Systems and methods for identifying data processing activities based on data discovery results

Information

  • Patent Grant
  • 11397819
  • Patent Number
    11,397,819
  • Date Filed
    Friday, November 5, 2021
    3 years ago
  • Date Issued
    Tuesday, July 26, 2022
    2 years ago
Abstract
Aspects of the present invention provide methods, apparatuses, systems, computing devices, computing entities, and/or the like for identifying data processing activities associated with various data assets based on data discovery results. In accordance various aspects, a method is provided comprising: identifying and scanning data assets to detect a subset of the data assets, wherein each asset of the subset is associated with a particular data element used for target data; generating a prediction for each pair of data assets of the subset on the target data flowing between the pair; identifying a data flow for the target data based on the prediction generated for each pair; and identifying a data processing activity associated with handling the target data based on a correlation identified for the particular data element, the subset, and/or the data flow with a known data element, subset, and/or data flow for the data processing activity.
Description
TECHNICAL FIELD

The present disclosure is generally related to computing systems and methods used for identifying data processing activities associated with various data assets based on data discovery results produced for the various data assets.


BACKGROUND

Many entities handling (e.g., collecting, receiving, transmitting, storing, processing, sharing, and/or the like) certain types of data that may be found over multiple data sources may be tasked with performing actions on the data that involve locating certain portions of the data over the multiple data sources. However, as the quantity of data increases over time, and/or as the number of systems that may be potentially handling data increases, as well as the number of data sources used in handling data increases, determining how particular data has been handled (e.g., collected, received, transmitted, stored, processed, shared, and/or the like) across all of the potential systems, data sources, and/or the like can be significantly difficult. Accordingly, a need exists in the art for meeting the technical challenges in identifying, locating, and managing data found over multiple data sources.


SUMMARY

In general, various aspects of the present invention provide methods, apparatuses, systems, computing devices, computing entities, and/or the like for identifying data processing activities associated with various data assets based on data discovery results produced for the various data assets. In accordance various aspects, a method is provided. According, the method comprises: identifying, by computing hardware, a plurality of data assets associated with a computing system; scanning, by the computing hardware, the plurality of data assets to detect a subset of data assets found in the plurality of data assets, wherein each data asset in the subset of data assets is associated with a particular data element used for target data, and the scanning comprises: for each data asset of the plurality of data assets: identifying a plurality of data elements associated with the data asset; and for each data element of the plurality of data elements, generating, using a first machine-learning model comprising a first classifier, a first prediction for the data element being used for the target data; identifying the particular data element as being used for the target data based on the first prediction generated for each data element of the plurality of data elements; and identifying the subset of data assets as data assets from the plurality of data assets associated with the particular data element; generating, by the computing hardware using a second machine-learning model comprising a second classifier, a second prediction for each pair of data assets of the subset of data assets on the target data flowing between the pair of data assets; identifying, by the computing hardware, a data flow for the target data between the data assets of the subset of data assets based on the second prediction generated for each pair of data assets; identifying, by the computing hardware, a data processing activity associated with handling the target data for the computing system based on a correlation identified for at least one of the particular data element, the subset of data assets, or the data flow for the target data with at least one of a known data element, a known subset of data assets, or a known data flow for the data processing activity; and causing, by the computing hardware, performance of an action based on identifying the data processing activity is associated with handling the target data for the computing system.


According to particular aspects, identifying the plurality of data assets comprises installing software within the computing system that scans the computing system to identify the plurality of data assets. Similarly, according to particular aspects, for each data asset of the plurality of data assets, identifying the plurality of data elements associated with the data asset comprises installing software within the computing system that scans the data asset to identify the plurality of data elements.


According to particular aspects, identifying the data flow for the target data between the data assets of the subset of data assets based on the second prediction generated for each pair of data assets comprises processing the second prediction generated for each pair of data assets using a rules-based model to generate the data flow for the target data. According to particular aspects, identifying the data processing activity associated with handling the target data for the computing system based on the correlation comprises prompting a user for information that is integrated into identifying the data processing activity in response to being unable to initially identify the data processing activity for the correlation.


According to particular aspects, the action comprises: recording results indicating the data processing activity is associated with handling the target data for the computing system; receiving a request from an individual to at least one of view, receive, access, revise, or delete the target data for the individual; and responsive to receiving the request, processing the request by accessing the results to identify the data processing activity associated with handling the target data. According to other aspects, the action comprises: identifying a risk associated with the data processing activity handling the target data; and responsive to identifying the risk, performing at least one of communicating the risk to an individual, initiating a process to suspend the data processing activity, or initiating a process to encrypt the target data.


In accordance with various aspects, a system is provided comprising a non-transitory computer-readable medium storing instructions and a processing device communicatively coupled to the non-transitory computer-readable medium. Accordingly, the processing device is configured to execute the instructions and thereby perform operations comprising: identifying a plurality of data assets associated with a computing system; scanning the plurality of data assets to detect a subset of data assets found in the plurality of data assets, wherein each data asset in the subset of data assets is associated with a particular data element used for target data, and the scanning comprises: identifying a plurality of data elements associated with the plurality of data assets; identifying the particular data element as being used for the target data based on metadata for the plurality of data elements; and identifying the subset of data assets as data assets from the plurality of data assets associated with the particular data element; identifying a data flow for the target data between the data assets of the subset of data assets by: injecting test data for the particular data element into the computing system; and scanning the plurality of data assets to identify a propagation of the test data through the plurality of data assets to identify the data flow; identifying a data processing activity associated with handling the target data for the computing system based on a correlation identified for at least one of the particular data element, the subset of data assets, or the data flow for the target data with at least one of a known data element, a known subset of data assets, or a known data flow; and causing performance of an action based on identifying the data processing activity is associated with handling the target data for the computing system.


According to particular aspects, identifying the data processing activity based on the correlation comprises: generating a prediction of handling the target data for each of a plurality of data processing activities using a multi-label classification model and based on at least one of the particular data element, the subset of data assets, or the data flow for the target data; and identifying the data processing activity based on the prediction satisfying a threshold. According to other aspects, identifying the data processing activity based on the correlation comprises processing at least one of the particular data element, the subset of data assets, or the data flow for the target data using a rules-based model to identify the data processing activity.


According to particular aspects, scanning the plurality of data assets to identify the propagation of the test data through the plurality of data assets to identify the data flow comprises installing software within the computing system that scans the computing system to identify the propagation of the test data. According to particular aspects, identifying the data processing activity associated with handling the target data for the computing system based on the correlation comprises prompting a user for information that is integrated into identifying the data processing activity in response to being unable to initially identify the data processing activity for the correlation.


According to particular aspects, the action comprises: recording results indicating the data processing activity is associated with handling the target data for the computing system; receiving a request from an individual to at least one of view, receive, access, revise, or delete the target data for the individual; and responsive to receiving the request, processing the request by accessing the results to identify the data processing activity associated with handling the target data. According to other aspects, the action comprises: identifying a risk associated with the data processing activity handling the target data; and responsive to identifying the risk, performing at least one of communicating the risk to an individual, initiating a process to suspend the data processing activity, or initiating a process to encrypt the target data.


In accordance with yet various aspects, a system is provided. According, the system comprises first computing hardware configured for: identifying a plurality of data assets associated with a second computing system; identifying a subset of data assets for the plurality of data assets and a data flow for target data between the data assets of the subset of data assets by: injecting test data for a particular data element of the target data into the second computing system; and scanning the plurality of data assets to identify the test data in the subset of data assets and a propagation of the test data through the subset of data assets to identify the data flow; and identifying a data processing activity associated with handling the target data for the second computing system based on a correlation identified for at least one of the subset of data assets or the data flow for the target data with at least one of a known subset of data assets or a known data flow. In addition, the system comprises second computing hardware communicatively coupled to the first computing hardware and configured for performing an action based on identifying the data processing activity is associated with handling the target data for the second computing system.


According to particular aspects, scanning the plurality of data assets to identify the test data in the subset of data assets and the propagation of the test data through the subset of data assets to identify the data flow comprises installing software within the second computing system that scans the second computing system to identify the propagation of the test data. According to particular aspects, injecting the test data for the particular data element of the target data into the second computing system comprises entering the test data into an input computing system connected to the second computing system. According to particular aspects, identifying the data processing activity based on the correlation comprises: generating a prediction of handling the target data for each of a plurality of data processing activities using a multi-label classification model and based on at least one of the subset of data assets or the data flow for the target data; and identifying the data processing activity based on the prediction satisfying a threshold.


According to particular aspects, the action comprises: receiving a request from an individual to at least one of view, receive, access, revise, or delete the target data for the individual; and responsive to receiving the request, processing the request by accessing results indicating the data processing activity is associated with handling the target data for the second computing system to identify the processing. According to other aspects, the action comprises: identifying a risk associated with the data processing activity handling the target data; and responsive to identifying the risk, performing at least one of communicating the risk to an individual, initiating a process to suspend the data processing activity, or initiating a process to encrypt the target data.





BRIEF DESCRIPTION OF THE DRAWINGS

In the course of this description, reference will be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:



FIG. 1 depicts an example of a computing environment that can be used for identifying various data assets and data processing activities associated with target data that may be spread over one or more computing systems in accordance with various aspects of the present disclosure;



FIG. 2 is a flowchart of a process for identifying data processing activities associated with various data assets in accordance with various aspects of the present disclosure;



FIG. 3 depicts an example of discovering data assets found in one or more computing systems in accordance with various aspects of the present disclosure;



FIG. 4 depicts an example of determining a common data element for various data assets found in one or more computing systems in accordance with various aspects of the present disclosure;



FIG. 5 is a flowchart of a process for determining data assets used by a data processing activity in accordance with various aspects of the present disclosure;



FIG. 6 depicts an example of submitting test data in accordance with various aspects of the present disclosure;



FIG. 7 depicts a further example of submitting test data in accordance with various aspects of the present disclosure;



FIG. 8 is a block diagram illustrating a system architecture that may be used in accordance with various aspects of the present disclosure; and



FIG. 9 is a schematic diagram of a computing entity that may be used in accordance with various aspects of the present disclosure.





DETAILED DESCRIPTION

Various aspects for practicing the technologies disclosed herein are described more fully hereinafter with reference to the accompanying drawings, in which some, but not all aspects of the technologies disclosed are shown. Indeed, various aspects disclosed herein are provided so that this disclosure will satisfy applicable legal requirements and should not be construed as limiting or precluding other aspects applying the teachings and concepts disclosed herein. Like numbers in the drawings refer to like elements throughout.


