The present application relates to a motion capture system. More particularly, the present application relates to an LED-based motion reference system that generates pulses of light moving at predetermined speeds to provide a reference guide for a human actor.
Motion capture (mocap) is the process of recording the movement of real objects, such as a human actor, in order to create source data that is used to conform the movement onto a computer graphics animation character or digital avatar of the object. A typical motion capture system uses one or more digital cameras to record the movement of the actor while illuminating a number of markers attached at a number of locations on a suit that the actor wears. A digital representation or rendering of the actor in motion is thereafter generated by analyzing the coordinates of the markers in the captured images and mapping them onto a corresponding computer graphics animation character.
Mocap offers advantages over traditional computer animation of a 3D model such as: enabling a preview of the spatial representation of the actor's movements in real-time or near real-time, and allowing computer graphics animation characters to display more realistic and natural movement characteristics.
Notwithstanding the advantages of motion capture systems, it is often desired that a CG animation character move, in a video game for example, at different speeds as desired by a player. Accordingly, the actor must portray movement at different speeds that are then mapped on to the animation character. However, for the director and production team, it is very difficult to verbally explain how fast or slow the actor should move or at what pace. For human actors, while it may be fairly straightforward to move in a particular direction, it is often difficult to understand what the precise speed, pace, or rate of such movement should be. Conventionally, a metronome may be used to provide actors with a pacing mechanism, but for actors moving in a direction, it is difficult to equate the rate of movement with the pacing of a metronome.
Therefore, there is a need to provide a reference system that enables an actor to move (e.g., crawl, skip, walk and/or run) at predefined, and potentially varying, speeds in order to generate source motion capture data with the desired character pacing. It is also desirable for the reference system to be intuitive and easy for the actor to follow. It is further desirable for the reference system to be mobile, simple to deploy and easy to move or adjust.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods, which are meant to be exemplary and illustrative, and not limiting in scope. The present application discloses numerous embodiments.
The present specification discloses a method for providing movement guidance to an actor using a motion capture movement reference system, wherein the motion capture movement reference system comprises a light strip having an elongated substrate with a plurality of lights positioned in series along a length of the elongated substrate and a computing device configured to program said plurality of lights with an illumination protocol, the method comprising: inputting into said computing device at least one variable to establish at least one of a number of lights of the plurality of lights to simultaneously activate and a rate of activating and deactivating said plurality of lights along the length of the elongated substrate; using said computing device, programming the light strip based upon said at least one variable; instructing an actor to chase said plurality of lights as they activate along the length of the elongated substrate; and initiating said activating and deactivating of said plurality of lights along the length of the elongated substrate.
Optionally, said motion capture movement reference system comprises a plurality of control modules and a micro-controller, wherein each of said control modules is connected to at least one of said plurality of lights, and wherein said micro-controller is in communication with said plurality of control modules.
Optionally, said computing device includes a memory, a display, a keyboard and a processor, said computing device being in communication with said micro-controller, wherein said memory stores a plurality of instructions that instructs the processor to communicate control signals to said micro-controller, wherein said control signals enable said plurality of control modules to control said plurality of lights according to an illumination protocol.
Optionally, each of said control modules is connected to three lights and said lights are LED elements.
Optionally, said illumination protocol comprises motion of a pulse from a proximal end to a distal end of said substrate, and wherein said pulse includes three lights switched on and off simultaneously. Optionally, said control signals determine at least a speed at which said pulse moves.
Optionally, the method further comprises using at least one video camera to capture a motion of said actor while the actor chases said plurality of lights.
Optionally, said control signals determine at least a speed at which a pulse travels along said elongated substrate, and said speed is customizable by a user to a second value.
Optionally, said control signals also determine a length of said pulse, and said length includes LED elements in multiples of three.
The present specification also discloses a method of guiding an actor to move at a desired speed, said desired speed being one of a plurality of customizable speeds, the method comprising: positioning an elongated substrate on a floor, said substrate comprising a plurality of LED elements, at least one control module and a micro-controller, wherein said at least one control module is connected to at least one of said plurality of LED elements, and wherein said micro-controller is in communication with said at least one control module; using a computing device to communicate control signals to said micro-controller, wherein said control signals program said at least one control module to control said plurality of LED elements according to an illumination protocol; and having said actor synchronously move with said illumination protocol to achieve said desired speed.
