near real-time, and allowing computer graphics animation characters to display more realistic and natural movement characteristics.


Notwithstanding the advantages of motion capture systems, it is often desired that a CG animation character move, in a video game for example, at different speeds as desired by a player. Accordingly, the actor must portray movement at different speeds that are then mapped on to the animation character. However, for the director and production team, it is very difficult to verbally explain how fast or slow the actor should move or at what pace. For human actors, while it may be fairly straightforward to move in a particular direction, it is often difficult to understand what the precise speed, pace, or rate of such movement should be. Conventionally, a metronome may be used to provide actors with a pacing mechanism, but for actors moving in a direction, it is difficult to equate the rate of movement with the pacing of a metronome.


Therefore, there is a need to provide a reference system that enables an actor to move (e.g., crawl, skip, walk and/or run) at predefined, and potentially varying, speeds in order to generate source motion capture data with the desired character pacing. It is also desirable for the reference system to be intuitive and easy for the actor to follow. It is further desirable for the reference system to be mobile, simple to deploy and easy to move or adjust.


SUMMARY

The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods, which are meant to be exemplary and illustrative, and not limiting in scope. The present application discloses numerous embodiments.


The present specification discloses a method for providing movement guidance to an actor using a motion capture movement reference system, wherein the motion capture movement reference system comprises a light strip having an elongated substrate with a plurality of lights positioned in series along a length of the elongated substrate and a computing device configured to program said plurality of lights with an illumination protocol, the method comprising: inputting into said computing device at least one variable to establish at least one of a number of lights of the plurality of lights to simultaneously activate and a rate of activating and deactivating said plurality of lights along the length of the elongated substrate; using said computing device, programming the light strip based upon said at least one variable; instructing an actor to chase said plurality of lights as they activate along the length of the elongated substrate; and initiating said activating and deactivating of said plurality of lights along the length of the elongated substrate.


Optionally, said motion capture movement reference system comprises a plurality of control modules and a micro-controller, wherein each of said control modules is connected to at least one of said plurality of lights, and wherein said micro-controller is in communication with said plurality of control modules.


Optionally, said computing device includes a memory, a display, a keyboard and a processor, said computing device being in communication with said micro-controller, wherein said memory stores a plurality of instructions that instructs the processor to communicate control signals to said micro-controller, wherein said control signals enable said plurality of control modules to control said plurality of lights according to an illumination protocol.


Optionally, each of said control modules is connected to three lights and said lights are LED elements.


Optionally, said illumination protocol comprises motion of a pulse from a proximal end to a distal end of said substrate, and wherein said pulse includes three lights switched on and off simultaneously. Optionally, said control signals determine at least a speed at which said pulse moves.


Optionally, the method further comprises using at least one video camera to capture a motion of said actor while the actor chases said plurality of lights.


Optionally, said control signals determine at least a speed at which a pulse travels along said elongated substrate, and said speed is customizable by a user to a second value.


Optionally, said control signals also determine a length of said pulse, and said length includes LED elements in multiples of three.


The present specification also discloses a method of guiding an actor to move at a desired speed, said desired speed being one of a plurality of customizable speeds, the method comprising: positioning an elongated substrate on a floor, said substrate comprising a plurality of LED elements, at least one control module and a micro-controller, wherein said at least one control module is connected to at least one of said plurality of LED elements, and wherein said micro-controller is in communication with said at least one control module; using a computing device to communicate control signals to said micro-controller, wherein said control signals program said at least one control module to control said plurality of LED elements according to an illumination protocol; and having said actor synchronously move with said illumination protocol to achieve said desired speed.


Optionally, said method comprises a plurality of control modules, wherein each of said plurality of control modules is connected to at least three of said plurality of LED elements.


Optionally, said illumination protocol comprises a motion of a pulse from a proximal end to a distal end of said elongated substrate, and said pulse includes a series of at least two LED elements switched on simultaneously and then switched off simultaneously.


Optionally, said control signals determine at least a speed at which said pulse moves.


Optionally, said actor chases said moving pulse to move at said desired speed of said pulse.


Optionally, said control signals determine at least a speed at which a pulse travels along said elongated substrate, and said desired speed is customizable by a user to a second value.


Optionally, said control signals also determine a length of said pulse, and said length includes LED elements in multiples of three.


The present specification also discloses a system for generating a moving pulse of light to act as a reference for an actor's motion, the system comprising: a flexible substrate strip having a plurality of LED elements, a plurality of control modules and a micro-controller, wherein each of said plurality of control modules is associated with and controls at least two of said plurality of LED elements, and wherein said micro-controller is in communication with said plurality of control modules; and a computer system to communicate signals to said micro-controller to generate said moving pulse, wherein said signals determine at least one of a number of control modules simultaneously switching on and off their associated LED elements and a speed of said switching on and off.


Optionally, said speed is one of a plurality of desired movement speeds of a digital avatar.


Optionally, said computer system displays a GUI for enabling a user to customize at least one of said number of control modules simultaneously switching on and off associated LED elements and said speed of switching on and off to a second value.


Optionally, each of said plurality of control modules is associated with and controls three LED elements.


