The present disclosure relates to systems and methods for heating an aftertreatment system, and specifically to systems and methods for heating an aftertreatment system while the engine is not running or by circumventing the engine while it is running.
In engine systems with internal combustion engines and aftertreatment systems, the aftertreatment systems must be warm for emissions to be treated or converted. However, current systems are unable to warm up aftertreatment systems without the engine running such that fuel is burned and emissions are created while the aftertreatment system is not at a sufficient temperature. This results in a period of emissions that cannot be treated prior to leaving the engine system. Thus, a system and method for heating an aftertreatment system while the engine is not running or by circumventing the engine when it is running to heat up the aftertreatment system faster is needed.
In one embodiment of the present disclosure, a method for warming an aftertreatment system of an engine system while an engine of the engine system is not running is provided. The method comprises starting the electric compressor using stored electrical energy and passing air through an exhaust gas recirculation system of the engine system to at least a portion of the aftertreatment system, wherein the air is passed in a direction opposite to a direction of exhaust flow through the exhaust gas recirculation system when the engine of the engine system is running.
In another embodiment of the present disclosure, a method for warming an aftertreatment system of an engine system while an engine of the engine system is not running, where the engine system includes at least one of an electric compressor and an electric heater is provided. The method includes starting the at least one of the electric compressor and the electric heater using stored electrical energy and passing air to at least a portion of the aftertreatment system through an engine bypass channel when the engine is not running.
In a further embodiment of the present disclosure, a method for warming an aftertreatment system of an engine system while an engine of the engine system is not running, where the engine system includes at least one of an electric compressor and an electric heater is provided. The method comprises starting the at least one of the electric compressor and the electric heater using stored electrical energy and passing air to at least a portion of the aftertreatment system through at least one valve of at least one cylinder of the engine when the engine is not running.
Advantages and features of the embodiments of this disclosure will become more apparent from the following detailed description of exemplary embodiments when viewed in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of the present disclosure, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate and explain the present disclosure. The exemplifications set out herein illustrate embodiments of the disclosure, in one form, and such exemplifications are not to be construed as limiting the scope of the disclosure in any manner.
Referring now to
Furthermore, in various embodiments, SCR system 36 is coupled to an injector 40 configured to provide diesel exhaust fluid (DEF), ammonia (NH3), or another reactant to SCR system 36. Injector 40 may be controlled such that SCR system 36 is preloaded with DEF, NH3, or another reactant while engine 10 is not running.
Engine system 100 generally also includes an engine control module (ECM) (not shown) that is configured to control the various components of engine system 100. For instance, the ECM may be configured to understand a need for engine 10 to be started up, to determine a temperature of aftertreatment system 30, to determine an amount of electrical energy available to run the various components of system 100 such as turbocharger 16, electric heater 38 and/or injector 40, and to determine when the various components of system 100 such as turbocharger 16, electric heater 38, and/or injector 40 should be turned on to properly heat aftertreatment system 30 prior to igniting engine 10. The ECM may further be configured to determine when to open the cylinder valves or other valves of system 100 described further below for driving air through the cylinders or other component of system 100 or when to stop engine 10 such that the valves of the cylinders overlap.
With reference to
Referring now to
With reference now to
When turbine 20 is bypassed via bypass channel 44 or air flows from engine bypass 50 to aftertreatment system 30 bypassing turbocharger 16, this air may flow to a position upstream of DOC 32, DPF 34 and/or SRC system 36 or to a position downstream of DOC 32, and DPF 34 just upstream of or directly to SRC system 36, or to any position therebetween. Heater 38 may be positioned at any position within engine system 100. For example, heater 38 may be positioned upstream of DOC 32, DPF 34, and SRC system 36, or heater 38 may be positioned downstream of DOC 32 and DPF 34 and upstream of SRC system 36. Bypass channel 44 may include a valve 52 configured to direct air to the various positions of aftertreatment system 30.
In various embodiments, engine system 100 may further include an electric motor (not shown) such that engine system 100 is a hybrid system. The electric motor may provide mechanical power to or absorb mechanical power from engine 10 in exchange for using or providing electrical energy to the electrical system of engine system 100, which may be configured to run compressor 18 and/or turbine 20 of turbocharger 16, compressor 37, heater 38, and/or other various components of engine system 100 off of stored electrical energy. For instance, electric energy provided to the electrical system of engine system 100 from the electric motor may run motor 17 of turbocharger 16, compressor 37, and/or heater 38 such that aftertreatment system 30 may be warmed up prior to any fuel being burned through the running of engine 10 from power produced by a fuel.
While various embodiments of the disclosure have been shown and described, it is understood that these embodiments are not limited thereto. The embodiments may be changed, modified and further applied by those skilled in the art. Therefore, these embodiments are not limited to the detail shown and described previously, but also include all such changes and modifications.
Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements. The scope is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” Moreover, where a phrase similar to “at least one of A, B, or C” is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B or C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C.
In the detailed description herein, references to “one embodiment,” “an embodiment,” “an example embodiment,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art with the benefit of the present disclosure to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. § 112(f), unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Number | Name | Date | Kind |
---|---|---|---|
6637204 | Ellmer et al. | Oct 2003 | B2 |
9388722 | Gonze et al. | Jul 2016 | B2 |
9562452 | Gonze et al. | Feb 2017 | B2 |
9771847 | Van Niekerk et al. | Sep 2017 | B2 |
20060021346 | Whelan | Feb 2006 | A1 |
20180291827 | Disaro′ | Oct 2018 | A1 |
20180340480 | Mehta | Nov 2018 | A1 |
20200109675 | Han | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
102015221503 | May 2017 | DE |
WO-2015092180 | Jun 2015 | WO |
Entry |
---|
Machine Translation of WO-2015092180-A2 (Year: 2015). |
Number | Date | Country | |
---|---|---|---|
20210404362 A1 | Dec 2021 | US |