Overview and Technical Contributions of Various Aspects


Many entities handling (e.g., collecting, receiving, transmitting, storing, processing, sharing, and/or the like) certain types of data that may be associated with multiple data assets found within multiple computing systems may be tasked with performing actions on the data that involve having to locate the data over the multiple data assets. For example, an entity that handles sensitive and/or personal information associated with particular individuals, such as personally identifiable information (PII) data, that is associated with multiple data assets found within multiple computing systems may be subject to having to retrieve and perform actions on the sensitive and/or personal data for a particular individual (e.g., data subject) upon request by the particular individual, such as reporting, updating, deleting, and/or the like the sensitive and/or personal data stored and/or processed for the individual with respect to the multiple data assets.


As the quantity of data increases over time, and/or as the number of data assets, computing systems, and/or data processing activities that may be potentially handling the data increases, determining how particular data has been handled (e.g., collected, received, transmitted, stored, processed, shared, and/or the like) across all of the potential data assets, computing systems, data processing activities, and/or the like can be difficult. Accordingly, discovering particular data (e.g., target data) across multiple data assets, computing systems, data processing activities, and/or the like may become even more challenging when each of the data assets, systems, data processing activities, and/or the like may use their own, possibly unique, process of identifying the particular data. That is to say, where different attributes, procedures, techniques, and/or the like of identifying target data are used across multiple systems, data sources, data processing activities, and/or the like, locating specific target data, especially specific target data associated with a particular individual, may not be feasible by simply using a common mechanism (e.g., username) for all the different systems.


Accordingly, various aspects of the present disclosure overcome many of the technical challenges associated with handling target data as mentioned above. Specifically, various aspects of the disclosure are directed to a data discovery process used for identifying data elements, data assets, and/or data processing activities associated with handling target data that may be spread over multiple computing systems. The data discovery process may involve identifying and scanning a plurality of data assets found over the multiple computing systems to identify data elements for the data assets that are used in handling the target data. For example, a data element may be considered a data field used by a data asset in storing target data. Attributes of the data elements and/or data assets may be used in identifying those data elements used in handling the target data. The data discovery process may continue with identifying data flows for the target data between data assets by identifying similar data elements used for the target data in each of the data assets. In addition, the data discovery process may identify data processing activities that may be involved in handling the target data based on the data assets found within in the data flows.


Furthermore, according to some aspects, the data discovery process may involve identifying data assets that may be associated with particular data elements found in the target data, as well as data assets that may be associated with particular data processing activities, by injecting test data for the particular data elements into the multiple computing systems and then scanning the data assets found in the systems to identify how the test data has propagated through the data assets. Associations can then be identified between the particular data elements, data processing activities involved in handing the test data, and/or data assets in which the test data has been found due to the propagation of the test data.


Accordingly, various aspects of the disclosure provided herein are effective, efficient, timely, and accurate in identifying processing activities and/or data assets associated with target data from large volumes of data, spread over multiple computing systems. As a result, various aspects of the disclosure enable the building of data models for more efficiently querying the target data from large volumes of data that may be spread over multiple computing systems. In addition, various aspects of the disclosure provided herein can facilitate the identification and/or documentation of target data present within large volumes of data, spread over various data assets, as well as facilitate the retrieval of target data for an individual (e.g., data subject), that could not normally be carried out using conventional practices, systems, and infrastructures. Further, various aspects of the disclosure can carry out data processing that cannot be feasibly performed by a human, especially when such data processing involves large volumes of data. This is especially advantageous when data processing must be carried out over a reasonable timeframe to allow for relevant observations to be gathered from the data and/or relevant operations to be performed on the data. In doing so, various aspects of the present disclosure make major technical contributions to improving the computational efficiency and reliability of various automated computing systems and procedures for processing large volumes of data to identify and/or process target data. This in turn translates to more computationally efficient systems, as well as software applications. Further detail is now provided for various aspects of the disclosure.


It is noted that reference is made to target data throughout the remainder of the application. However, target data is not necessarily limited to information that may be considered as personal and/or sensitive in nature but may also include other forms of information that may be of interest. For example, target data may include data on a particular subject of interest, such as a political organization, manufactured product, current event, and/or the like. Further, target data may not necessarily be associated with an individual but may be associated with other entities such as a business, organization, government, association, and/or the like.


Example Computing Environment



FIG. 1 depicts an example of a computing environment that can be used for identifying various data assets and data processing activities associated with target data that may be spread over one or more computing systems according to various aspects. For example, a data asset may be a sub-system, software application, website, mobile application, data storage/repository, external system, and/or the like. A data processing activity may be a process, action, exercise, and/or the like that involves performing some type of processing, collecting, accessing, storing, retrieving, revising, deleting, and/or the like of target data. For example, a data processing activity may involve collecting and processing a visitor's credit card information who is visiting a website and purchasing a product on the website. Here, the target data may be considered the credit card information and the data processing activity may involve collecting the credit card information through a form (e.g., webpage) provided via the website and processing the credit card information with the appropriate card provider to process the purchase of the product. The data processing activity involving the credit card information may be associated with one or more data assets. For example, the data processing activity may involve encrypting and storing the visitor's credit card information in a data repository of an entity (e.g., e-commerce business) associated with the web site.


Accordingly, an entity (e.g., third-party) that conducts several data processing activities involving numerous data assets may be interested in understanding the data processing activities and/or data assets associated with the handling of target data that may be spread over one or more computing systems of the entity. The term “handling” is used throughout the remainder of the specification in discussing various aspects of the disclosure with identifying data processing activities and/or data assets for target data although those of ordinary skill in the art should understand that “handling” may involve performing various types of activities for the target data such as processing, collecting, accessing, storing, retrieving, revising, deleting, and/or the like of the target data.


A discovery computing system 100 may be provided that includes software components and/or hardware components for identifying various data processing activities and/or data assets associated with the target data for the entity that may be spread over the one or more third-party computing systems 150. Accordingly, the discovery computing system 100 may include one or more interfaces (e.g., application programming interfaces (APIs)) for communicating, accessing, and analyzing the third-party computing system(s) over a network 140 (e.g., the Internet). For example, the discovery computing system 100 may be provided as a service that is available over the network 140 in which a user (e.g., personnel of the entity) may access the service and provide information necessary (e.g., credentials) for the discovery computing system 100 to perform the data discovery process for the one or more third-party computing systems 150 for the entity.


According to various aspects of the disclosure, the discovery computing system 100 may comprise computing hardware performing a number of different processes in identifying data processing activities and/or data assets for target data. Specifically, according to particular aspects, the discovery computing system 100 executes a discovery module 110 in identifying data processing activities associated with various data assets that involve target data. As further detailed herein, the discovery module 110 scans the data assets found in the third-party computing system(s) for target data. The discovery module 110 can then identify data flows for the target data between data assets by identifying similar data elements for the target data in each of the data assets. The discovery module 110 then identifies the data processing activities that may be involved in handling the target data based on the data assets involved in the data flows. According to particular aspects, the discovery module 110 performs the identification using attributes of the data assets, the identified data flows between data assets, and/or attributes of data processing activities as detailed in a data repository 120 providing information on various known data processing activities.


Accordingly, the discovery computing system 100 may also include a robotic module 130 that may be invoked by the discovery module 110 and/or executed as a stand-alone module. The robotic module 130 can be used to identify data assets that may be associated with particular data elements found in the target data, as well as data assets that may be associated with particular data processing activities. In addition, the robotic module 130 can be used in identifying data flows between data assets involving the target data. Further, the robotic module 130 can be used in populating the data repository 130 with associations identified between data processing activities, various data assets, and/or various data elements associated with the target data. The robotic module 130 can inject test data for one or more data elements of the target data through an input computing system into the third-party computing system(s) 150 and then scan the data assets found in the third-party system(s) 150 to identify how the test data has propagated through the data assets. The robotic module 130 may then generate associations between the one or more data elements, data processing activities involved in handing the test data, and/or data assets in which the test data has been found due to the propagation of the test data. The robotic module 130 may then save these associations in the data repository 130 so that the association can be used by the discovery module 110 in performing the data discovery process on the one or more third-party computing systems 150, as well as in performing future data discovery processes. Further detail is now provided on the configuration and functionality of the discovery module 110 and robotic module 130 according to various aspects of the disclosure.


Discovery Module


Turning now to FIG. 2, additional details are provided regarding a discovery module 110 for identifying various processing activities and/or data assets involved in handling target data in accordance with various aspects of the disclosure. For instance, the flow diagram shown in FIG. 2 may correspond to operations carried out, for example, by computing hardware found in the discovery computing system 100 as described herein, as the computing hardware executes the discovery module 110.


The process 200 involves the discovery module 110 identifying a plurality of data assets associated with (e.g., found in) one or more computing systems 150 for a third-party in Operation 210. According to particular aspects, the discovery module 110 may communicate with the third-party computing system(s) 150 through one or more interfaces so that the discovery module 110 can access the computing system(s) 150. For example, the discovery module 110 may use one or more APIs to communicate and access the third-party computing system(s) 150. According to some aspects, the discovery module 110 may download and/or install software (e.g., system crawler, spider, bot, and/or the like) within the third-party computing system(s) 150 that can be used in identifying the plurality of data assets. Accordingly, the software may scan each of the third-party computing system(s) 150 to identify the various data assets that may be associated with each of the computing systems 150.


Turning briefly to FIG. 3, an example is provided in which the discovery module 110 has been communicatively connected to one or more third-party computing systems 150 to scan the computing systems 150 to identify a plurality of data assets 310a-g. Accordingly, the discovery module 110 may download and/or install software within the one or more third-party computing systems 150 to scan the computing systems 150 to facilitate the identifying of the plurality of data assets 310a-g.


In addition, the discovery module 110 may use information provided on the third-party system(s) 150 in identifying the plurality of data assets associated with the system(s) 150. For instance, the third-party (e.g., entity) associated with the computing system(s) 150 may provide information on the system(s) that may help the discovery module 110 in identifying the plurality of data assets. For example, the information may include the different types of data assets that can be found in the third-party system(s) 150, the different types of data processing activities that are carried out for handling target data in the third-party system(s) 150, credentials that may be used by the discovery module 110 in accessing the third-party system(s) 150, and/or the like. According to some aspects, the discovery module 110 may not necessarily scan the third-party computing system(s) 150, but may instead identify the plurality of data assets solely through the information provided on the data assets.