Optionally, said method comprises a plurality of control modules, wherein each of said plurality of control modules is connected to at least three of said plurality of LED elements.
Optionally, said illumination protocol comprises a motion of a pulse from a proximal end to a distal end of said elongated substrate, and said pulse includes a series of at least two LED elements switched on simultaneously and then switched off simultaneously.
Optionally, said control signals determine at least a speed at which said pulse moves.
Optionally, said actor chases said moving pulse to move at said desired speed of said pulse.
Optionally, said control signals determine at least a speed at which a pulse travels along said elongated substrate, and said desired speed is customizable by a user to a second value.
Optionally, said control signals also determine a length of said pulse, and said length includes LED elements in multiples of three.
The present specification also discloses a system for generating a moving pulse of light to act as a reference for an actor's motion, the system comprising: a flexible substrate strip having a plurality of LED elements, a plurality of control modules and a micro-controller, wherein each of said plurality of control modules is associated with and controls at least two of said plurality of LED elements, and wherein said micro-controller is in communication with said plurality of control modules; and a computer system to communicate signals to said micro-controller to generate said moving pulse, wherein said signals determine at least one of a number of control modules simultaneously switching on and off their associated LED elements and a speed of said switching on and off.
Optionally, said speed is one of a plurality of desired movement speeds of a digital avatar.
Optionally, said computer system displays a GUI for enabling a user to customize at least one of said number of control modules simultaneously switching on and off associated LED elements and said speed of switching on and off to a second value.
Optionally, each of said plurality of control modules is associated with and controls three LED elements.
The aforementioned and other embodiments of the present specification shall be described in greater depth in the drawings and detailed description provided below.
These and other features and advantages of the present specification will be further appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings:
The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.
In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.
As used herein, the indefinite articles “a” and “an” mean “at least one” or “one or more” unless the context clearly dictates otherwise.
As used herein, the term actor refers to a being, such as a human, who is the subject of a motion capture system, wears clothing having markers attached at various locations to enable digital cameras to record the being's movement, and/or is expected to move as guided by the motion capture movement reference system of the present specification.
The computer system 110 comprises a plurality of programmatic instructions that, when executed, provide a front-end GUI (Graphical User Interface) through which the plurality of lights may be programmed, as further described below. In various embodiments, the computer system 110 includes conventional computer components such as a processor, necessary non-transient memory or storage devices such as a RAM (Random Access Memory) and disk drives, monitor or display 115 and one or more user input devices such as a keyboard and a mouse. In embodiments, the user input devices allow a user to select objects, icons, and text that appear on the monitor 115 via a command such as a click of a button on a mouse or keyboard. The computer system 110 is also in communication with one or more motion capture devices, such as video cameras, that capture the motion of the actor. The computer system 110 may also include software that enables wireless or wired communications over a network such as the HTTP, TCP/IP, and RTP/RTSP protocols. It should further be appreciated that the GUI may be implemented on a standalone computer or laptop or via one or more local or remotely located servers in a “cloud” configuration.
The plurality of LED elements 120 are connected to a plurality of LED drive circuits or LED control modules (
The plurality of LED control modules 135 pulse associated LED elements 120 on and off. In some embodiments, each control module 135 provides a pulse width modulated signal (PWM) to pulse the associated one or more LED elements 120 on and off. All control modules 135 are connected to each other via an SPI (Serial Peripheral Interface) bus 140 and a micro-controller 145 is provided which is also connected to the bus 140.
In embodiments, the micro-controller 145 receives, from the computer system 110, control parameters or variables corresponding to an illumination protocol and generates signals, in accordance with this illumination protocol, to each control module 135 which accordingly provide PWM signals to the associated one or more LED elements 120. In embodiments, the micro-controller 145 is in wired or wireless data communication with the computer system 110.
As discussed above, the computer system 110 implements programmatic instructions to store and execute user inputs received via the GUI for one or more control parameters or variables associated with programming an illumination protocol of the LED lighting system 105.