The aforementioned and other embodiments of the present specification shall be described in greater depth in the drawings and detailed description provided below.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present specification will be further appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings:



FIG. 1A shows a motion capture movement reference system, in accordance with an embodiment of the present specification;



FIG. 1B is a circuit diagram of a lighting system, in accordance with an embodiment of the present specification;



FIG. 1C illustrates a control system for programming at least one LED strip, in accordance with an embodiment of the present specification;



FIG. 1D illustrates the control system of FIG. 1C employed for inputting first values for first and second control parameters of an LED strip, in accordance with an embodiment of the present specification;



FIG. 1E illustrates the control system of FIG. 1C employed for inputting second values for the first and second control parameters of the LED strip, in accordance with an embodiment of the present specification;



FIG. 1F illustrates the control system of FIG. 1C employed for inputting third values for the first and second control parameters of the LED strip, in accordance with an embodiment of the present specification;



FIG. 1G illustrates the control system of FIG. 1C employed for inputting a first value for a third control parameter of the LED strip, in accordance with an embodiment of the present specification;



FIG. 1H illustrates a first length of a single pulse of LEDs of the LED strip, in accordance with an embodiment of the present specification;



FIG. 1I illustrates the control system of FIG. 1C employed for inputting a second value for the third control parameter of the LED strip, in accordance with an embodiment of the present specification;



FIG. 1J illustrates a second length of a single pulse of LEDs of the LED strip, in accordance with an embodiment of the present specification;



FIG. 2A shows a first position of a single pulse of LED light traversing an LED strip, in accordance with an embodiment of the present specification;



FIG. 2B shows a second position of the single pulse of LED light traversing the LED strip, in accordance with an embodiment of the present specification;



FIG. 3A shows a person in a first position while running substantially in sync with a moving pulse of LED light;



FIG. 3B shows the person in a second position while running substantially in sync with the moving pulse of LED light, in accordance with an embodiment of the present specification;



FIG. 4 is a flow chart illustrating a method of implementing an illumination protocol, in accordance with an embodiment of the present specification;



FIG. 5 is a graphic user interface (GUI) for inputting at least two parameters defining an illumination protocol, in accordance with an embodiment of the present specification; and



FIG. 6 is a flow chart illustrating an embodiment of a method of enabling a person to move at a desired speed using a motion capture movement reference system of the present specification.





DETAILED DESCRIPTION

The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.


In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.


As used herein, the indefinite articles “a” and “an” mean “at least one” or “one or more” unless the context clearly dictates otherwise.


As used herein, the term actor refers to a being, such as a human, who is the subject of a motion capture system, wears clothing having markers attached at various locations to enable digital cameras to record the being's movement, and/or is expected to move as guided by the motion capture movement reference system of the present specification.



FIG. 1A shows a motion capture movement reference system 100 comprising an elongated arrangement of lights 105 in data communication with a computer system 110 and display 115, in accordance with an embodiment. The elongated arrangement of lights 105 comprises a plurality of individual lights, preferably a plurality of individual light emitting diodes (LEDs), 120 embedded into, or mounted upon, a flexible substrate 107. In one embodiment, the flexible substrate 107 is configured in the form of a strip form having a longitudinal length L and a width W, wherein the length L is at least 3 feet and wherein the width is at least 1 inch. In one embodiment, the length is at least 3 feet, and can be as long as necessary (e.g. 10 feet or greater), to provide actors with a sufficient runway to initiate, engage in, and complete a movement. In one embodiment, the width is at least 1 inch, and can be as wide as necessary to provide actors with a sufficiently large enough light source to easily see and follow.


The computer system 110 comprises a plurality of programmatic instructions that, when executed, provide a front-end GUI (Graphical User Interface) through which the plurality of lights may be programmed, as further described below. In various embodiments, the computer system 110 includes conventional computer components such as a processor, necessary non-transient memory or storage devices such as a RAM (Random Access Memory) and disk drives, monitor or display 115 and one or more user input devices such as a keyboard and a mouse. In embodiments, the user input devices allow a user to select objects, icons, and text that appear on the monitor 115 via a command such as a click of a button on a mouse or keyboard. The computer system 110 is also in communication with one or more motion capture devices, such as video cameras, that capture the motion of the actor. The computer system 110 may also include software that enables wireless or wired communications over a network such as the HTTP, TCP/IP, and RTP/RTSP protocols. It should further be appreciated that the GUI may be implemented on a standalone computer or laptop or via one or more local or remotely located servers in a “cloud” configuration.


The plurality of LED elements 120 are connected to a plurality of LED drive circuits or LED control modules (FIG. 1B). It should be appreciated that, while the presently disclosed embodiments are described with the individual lights being LEDs, any type of individual light may be used, including incandescent bulbs (for example, Tungsten-Halogen incandescent bulbs), fluorescent light bulbs (for example, Compact Fluorescent Lamps (CFLs)), halogen bulbs, High-Intensity Discharge (HID) bulbs such as metal halide lights, high pressure sodium lights, low pressure sodium lights and mercury vapor lights.



FIG. 1B is a circuit diagram 130 of the LED lighting system 105, in accordance with an embodiment. Referring now to FIGS. 1A and 1B, the circuit 130 includes a plurality of LED control modules 135 each associated with and controlling at least one of the LED elements 120. In one embodiment, each control module 135 controls a segment of at least two adjacent LED elements 120. In one embodiment, each control module 135 controls a segment of three adjacent LED elements 120. However, in alternate embodiments each control module 135 may control less than or more than three LED elements depending upon a specific need of an application.


The plurality of LED control modules 135 pulse associated LED elements 120 on and off. In some embodiments, each control module 135 provides a pulse width modulated signal (PWM) to pulse the associated one or more LED elements 120 on and off. All control modules 135 are connected to each other via an SPI (Serial Peripheral Interface) bus 140 and a micro-controller 145 is provided which is also connected to the bus 140.


In embodiments, the micro-controller 145 receives, from the computer system 110, control parameters or variables corresponding to an illumination protocol and generates signals, in accordance with this illumination protocol, to each control module 135 which accordingly provide PWM signals to the associated one or more LED elements 120. In embodiments, the micro-controller 145 is in wired or wireless data communication with the computer system 110.


As discussed above, the computer system 110 implements programmatic instructions to store and execute user inputs received via the GUI for one or more control parameters or variables associated with programming an illumination protocol of the LED lighting system 105.


In various embodiments, the control parameters or variables comprise at least one of a) a length of a single pulse, also referred to as a ‘tail’—that is, the number of LED elements 120 that are switched on and off simultaneously b) the speed at which the single pulse appears to traverse, cycle or move along the substrate 107 from a proximal end to a distal end of the lighting strip 105 and c) a rate indicate of a response time of an LED element 120, that is a duration of time during which an LED element 120 is flashed on. In some embodiments, the control parameter defining the speed of the single pulse may have additional sub-parameters or variables defining whether the speed remains constant or varies, such as increase or decrease, as the single pulse appears to traverse through the strip 105.