In Operation 215, the discovery module 110 scans each of the discovered data assets associated with the third-party system(s) 150 to detect data elements stored by and/or associated with each data asset. Similar to scanning the third-party system(s) 150 to identify the plurality of data assets, the discovery module 110, according to particular aspects, may download and/or install software (e.g., system crawler, spider, bot, and/or the like) on the third-party system(s) 150 that then analyzes the data assets in identifying the data elements stored by and/or associated with the data assets. A “data element” can be considered a unit of data that has particular meaning and/or particular semantics. For example, a common type of data element is a data field found in a data record stored in a data repository. Here, the discovery module 110 may identify the data elements for each of the data assets that make up a part of the target data. For instance, the target data may entail personal data found and handled within the third-party system(s) and therefore, a data element identified by the discovery module 110 may involve a particular unit of personal data such as a data field utilized by a data asset that stores personal data such as, for example, an individual's social security number.


According to various aspects, the discovery module 110 may use different information, instruments, and/or combinations thereof in identifying the data elements associated with the target data. For instance, the discovery module 110 can use metadata associated with a particular data asset in identifying the data elements associated with the data asset and the purpose for the data elements. For example, the metadata may indicate the data asset accesses a data element that is used for storing target data in the form of an individual's telephone number. The discovery module 110 may access the metadata in a data source (e.g., a data repository) found in the third-party computing system(s) 150 or the metadata may be provided to the discovery module 110 by the third party for use.


In other instances, the discovery module 110 may use a machine-learning model in identifying those data elements of a data asset that are associated with the target data. For example, the discovery module 110 may use a machine-learning model that is a supervised, unsupervised, or semi-supervised trained model that generates a prediction (e.g., classification) for a data element as to whether or not the data element is associated with the target data. Accordingly, the machine-learning model may comprise a classifier such as logistic regression algorithm, clustering algorithm, decision tree, neural network, and/or the like. According to particular aspects, the machine-learning model may process metadata for a particular data element in generating a prediction for the data element. In some instances, the prediction may simply indicate whether the data element is associated with the target data or not. For instance, if the target data is personal or sensitive data, the prediction may indicate that a data element such as a social security number is associated with the target data or that a data element such as a cost for a product is not associated with the target data. In other instances, the prediction may identify the data element as a particular type of target data such as, for example, a first name, last name, address, telephone number, and/or the like. That is to say, the machine-learning model may include a classifier that generates a prediction of a type of data applicable to the target data.


For example, the machine-learning model may generate a representation (e.g., a vector) comprising a component for each of the different types of target data in which the component provides the prediction on the likelihood of the data element being the corresponding type of target data. Therefore, the discovery module 110 may identify the data element as being a particular type of target data based on the prediction for the particular type of target data satisfying a threshold (e.g., having a prediction value of 0.85 or greater). In addition, the machine-learning model may generate a confidence (confidence value) that is provided along with each prediction. The confidence may represent the machine-learning model's confidence in its generated prediction of the data element's likelihood of being a particular type of data. According to some aspects, the discovery module 110 may also use the confidence in identifying a type of target data for the data element. For example, the discovery module 110 may identify a type of target data for the data element based on: (1) the prediction for the type of data satisfying a first threshold, and (2) the confidence for the prediction satisfying a second threshold.


In a particular example, the machine-learning model may generate a prediction (e.g., for whether a particular data element is a particular type of target data) that includes a value between zero (representing a prediction that the data element is not the particular type of target data) and one (representing a prediction that the data element is the particular type of target data). The prediction value may vary between zero and one based on a likelihood that the particular data element is the particular type of target data according to the machine-learning model. The machine-learning model may then, in various aspects, generate a separate confidence score for the prediction value (e.g., a confidence score between zero and one) that represents the machine-learning model's confidence in the prediction. In this way, the discovery module 110 may identify the type of target data for the data element by comparing the prediction to a first threshold (e.g., to determine whether the prediction satisfies the first threshold) and comparing the confidence level to a second threshold (e.g., to determine whether the confidence level satisfies the second threshold). The discovery module 110 may then assign the type of target data to the data element when the prediction satisfies the first threshold, and the confidence level satisfies the second threshold.


The discovery module 110 may group one or more of the identified data elements into unique datasets of elements. A unique dataset may include data elements that are associated with a single data asset or a subset of data assets. For example, the discovery module 110 may group one or more data elements identified for a single data asset into a unique dataset used in storing personally identifiable information (PII) for individuals. In addition, the discovery module 110 may identify data elements that are common among a subset of data assets. Here, the discovery module 110 may use one or more attributes of the data elements in grouping them together to form the unique datasets, as well as to find common data elements among the plurality of data assets. Such attributes may be found in metadata for each of the data elements.


For instance, FIG. 4 depicts an example of the discovery module 110 identifying a common data element among various data assets of the plurality of data assets 310a-g. Here, the discovery module 110 has identified, in multiple data assets, a common data element having an attribute (e.g., data type) indicating the data element is used in storing a social security number (SNN) of an individual. The discovery module 110 has identified the common data element as being associated with a subset of the data assets 310a-g that includes data assets 310a, 310d, 310f, 310e. Therefore, the discovery module 110 may group the common data element (SNN) among the subset of data assets 310a-g as a unique dataset. In this example, the discovery module 110 may identify the common data element is also associated with a data asset found in an input computing system 320. As discussed further herein, the input computing system 320 can be used in injecting test data into the one or more third-party computing systems 150 to identify data assets (e.g., subsets of data assets found in the plurality of data assets) that are associated with particular data elements of the target data.


According to particular aspects, the discovery module 110 may use a rules-based model in grouping the data elements into unique datasets and/or identifying common data elements among the data assets. The rules-based model may process a set of rules in determining those data elements identified for a data asset that should be grouped into a unique dataset and/or that are common among the data assets. For example, the set of rules may include one or more rules that indicate data elements having an attribute identifying the data elements are used in storing PII should be grouped into a unique dataset. Accordingly, the set of rules may be stored within a data repository found in the discovery computing system 100, or a third-party computing system 150, that is accessible by the discovery module 110.


At Operation 220, the discovery module 110 identifies one or more data flows for the target data. A data flow for the target data generally includes a subset of the data assets in which the target data flows between the data assets found in the subset. According to various aspects, the discovery module 110 may use a (second) machine-learning model in identifying a data flow for a subset of data assets. The machine-learning model may process the data elements identified for each of the data assets (e.g., attributes of the data elements for the unique datasets and/or data elements found to be common among data assets) in generating predictions of data flow involving the target data between the data assets. For example, the machine-learning model may be a supervised, unsupervised, or semi-supervised trained model comprising a classifier (e.g., a logistic regression algorithm, clustering algorithm, decision tree, neural network, and/or the like) that generates a prediction on whether target data flows between two data assets (e.g., a pair of data assets). Here, the machine-learning model may process attributes of the data elements identified for two different data assets and generate a prediction as to whether target data flows between the two data assets.


Accordingly, the discovery module 110 may identify a pair of data assets as having a data flow between them involving the target data based on the prediction generated for the pair of data assets satisfying a threshold (e.g., having a prediction value of 0.75 or greater). In addition, the machine-learning model may generate a confidence (confidence value) that is provided along with the prediction. The confidence may represent the machine-learning model's confidence in its generated prediction of the pair of data element's likelihood of having a data flow between them. According to some aspects, the discovery module 110 may also use the confidence in identifying the pair of data assets as having a data flow between them involving the target data. For example, the discovery module 110 may identify a pair of data assets as having a data flow between them based on the prediction for the pair of data assets satisfying a first threshold and the confidence for the prediction satisfying a second threshold.


In addition, the discovery module 110 may then process the predictions generated for the pairs of data assets in identifying the data flow for the target data involving a subset of data assets. According to particular aspects, the discovery module 110 may process the predictions and/or attributes for the data elements identified for the different data assets using a (second) rules-based model in generating the data flow for the target data involving the subset. The rules-based model may process the predictions and/or attributes of the data elements using a set of rules to identify the data flow for the target data between the data assets. For example, the set of rules may include a rule that indicates that if a subset of data assets has pairs of assets with a prediction indicating a flow of target data between the assets and each of the data assets found in the subset include a unique dataset of elements having a common data attribute, then the subset of data assets represents a data flow for the target data. More specifically, for example:

    • For subset of data assets A, B, C, and D:
    • If prediction of flow of target data between data asset A and data asset B=true; and
    • If prediction of flow of target data between data asset B and data asset C=true; and
    • If prediction of flow of target data between data asset C and data asset D=true; and
    • If data assets A, B, C, and D each have unique dataset with common data attribute X; then Subset of data assets A, B, C, and D represent a data flow for the target data.


In addition, the set of rules may include one or more rules that help determine a sequence for the data assets involved in the data flow for the target data. The set of rules may be stored within a data repository found in the discovery computing system 100, or a third-party computing system 150, that is accessible by the discovery module.


Further, according to particular aspects, the discovery module 110 may invoke a robotic module 130 in performing Operations 215 and 220 instead of, or in addition to, what is described above in discovering data elements, data assets, and/or data flows for the target data. As detailed further herein, the robotic module injects test data representing target data into the one or more third-party computing systems 150 and then scans the system(s) 150 to identify the propagation of the test data through the data assets of the system(s) 150. The robotic module 130 can then identify the data element(s) of various data assets that have been populated with the test data. In addition, the robotic module 130 can identify data flows based on the propagation of the test data. Further, the robotic module 130 can generate associations between identified data element(s), associated data assets, identified data flows, and/or known data processing activities that were used in propagating the test data through the data assets. According to some aspects, the associations may be stored within a data repository 130 so that they can be used in the present and/or a future data discovery process as further detailed herein.


At Operation 225, the discovery module 110 identifies one or more data processing activities involving the data elements, data assets, and/or data flows identified as associated with the target data. According to particular aspects, the discovery module 110 uses attributes of the data elements, data assets, and/or data flows for the target data, as well as attributes of known data processing activities in identifying the one or more data processing activities that involve the target data. Accordingly, the discovery module 110 may use a data repository 130 that is accessible by the discovery module 110 in performing this particular operation. The data repository 120 may include information (e.g., records) on attributes for known data elements, data assets, and/or data processing activities. In addition, as previously noted, the data repository 130 may include information (e.g., records) on associations between identified data element(s), data assets, and/or data flows that have been established via the robotic module 130.