In various embodiments, the control parameters or variables comprise at least one of a) a length of a single pulse, also referred to as a ‘tail’—that is, the number of LED elements 120 that are switched on and off simultaneously b) the speed at which the single pulse appears to traverse, cycle or move along the substrate 107 from a proximal end to a distal end of the lighting strip 105 and c) a rate indicate of a response time of an LED element 120, that is a duration of time during which an LED element 120 is flashed on. In some embodiments, the control parameter defining the speed of the single pulse may have additional sub-parameters or variables defining whether the speed remains constant or varies, such as increase or decrease, as the single pulse appears to traverse through the strip 105.
In some embodiments, an additional control parameter or variable may define specific colors, such as red, green, blue and/or yellow, of one or more LEDs. In an embodiment, a user may customize the color of one or more LEDs by inputting RGB values. In still other embodiments, the control parameters or variables may additionally include a plurality of pre-stored personalized illumination protocols. In one embodiment, a personalized illumination protocol may involve a specific combination of colored LED light illumination scheme. In an exemplary personalized protocol, a first travelling single pulse may be of green color indicating to a user that he should start chasing the travelling pulse. The first pulse of green color may traverse a first portion of the strip 105. At an end of the first portion, the travelling pulse may be of yellow color indicating to the user to slow down. The second pulse of yellow color may traverse a second portion of the strip 105. At the end of the second portion, the travelling pulse may come to a stop in the form of one or more red colored LED indicating to the user to stop moving.
Through the GUI, a user may vary or customize at least the length (‘tail’), speed and/or the rate of a single pulse and/or color of the LED elements. In some embodiments, the customization is enabled by displaying (to the user) on the display 115 a GUI with at least three parameters: 1) the length or tail of a single pulse; 2) the speed of a single pulse; and 3) the rate of a single pulse. The GUI may also show default values of the three parameters and optionally respective ranges of values within which the user may vary or customize the three parameters. The user can input, using any input means such as, but not limited to, a keyboard, the values for the three parameters and therefore customize the illumination protocol of the LED lighting system 105.
It should be appreciated that the length (‘tail’) of a single pulse may also be a function of the number of LED elements 120 controlled by a single control module 135. Thus, in embodiments where a single control module 135 controls three LED elements 120, the length of a single pulse and therefore the number of LED elements that can be simultaneously switch on and off, may be programmed or customized to vary in multiples of three. For example, if the user provides a value of 1 for a length of a single pulse, this would mean that the single pulse would include three LED elements. In another example, if the user provides a value of 2 for a length of a single pulse, this would mean that the single pulse would include six LED elements.
Therefore, in some embodiments where a single control module 135 controls a single LED element 120 the length of a single pulse and therefore the number of LED elements that can be simultaneously switch on and off may be programmed or customized to vary in multiples of one. In an example, if a user provides a value of 1 for a length of a single pulse, it would mean that the single pulse would include a single LED element. In another example, if the user provides a value of 4 for a length of a single pulse, it would mean that the single pulse would include four LED elements.
Also, the speed at which the single pulse traverses, cycles or moves along the substrate or strip 107 is a function of a rate at which consecutive control modules 135 switch on and off (or activate and deactivate) associated LED elements 120. In various embodiments, the speed is quantified in units that are compatible with, match or correspond to the content or application for which the motion capture video is being generated. For example, in some embodiments, the speed value is defined and customized in inches/second which matches with the units used to define movement or motion speed of a character in a video game. Of course, in alternate embodiments, the speed value can be defined and customized in other units, such as, but not limited to, centimeters/second or feet/second, as would be advantageously evident to persons of ordinary skill in the art. In some embodiments, the rate or response time of the LED elements 120 is defined and customized in milliseconds per pixel (ms/pix). Referring back to
While in the embodiment of
As shown in
In embodiments, the microprocessor 155 is programmed to control one or more LED strips, such as the plurality of lights 120 of
In addition, a user may use keypad 165 to input RGB values to customize the color of one or more LEDs.
In motion capture applications, movement of a real subject, such as a person (or actor) for example, is mapped onto a computer generated object. Motion capture (or mocap) systems are used in the production of motion pictures and video games for creating a digital representation of a person (or actor) that is used as source data to create a computer graphics (CG) animation. In accordance with aspects of the present specification, a speed of a single pulse moving along the LED strip functions as a reference speed for an actor to follow, or be in sync with, during a motion, such as running. In other words, the actor uses the moving single pulse, along the LED strip, as a reference point to chase while doing motion capture. A game may require an in-game digital representation, avatar or CG animation character to move, such as run or walk, at a plurality of desired speeds. Accordingly, an actor (corresponding to the digital representation or avatar) is required to move at speeds that can be mapped onto the digital avatar. An accuracy of speed of movement of the real subject is needed for matching a desired in-game movement speed of a corresponding digital avatar.