In some embodiments, an additional control parameter or variable may define specific colors, such as red, green, blue and/or yellow, of one or more LEDs. In an embodiment, a user may customize the color of one or more LEDs by inputting RGB values. In still other embodiments, the control parameters or variables may additionally include a plurality of pre-stored personalized illumination protocols. In one embodiment, a personalized illumination protocol may involve a specific combination of colored LED light illumination scheme. In an exemplary personalized protocol, a first travelling single pulse may be of green color indicating to a user that he should start chasing the travelling pulse. The first pulse of green color may traverse a first portion of the strip 105. At an end of the first portion, the travelling pulse may be of yellow color indicating to the user to slow down. The second pulse of yellow color may traverse a second portion of the strip 105. At the end of the second portion, the travelling pulse may come to a stop in the form of one or more red colored LED indicating to the user to stop moving.


Through the GUI, a user may vary or customize at least the length (‘tail’), speed and/or the rate of a single pulse and/or color of the LED elements. In some embodiments, the customization is enabled by displaying (to the user) on the display 115 a GUI with at least three parameters: 1) the length or tail of a single pulse; 2) the speed of a single pulse; and 3) the rate of a single pulse. The GUI may also show default values of the three parameters and optionally respective ranges of values within which the user may vary or customize the three parameters. The user can input, using any input means such as, but not limited to, a keyboard, the values for the three parameters and therefore customize the illumination protocol of the LED lighting system 105. FIG. 5 shows a GUI 500 to accept user inputs for at least one of three parameters, in accordance with an embodiment of the present specification. As shown, the GUI 500 displays at least a first parameter 505 defining a length (‘tail’) of a single pulse, a second parameter 510 defining a speed of the single pulse and a third parameter 515 defining a rate or response time of the single pulse. The GUI 500 displays current default values of the three parameters that can be modified by choosing, for example, from corresponding drop down list of values. It should be appreciated that in alternate embodiments, the GUI 500 may include fewer than the aforementioned three parameters or may also include additional parameters such as those of choosing between constant and variable (increasing or decreasing) speed of pulse, color of pulse and/or personalized pules protocol as discussed earlier in the specification.


It should be appreciated that the length (‘tail’) of a single pulse may also be a function of the number of LED elements 120 controlled by a single control module 135. Thus, in embodiments where a single control module 135 controls three LED elements 120, the length of a single pulse and therefore the number of LED elements that can be simultaneously switch on and off, may be programmed or customized to vary in multiples of three. For example, if the user provides a value of 1 for a length of a single pulse, this would mean that the single pulse would include three LED elements. In another example, if the user provides a value of 2 for a length of a single pulse, this would mean that the single pulse would include six LED elements. FIGS. 2A and 2B show an LED strip 207 having a single pulse 208 comprising three LED elements 220, in accordance with an embodiment. It should be appreciated that a single control module 135 may control any number of LED elements from 1 to 100.


Therefore, in some embodiments where a single control module 135 controls a single LED element 120 the length of a single pulse and therefore the number of LED elements that can be simultaneously switch on and off may be programmed or customized to vary in multiples of one. In an example, if a user provides a value of 1 for a length of a single pulse, it would mean that the single pulse would include a single LED element. In another example, if the user provides a value of 4 for a length of a single pulse, it would mean that the single pulse would include four LED elements.


Also, the speed at which the single pulse traverses, cycles or moves along the substrate or strip 107 is a function of a rate at which consecutive control modules 135 switch on and off (or activate and deactivate) associated LED elements 120. In various embodiments, the speed is quantified in units that are compatible with, match or correspond to the content or application for which the motion capture video is being generated. For example, in some embodiments, the speed value is defined and customized in inches/second which matches with the units used to define movement or motion speed of a character in a video game. Of course, in alternate embodiments, the speed value can be defined and customized in other units, such as, but not limited to, centimeters/second or feet/second, as would be advantageously evident to persons of ordinary skill in the art. In some embodiments, the rate or response time of the LED elements 120 is defined and customized in milliseconds per pixel (ms/pix). Referring back to FIGS. 2A and 2B, the single pulse 208 can be seen as having moved or traversed from a first position 215 (FIG. 2A) to a second position 225 (FIG. 2B) at a defined, and customizable, speed.


While in the embodiment of FIGS. 1A, 1B the computer system 110 is used to control and program the plurality of lights 120, in a preferred embodiment the plurality of lights 120 are controllable and programmable through a control system 150 shown in FIG. 1C. Referring now to FIG. 1C, the control system 150 comprises a stand-alone physical programmable circuit board or microcontroller 155, a serial enabled LCD display 160 and a 12-button keypad 165 in data communication (wired or wireless) with each other. In embodiments, the microcontroller 155 is an Arduino microcontroller board, the LCD display 160 is a SparkFun Electronics® serial enabled LCD (such as part LCD-09568) while the keypad 165 is also a SparkFun Electronics® 12-button keypad (such as part COM-08653).


As shown in FIG. 1C, the microcontroller 155 includes a plurality of first Input/Output (I/O) pins 172 for interfacing with a first LED strip, a plurality of second (I/O) pins 174 for interfacing with a second LED strip, a plurality of third pins 176 for interfacing with the keypad 165 and a plurality of fourth (I/O) pins 178 for interfacing with the LCD display 160. In an embodiment, each of the plurality of pins 172 and 174, for interfacing with both the first and second LED strips, include pins for grounding, clock input, data input and power. In an embodiment, the plurality of third pins 176 interface with 7 output pins of the keypad 165. This allows the microcontroller 155 to scan the 7 output pins to see which of the 12 buttons is being pressed. In an embodiment, the plurality of fourth pins 178 includes pins for grounding, transmitting and power.