According to various aspects, the discovery module 110 may identify correlations between the attributes of the data elements, data assets, data flows for the target data, and/or the attributes of known and/or identified data processing activities in identifying which of the one or more data processing activities are associated with the target data. For instance, the discovery module 110 may identify one or more data elements found in a unique dataset associated with a first data asset as related to a particular type of the target data. For example, the discovery module 110 may identify the one or more data elements found in the unique dataset associated with the first data asset as a phone number data type and an address data type. In addition, the discovery module 110 may identify that the first data asset is found in a data flow for the target data that originates from a second data asset.


The discovery module 110 may also identify one or more data elements found in a unique dataset associated with a third, different data asset as related to the same or similar type of the target data. That is, the discovery module 110 may identify the one or more data elements found in the unique dataset associated with the third, different data asset as a phone number data type and an address data type. In addition, the discovery module 110 may identify that the third data asset is found in a data flow for the target data that also originates from the same, second data asset, thus correlating the unique datasets and data flows for both the first and third data assets.


The discovery module 110 may then identify, from information queried from the data repository 130, that values stored in the data elements for the phone number data type and the address data type found in the unique dataset for the third data asset are acquired by the second data asset via a particular data processing activity such as, for example, a human resources data processing activity. Therefore, based on the correlation and information queried from the data repository 130, the discovery module 110 may identify that values stored in data elements for the phone number data type and/or the address data type found in the unique dataset for the first data asset are also done so by the human resources data processing activity.


According to particular aspects, the discovery module 110 may identify correlations based on other types of attributes of data elements associated with various data assets and/or attributes of data processing activities. For example, the system may determine that values for one or more data elements stored in a first data asset were stored at a particular time and date. That is to say, the one or more data elements for the first data asset have particular storage time and date attributes. The discovery module 110 may then identify that the values for one or more data elements stored in a second data asset used by a particular data processing activity were also stored at the same (or similar) time and date. That is to say, the one or more data elements for the second data asset have the same or similar storage time and date attributes. Thus, the discovery module 110 may then identify that values stored for the data elements on the second data asset are also done so via the particular data processing activity and therefore, the second data asset is associated with the particular data processing activity.


According to some aspects, the discovery module 110 may identify correlations between attributes of data elements between data assets in identifying data processing activities involving target data. For example, the discovery module 110 may identify a correlation of timestamps associated with different data elements stored on two different data assets. The discovery module 110 may determine that a first data asset used by a particular data processing activity has an updated record stored for sending an email to a user with a particular timestamp. The discovery module 110 may then determine that a similar updated record associated with the same email and a similar timestamp has been stored in a second, different data asset. The discovery module 110 may determine a data flow exists between these two data assets and based on this correlation, identify that both the first and second data assets are involved in the particular processing activity.


According to various aspects, the discovery module 110 may use one or more of a machine-learning model, a rules-based model, and/or any combination thereof in identifying the data processing activities associated with handling the target data. Here, the discovery module 110 may not necessarily identify the correlations, per se, but instead the correlations may be embedded in the machine-learning model and/or rules-based model to identify the data processing activities through training and/or a set of rules. For example, training data used in training the machine-learning model may demonstrate a correlation between attributes of data elements for one or more data assets that the machine-learning model then learns through training to predict whether a particular data processing activity handles the target data. Similarly, a rule may be defined and included in the set of rules that represents a correlation between attributes of data elements for one or more data assets that the rules-based model then applies to predict whether a particular data processing activity handles the target data.


According to particular aspects, the discovery module 110 may process attributes of the data elements, data assets, and/or the identified data flows for the target using a machine-learning model to generate a prediction as to whether a particular data processing activity handles the target data. For example, the machine-learning model may be a supervised, unsupervised, or semi-supervised trained model that generates a prediction for each of a variety of data processing activities as to whether the particular data process activity handles the target data. The particular attributes for the data elements, data assets, and/or data flows that are provided as input to the machine-learning model may be determined during training. The machine-learning model may comprise a classifier such as a logistic regression algorithm, clustering algorithm, decision tree, neural network, and/or the like. According to some aspects, the machine-learning model may be configured as a multi-label classification model that generates a representation (e.g., vector) having a component for each data processing activity in which the component provides a prediction for the corresponding data processing activity. Accordingly, the discovery module 110 may recognize a particular data processing activity is applicable to the target data based on the prediction found in the corresponding component of the representation satisfying a threshold (e.g., based on the prediction value being 0.85 or greater).


In addition, the machine-learning model may generate a confidence (e.g., confidence value) for each prediction. The confidence may represent the machine-learning model's confidence in its generated prediction of a data processing activity's likelihood of handling the target data. According to some aspects, the discovery module 110 may also use the confidence in determining whether a particular data processing activity is applicable. For example, the discovery module 110 may determine a particular data processing activity is applicable based on: (1) the prediction for the particular data processing activity satisfying a first threshold; and (2) the confidence for the prediction satisfying a second threshold.


According to some aspects, the discovery module 110 may use a rules-based model instead of, or in addition to, a machine-learning model in determining whether a data processing activity handles the target data. The rules-based model may apply a set of rules to the identified data elements, data assets, and/or data flows (e.g., attributes thereof) in identifying the data processing activities handling the target data. In some instances, the rules-based model may apply the set of rules to the predictions generated by the machine-learning model. The set of rules may be stored within a data repository 130 found in the discovery computing system 100, or a third-party computing system 150, that is accessible by the discovery module 110. For example, the set of rules may include various rules on matching correlations and/or predictions with data processing activities.


Accordingly to particular aspects, the discovery module 110 may also prompt a user for information that the discovery module 110 may integrate into performing its identification analysis. For instance, if the discovery module 110 is unable to identify a data processing activity (e.g., to an acceptable confidence level) based on the correlations and/or predictions, the discovery module 110 may request additional information from the user that may assist the discovery module 110 in identifying a data processing activity. For example, the discovery module 110 may request additional information with respect to an identified data asset such as what additional data elements that may be handled by the data asset. In another example, the discovery module may request additional information on one or more data elements found associated with a data asset such as what type of data is stored in the one or more data elements. The discovery module 110 may then conduct the identification analysis again using the information solicited from the user such as providing the solicited information as further input to the machine-learning model and/or the rules-based model in identifying the data processing activities that handle the target data.


At Operation 230, the discovery module 110 performs one or more actions based on the results of conducting the data discovery process. For instance, the discovery module 110 may record the data discovery results in a data repository found in the discovery computing system 100 or externally, such as, for example, a data repository found in a third-party computing system 150. In addition, or instead, the discovery module 110 may communicate the data discovery results to the third-party associated with the third-party system(s) 150 that were investigated.


Furthermore, according to various aspects, a suitable computing system, such as the discovery computing system 100 and/or a third-party computing system 150, may perform one or more actions based on the data discovery results. For instance, a suitable computing system may use the recorded data discovery results in processing requests with respect to the target data. For example, the target data may be the personal data of individuals that is handled by an entity. The entity may receive requests from individuals who have asked to view, receive, access, revise, delete, and/or the like of any personal data that the entity currently has for the individuals. Therefore, the suitable computing system may use the data discovery results in identifying the processing activities and/or data assets that may be associated with the individuals' personal data so that the requests can be processed appropriately. For example, the suitable computing system may use the results in identifying the data processing activities involved in handing the personal data in which the individuals' personal data was stored in one or more data assets so that such data can be accessed, retrieved, deleted, and/or the like for the received requests. Thus, the data discovery process according to various aspects can assist in identifying the data processing activities and/or data assets associated with handling the personal data from large volumes of data, spread over multiple computing systems that can enable the entity to appropriately process the requests received from individuals. That is to say, the data discovery process according to various aspects can enable the building of a data model for more efficiently querying target data from the large volumes of data, spread over multiple computing systems, in processing a request associated with the target data.


In another example, the suitable computing system may use the data discovery results to identify risks that may be associated with the target data due to the data processing activities and/or data assets identified as associated with the target data. Again, the target data may be personal data processed by an entity. Here, the data discovery results may identify that a particular processing activity is being used to handle the personal data. However, the particular processing activity may not be handling the personal data in a secure manner. For example, the processing activity may involve transferring the personal data to an external system without first encrypting the personal data. This may be performed without the entity (personnel of the entity, such as a privacy officer) being aware of the processing activity is handling the personal data and transferring the personal data in an unencrypted state, thus putting the entity at risk (exposing the entity) of experiencing a privacy-related data incident (e.g., data breach) involving the personal data.


Accordingly, the suitable computing system may recognize the risk based on the data discovery results and have one or more actions performed to address/mitigate the risk. For example, the suitable computing system may have a communication sent to proper personnel so that they are made aware of the risk. In another example, the suitable computing system may have the data processing activity suspended so that the personal data is no longer transferred. Yet in another example, the suitable computing system may initiate a process to have the personal data encrypted prior to being transferred by the data processing activity. Those of ordinary skill in the art can recognize other actions that may be performed based on the data discovery results in light of this disclosure.


Robotic Module


As previously mentioned, a robotic module 130 can be used according to various aspects to identify data elements associated with various data assets by injecting test data for the data elements into one or more third-party computing systems 150. According to some aspects, the robotic module 130 is invoked by the discovery module 110 in identifying such data elements. However, with that said, the robotic module 130 may be invoked by another module and/or may executed as a stand-alone module. Turning now to FIG. 5, additional details are provided regarding a robotic module 130 for identifying data elements associated with various data assets in accordance with various aspects of the disclosure. For instance, the flow diagram shown in FIG. 5 may correspond to operations carried out, for example, by computing hardware found in the discovery computing system 100 as described herein, as the computing hardware executes the robotic module 130.