The control system 340 comprises a processor to store and execute an illumination protocol for the LED strip 315 and, optionally, may have a receiver to receive values for the parameters or variables (related to the speed, rate and/or length of a single pulse) related to the illumination protocol from the control system 340. In some embodiments, the control system 340 may include an Arduino micro-controller and a Bluetooth or WiFi receiver, and, optionally, a serial enabled LCD display and a 12 button keypad in communication with each other.
As shown, the actor 305 is in a first position 325 in
At step 610, a computer system communicates control signals to the micro-controller and command the plurality of control modules to control associated LED elements in accordance with an illumination protocol. In various embodiments, the control signals for the illumination protocol include user defined parameters related to at least one of a length (or ‘tail’) of a single pulse—that is, the number of LED elements that should be switched on and off simultaneously, the speed at which the single pulse appears to traverse, cycle or move along the LED strip and the rate or response time of each LED element constituting the single pulse. Depending on the user defined parameters, the LED strip allows a pulse of LED light to traverse or travel through the strip at a desired or programmed speed. A user can customize or program the parameters, and hence the illumination protocol, using the computer system. Finally, at step 615, the person is instructed to chase the moving pulse so that the person is moving (running and/or walking) in sync with the speed or the travelling pulse. This enables the person to move at the same speed as that of the travelling pulse.
The above examples are merely illustrative of the many applications of the methods and systems of present specification. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention may be modified within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5530796 | Wang | Jun 1996 | A |
5561736 | Moore | Oct 1996 | A |
5563946 | Cooper | Oct 1996 | A |
5685775 | Bakoglu | Nov 1997 | A |
5706507 | Schloss | Jan 1998 | A |
5708764 | Borrel | Jan 1998 | A |
5736985 | Lection | Apr 1998 | A |
5737416 | Cooper | Apr 1998 | A |
5745678 | Herzberg | Apr 1998 | A |
5768511 | Galvin | Jun 1998 | A |
5825877 | Dan | Oct 1998 | A |
5835692 | Cragun | Nov 1998 | A |
5878233 | Schloss | Mar 1999 | A |
5883628 | Mullaly | Mar 1999 | A |
5900879 | Berry | May 1999 | A |
5903266 | Berstis | May 1999 | A |
5903271 | Bardon | May 1999 | A |
5911045 | Leyba | Jun 1999 | A |
5920325 | Morgan | Jul 1999 | A |
5923324 | Berry | Jul 1999 | A |
5969724 | Berry | Oct 1999 | A |
5977979 | Clough | Nov 1999 | A |
5990888 | Blades | Nov 1999 | A |
6014145 | Bardon | Jan 2000 | A |
6025839 | Schell | Feb 2000 | A |
