The present invention is directed generally toward systems and methods for handling the display and receipt of aircraft control information, for example, display media that present operator activatable elements.
Modern commercial aircraft make extensive use of computer systems to control aircraft behavior, plan and execute flights, and manage a myriad of other aircraft operations. Most current commercial transport aircraft include a flight management computer (FMC) that tracks flight segments or “legs” en route and can automatically control the aircraft to fly some or all of the segments. A control and display unit (CDU) or similar device provides input to and output from the FMC. Accordingly, pilots can load a series of flight segments into the FMC before a flight, monitor the progress of the flight by reference to the CDU, and/or modify the segments by entering new information via the CDU.
To operate the CDU 30, the operator presses one of the menu select keys 50b to determine which page dataset or menu is presented at the display screen 31. The operator then presses one of the line select keys 50a to select the user update field 33 that will be updated via data that are displayed at a scratch pad 35. If no data are present at the scratch pad 35, then the data in the selected user update field 33 are displayed at the scratch pad 35. The operator next edits information via the keyboard 21 while viewing the information at the scratch pad 35. Alternatively, the operator can enter information presented at the scratch pad 35 without first pressing one of the line select keys 50a. In either case, after the operator reviews the entered information for accuracy, he or she can depress the corresponding line select key 50a to load the information from the scratch pad 35 into the corresponding user update field 33. This information then becomes part of the aircraft flight plan.
One drawback with the arrangement described above with reference to
The present invention is directed generally toward systems and methods for handling aircraft control information. A system in accordance with one aspect of the invention includes a display medium coupleable to a flight manager, with the flight manager being configured to receive and direct instructions for automatically controlling aircraft functions at a future time during flight of the aircraft. The system can further include a display controller coupled to the display medium to present at least one operator activatable element (e.g., an icon) at the display medium and update information presented at the display medium when the operator activates the operator activatable element.
In a particular aspect of the invention, the display controller can be operatively coupled to the display medium to present at least one operator activatable icon as well as a control icon (e.g., a cursor). A tracking device can be operatively coupled to the display medium to move the control icon, and the display controller can be configured to update the information presented at the display medium when the operator aligns the control icon with the operator activatable element and activates the tracking device.
A method in accordance with another aspect of the invention includes presenting at a display medium at least one operator activatable element. The method can further include, in response to receiving a signal input by the operator and corresponding to an activation of the operator activatable input, changing at least a portion of the information presented at the display medium. The information can correspond to instructions for automatically controlling aircraft functions at a future time during flight of the aircraft. In particular aspects of the invention, the information can be displayed in a manner generally similar to a manner in which the information is displayed at a control and display unit. Changing at least a portion of the information presented at the display medium can include updating a flight plan list that includes flight segments to be flown at a future time.
The following disclosure describes systems and methods for displaying and handling aircraft operation information (e.g., control and status information) aboard an aircraft. Certain specific details are set forth in the following description and in
Many embodiments of the invention described below may take the form of computer-executable instructions, such as routines executed by a programmable computer (e.g., a flight guidance computer). Those skilled in the relevant art will appreciate that the invention can be practiced on other computer system configurations as well. The invention can be embodied in a special-purpose computer or data processor that is specifically programmed, configured or constructed to perform one or more of the computer-executable instructions described below. Accordingly, the term “computer” as generally used herein includes any processor and can include Internet appliances, hand-held devices (including palm-top computers, wearable computers, cellular or mobile phones, multiprocessor systems, processor-based or programmable consumer electronics, mini-computers and the like).
The invention can also be practiced in distributed computing environments, where tasks or modules are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules or subroutines may be located in both local and remote memory storage devices. Aspects of the invention described below may be stored or distributed on computer-readable media, including magnetic or optically readable computer disks (e.g., removable disks), as well as distributed electronically over networks. Data structures and transmissions of data particular to aspects of the invention are also encompassed within the scope of the invention.
The flight guidance computer 210 can include a flight management computer, autoflight computer, autopilot, and/or autothrottle and can be linked to one or more aircraft control systems 202, shown in
The flight guidance computer 210 directs the operation of the control systems 202 either automatically or by providing guidance cues to the operator who then manually controls the aircraft 201. Aspects of the operator's interactions with the system 200 are described in greater detail below with reference to
To select or activate one of the operator update fields 533 for updating, the operator can use the tracking device 322 to move a control element 536 (e.g., a cursor) into alignment with one of the line select elements 550a, and then optionally provide an additional signal. For example, the operator can “click” a button on the tracking device 322 or enter a keystroke at the keyboard 321. In another embodiment, the operator can scroll through the available operator update fields 533, e.g., by activating an “arrow” key at the keyboard 321 or a tabber knob on or off the keyboard 321, and then provide an additional signal when the desired operator update field 533 is reached. In either arrangement, the activated operator update field 533 can be displayed in a different manner than the non-activated fields, for example, with highlighting 537.