The process 500 involves the robotic module 130 initially injecting test data into one or more third-party computing systems 150 in Operation 510. According to various aspects, the robotic module 130 may use an input computing system that is a part of the third-party system(s) 150 for injecting the test data into the third-party computing system(s) 150. For example, the input computing system may comprise a data asset such as a Web server that provides a website in which visitors can visit to enter target data. In some instances, the input computing system may be associated with a known data processing activity such as generating a user account for a visitor to the website. Here, the website may provide a visitor with one or more webforms in which the visitor provides requested information to set up the user account. Accordingly, some of the information provided by the user may be considered target data. For example, the user may be requested to provide his or her first and last name, email address, home address, social security number, date of birth, and/or the like. Such information may be considered personal data and the third party associated with the website may be interested in identifying how the personal data is handled through the one or more computing systems 150 of the third party. Therefore, the robotic module 130 may provide the requested information as test data in the one or more webforms to inject the test data into the one or more third-party computing systems 150.


In other instances, the input computing system may not necessarily be associated with a known data processing activity for the target data. Here, the third party may be interested in identifying how test data propagates from the input computing system through the one or more third-party computing systems 150. According to various aspects, the robotic module 130 may communicate with the input computing system through one or more interfaces so that the robotic module 130 can inject the test data into the third-party computing systems 150 via the input computing system. For example, the discovery module 110 may use one or more APIs to communicate and access the input computing system and inject the test data.


Once the test data have been injected, the robotic module 130 scans the data assets found in the third-party computing system(s) 150 for the test data in Operation 515 to identify the data assets in which the test data is found. Similar to the discovery module 110, the robotic module 130 may download and/or install software (e.g., system crawler, spider, bot, and/or the like) within the third-party computing system(s) 150 that can be used in identifying the test data associated with various data assets (e.g., data elements thereof) found in the third-party computing system(s) 150. Accordingly, the software may scan each data asset of the third-party computing system(s) 150 to identify those data assets in which the test data is found.


At Operation 520, the robotic module 130 generations associations between the data assets in which the test data is found, the data elements used by the data assets for the test data, data flow through the data assets, and/or one or more data processing activities involved in propagating the test data through the data assets. According to some aspects, the robotic module 130 may store the associations (e.g., as one or more records) in a data repository 130 so that the associations can be used in a present and/or future data discovery process. For example, if a known data processing activity has been used to inject the test data into the one or more third-party computing systems 150, then the robotic module 130 may record an association between the known data processing activity, the data assets in which the test data was found, and/or the data elements used by the data assets for the test data. In addition, the robotic module 130 may record an association between the known data processing activity and a data flow through the data assets in which the test data is found. Further, the robotic module 130 may record one or more attributes for the known data processing activity, the data assets, and/or the data elements. Such information may be useful in conducting a present and/or future data discovery process.


If a known data processing activity has not been used to inject the test data into the one or more third-party computing systems 150, then the robotic module 130 may record an association between the data assets in which the test data is found, the data elements used by the data assets for the test data, and/or a data flow through the data assets in which the test data is found. According to some aspects, the robotic module 130 may identify the association as a “discovered” and/or “identified” data processing activity. That is to say, the robotic module 130 may identify data processing activities that process target data that may have not been previously known to the third party. Once recorded, the discovery module 110 according to various aspects may use the associations recorded in the data repository 130 in conducting a present and/or future data discovery process.


Referring now to FIG. 6, an example is provided of the robotic module 130 submitting test data 610 into an input computing system 320 for a particular data element, in this case a social security number. The robotic module 130 may then propagate the test data through one or more third-party computing systems 150 by executing a particular processing activity using the test data. As shown in FIG. 7, the test data 610 has been propagated to the data assets 310f and 310d via the input computing system 320. The robotic module 130 may then scan the data assets 310a-g to identify that the particular test data has been stored at the data assets 310f and 310d. The robotic module 130 may then generate and store a record in the data repository 130 indicating an association between the particular data processing activity, the data assets 310f, 310d, and/or the particular data element indicating the particular data processing activity as storing values for the particular data element at data assets 310f and 310d when executed. The association may then be used in performing a present and/or future data discovery process. For example, the discovery module 110 may identify that the particular data element is associated with another data asset similar to data assets 310f and 310d found in one or more third-party computing systems 150. As a result, the discovery module 110 may identify that the newly identified data asset is also associated with the particular processing activity.


Example Technical Platforms


Aspects of the present disclosure may be implemented in various ways, including as computer program products that comprise articles of manufacture. Such computer program products may include one or more software components including, for example, software objects, methods, data structures, and/or the like. A software component may be coded in any of a variety of programming languages. An illustrative programming language may be a lower-level programming language such as an assembly language associated with a particular hardware architecture and/or operating system platform. A software component comprising assembly language instructions may require conversion into executable machine code by an assembler prior to execution by the hardware architecture and/or platform. Another example programming language may be a higher-level programming language that may be portable across multiple architectures. A software component comprising higher-level programming language instructions may require conversion to an intermediate representation by an interpreter or a compiler prior to execution.


Other examples of programming languages include, but are not limited to, a macro language, a shell or command language, a job control language, a script language, a database query, or search language, and/or a report writing language. In one or more example aspects, a software component comprising instructions in one of the foregoing examples of programming languages may be executed directly by an operating system or other software component without having to be first transformed into another form. A software component may be stored as a file or other data storage construct. Software components of a similar type or functionally related may be stored together such as, for example, in a particular directory, folder, or library. Software components may be static (e.g., pre-established, or fixed) or dynamic (e.g., created or modified at the time of execution).


A computer program product may include a non-transitory computer-readable storage medium storing applications, programs, program modules, scripts, source code, program code, object code, byte code, compiled code, interpreted code, machine code, executable instructions, and/or the like (also referred to herein as executable instructions, instructions for execution, computer program products, program code, and/or similar terms used herein interchangeably). Such non-transitory computer-readable storage media include all computer-readable media (including volatile and non-volatile media).


According to various aspects, a non-volatile computer-readable storage medium may include a floppy disk, flexible disk, hard disk, solid-state storage (SSS) (e.g., a solid-state drive (SSD), solid state card (SSC), solid state module (SSM), enterprise flash drive, magnetic tape, or any other non-transitory magnetic medium, and/or the like. A non-volatile computer-readable storage medium may also include a punch card, paper tape, optical mark sheet (or any other physical medium with patterns of holes or other optically recognizable indicia), compact disc read only memory (CD-ROM), compact disc-rewritable (CD-RW), digital versatile disc (DVD), Blu-ray disc (BD), any other non-transitory optical medium, and/or the like. Such a non-volatile computer-readable storage medium may also include read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory (e.g., Serial, NAND, NOR, and/or the like), multimedia memory cards (MMC), secure digital (SD) memory cards, SmartMedia cards, CompactFlash (CF) cards, Memory Sticks, and/or the like. Further, a non-volatile computer-readable storage medium may also include conductive-bridging random access memory (CBRAM), phase-change random access memory (PRAM), ferroelectric random-access memory (FeRAM), non-volatile random-access memory (NVRAM), magnetoresistive random-access memory (MRAM), resistive random-access memory (RRAM), Silicon-Oxide-Nitride-Oxide-Silicon memory (SONOS), floating junction gate random access memory (FJG RAM), Millipede memory, racetrack memory, and/or the like.


According to various aspects, a volatile computer-readable storage medium may include random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), fast page mode dynamic random access memory (FPM DRAM), extended data-out dynamic random access memory (EDO DRAM), synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (DDR SDRAM), double data rate type two synchronous dynamic random access memory (DDR2 SDRAM), double data rate type three synchronous dynamic random access memory (DDR3 SDRAM), Rambus dynamic random access memory (RDRAM), Twin Transistor RAM (TTRAM), Thyristor RAM (T-RAM), Zero-capacitor (Z-RAM), Rambus in-line memory module (RIMM), dual in-line memory module (DIMM), single in-line memory module (SIMM), video random access memory (VRAM), cache memory (including various levels), flash memory, register memory, and/or the like. It will be appreciated that where various aspects are described to use a computer-readable storage medium, other types of computer-readable storage media may be substituted for or used in addition to the computer-readable storage media described above.


Various aspects of the present disclosure may also be implemented as methods, apparatuses, systems, computing devices, computing entities, and/or the like. As such, various aspects of the present disclosure may take the form of a data structure, apparatus, system, computing device, computing entity, and/or the like executing instructions stored on a computer-readable storage medium to perform certain steps or operations. Thus, various aspects of the present disclosure also may take the form of entirely hardware, entirely computer program product, and/or a combination of computer program product and hardware performing certain steps or operations.


Various aspects of the present disclosure are described below with reference to block diagrams and flowchart illustrations. Thus, each block of the block diagrams and flowchart illustrations may be implemented in the form of a computer program product, an entirely hardware aspect, a combination of hardware and computer program products, and/or apparatuses, systems, computing devices, computing entities, and/or the like carrying out instructions, operations, steps, and similar words used interchangeably (e.g., the executable instructions, instructions for execution, program code, and/or the like) on a computer-readable storage medium for execution. For example, retrieval, loading, and execution of code may be performed sequentially such that one instruction is retrieved, loaded, and executed at a time. In some example of aspects, retrieval, loading, and/or execution may be performed in parallel such that multiple instructions are retrieved, loaded, and/or executed together. Thus, such aspects can produce specially configured machines performing the steps or operations specified in the block diagrams and flowchart illustrations. Accordingly, the block diagrams and flowchart illustrations support various combinations of aspects for performing the specified instructions, operations, or steps.


Example System Architecture



FIG. 8 is a block diagram of a system architecture 800 that can be used in conducting the data discovery process according to various aspects of the disclosure as detailed herein. Accordingly, entities of the system architecture 800 are configured according to various aspects to identifying data elements, data assets, data flows, and/or data processing activities that are found in one or more third-party computing systems 150 and used in handling target data. As may be understood from FIG. 8, the system architecture 800 according to various aspects may include a discovery computing system 100 that comprises one or more discovery servers 810 and one or more data repositories 820. For example, the one or more data repositories 820 may include a data repository 120 for storing information on various data elements, data assets, and data processing activities, as well as a data repository used for storing sets of rules, as described herein. Although the discovery server(s) 810 and repositor(ies) 820 are shown as separate entities, it should be understood that according to other aspects, these entities 810, 820 may comprise a single server and/or repository, a plurality of servers and/or repositories, one or more cloud-based servers and/or repositories, or any other suitable configuration.


The discovery server(s) 810 may communicate, access, analyze, and/or the like the one or more third-party computing systems 150 over a network 140 and may execute a discovery module 110 and/or robotic module 130 as described herein to conduct a data discovery process on the one or more third-party computing system 150. Accordingly, the robotic module 130 can store records on identified associations between data elements, data assets, data flows, and/or data process activities for the third-party computing system(s) that can then be accessed and used by the discovery module 110 in conducting the data discovery process.