6059842 | Dumarot | May 2000 | A |
6069632 | Mullaly | May 2000 | A |
6081270 | Berry | Jun 2000 | A |
6081271 | Bardon | Jun 2000 | A |
6091410 | Lection | Jul 2000 | A |
6094196 | Berry | Jul 2000 | A |
6098056 | Rusnak | Aug 2000 | A |
6104406 | Berry | Aug 2000 | A |
6111581 | Berry | Aug 2000 | A |
6134588 | Guenthner | Oct 2000 | A |
6144381 | Lection | Nov 2000 | A |
6148328 | Cuomo | Nov 2000 | A |
6185614 | Cuomo | Feb 2001 | B1 |
6201881 | Masuda | Mar 2001 | B1 |
6222551 | Schneider | Apr 2001 | B1 |
6271842 | Bardon | Aug 2001 | B1 |
6271843 | Lection | Aug 2001 | B1 |
6282547 | Hirsch | Aug 2001 | B1 |
6311206 | Malkin | Oct 2001 | B1 |
6334141 | Varma | Dec 2001 | B1 |
6336134 | Varma | Jan 2002 | B1 |
6337700 | Kinoe | Jan 2002 | B1 |
6353449 | Gregg | Mar 2002 | B1 |
6356297 | Cheng | Mar 2002 | B1 |
6411312 | Sheppard | Jun 2002 | B1 |
6426757 | Smith | Jul 2002 | B1 |
6445389 | Bossen | Sep 2002 | B1 |
6452593 | Challener | Sep 2002 | B1 |
6462760 | Cox, Jr. | Oct 2002 | B1 |
6469712 | Hilpert, Jr. | Oct 2002 | B1 |
6473085 | Brock | Oct 2002 | B1 |
6499053 | Marquette | Dec 2002 | B1 |
6505208 | Kanevsky | Jan 2003 | B1 |
6525731 | Suits | Feb 2003 | B1 |
6549933 | Barrett | Apr 2003 | B1 |
6567109 | Todd | May 2003 | B1 |
6618751 | Challenger | Sep 2003 | B1 |
RE38375 | Herzberg | Dec 2003 | E |
6657617 | Paolini | Dec 2003 | B2 |
6657642 | Bardon | Dec 2003 | B1 |
6684255 | Martin | Jan 2004 | B1 |
6717600 | Dutta | Apr 2004 | B2 |
6734884 | Berry | May 2004 | B1 |
6765596 | Lection | Jul 2004 | B2 |
6781607 | Benham | Aug 2004 | B1 |
6819669 | Rooney | Nov 2004 | B2 |
6832239 | Kraft | Dec 2004 | B1 |
6836480 | Basso | Dec 2004 | B2 |
6886026 | Hanson | Apr 2005 | B1 |
6948168 | Kuprionas | Sep 2005 | B1 |
RE38865 | Dumarot | Nov 2005 | E |
6993596 | Hinton | Jan 2006 | B2 |
7028296 | Irfan | Apr 2006 | B2 |
7062533 | Brown | Jun 2006 | B2 |
7143409 | Herrero | Nov 2006 | B2 |
7209137 | Brokenshire | Apr 2007 | B2 |
7230616 | Taubin | Jun 2007 | B2 |
7249123 | Elder | Jul 2007 | B2 |
7263511 | Bodin | Aug 2007 | B2 |
7287053 | Bodin | Oct 2007 | B2 |
7305438 | Christensen | Dec 2007 | B2 |
7308476 | Mannaru | Dec 2007 | B2 |
7404149 | Fox | Jul 2008 | B2 |
7426538 | Bodin | Sep 2008 | B2 |
7427980 | Partridge | Sep 2008 | B1 |
7428588 | Berstis | Sep 2008 | B2 |
7429987 | Leah | Sep 2008 | B2 |
7436407 | Doi | Oct 2008 | B2 |
7439975 | Hsu | Oct 2008 | B2 |
7443393 | Shen | Oct 2008 | B2 |
7447996 | Cox | Nov 2008 | B1 |
7467181 | McGowan | Dec 2008 | B2 |
7475354 | Guido | Jan 2009 | B2 |
7478127 | Creamer | Jan 2009 | B2 |
7484012 | Hinton | Jan 2009 | B2 |
7503007 | Goodman | Mar 2009 | B2 |
7506264 | Polan | Mar 2009 | B2 |
7515136 | Kanevsky | Apr 2009 | B1 |
7525964 | Astley | Apr 2009 | B2 |
7552177 | Kessen | Jun 2009 | B2 |
7565650 | Bhogal | Jul 2009 | B2 |
7571224 | Childress | Aug 2009 | B2 |