In embodiments, the microprocessor 155 is programmed to control one or more LED strips, such as the plurality of lights 120 of FIG. 1A, through user inputs via the keypad 165 such that the user inputs are displayed on the LCD display 160. The user inputs enable customization of one or more control parameters or variables associated with programming an illumination protocol of the LED lighting system 105 (FIG. 1A).



FIGS. 1D through 1J illustrate, in accordance with some embodiments, use of the control system 150 for modifying or customizing one or more control parameters or variables associated with programming an illumination protocol of the LED lighting system, such as an LED strip 180. In various embodiments, shown in FIGS. 1D through 1J, the control system 150 is configured in the form of a housing 182 encompassing the microcontroller 155 (FIG. 1C) in data communication with the LCD display 160 and the 12 button keypad 165.



FIG. 1D shows a user using the keypad 165 to input first values 183, 184 for the respective control parameters, namely, speed and rate, which are also displayed on the LCD 160. In some embodiments, the parameter speed determines a pace at which a single pulse appears to traverse, cycle or move while the parameter rate determines a response time of an LED element constituting the single pulse (in other words, the parameter rate is indicative of an amount of time that an LED element is flashed on). FIG. 1E shows the user using the keypad 165 to input second values 185, 186 for the respective control parameters speed and rate.



FIG. 1F illustrates the control parameters speed and rate being set at respective third values 187, 188 in addition to a control parameter tail, which is set at a first value 189 in FIG. 1G. In embodiments, as shown in FIG. 1H, the tail or length parameter determines a first length 190 of a single pulse 191 of LEDs, wherein ‘tail’ is defined as the number of LEDs constituting a single pulse. FIG. 1I illustrates the tail parameter being modified to a second value 192 while the speed and rate parameters are maintained at the third values 187, 188 as defined with respect to FIG. 1F. As a result, as shown in FIG. 1J, a modification of the tail parameter to the second value 192 (FIG. 1I) results in the single pulse 191 having a second length 193 of LEDs. In embodiments, the second length 193 is less than the first length 190.


In addition, a user may use keypad 165 to input RGB values to customize the color of one or more LEDs.



FIG. 4 is a flow chart of a plurality of steps of a method of implementing an illumination protocol, in accordance with an embodiment of the present specification. Referring to FIG. 4, at step 405 a user launches a GUI on a computer monitor that displays a plurality of input parameters or variables defining an illumination protocol. In one embodiment, the GUI allows the user to modify at least one of three parameters—a length (‘tail), a speed and/or a rate of a single pulse of LED. In alternate embodiments, the plurality of input parameters or variables are controlled and customized using a control system, such as the system 150 of FIG. 1C, wherein the control system comprises a microprocessor in data communication with a serial enabled LCD display and a 12 button keypad. Accordingly, in some embodiments, the input parameters or variables are displayed to the user on the serial enabled LCD display (such as display 160 of FIG. 1C). At step 410, the user inputs, or chooses from a drop down list, parameter value for a length (‘tail’) of the single pulse. At step 415, the user inputs, or chooses from a drop down list, parameter value for a speed of the single pulse. At step 420, the user inputs, or chooses from a drop down list, parameter value for a rate (or response time) of the single pulse. In alternate embodiments, steps 410, 415, 420 are accomplished by the user inputting values (for the length or tail, speed and rate of the single pulse) using the 12-button keypad (such as the keypad 165 of FIG. 1C). At step 425, the user authorizes, by clicking a submit button for example, the computer (or the microprocessor 155 of the control system 150 of FIG. 1C, in alternate embodiment) to implement an illumination protocol based on the input parameters at steps 410, 415 and 420.


In motion capture applications, movement of a real subject, such as a person (or actor) for example, is mapped onto a computer generated object. Motion capture (or mocap) systems are used in the production of motion pictures and video games for creating a digital representation of a person (or actor) that is used as source data to create a computer graphics (CG) animation. In accordance with aspects of the present specification, a speed of a single pulse moving along the LED strip functions as a reference speed for an actor to follow, or be in sync with, during a motion, such as running. In other words, the actor uses the moving single pulse, along the LED strip, as a reference point to chase while doing motion capture. A game may require an in-game digital representation, avatar or CG animation character to move, such as run or walk, at a plurality of desired speeds. Accordingly, an actor (corresponding to the digital representation or avatar) is required to move at speeds that can be mapped onto the digital avatar. An accuracy of speed of movement of the real subject is needed for matching a desired in-game movement speed of a corresponding digital avatar.



FIGS. 3A and 3B show an actor 305 moving in sync with a single pulse 310 traversing an LED strip 315 at a predefined speed, in accordance with embodiments of the present specification. Referring to FIGS. 3A and 3B together, the LED strip 315 is positioned on a floor 320. In accordance with an embodiment, the LED strip 315 is positioned in a straight line, path or trajectory such that the single pulse 310 appears to travel in a straight line, path or trajectory from a proximal end to a distal end of the strip 315. However, it should be appreciated that the LED strip 315 can be positioned, mounted, configured or affixed to the floor 320 to follow any other path or trajectory such as, but not limited to, zig-zag, curved, circular, quadrilateral, stairway, or any other geometrical trajectory as would be evident to persons of ordinary skill in the art. The speed of the single pulse 310, the rate as well as the length (or ‘tail’) of the single pulse 310 are programmed and customized using a control system 340 in communication with the LED strip 315.


The control system 340 comprises a processor to store and execute an illumination protocol for the LED strip 315 and, optionally, may have a receiver to receive values for the parameters or variables (related to the speed, rate and/or length of a single pulse) related to the illumination protocol from the control system 340. In some embodiments, the control system 340 may include an Arduino micro-controller and a Bluetooth or WiFi receiver, and, optionally, a serial enabled LCD display and a 12 button keypad in communication with each other.