In addition, according to particular aspects, the discovery server(s) 810 provide one or more interfaces through which the discovery computing system 100 communicates with the third-party computing system(s) 150, as well as one or more interfaces (e.g., websites, transfer protocol interfaces, and/or the like) for displaying and/or communicating data discovery results of the data discovery process. Thus, the discovery server(s) 810 may interface with the third-party computing system(s) 150 via one or more suitable application programming interfaces (APIs), direct connections, and/or the like.


Example Computing Hardware



FIG. 9 illustrates a diagrammatic representation of a computing hardware device 900 that may be used in accordance with various aspects of the disclosure. For example, the hardware device 900 may be computing hardware such as a discovery server 810 as described in FIG. 8. According to particular aspects, the hardware device 900 may be connected (e.g., networked) to one or more other computing entities, storage devices, and/or the like via one or more networks such as, for example, a LAN, an intranet, an extranet, and/or the Internet. As noted above, the hardware device 900 may operate in the capacity of a server and/or a client device in a client-server network environment, or as a peer computing device in a peer-to-peer (or distributed) network environment. According to various aspects, the hardware device 700 may be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a mobile device (smartphone), a web appliance, a server, a network router, a switch or bridge, or any other device capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that device. Further, while only a single hardware device 900 is illustrated, the term “hardware device,” “computing hardware,” and/or the like shall also be taken to include any collection of computing entities that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.


A hardware device 900 includes a processor 902, a main memory 904 (e.g., read-only memory (ROM), flash memory, dynamic random-access memory (DRAM) such as synchronous DRAM (SDRAM), Rambus DRAM (RDRAM), and/or the like), a static memory 706 (e.g., flash memory, static random-access memory (SRAM), and/or the like), and a data storage device 918, that communicate with each other via a bus 932.


The processor 902 may represent one or more general-purpose processing devices such as a microprocessor, a central processing unit, and/or the like. According to some aspects, the processor 902 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, processors implementing a combination of instruction sets, and/or the like. According to some aspects, the processor 902 may be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, and/or the like. The processor 902 can execute processing logic 926 for performing various operations and/or steps described herein.


The hardware device 900 may further include a network interface device 908, as well as a video display unit 910 (e.g., a liquid crystal display (LCD), a cathode ray tube (CRT), and/or the like), an alphanumeric input device 912 (e.g., a keyboard), a cursor control device 914 (e.g., a mouse, a trackpad), and/or a signal generation device 916 (e.g., a speaker). The hardware device 900 may further include a data storage device 918. The data storage device 918 may include a non-transitory computer-readable storage medium 930 (also known as a non-transitory computer-readable storage medium or a non-transitory computer-readable medium) on which is stored one or more modules 922 (e.g., sets of software instructions) embodying any one or more of the methodologies or functions described herein. For instance, according to particular aspects, the modules 922 include a discovery module 110 and/or a robotic module 130 as described herein. The one or more modules 922 may also reside, completely or at least partially, within main memory 904 and/or within the processor 902 during execution thereof by the hardware device 900—main memory 904 and processor 902 also constituting computer-accessible storage media. The one or more modules 922 may further be transmitted or received over a network 140 via the network interface device 908.


While the computer-readable storage medium 930 is shown to be a single medium, the terms “computer-readable storage medium” and “machine-accessible storage medium” should be understood to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable storage medium” should also be understood to include any medium that is capable of storing, encoding, and/or carrying a set of instructions for execution by the hardware device 900 and that causes the hardware device 900 to perform any one or more of the methodologies of the present disclosure. The term “computer-readable storage medium” should accordingly be understood to include, but not be limited to, solid-state memories, optical and magnetic media, and/or the like.


System Operation


The logical operations described herein may be implemented (1) as a sequence of computer implemented acts or one or more program modules running on a computing system and/or (2) as interconnected machine logic circuits or circuit modules within the computing system. The implementation is a matter of choice dependent on the performance and other requirements of the computing system. Accordingly, the logical operations described herein are referred to variously as states, operations, steps, structural devices, acts, or modules. These states, operations, steps, structural devices, acts, and modules may be implemented in software, in firmware, in special purpose digital logic, and any combination thereof. Greater or fewer operations may be performed than shown in the figures and described herein. These operations also may be performed in a different order than those described herein.


CONCLUSION

While this specification contains many specific aspect details, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular aspects of particular inventions. Certain features that are described in this specification in the context of separate aspects also may be implemented in combination in a single aspect. Conversely, various features that are described in the context of a single aspect also may be implemented in multiple aspects separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be a sub-combination or variation of a sub-combination.


Similarly, while operations are described in a particular order, this should not be understood as requiring that such operations be performed in the particular order described or in sequential order, or that all described operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various components in the various aspects described above should not be understood as requiring such separation in all aspects, and the described program components (e.g., modules) and systems may generally be integrated together in a single software product or packaged into multiple software products.


Many modifications and other aspects of the disclosure will come to mind to one skilled in the art to which this disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific aspects disclosed and that modifications and other aspects are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for the purposes of limitation.