7571389 | Broussard | Aug 2009 | B2 |
7580888 | Ur | Aug 2009 | B2 |
7596596 | Chen | Sep 2009 | B2 |
7640587 | Fox | Dec 2009 | B2 |
7667701 | Leah | Feb 2010 | B2 |
7698656 | Srivastava | Apr 2010 | B2 |
7702784 | Berstis | Apr 2010 | B2 |
7714867 | Doi | May 2010 | B2 |
7719532 | Schardt | May 2010 | B2 |
7719535 | Tadokoro | May 2010 | B2 |
7734691 | Creamer | Jun 2010 | B2 |
7737969 | Shen | Jun 2010 | B2 |
7743095 | Goldberg | Jun 2010 | B2 |
7747679 | Galvin | Jun 2010 | B2 |
7765478 | Reed | Jul 2010 | B2 |
7768514 | Pagan | Aug 2010 | B2 |
7773087 | Fowler | Aug 2010 | B2 |
7774407 | Daly | Aug 2010 | B2 |
7782318 | Shearer | Aug 2010 | B2 |
7792263 | D Amora | Sep 2010 | B2 |
7792801 | Hamilton, II | Sep 2010 | B2 |
7796128 | Radzikowski | Sep 2010 | B2 |
7808500 | Shearer | Oct 2010 | B2 |
7814152 | McGowan | Oct 2010 | B2 |
7827318 | Hinton | Nov 2010 | B2 |
7843471 | Doan | Nov 2010 | B2 |
7844663 | Boutboul | Nov 2010 | B2 |
7847799 | Taubin | Dec 2010 | B2 |
7856469 | Chen | Dec 2010 | B2 |
7873485 | Castelli | Jan 2011 | B2 |
7882222 | Dolbier | Feb 2011 | B2 |
7882243 | Ivory | Feb 2011 | B2 |
7884819 | Kuesel | Feb 2011 | B2 |
7886045 | Bates | Feb 2011 | B2 |
7890623 | Bates | Feb 2011 | B2 |
7893936 | Shearer | Feb 2011 | B2 |
7904829 | Fox | Mar 2011 | B2 |
7921128 | Hamilton, II | Apr 2011 | B2 |
7940265 | Brown | May 2011 | B2 |
7945620 | Bou-Ghannam | May 2011 | B2 |
7945802 | Hamilton, II | May 2011 | B2 |
7970837 | Lyle | Jun 2011 | B2 |
7970840 | Cannon | Jun 2011 | B2 |
7985138 | Acharya | Jul 2011 | B2 |
7990387 | Hamilton, II | Aug 2011 | B2 |
7996164 | Hamilton, II | Aug 2011 | B2 |
8001161 | Finn | Aug 2011 | B2 |
8004518 | Fowler | Aug 2011 | B2 |
8005025 | Bodin | Aug 2011 | B2 |
8006182 | Bates | Aug 2011 | B2 |
8013861 | Hamilton, II | Sep 2011 | B2 |
8018453 | Fowler | Sep 2011 | B2 |
8018462 | Bhogal | Sep 2011 | B2 |
8019797 | Hamilton, II | Sep 2011 | B2 |
8019858 | Bauchot | Sep 2011 | B2 |
8022948 | Garbow | Sep 2011 | B2 |
8022950 | Brown | Sep 2011 | B2 |
8026913 | Garbow | Sep 2011 | B2 |
8028021 | Reisinger | Sep 2011 | B2 |
8028022 | Brownholtz | Sep 2011 | B2 |
8037416 | Bates | Oct 2011 | B2 |
8041614 | Bhogal | Oct 2011 | B2 |
8046700 | Bates | Oct 2011 | B2 |
8051462 | Hamilton, II | Nov 2011 | B2 |
8055656 | Cradick | Nov 2011 | B2 |
8056121 | Hamilton, II | Nov 2011 | B2 |
8057307 | Berstis | Nov 2011 | B2 |
8062130 | Smith | Nov 2011 | B2 |
8063905 | Brown | Nov 2011 | B2 |
8070601 | Acharya | Dec 2011 | B2 |
8082245 | Bates | Dec 2011 | B2 |
8085267 | Brown | Dec 2011 | B2 |
8089481 | Shearer | Jan 2012 | B2 |
8092288 | Theis | Jan 2012 | B2 |
8095881 | Reisinger | Jan 2012 | B2 |
8099338 | Betzler | Jan 2012 | B2 |
8099668 | Garbow | Jan 2012 | B2 |
8102334 | Brown | Jan 2012 | B2 |
8103640 | Lo | Jan 2012 | B2 |
8103959 | Cannon | Jan 2012 | B2 |