When the operator selects one of the selectable operator update fields 533, any information currently present at the selected operator update field 533 can appear in a preview field 535 for editing. The operator can edit the information displayed in the preview field 535 with the keyboard 321 and, after reviewing the information for accuracy, can submit the information to the corresponding operator update field 533. In one embodiment, the information can be submitted by entering a keystroke at the keyboard 321, and in another embodiment the information can be submitted by clicking a button on the tracking device 322 or by another method. In any of these arrangements, once the information has been submitted, the system 200 can check the information for accuracy. If the information is accurate, the system can load the information into the flight plan or other destination (e.g., program, routine or database). Optionally, the system 200 can display an error message in a manner generally similar to that described in copending U.S. application Ser. No. 10/814,494, entitled “Methods and Systems for Displaying Assistance Messages to Aircraft Operators,” filed concurrently herewith.
In other embodiments, the system 200 can receive information in different manners. For example, the operator can initially enter information via the keyboard 321 to appear at the preview field 535, without first selecting one of the operator update fields 533. After entering the information at the preview field 535, the operator can then select one of the operator update fields 533 to receive the information from the preview field 535.
The display medium 230 shown in
The display medium 230 can display other information when the operator activates the appropriate menu select element 550b. The menu select elements 550b displayed at the display medium 230 can operate in a manner generally similar to that of the line select elements 550a, and can be provided in lieu of the hardware switches available on existing systems. In still further embodiments, other input devices can also be presented at the display medium 230. For example, the alphanumeric keys of the keyboard 321 can be presented as operator activatable elements, either at the display medium 230 shown in
The flight instruments 744 can include primary flight displays (PFDs) 747 that provide the operators with actual flight parameter information, and multifunction displays (MFDs) 748 that display other operator-selectable information. For example, one or more of the MFDs 748 can present a navigation display 749 containing navigational information. The flight guidance computer 210 described above with reference to
One of the MFDs 748 can include two side-by-side display fields 538 (generally similar to the display field described above with reference to
One feature of embodiments of the system 200 described above with reference to
Another advantage of the foregoing features is that the inventory of spare hardware parts can be reduced because the mechanical switches of existing CDUs can be replaced with software-driven switch icons presented at the display media. Should a system upgrade or replacement become necessary, the appropriate instructions can be downloaded to the aircraft either directly at the aircraft itself or via a remote link, again without requiring a change in hardware.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, aspects of the invention described in the context of particular embodiments can be combined or eliminated in other embodiments. Accordingly, the invention is not limited except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3191147 | Majendie | Jun 1965 | A |
3696671 | Steigleder et al. | Oct 1972 | A |
4196474 | Buchanan et al. | Apr 1980 | A |
4212064 | Forsythe | Jul 1980 | A |
4247843 | Miller | Jan 1981 | A |
4274096 | Dennnison | Jun 1981 | A |
4325123 | Graham | Apr 1982 | A |
4471439 | Robbins et al. | Sep 1984 | A |
H000139 | Task | Oct 1986 | H |
4631678 | Angermuller et al. | Dec 1986 | A |
4642775 | Cline et al. | Feb 1987 | A |
4729102 | Miller, Jr. et al. | Mar 1988 | A |
4792906 | King | Dec 1988 | A |
4860007 | Konicke | Aug 1989 | A |
4939661 | Barker et al. | Jul 1990 | A |
5050081 | Abbott | Sep 1991 | A |
5070458 | Gilmore et al. | Dec 1991 | A |
5243339 | Graham et al. | Sep 1993 | A |
5289185 | Ramier et al. | Feb 1994 | A |