Claims
  • 1. A method comprising: identifying, by computing hardware, a plurality of data assets associated with a computing system;scanning, by the computing hardware, the plurality of data assets to detect a subset of data assets found in the plurality of data assets, wherein each data asset in the subset of data assets is associated with a particular data element used for target data, and the scanning comprises: for each data asset of the plurality of data assets: identifying a plurality of data elements associated with the data asset; andfor each data element of the plurality of data elements, generating, using a first machine-learning model comprising a first classifier, a first prediction for the data element being used for the target data;identifying the particular data element as being used for the target data based on the first prediction generated for each data element of the plurality of data elements; andidentifying the subset of data assets as data assets from the plurality of data assets associated with the particular data element;generating, by the computing hardware using a second machine-learning model comprising a second classifier, a second prediction for each pair of data assets of the subset of data assets on the target data flowing between the pair of data assets;identifying, by the computing hardware, a data flow for the target data between the data assets of the subset of data assets based on the second prediction generated for each pair of data assets;identifying, by the computing hardware, a data processing activity associated with handling the target data for the computing system based on a correlation identified for at least one of the particular data element, the subset of data assets, or the data flow for the target data with at least one of a known data element, a known subset of data assets, or a known data flow for the data processing activity; andcausing, by the computing hardware, performance of an action based on identifying the data processing activity is associated with handling the target data for the computing system.
  • 2. The method of claim 1, wherein identifying the plurality of data assets comprises installing software within the computing system that scans the computing system to identify the plurality of data assets.
  • 3. The method of claim 1, wherein for each data asset of the plurality of data assets, identifying the plurality of data elements associated with the data asset comprises installing software within the computing system that scans the data asset to identify the plurality of data elements.
  • 4. The method of claim 1, wherein identifying the data flow for the target data between the data assets of the subset of data assets based on the second prediction generated for each pair of data assets comprises processing the second prediction generated for each pair of data assets using a rules-based model to generate the data flow for the target data.
  • 5. The method of claim 1, wherein identifying the data processing activity associated with handling the target data for the computing system based on the correlation comprises prompting a user for information that is integrated into identifying the data processing activity in response to being unable to initially identify the data processing activity for the correlation.
  • 6. The method of claim 1, wherein the action comprises: recording results indicating the data processing activity is associated with handling the target data for the computing system;receiving a request from an individual to at least one of view, receive, access, revise, or delete the target data for the individual; andresponsive to receiving the request, processing the request by accessing the results to identify the data processing activity associated with handling the target data.
  • 7. The method of claim 1, wherein the action comprises: identifying a risk associated with the data processing activity handling the target data; andresponsive to identifying the risk, performing at least one of communicating the risk to an individual, initiating a process to suspend the data processing activity, or initiating a process to encrypt the target data.
  • 8. A system comprising: a non-transitory computer-readable medium storing instructions; anda processing device communicatively coupled to the non-transitory computer-readable medium,wherein, the processing device is configured to execute the instructions and thereby perform operations comprising: identifying a plurality of data assets associated with a computing system;scanning the plurality of data assets to detect a subset of data assets found in the plurality of data assets, wherein each data asset in the subset of data assets is associated with a particular data element used for target data, and the scanning comprises: identifying a plurality of data elements associated with the plurality of data assets;identifying the particular data element as being used for the target data based on metadata for the plurality of data elements; andidentifying the subset of data assets as data assets from the plurality of data assets associated with the particular data element;identifying a data flow for the target data between the data assets of the subset of data assets by: injecting test data for the particular data element into the computing system; andscanning the plurality of data assets to identify a propagation of the test data through the plurality of data assets to identify the data flow;identifying a data processing activity associated with handling the target data for the computing system based on a correlation identified for at least one of the particular data element, the subset of data assets, or the data flow for the target data with at least one of a known data element, a known subset of data assets, or a known data flow; andcausing performance of an action based on identifying the data processing activity is associated with handling the target data for the computing system.
  • 9. The system of claim 8, wherein identifying the data processing activity based on the correlation comprises: generating a prediction of handling the target data for each of a plurality of data processing activities using a multi-label classification model and based on at least one of the particular data element, the subset of data assets, or the data flow for the target data; andidentifying the data processing activity based on the prediction satisfying a threshold.
  • 10. The system of claim 8, wherein identifying the data processing activity based on the correlation comprises processing at least one of the particular data element, the subset of data assets, or the data flow for the target data using a rules-based model to identify the data processing activity.
  • 11. The system of claim 8, wherein scanning the plurality of data assets to identify the propagation of the test data through the plurality of data assets to identify the data flow comprises installing software within the computing system that scans the computing system to identify the propagation of the test data.
  • 12. The system of claim 8, wherein identifying the data processing activity associated with handling the target data for the computing system based on the correlation comprises prompting a user for information that is integrated into identifying the data processing activity in response to being unable to initially identify the data processing activity for the correlation.
  • 13. The system of claim 8, wherein the action comprises: recording results indicating the data processing activity is associated with handling the target data for the computing system;receiving a request from an individual to at least one of view, receive, access, revise, or delete the target data for the individual; andresponsive to receiving the request, processing the request by accessing the results to identify the data processing activity associated with handling the target data.
  • 14. The system of claim 8, wherein the action comprises: identifying a risk associated with the data processing activity handling the target data; andresponsive to identifying the risk, performing at least one of communicating the risk to an individual, initiating a process to suspend the data processing activity, or initiating a process to encrypt the target data.
  • 15. A computing system comprising: first computing hardware configured for: identifying a plurality of data assets associated with a second computing system;identifying a subset of data assets for the plurality of data assets and a data flow for target data between the data assets of the subset of data assets by: injecting test data for a particular data element of the target data into the second computing system; andscanning the plurality of data assets to identify the test data in the subset of data assets and a propagation of the test data through the subset of data assets to identify the data flow; andidentifying a data processing activity associated with handling the target data for the second computing system based on a correlation identified for at least one of the subset of data assets or the data flow for the target data with at least one of a known subset of data assets or a known data flow; andsecond computing hardware communicatively coupled to the first computing hardware and configured for performing an action based on identifying the data processing activity is associated with handling the target data for the second computing system.
  • 16. The computing system of claim 15, wherein scanning the plurality of data assets to identify the test data in the subset of data assets and the propagation of the test data through the subset of data assets to identify the data flow comprises installing software within the second computing system that scans the second computing system to identify the propagation of the test data.
  • 17. The computing system of claim 15, wherein injecting the test data for the particular data element of the target data into the second computing system comprises entering the test data into an input computing system connected to the second computing system.
  • 18. The computing system of claim 15, wherein the action comprises: receiving a request from an individual to at least one of view, receive, access, revise, or delete the target data for the individual; andresponsive to receiving the request, processing the request by accessing results indicating the data processing activity is associated with handling the target data for the second computing system to identify the processing.
  • 19. The computing system of claim 15, wherein the action comprises: identifying a risk associated with the data processing activity handling the target data; andresponsive to identifying the risk, performing at least one of communicating the risk to an individual, initiating a process to suspend the data processing activity, or initiating a process to encrypt the target data.
  • 20. The computing system of claim 15, wherein identifying the data processing activity based on the correlation comprises: generating a prediction of handling the target data for each of a plurality of data processing activities using a multi-label classification model and based on at least one of the subset of data assets or the data flow for the target data; andidentifying the data processing activity based on the prediction satisfying a threshold.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 63/110,557, filed Nov. 6, 2020, which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (1441)
Number Name Date Kind
4536866 Jerome et al. Aug 1985 A
5193162 Bordsen et al. Mar 1993 A
5276735 Boebert et al. Jan 1994 A
5329447 Leedom, Jr. Jul 1994 A
5404299 Tsurubayashi et al. Apr 1995 A
5535393 Reeve et al. Jul 1996 A
5560005 Hoover et al. Sep 1996 A