As shown, the actor 305 is in a first position 325 in FIG. 3A moving in sync with a first location of the moving pulse 310 and is in a second position 330 in FIG. 3B moving in sync with a second location of the traversing pulse 310. Thus, in accordance with aspects, the actor 305 times his footsteps to meet a specific movement speed of the traversing pulse 310. Prior art movement synchronization or reference systems, such as those based on metronomes and treadmills, are difficult for people to understand or follow to stay in sync with and are inaccurate since movement speed could vary based on the length of a person's stride. With the motion capture movement reference system of the present specification, precise timing and movement speeds can be achieved by allowing a person to follow or chase a single pulse of an LED strip that is easy for the actor to understand, follow and stay in sync with. The speed of the single pulse can be set at a plurality of specific rates that match or correspond to a plurality of desired motion capture movement speeds.



FIG. 6 is a flow chart illustrating an embodiment of a method of enabling a person to move at a desired speed using the motion capture movement reference system of the present specification. At step 605, an LED strip is positioned on a surface, such as a floor. In some embodiments, the LED strip is positioned in a straight line, path or trajectory. As discussed, earlier in the specification, the LED strip comprises a plurality of LED elements, a plurality of control modules connected to at least one of the plurality of LED elements and a micro-controller in communication with the plurality of control modules. In some embodiments, each control module is connected to and controls switching on and off of three LED elements. However, the number of LED elements being controlled by each control module may vary in alternate embodiments.


At step 610, a computer system communicates control signals to the micro-controller and command the plurality of control modules to control associated LED elements in accordance with an illumination protocol. In various embodiments, the control signals for the illumination protocol include user defined parameters related to at least one of a length (or ‘tail’) of a single pulse—that is, the number of LED elements that should be switched on and off simultaneously, the speed at which the single pulse appears to traverse, cycle or move along the LED strip and the rate or response time of each LED element constituting the single pulse. Depending on the user defined parameters, the LED strip allows a pulse of LED light to traverse or travel through the strip at a desired or programmed speed. A user can customize or program the parameters, and hence the illumination protocol, using the computer system. Finally, at step 615, the person is instructed to chase the moving pulse so that the person is moving (running and/or walking) in sync with the speed or the travelling pulse. This enables the person to move at the same speed as that of the travelling pulse.


The above examples are merely illustrative of the many applications of the methods and systems of present specification. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention may be modified within the scope of the appended claims.