5329277 | Dougan et al. | Jul 1994 | A |
5337982 | Sherry | Aug 1994 | A |
5416705 | Barnett | May 1995 | A |
5420582 | Kubbat | May 1995 | A |
5454074 | Hartel | Sep 1995 | A |
5475594 | Oder et al. | Dec 1995 | A |
5499025 | Middleton et al. | Mar 1996 | A |
5519392 | Oder et al. | May 1996 | A |
5523949 | Agate et al. | Jun 1996 | A |
5668542 | Wright | Sep 1997 | A |
5715163 | Bang | Feb 1998 | A |
5739769 | Vladimir | Apr 1998 | A |
5802492 | DeLorme et al. | Sep 1998 | A |
5844503 | Riley et al. | Dec 1998 | A |
5875998 | Gleine | Mar 1999 | A |
5884219 | Curtwright et al. | Mar 1999 | A |
5916297 | Griffin, III et al. | Jun 1999 | A |
5940013 | Vladimir et al. | Aug 1999 | A |
5941930 | Morimoto et al. | Aug 1999 | A |
5971318 | Lustre | Oct 1999 | A |
5978715 | Briffe | Nov 1999 | A |
5983158 | Suzuki et al. | Nov 1999 | A |
5995290 | Noble | Nov 1999 | A |
5995901 | Owen et al. | Nov 1999 | A |
6038498 | Briffe et al. | Mar 2000 | A |
6057786 | Briffe | May 2000 | A |
6067502 | Hayashida et al. | May 2000 | A |
6072473 | Muller et al. | Jun 2000 | A |
6075467 | Ninagawa et al. | Jun 2000 | A |
6085129 | Schardt | Jul 2000 | A |
6098014 | Kranz | Aug 2000 | A |
6112141 | Briffe | Aug 2000 | A |
6118385 | Leard | Sep 2000 | A |
6154151 | McElreach et al. | Nov 2000 | A |
6175315 | Millard et al. | Jan 2001 | B1 |
6188937 | Sherry | Feb 2001 | B1 |
6246320 | Monroe | Jun 2001 | B1 |
6262720 | Jeffrey | Jul 2001 | B1 |
6275172 | Curtis et al. | Aug 2001 | B1 |
6278913 | Jiang | Aug 2001 | B1 |
6313759 | Musland-Sipper | Nov 2001 | B1 |
6314366 | Farmakis et al. | Nov 2001 | B1 |
6314370 | Curtright | Nov 2001 | B1 |
6335694 | Beksa et al. | Jan 2002 | B1 |
6346892 | DeMers et al. | Feb 2002 | B1 |
6362750 | Castor | Mar 2002 | B1 |
6381519 | Snyder | Apr 2002 | B1 |
6381538 | Robinson et al. | Apr 2002 | B1 |
6389333 | Hansman | May 2002 | B1 |
6405975 | Sankrithi et al. | Jun 2002 | B1 |
6424909 | Kusano et al. | Jul 2002 | B2 |
6443399 | Yount et al. | Sep 2002 | B1 |
6449556 | Pauly | Sep 2002 | B1 |
6466235 | Smith et al. | Oct 2002 | B1 |
6473675 | Sample | Oct 2002 | B2 |
6512527 | Barber et al. | Jan 2003 | B1 |
6522958 | Dwyer et al. | Feb 2003 | B1 |
6542796 | Gibbs et al. | Apr 2003 | B1 |
6556902 | Ing | Apr 2003 | B2 |
6633810 | Qureshi et al. | Oct 2003 | B1 |
6636786 | Partel | Oct 2003 | B2 |
6668215 | Noguichi et al. | Dec 2003 | B2 |
6690299 | Suiter | Feb 2004 | B1 |
6696980 | Langner et al. | Feb 2004 | B1 |
6697718 | Le Draoullec et al. | Feb 2004 | B2 |
6707387 | Noguchi et al. | Mar 2004 | B2 |
6711475 | Murphy | Mar 2004 | B2 |
6720891 | Chen et al. | Apr 2004 | B2 |
6745113 | Griffin | Jun 2004 | B2 |
6753891 | Chohan et al. | Jun 2004 | B1 |
6784869 | Clark et al. | Aug 2004 | B1 |
6812858 | Griffin, III | Nov 2004 | B2 |
6856864 | Gibbs et al. | Feb 2005 | B1 |
6870490 | Sherry et al. | Mar 2005 | B2 |
6871124 | McElreath | Mar 2005 | B1 |
6898492 | De Leon | May 2005 | B2 |
6909967 | Hirano et al. | Jun 2005 | B2 |
6934608 | Qureshi | Aug 2005 | B2 |
6980198 | Gyde et al. | Dec 2005 | B1 |
6992596 | Cole | Jan 2006 | B2 |
7030892 | Gyde et al. | Apr 2006 | B1 |
7142131 | Sikora | Nov 2006 | B2 |
7188007 | Boorman | Mar 2007 | B2 |
7203577 | Gunn et al. | Apr 2007 | B2 |
7222017 | Clark et al. | May 2007 | B2 |
7256710 | Mumaw et al. | Aug 2007 | B2 |
7321318 | Crane et al. | Jan 2008 | B2 |
20020004695 | Glenn et al. | Jan 2002 | A1 |
20020016654 | Ing et al. | Feb 2002 | A1 |
20020033837 | Munro | Mar 2002 | A1 |
20030025719 | Palmer et al. | Feb 2003 | A1 |
20030058134 | Sherry | Mar 2003 | A1 |
20030132860 | Feyereisen | Jul 2003 | A1 |
20030225492 | Cope et al. | Dec 2003 | A1 |
20040059474 | Boorman | Mar 2004 | A1 |
20040095466 | Galasso | May 2004 | A1 |
20040111192 | Naimer et al. | Jun 2004 | A1 |
20040183697 | Rogers et al. | Sep 2004 | A1 |
20040254691 | Subelet | Dec 2004 | A1 |
20050178903 | Boorman et al. | Aug 2005 | A1 |
20050182528 | Dwyer et al. | Aug 2005 | A1 |
20060004496 | Tucker et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
3315386 | Oct 1984 | DE |
0 286 120 | Oct 1988 | EP |
0 370 640 | May 1990 | EP |
0 489 521 | Nov 1991 | EP |
1273987 | Jan 2003 | EP |
2817831 | Jun 2002 | FR |
2848306 | Jun 2004 | FR |
886136 | Jan 1962 | GB |
WO-0224530 | Mar 2002 | WO |
WO-2004027732 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050222721 A1 | Oct 2005 | US |