8105165 | Karstens | Jan 2012 | B2 |
8108774 | Finn | Jan 2012 | B2 |
8113959 | De Judicibus | Feb 2012 | B2 |
8117551 | Cheng | Feb 2012 | B2 |
8125485 | Brown | Feb 2012 | B2 |
8127235 | Haggar | Feb 2012 | B2 |
8127236 | Hamilton, II | Feb 2012 | B2 |
8128487 | Hamilton, II | Mar 2012 | B2 |
8131740 | Cradick | Mar 2012 | B2 |
8132235 | Bussani | Mar 2012 | B2 |
8134560 | Bates | Mar 2012 | B2 |
8139060 | Brown | Mar 2012 | B2 |
8139780 | Shearer | Mar 2012 | B2 |
8140340 | Bhogal | Mar 2012 | B2 |
8140620 | Creamer | Mar 2012 | B2 |
8140978 | Betzler | Mar 2012 | B2 |
8140982 | Hamilton, II | Mar 2012 | B2 |
8145676 | Bhogal | Mar 2012 | B2 |
8145725 | Dawson | Mar 2012 | B2 |
8149241 | Do | Apr 2012 | B2 |
8151191 | Nicol, II | Apr 2012 | B2 |
8156184 | Kurata | Apr 2012 | B2 |
8165350 | Fuhrmann | Apr 2012 | B2 |
8171407 | Huang | May 2012 | B2 |
8171408 | Dawson | May 2012 | B2 |
8171559 | Hamilton, II | May 2012 | B2 |
8174541 | Greene | May 2012 | B2 |
8176421 | Dawson | May 2012 | B2 |
8176422 | Bergman | May 2012 | B2 |
8184092 | Cox | May 2012 | B2 |
8184116 | Finn | May 2012 | B2 |
8185450 | McVey | May 2012 | B2 |
8185829 | Cannon | May 2012 | B2 |
8187067 | Hamilton, II | May 2012 | B2 |
8199145 | Hamilton, II | Jun 2012 | B2 |
8203561 | Carter | Jun 2012 | B2 |
8214335 | Hamilton, II | Jul 2012 | B2 |
8214433 | Dawson | Jul 2012 | B2 |
8214750 | Hamilton, II | Jul 2012 | B2 |
8214751 | Dawson | Jul 2012 | B2 |
8217953 | Comparan | Jul 2012 | B2 |
8219616 | Dawson | Jul 2012 | B2 |
8230045 | Kawachiya | Jul 2012 | B2 |
8230338 | Dugan | Jul 2012 | B2 |
8233005 | Finn | Jul 2012 | B2 |
8234234 | Shearer | Jul 2012 | B2 |
8234579 | Do | Jul 2012 | B2 |
8239775 | Beverland | Aug 2012 | B2 |
8241131 | Bhogal | Aug 2012 | B2 |
8245241 | Hamilton, II | Aug 2012 | B2 |
8245283 | Dawson | Aug 2012 | B2 |
8265253 | D Amora | Sep 2012 | B2 |
8310497 | Comparan | Nov 2012 | B2 |
8334871 | Hamilton, II | Dec 2012 | B2 |
8360886 | Karstens | Jan 2013 | B2 |
8364804 | Childress | Jan 2013 | B2 |
8425326 | Chudley | Apr 2013 | B2 |
8442946 | Hamilton, II | May 2013 | B2 |
8506372 | Chudley | Aug 2013 | B2 |
8514249 | Hamilton, II | Aug 2013 | B2 |
8554841 | Kurata | Oct 2013 | B2 |
8607142 | Bergman | Dec 2013 | B2 |
8607356 | Hamilton, II | Dec 2013 | B2 |
8624903 | Hamilton, II | Jan 2014 | B2 |
8626836 | Dawson | Jan 2014 | B2 |
8692835 | Hamilton, II | Apr 2014 | B2 |
8721412 | Chudley | May 2014 | B2 |
8827816 | Bhogal | Sep 2014 | B2 |
8838640 | Bates | Sep 2014 | B2 |
8849917 | Dawson | Sep 2014 | B2 |
8911296 | Chudley | Dec 2014 | B2 |
8992316 | Smith | Mar 2015 | B2 |
9067116 | Heikenen | Jun 2015 | B1 |
9083654 | Dawson | Jul 2015 | B2 |
9152914 | Haggar | Oct 2015 | B2 |
9205328 | Bansi | Dec 2015 | B2 |
9286731 | Hamilton, II | Mar 2016 | B2 |
9299080 | Dawson | Mar 2016 | B2 |
9364746 | Chudley | Jun 2016 | B2 |