Claims
  • 1. A method for providing movement guidance to an actor using a motion capture movement reference system, wherein the motion capture movement reference system comprises a light strip having an elongated substrate with a plurality of lights positioned in series along a length of the elongated substrate and a computing device configured to program said plurality of lights with an illumination protocol, the method comprising: determining a plurality of desired movements of a digital avatar;using said computing device, generating a graphical user interface to present to a user options to select values for at least a first parameter and a second parameter, wherein the first parameter is indicative of a speed at which a number of lights of the plurality of lights appear to traverse along the substrate, wherein the second parameter is indicative of whether said speed increases, decreases, or remains constant along the substrate, and wherein the selected values of the first parameter and the second parameters are based on one of the plurality of desired movements of the digital avatar;receiving an input corresponding to a first value for the first parameter and a second value for the second parameter;using said computing device, programming the light strip based upon at least the first value and the second value;instructing an actor to chase the plurality of lights as they traverse along the length of the elongated substrate; andinitiating an activation and deactivation of the plurality of lights along the length of the elongated substrate based on at least the first value and the second value.
  • 2. The method of claim 1, wherein said motion capture movement reference system comprises a plurality of control modules and a micro-controller, wherein each of said control modules is connected to at least one of said plurality of lights, and wherein said micro-controller is in communication with said plurality of control modules.
  • 3. The method of claim 2, wherein said computing device includes a memory, a display, a keyboard and a processor, said computing device being in communication with said micro-controller, wherein said memory stores a plurality of instructions that instructs the processor to communicate control signals to said micro-controller, wherein said control signals enable said plurality of control modules to control said plurality of lights according to the first value and the second value.
  • 4. The method of claim 3, wherein the first value and the second value define, at least in part, an illumination protocol and wherein the illumination protocol comprises a motion of a pulse from a proximal end to a distal end of said substrate, and wherein said pulse includes three lights switched on and off simultaneously.
  • 5. The method of claim 4, wherein said control signals also determine a length of said pulse, and wherein said length includes LED elements in multiples of three.
  • 6. The method of claim 2, wherein each of said control modules is connected to three lights and wherein said lights are LED elements.
  • 7. The method of claim 1, wherein said graphical user interface is configured to present to the user options to select values for a third parameter, wherein the third parameter is indicative of a number of continuous light elements switched on or off simultaneously.
  • 8. The method of claim 7, further comprising using at least one video camera to capture a motion of said actor while the actor chases said plurality of lights.
  • 9. The method of claim 7, wherein said graphical user interface presents to the user options to select values for a fourth parameter, wherein the fourth parameter is indicative of a duration of time during which the number of continuous light elements are activated.
  • 10. A method of guiding an actor, the method comprising: determining a desired movement of a digital avatar, wherein the desired movement is one of a plurality of customizable movements;positioning an elongated substrate on a floor, said substrate comprising a plurality of LED elements, at least one control module and a micro-controller,wherein said at least one control module is connected to at least one of said plurality of LED elements, and wherein said micro-controller is in communication with said at least one control module;using a computing device, generating a graphical user interface to present to a user options to select values for at least a first parameter and a second parameter of an illumination protocol,wherein the first parameter is indicative of a speed at which a number of LED elements of the plurality of LED elements appear to move along the substrate, andwherein the second parameter is indicative of whether said speed increases, decreases, or remains constant along the substrate;using the computing device, receiving inputs indicative of a first value for the first parameter and a second value for the second parameter;using the computing device, communicating control signals to said micro-controller,wherein said control signals program said at least one control module to control said plurality of LED elements according to the illumination protocol andwherein the illumination protocol is based on the desired movement of the digital avatar; andhaving said actor synchronously move with said illumination protocol to achieve said desired movement.
  • 11. The method of claim 10, comprising a plurality of control modules, wherein each of said plurality of control modules is connected to at least three of said plurality of LED elements.
  • 12. The method of claim 10, wherein said illumination protocol comprises a motion of a pulse from a proximal end to a distal end of said elongated substrate, and wherein said pulse includes a series of at least two LED elements switched on simultaneously and then switched off simultaneously.
  • 13. The method of claim 12, further comprising having the actor chase said moving pulse to move at said desired movement.