9525746 | Bates | Dec 2016 | B2 |
9583109 | Kurata | Feb 2017 | B2 |
9682324 | Bansi | Jun 2017 | B2 |
9764244 | Bansi | Sep 2017 | B2 |
9789406 | Marr | Oct 2017 | B2 |
9808722 | Kawachiya | Nov 2017 | B2 |
20070217209 | Wong | Sep 2007 | A1 |
20090113448 | Smith | Apr 2009 | A1 |
20090324017 | Gordon | Dec 2009 | A1 |
20140344725 | Bates | Nov 2014 | A1 |
20160191671 | Dawson | Jun 2016 | A1 |
20160252326 | Jones | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
2005215048 | Oct 2011 | AU |
2143874 | Jun 2000 | CA |
2292678 | Jul 2005 | CA |
2552135 | Jul 2013 | CA |
1334650 | Feb 2002 | CN |
1202652 | Oct 2002 | CN |
1141641 | Mar 2004 | CN |
1494679 | May 2004 | CN |
1219384 | Sep 2005 | CN |
1307544 | Mar 2007 | CN |
100407675 | Jul 2008 | CN |
100423016 | Oct 2008 | CN |
100557637 | Nov 2009 | CN |
101001678 | May 2010 | CN |
101436242 | Dec 2010 | CN |
101801482 | Dec 2014 | CN |
668583 | Aug 1995 | EP |
0627728 | Sep 2000 | EP |
0717337 | Aug 2001 | EP |
0679977 | Oct 2002 | EP |
0679978 | Mar 2003 | EP |
0890924 | Sep 2003 | EP |
1377902 | Aug 2004 | EP |
0813132 | Jan 2005 | EP |
1380133 | Mar 2005 | EP |
1021021 | Sep 2005 | EP |
0930584 | Oct 2005 | EP |
0883087 | Aug 2007 | EP |
1176828 | Oct 2007 | EP |
2076888 | Jul 2015 | EP |
2339938 | Oct 2002 | GB |
2352154 | Jul 2003 | GB |
3033956 | Apr 2000 | JP |
3124916 | Jan 2001 | JP |
3177221 | Jun 2001 | JP |
3199231 | Aug 2001 | JP |
3210558 | Sep 2001 | JP |
3275935 | Feb 2002 | JP |
3361745 | Jan 2003 | JP |
3368188 | Jan 2003 | JP |
3470955 | Sep 2003 | JP |
3503774 | Dec 2003 | JP |
3575598 | Jul 2004 | JP |
3579823 | Jul 2004 | JP |
3579154 | Oct 2004 | JP |
3701773 | Oct 2005 | JP |
3777161 | Mar 2006 | JP |
3914430 | Feb 2007 | JP |
3942090 | Apr 2007 | JP |
3962361 | May 2007 | JP |
4009235 | Sep 2007 | JP |
4225376 | Dec 2008 | JP |
4653075 | Dec 2010 | JP |
5063698 | Aug 2012 | JP |
5159375 | Mar 2013 | JP |
5352200 | Nov 2013 | JP |
5734566 | Jun 2015 | JP |
117864 | Aug 2004 | MY |
55396 | Dec 1998 | SG |
200836091 | Sep 2008 | TW |
200937926 | Sep 2009 | TW |
201002013 | Jan 2010 | TW |
201009746 | Mar 2010 | TW |
201024997 | Jul 2010 | TW |
201028871 | Aug 2010 | TW |
2002073457 | Sep 2002 | WO |
20020087156 | Oct 2002 | WO |
2004086212 | Oct 2004 | WO |
2005079538 | Sep 2005 | WO |
2007101785 | Sep 2007 | WO |
2008037599 | Apr 2008 | WO |
2008074627 | Jun 2008 | WO |
2008095767 | Aug 2008 | WO |
2009037257 | Mar 2009 | WO |
2009104564 | Aug 2009 | WO |
2010096738 | Aug 2010 | WO |
Entry |
---|
Huang, Liang, “A Method of Speed Control during Over-ground Walking: Using a Digital Light-Emitting Diode Light Strip”, Trans Tech Publications, 2013 (Year: 2013). |
Wagner, Kurt, “Here's what it's like to be scanned into an NBA video game”, recode.com, Sep. 16, 2016 (Year: 2016). |
Number | Date | Country | |
---|---|---|---|
20190073815 A1 | Mar 2019 | US |