  • 14. The method of claim 10, wherein said graphical user interface presents to the user options to select a value for a third parameter, wherein the third parameter is indicative of a number of continuous LED elements switched on or off simultaneously.
  • 15. The method of claim 14, wherein said graphical user interface presents to the user options to select a value for a fourth parameter, wherein the fourth parameter is indicative of a duration of time during which the continuous LED elements are activated.
  • 16. The method of claim 14, wherein said control signals also determine a length of a pulse, and wherein said length includes LED elements in multiples of three.
  • 17. A system for generating a moving pulse of light to act as a reference for an actor's motion, the system comprising: a flexible substrate strip having a plurality of LED elements;a plurality of control modules;a micro-controller, wherein each of said plurality of control modules is electrically associated with and controls at least two of said plurality of LED elements and wherein said micro-controller is in data communication with said plurality of control modules;a graphical user interface configured to present to a user options to select values for at least a first parameter and a second parameter of an illumination protocol, wherein the first parameter is indicative of a speed at which a number of LED elements of the plurality of LED elements appear to move along the substrate, wherein the second parameter is indicative of whether said speed increases, decreases, or remains constant along the substrate and wherein the graphical user interface is configured to receive inputs indicative of a first value for the first parameter and a second value for the second parameter; anda computer system configured to receive the first value and the second value, to generate signals that define the speed at which the number of LED elements of the plurality of LED elements appear to move along the substrate and whether the speed increases, decreases, or remains constant along the substrate, to generate the signals based on the first value and the second value, and to communicate signals to said micro-controller to generate said moving pulse.
  • 18. The system of claim 17, wherein the graphical user interface is further configured to present an option to the user to customize a number of LED elements that simultaneously switch on and off.
  • 19. The system of claim 17, wherein each of the plurality of control modules is associated with and controls three LED elements.
US Referenced Citations (278)
Number Name Date Kind
5530796 Wang Jun 1996 A
5561736 Moore Oct 1996 A
5563946 Cooper Oct 1996 A
5685775 Bakoglu Nov 1997 A
5706507 Schloss Jan 1998 A
5708764 Borrel Jan 1998 A
5736985 Lection Apr 1998 A
5737416 Cooper Apr 1998 A
5745678 Herzberg Apr 1998 A
5768511 Galvin Jun 1998 A
5825877 Dan Oct 1998 A
5835692 Cragun Nov 1998 A
5878233 Schloss Mar 1999 A
5883628 Mullaly Mar 1999 A
5900879 Berry May 1999 A
5903266 Berstis May 1999 A
5903271 Bardon May 1999 A
5911045 Leyba Jun 1999 A
5920325 Morgan Jul 1999 A
5923324 Berry Jul 1999 A
5969724 Berry Oct 1999 A
5977979 Clough Nov 1999 A
5990888 Blades Nov 1999 A
6014145 Bardon Jan 2000 A
6025839 Schell Feb 2000 A
6059842 Dumarot May 2000 A
6069632 Mullaly May 2000 A
6081270 Berry Jun 2000 A
6081271 Bardon Jun 2000 A
6091410 Lection Jul 2000 A
6094196 Berry Jul 2000 A
6098056 Rusnak Aug 2000 A
6104406 Berry Aug 2000 A
6111581 Berry Aug 2000 A
6134588 Guenthner Oct 2000 A
6144381 Lection Nov 2000 A
6148328 Cuomo Nov 2000 A
6185614 Cuomo Feb 2001 B1
6201881 Masuda Mar 2001 B1
6222551 Schneider Apr 2001 B1
6271842 Bardon Aug 2001 B1
6271843 Lection Aug 2001 B1
6282547 Hirsch Aug 2001 B1
6311206 Malkin Oct 2001 B1
6334141 Varma Dec 2001 B1
6336134 Varma Jan 2002 B1
6337700 Kinoe Jan 2002 B1
6353449 Gregg Mar 2002 B1
6356297 Cheng Mar 2002 B1
6411312 Sheppard Jun 2002 B1
6426757 Smith Jul 2002 B1
6445389 Bossen Sep 2002 B1
6452593 Challener Sep 2002 B1
6462760 Cox, Jr. Oct 2002 B1
6469712 Hilpert, Jr. Oct 2002 B1
6473085 Brock Oct 2002 B1
6499053 Marquette Dec 2002 B1
6505208 Kanevsky Jan 2003 B1
6525731 Suits Feb 2003 B1
6549933 Barrett Apr 2003 B1
6567109 Todd May 2003 B1
6618751 Challenger Sep 2003 B1
RE38375 Herzberg Dec 2003 E
6657617 Paolini Dec 2003 B2
6657642 Bardon Dec 2003 B1
6684255 Martin Jan 2004 B1
6717600 Dutta Apr 2004 B2
6734884 Berry May 2004 B1
6765596 Lection Jul 2004 B2
6781607 Benham Aug 2004 B1
6819669 Rooney Nov 2004 B2
6832239 Kraft Dec 2004 B1
6836480 Basso Dec 2004 B2
6886026 Hanson Apr 2005 B1
6948168 Kuprionas Sep 2005 B1
RE38865 Dumarot Nov 2005 E
6993596 Hinton Jan 2006 B2
7028296 Irfan Apr 2006 B2
7062533 Brown Jun 2006 B2
7143409 Herrero Nov 2006 B2
7209137 Brokenshire Apr 2007 B2
7230616 Taubin Jun 2007 B2
7249123 Elder Jul 2007 B2
7263511 Bodin Aug 2007 B2
7287053 Bodin Oct 2007 B2
7305438 Christensen Dec 2007 B2
7308476 Mannaru Dec 2007 B2
7404149 Fox Jul 2008 B2
7426538 Bodin Sep 2008 B2
7427980 Partridge Sep 2008 B1
7428588 Berstis Sep 2008 B2
7429987 Leah Sep 2008 B2
7436407 Doi Oct 2008 B2
7439975 Hsu Oct 2008 B2
7443393 Shen Oct 2008 B2
7447996 Cox Nov 2008 B1
7467181 McGowan Dec 2008 B2
7475354 Guido Jan 2009 B2
7478127 Creamer Jan 2009 B2
7484012 Hinton Jan 2009 B2
7503007 Goodman Mar 2009 B2
7506264 Polan Mar 2009 B2
7515136 Kanevsky Apr 2009 B1
7525964 Astley Apr 2009 B2
7552177 Kessen Jun 2009 B2
7565650 Bhogal Jul 2009 B2
7571224 Childress Aug 2009 B2
7571389 Broussard Aug 2009 B2
7580888 Ur Aug 2009 B2
7596596 Chen Sep 2009 B2
7640587 Fox Dec 2009 B2
7667701 Leah Feb 2010 B2
7698656 Srivastava Apr 2010 B2
7702784 Berstis Apr 2010 B2
7714867 Doi May 2010 B2
7719532 Schardt May 2010 B2
7719535 Tadokoro May 2010 B2
7734691 Creamer Jun 2010 B2
7737969 Shen Jun 2010 B2
7743095 Goldberg Jun 2010 B2
7747679 Galvin Jun 2010 B2
7765478 Reed Jul 2010 B2
7768514 Pagan Aug 2010 B2
7773087 Fowler Aug 2010 B2
7774407 Daly Aug 2010 B2
7782318 Shearer Aug 2010 B2
7792263 D Amora Sep 2010 B2
7792801 Hamilton, II Sep 2010 B2
7796128 Radzikowski Sep 2010 B2
7808500 Shearer Oct 2010 B2
7814152 McGowan Oct 2010 B2
7827318 Hinton Nov 2010 B2
7843471 Doan Nov 2010 B2
7844663 Boutboul Nov 2010 B2
7847799 Taubin Dec 2010 B2
7856469 Chen Dec 2010 B2
7873485 Castelli Jan 2011 B2
7882222 Dolbier Feb 2011 B2
7882243 Ivory Feb 2011 B2
7884819 Kuesel Feb 2011 B2
7886045 Bates Feb 2011 B2
7890623 Bates Feb 2011 B2
7893936 Shearer Feb 2011 B2
7904829 Fox Mar 2011 B2
7921128 Hamilton, II Apr 2011 B2
7940265 Brown May 2011 B2
7945620 Bou-Ghannam May 2011 B2
7945802 Hamilton, II May 2011 B2
7970837 Lyle Jun 2011 B2
7970840 Cannon Jun 2011 B2
7985138 Acharya Jul 2011 B2
7990387 Hamilton, II Aug 2011 B2
7996164 Hamilton, II Aug 2011 B2
8001161 Finn Aug 2011 B2
8004518 Fowler Aug 2011 B2
8005025 Bodin Aug 2011 B2
8006182 Bates Aug 2011 B2
8013861 Hamilton, II Sep 2011 B2
8018453 Fowler Sep 2011 B2
8018462 Bhogal Sep 2011 B2
8019797 Hamilton, II Sep 2011 B2
8019858 Bauchot Sep 2011 B2
8022948 Garbow Sep 2011 B2
8022950 Brown Sep 2011 B2
8026913 Garbow Sep 2011 B2
8028021 Reisinger Sep 2011 B2
8028022 Brownholtz Sep 2011 B2
8037416 Bates Oct 2011 B2
8041614 Bhogal Oct 2011 B2
8046700 Bates Oct 2011 B2
8051462 Hamilton, II Nov 2011 B2
8055656 Cradick Nov 2011 B2
8056121 Hamilton, II Nov 2011 B2
8057307 Berstis Nov 2011 B2
8062130 Smith Nov 2011 B2
8063905 Brown Nov 2011 B2
8070601 Acharya Dec 2011 B2
8082245 Bates Dec 2011 B2
8085267 Brown Dec 2011 B2
8089481 Shearer Jan 2012 B2
8092288 Theis Jan 2012 B2
8095881 Reisinger Jan 2012 B2
8099338 Betzler Jan 2012 B2
8099668 Garbow Jan 2012 B2
8102334 Brown Jan 2012 B2
8103640 Lo Jan 2012 B2
8103959 Cannon Jan 2012 B2
8105165 Karstens Jan 2012 B2
8108774 Finn Jan 2012 B2
8113959 De Judicibus Feb 2012 B2
8117551 Cheng Feb 2012 B2
8125485 Brown Feb 2012 B2
8127235 Haggar Feb 2012 B2
8127236 Hamilton, II Feb 2012 B2
8128487 Hamilton, II Mar 2012 B2
8131740 Cradick Mar 2012 B2
8132235 Bussani Mar 2012 B2
8134560 Bates Mar 2012 B2
8139060 Brown Mar 2012 B2
8139780 Shearer Mar 2012 B2
8140340 Bhogal Mar 2012 B2
8140620 Creamer Mar 2012 B2
8140978 Betzler Mar 2012 B2
8140982 Hamilton, II Mar 2012 B2
8145676 Bhogal Mar 2012 B2
8145725 Dawson Mar 2012 B2
8149241 Do Apr 2012 B2
8151191 Nicol, II Apr 2012 B2
8156184 Kurata Apr 2012 B2
8165350 Fuhrmann Apr 2012 B2
8171407 Huang May 2012 B2
8171408 Dawson May 2012 B2
8171559 Hamilton, II May 2012 B2
8174541 Greene May 2012 B2
8176421 Dawson May 2012 B2
8176422 Bergman May 2012 B2
8184092 Cox May 2012 B2
8184116 Finn May 2012 B2
8185450 McVey May 2012 B2
8185829 Cannon May 2012 B2
8187067 Hamilton, II May 2012 B2
8199145 Hamilton, II Jun 2012 B2
8203561 Carter Jun 2012 B2
8214335 Hamilton, II Jul 2012 B2
8214433 Dawson Jul 2012 B2
8214750 Hamilton, II Jul 2012 B2
8214751 Dawson Jul 2012 B2
8217953 Comparan Jul 2012 B2
8219616 Dawson Jul 2012 B2
8230045 Kawachiya Jul 2012 B2
8230338 Dugan Jul 2012 B2
8233005 Finn Jul 2012 B2
8234234 Shearer Jul 2012 B2
8234579 Do Jul 2012 B2
8239775 Beverland Aug 2012 B2
8241131 Bhogal Aug 2012 B2
8245241 Hamilton, II Aug 2012 B2
8245283 Dawson Aug 2012 B2
8265253 D Amora Sep 2012 B2
8310497 Comparan Nov 2012 B2
8334871 Hamilton, II Dec 2012 B2
8360886 Karstens Jan 2013 B2
8364804 Childress Jan 2013 B2
8425326 Chudley Apr 2013 B2
8442946 Hamilton, II May 2013 B2
8506372 Chudley Aug 2013 B2
8514249 Hamilton, II Aug 2013 B2
8554841 Kurata Oct 2013 B2
8607142 Bergman Dec 2013 B2
8607356 Hamilton, II Dec 2013 B2
8624903 Hamilton, II Jan 2014 B2
8626836 Dawson Jan 2014 B2
8692835 Hamilton, II Apr 2014 B2
8721412 Chudley May 2014 B2
8827816 Bhogal Sep 2014 B2
8838640 Bates Sep 2014 B2
8849917 Dawson Sep 2014 B2
8911296 Chudley Dec 2014 B2
8992316 Smith Mar 2015 B2
9067116 Heikenen Jun 2015 B1
9083654 Dawson Jul 2015 B2
9152914 Haggar Oct 2015 B2
9205328 Bansi Dec 2015 B2
9286731 Hamilton, II Mar 2016 B2
9299080 Dawson Mar 2016 B2
9364746 Chudley Jun 2016 B2
9525746 Bates Dec 2016 B2
9583109 Kurata Feb 2017 B2
9682324 Bansi Jun 2017 B2
9764244 Bansi Sep 2017 B2
9789406 Marr Oct 2017 B2
9808722 Kawachiya Nov 2017 B2
20070217209 Wong Sep 2007 A1
20090113448 Smith Apr 2009 A1
20090324017 Gordon Dec 2009 A1
20140344725 Bates Nov 2014 A1
20160191671 Dawson Jun 2016 A1
20160252326 Jones Sep 2016 A1
Foreign Referenced Citations (76)
Number Date Country
2005215048 Oct 2011 AU
2143874 Jun 2000 CA
2292678 Jul 2005 CA
2552135 Jul 2013 CA
1334650 Feb 2002 CN
1202652 Oct 2002 CN
1141641 Mar 2004 CN
1494679 May 2004 CN
1219384 Sep 2005 CN
1307544 Mar 2007 CN
100407675 Jul 2008 CN
100423016 Oct 2008 CN
100557637 Nov 2009 CN
101001678 May 2010 CN
101436242 Dec 2010 CN
101801482 Dec 2014 CN
668583 Aug 1995 EP
0627728 Sep 2000 EP
0717337 Aug 2001 EP
0679977 Oct 2002 EP
0679978 Mar 2003 EP
0890924 Sep 2003 EP
1377902 Aug 2004 EP
0813132 Jan 2005 EP
1380133 Mar 2005 EP
1021021 Sep 2005 EP
0930584 Oct 2005 EP
0883087 Aug 2007 EP
1176828 Oct 2007 EP
2076888 Jul 2015 EP
2339938 Oct 2002 GB
2352154 Jul 2003 GB
3033956 Apr 2000 JP
3124916 Jan 2001 JP
3177221 Jun 2001 JP
3199231 Aug 2001 JP
3210558 Sep 2001 JP
3275935 Feb 2002 JP
3361745 Jan 2003 JP
3368188 Jan 2003 JP
3470955 Sep 2003 JP
3503774 Dec 2003 JP
3575598 Jul 2004 JP
3579823 Jul 2004 JP
3579154 Oct 2004 JP
3701773 Oct 2005 JP
3777161 Mar 2006 JP
3914430 Feb 2007 JP
3942090 Apr 2007 JP
3962361 May 2007 JP
4009235 Sep 2007 JP
4225376 Dec 2008 JP
4653075 Dec 2010 JP
5063698 Aug 2012 JP
5159375 Mar 2013 JP
5352200 Nov 2013 JP
5734566 Jun 2015 JP
117864 Aug 2004 MY
55396 Dec 1998 SG
200836091 Sep 2008 TW
200937926 Sep 2009 TW
201002013 Jan 2010 TW
201009746 Mar 2010 TW
201024997 Jul 2010 TW
201028871 Aug 2010 TW
2002073457 Sep 2002 WO
20020087156 Oct 2002 WO
2004086212 Oct 2004 WO
2005079538 Sep 2005 WO
2007101785 Sep 2007 WO
2008037599 Apr 2008 WO
2008074627 Jun 2008 WO
2008095767 Aug 2008 WO
2009037257 Mar 2009 WO
2009104564 Aug 2009 WO
2010096738 Aug 2010 WO
Non-Patent Literature Citations (2)
Entry
Huang, Liang, “A Method of Speed Control during Over-ground Walking: Using a Digital Light-Emitting Diode Light Strip”, Trans Tech Publications, 2013 (Year: 2013).
Wagner, Kurt, “Here's what it's like to be scanned into an NBA video game”, recode.com, Sep. 16, 2016 (Year: 2016).
Related Publications (1)
Number Date Country
20190073815 A1 Mar 2019 US