5668986 Nilsen et al. Sep 1997 A
5710917 Musa et al. Jan 1998 A
5761529 Raji Jun 1998 A
5764906 Edelstein et al. Jun 1998 A
5872973 Mitchell et al. Feb 1999 A
5913041 Ramanathan et al. Jun 1999 A
5913214 Madnick et al. Jun 1999 A
6016394 Walker Jan 2000 A
6122627 Carey et al. Sep 2000 A
6148297 Swor et al. Nov 2000 A
6148342 Ho Nov 2000 A
6240416 Immon et al. May 2001 B1
6243816 Fang et al. Jun 2001 B1
6253203 Oflaherty et al. Jun 2001 B1
6263335 Paik et al. Jul 2001 B1
6272631 Thomlinson et al. Aug 2001 B1
6275824 Oflaherty et al. Aug 2001 B1
6282548 Burner et al. Aug 2001 B1
6330562 Boden et al. Dec 2001 B1
6363488 Ginter et al. Mar 2002 B1
6374237 Reese Apr 2002 B1
6374252 Althoff et al. Apr 2002 B1
6408336 Schneider et al. Jun 2002 B1
6427230 Goiffon et al. Jul 2002 B1
6442688 Moses et al. Aug 2002 B1
6446120 Dantressangle Sep 2002 B1
6463488 San Juan Oct 2002 B1
6484149 Jammes et al. Nov 2002 B1
6484180 Lyons et al. Nov 2002 B1
6516314 Birkler et al. Feb 2003 B1
6516337 Tripp et al. Feb 2003 B1
6519571 Guheen et al. Feb 2003 B1
6591272 Williams Jul 2003 B1
6601233 Underwood Jul 2003 B1
6606744 Mikurak Aug 2003 B1
6611812 Hurtado et al. Aug 2003 B2
6625602 Meredith et al. Sep 2003 B1
6629081 Cornelius et al. Sep 2003 B1
6633878 Underwood Oct 2003 B1
6662192 Rebane Dec 2003 B1
6662357 Bowman-Amuah Dec 2003 B1
6697824 Bowman-Amuah Feb 2004 B1
6699042 Smith et al. Mar 2004 B2
6701314 Conover et al. Mar 2004 B1
6721713 Guheen Apr 2004 B1
6725200 Rost Apr 2004 B1
6732109 Lindberg et al. May 2004 B2
6754665 Futagami Jun 2004 B1
6755344 Mollett et al. Jun 2004 B1
6757685 Raffaele et al. Jun 2004 B2
6757888 Knutson et al. Jun 2004 B1
6816944 Peng Nov 2004 B2
6826693 Yoshida et al. Nov 2004 B1
6850252 Hoffberg Feb 2005 B1
6886101 Glazer et al. Apr 2005 B2
6901346 Tracy et al. May 2005 B2
6904417 Clayton et al. Jun 2005 B2
6909897 Kikuchi Jun 2005 B2
6925443 Baggett, Jr. et al. Aug 2005 B1
6938041 Brandow et al. Aug 2005 B1
6956845 Baker et al. Oct 2005 B2
6978270 Carty et al. Dec 2005 B1
6980927 Tracy et al. Dec 2005 B2
6980987 Kaminer Dec 2005 B2
6983221 Tracy et al. Jan 2006 B2
6985887 Sunstein et al. Jan 2006 B1
6990454 McIntosh Jan 2006 B2
6993448 Tracy et al. Jan 2006 B2
6993495 Smith, Jr. et al. Jan 2006 B2
6996807 Vardi et al. Feb 2006 B1
7003560 Mullen et al. Feb 2006 B1
7003662 Genty et al. Feb 2006 B2
7013290 Ananian Mar 2006 B2
7017105 Flanagin et al. Mar 2006 B2
7023979 Wu et al. Apr 2006 B1
7039594 Gersting May 2006 B1
7039654 Eder May 2006 B1
7047517 Brown et al. May 2006 B1
7051036 Rosnow et al. May 2006 B2
7051038 Yeh et al. May 2006 B1
7058970 Shaw Jun 2006 B2
7069427 Adler et al. Jun 2006 B2
7076558 Dunn Jul 2006 B1
7095854 Ginter et al. Aug 2006 B1
7100195 Underwood Aug 2006 B1
7120800 Ginter et al. Oct 2006 B2
7124101 Mikurak Oct 2006 B1
7124107 Pishevar Oct 2006 B1
7127705 Christfort et al. Oct 2006 B2
7127741 Bandini et al. Oct 2006 B2
7133845 Ginter et al. Nov 2006 B1
7139999 Bowman-Amuah Nov 2006 B2
7143091 Charnock et al. Nov 2006 B2
7149698 Guheen et al. Dec 2006 B2
7165041 Guheen et al. Jan 2007 B1
7167842 Josephson, II et al. Jan 2007 B1
7167844 Leong et al. Jan 2007 B1
7171379 Menninger et al. Jan 2007 B2
7181438 Szabo Feb 2007 B1
7203929 Vinodkrishnan et al. Apr 2007 B1
7213233 Vinodkrishnan et al. May 2007 B1
7216340 Vinodkrishnan et al. May 2007 B1
7219066 Parks et al. May 2007 B2
7223234 Stupp et al. May 2007 B2
7225460 Barzilai et al. May 2007 B2
7234065 Breslin et al. Jun 2007 B2
7247625 Zhang et al. Jul 2007 B2
7251624 Lee et al. Jul 2007 B1
7260830 Sugimoto Aug 2007 B2
7266566 Kennaley et al. Sep 2007 B1
7272818 Ishimitsu et al. Sep 2007 B2
7275063 Horn Sep 2007 B2
7281020 Fine Oct 2007 B2
7284232 Bates et al. Oct 2007 B1
7284271 Lucovsky et al. Oct 2007 B2
7287280 Young Oct 2007 B2
7290275 Baudoin et al. Oct 2007 B2
7293119 Beale Nov 2007 B2
7299299 Hollenbeck et al. Nov 2007 B2
7302569 Betz et al. Nov 2007 B2
7313575 Carr et al. Dec 2007 B2
7313699 Koga Dec 2007 B2
7313825 Redlich et al. Dec 2007 B2
7315826 Guheen et al. Jan 2008 B1
7315849 Bakalash et al. Jan 2008 B2
7322047 Redlich et al. Jan 2008 B2
7330850 Seibel et al. Feb 2008 B1
7340447 Ghatare Mar 2008 B2
7340776 Zobel et al. Mar 2008 B2
7343434 Kapoor et al. Mar 2008 B2
7346518 Frank et al. Mar 2008 B1
7353204 Liu Apr 2008 B2
7356559 Jacobs et al. Apr 2008 B1
7367014 Griffin Apr 2008 B2
7370025 Pandit May 2008 B1
7376835 Olkin et al. May 2008 B2
7380120 Garcia May 2008 B1
7382903 Ray Jun 2008 B2
7383570 Pinkas et al. Jun 2008 B2
7391854 Salonen et al. Jun 2008 B2
7398393 Mont et al. Jul 2008 B2
7401235 Mowers et al. Jul 2008 B2
7403942 Bayliss Jul 2008 B1
7409354 Putnam et al. Aug 2008 B2
7412402 Cooper Aug 2008 B2
7424680 Carpenter Sep 2008 B2
7428546 Nori et al. Sep 2008 B2
7430585 Sibert Sep 2008 B2
7454457 Lowery et al. Nov 2008 B1
7454508 Mathew et al. Nov 2008 B2
7478157 Bohrer et al. Jan 2009 B2
7480755 Herrell et al. Jan 2009 B2
7487170 Stevens Feb 2009 B2
7493282 Manly et al. Feb 2009 B2
7512987 Williams Mar 2009 B2
7516882 Cucinotta Apr 2009 B2
7523053 Pudhukottai et al. Apr 2009 B2
7529836 Bolen May 2009 B1
7548968 Bura et al. Jun 2009 B1
7552480 Voss Jun 2009 B1
7562339 Racca et al. Jul 2009 B2
7565685 Ross et al. Jul 2009 B2
7567541 Karimi et al. Jul 2009 B2
7584505 Mondri et al. Sep 2009 B2
7584508 Kashchenko et al. Sep 2009 B1
7587749 Leser et al. Sep 2009 B2
7590705 Mathew et al. Sep 2009 B2
7590972 Axelrod et al. Sep 2009 B2
7603356 Schran et al. Oct 2009 B2
7606783 Carter Oct 2009 B1
7606790 Levy Oct 2009 B2
7607120 Sanyal et al. Oct 2009 B2
7613700 Lobo et al. Nov 2009 B1
7617136 Lessing et al. Nov 2009 B1
7617167 Griffis et al. Nov 2009 B2
7620644 Cote et al. Nov 2009 B2
7627666 Degiulio et al. Dec 2009 B1
7630874 Fables et al. Dec 2009 B2
7630998 Zhou et al. Dec 2009 B2
7636742 Olavarrieta et al. Dec 2009 B1
7640322 Wendkos et al. Dec 2009 B2
7650497 Thornton et al. Jan 2010 B2
7653592 Flaxman et al. Jan 2010 B1
7657476 Barney Feb 2010 B2
7657694 Mansell et al. Feb 2010 B2
7665073 Meijer et al. Feb 2010 B2
7665125 Heard et al. Feb 2010 B2
7668947 Hutchinson et al. Feb 2010 B2
7673282 Amaru et al. Mar 2010 B2
7676034 Wu et al. Mar 2010 B1
7681034 Lee et al. Mar 2010 B1
7681140 Ebert Mar 2010 B2
7685561 Deem et al. Mar 2010 B2
7685577 Pace et al. Mar 2010 B2
7693593 Ishibashi et al. Apr 2010 B2
7698398 Lai Apr 2010 B1
7702639 Stanley et al. Apr 2010 B2
7707224 Chastagnol et al. Apr 2010 B2
7712029 Ferreira et al. May 2010 B2
7716242 Pae et al. May 2010 B2
7725474 Tamai et al. May 2010 B2
7725875 Waldrep May 2010 B2
7729940 Harvey et al. Jun 2010 B2
7730142 Levasseur et al. Jun 2010 B2
7752124 Green et al. Jul 2010 B2
7756826 Bots et al. Jul 2010 B2
7756987 Wang et al. Jul 2010 B2
7761586 Olenick et al. Jul 2010 B2
7774745 Fildebrandt et al. Aug 2010 B2
7788212 Beckmann et al. Aug 2010 B2
7788222 Shah et al. Aug 2010 B2
7788632 Kuester et al. Aug 2010 B2
7788726 Teixeira Aug 2010 B2
7801758 Gracie et al. Sep 2010 B2
7801826 Labrou et al. Sep 2010 B2
7801912 Ransil et al. Sep 2010 B2
7802305 Leeds Sep 2010 B1
7805349 Yu et al. Sep 2010 B2
7813947 DeAngelis et al. Oct 2010 B2
7822620 Dixon et al. Oct 2010 B2
7827523 Ahmed et al. Nov 2010 B2
7844640 Bender et al. Nov 2010 B2
7849143 Vuong Dec 2010 B2
7853468 Callahan et al. Dec 2010 B2
7853470 Sonnleithner et al. Dec 2010 B2
7853925 Kemmler Dec 2010 B2
7870540 Zare et al. Jan 2011 B2
7870608 Shraim et al. Jan 2011 B2
7873541 Klar et al. Jan 2011 B1
7877327 Gwiazda et al. Jan 2011 B2
7877812 Koved et al. Jan 2011 B2
7885841 King Feb 2011 B2
7890461 Oeda et al. Feb 2011 B2
7895260 Archer et al. Feb 2011 B2
7904478 Yu et al. Mar 2011 B2
7904487 Ghatare Mar 2011 B2
7917888 Chong et al. Mar 2011 B2
7917963 Goyal et al. Mar 2011 B2
7921152 Ashley et al. Apr 2011 B2
7930197 Ozzie et al. Apr 2011 B2
7930753 Mellinger et al. Apr 2011 B2
7953725 Burris et al. May 2011 B2
7954150 Croft et al. May 2011 B2
7958087 Steven Jun 2011 B2
7958494 Chaar et al. Jun 2011 B2
7962900 Barraclough et al. Jun 2011 B2
7966310 Sullivan et al. Jun 2011 B2
7966599 Malasky et al. Jun 2011 B1
7966663 Strickland et al. Jun 2011 B2
7974992 Fastabend et al. Jul 2011 B2
7975000 Dixon et al. Jul 2011 B2
7991559 Dzekunov et al. Aug 2011 B2
7991747 Upadhyay et al. Aug 2011 B1
7996372 Rubel, Jr. Aug 2011 B2
8005891 Knowles et al. Aug 2011 B2
8010612 Costea et al. Aug 2011 B2
8010720 Iwaoka et al. Aug 2011 B2
8019881 Sandhu et al. Sep 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8024384 Prabhakar et al. Sep 2011 B2
8032721 Murai Oct 2011 B2
8036374 Noble, Jr. Oct 2011 B2
8037409 Jacob et al. Oct 2011 B2
8041749 Beck Oct 2011 B2
8041913 Wang Oct 2011 B2
8069161 Bugir et al. Nov 2011 B2
8069471 Boren Nov 2011 B2
8082539 Schelkogonov Dec 2011 B1
8090754 Schmidt et al. Jan 2012 B2
8095923 Harvey et al. Jan 2012 B2
8099709 Baikov et al. Jan 2012 B2
8103962 Embley et al. Jan 2012 B2
8117441 Kurien et al. Feb 2012 B2
8135815 Mayer Mar 2012 B2
8146054 Baker et al. Mar 2012 B2
8146074 Ito et al. Mar 2012 B2
8150717 Whitmore Apr 2012 B2
8156105 Altounian et al. Apr 2012 B2
8156158 Rolls et al. Apr 2012 B2
8166406 Goldfeder et al. Apr 2012 B1
8176061 Swanbeck et al. May 2012 B2
8176177 Sussman et al. May 2012 B2
8176334 Vainstein May 2012 B2
8176470 Klumpp et al. May 2012 B2
8180759 Hamzy May 2012 B2
8181151 Sedukhin et al. May 2012 B2
8185409 Putnam et al. May 2012 B2
8196176 Berteau et al. Jun 2012 B2
8205093 Argott Jun 2012 B2
8205140 Hafeez et al. Jun 2012 B2
8214362 Djabarov Jul 2012 B1
8214803 Horii et al. Jul 2012 B2
8234377 Cohn Jul 2012 B2
8239244 Ginsberg et al. Aug 2012 B2
8250051 Bugir et al. Aug 2012 B2
8255468 Vitaldevara et al. Aug 2012 B2
8260262 Ben Ayed Sep 2012 B2
8261362 Goodwin et al. Sep 2012 B2
8266231 Golovin et al. Sep 2012 B1
8275632 Awaraji et al. Sep 2012 B2
8275793 Ahmad et al. Sep 2012 B2
8286239 Sutton Oct 2012 B1
8312549 Goldberg et al. Nov 2012 B2
8316237 Felsher et al. Nov 2012 B1
8332908 Hatakeyama et al. Dec 2012 B2
8340999 Kumaran et al. Dec 2012 B2
8341405 Meijer et al. Dec 2012 B2
8346929 Lai Jan 2013 B1
8364713 Pollard Jan 2013 B2
8370224 Grewal Feb 2013 B2
8370794 Moosmann et al. Feb 2013 B2
8380630 Felsher Feb 2013 B2
8380743 Convertino et al. Feb 2013 B2
8381180 Rostoker Feb 2013 B2
8381297 Touboul Feb 2013 B2
8386314 Kirkby et al. Feb 2013 B2
8392982 Harris et al. Mar 2013 B2
8418226 Gardner Apr 2013 B2
8423954 Ronen et al. Apr 2013 B2
8429179 Mirhaji Apr 2013 B1
8429597 Prigge Apr 2013 B2
8429630 Nickolov et al. Apr 2013 B2
8429758 Chen et al. Apr 2013 B2
8438644 Watters et al. May 2013 B2
8463247 Misiag Jun 2013 B2
8464311 Ashley et al. Jun 2013 B2
8468244 Redlich et al. Jun 2013 B2
8473324 Alvarez et al. Jun 2013 B2
8474012 Ahmed et al. Jun 2013 B2
8494894 Jaster et al. Jul 2013 B2
8504481 Motahari et al. Aug 2013 B2
8510199 Erlanger Aug 2013 B1
8515988 Jones et al. Aug 2013 B2
8516076 Thomas Aug 2013 B2
8527337 Lim et al. Sep 2013 B1
8533746 Nolan et al. Sep 2013 B2
8533844 Mahaffey et al. Sep 2013 B2
8538817 Wilson Sep 2013 B2
8539359 Rapaport et al. Sep 2013 B2
8539437 Finlayson et al. Sep 2013 B2
8560645 Linden et al. Oct 2013 B2
8560841 Chin et al. Oct 2013 B2
8560956 Curtis et al. Oct 2013 B2
8561153 Grason et al. Oct 2013 B2
8565729 Moseler et al. Oct 2013 B2
8566726 Dixon et al. Oct 2013 B2
8566938 Prakash et al. Oct 2013 B1
8571909 Miller et al. Oct 2013 B2
8572717 Narayanaswamy Oct 2013 B2
8578036 Holfelder et al. Nov 2013 B1
8578166 De Monseignat et al. Nov 2013 B2
8578481 Rowley Nov 2013 B2
8578501 Ogilvie Nov 2013 B1
8583694 Siegel et al. Nov 2013 B2
8583766 Dixon et al. Nov 2013 B2
8589183 Awaraji et al. Nov 2013 B2
8601467 Hofhansl et al. Dec 2013 B2
8601591 Krishnamurthy et al. Dec 2013 B2
8606746 Yeap et al. Dec 2013 B2
8612420 Sun et al. Dec 2013 B2
8612993 Grant et al. Dec 2013 B2
8615549 Knowles et al. Dec 2013 B2
8615731 Doshi Dec 2013 B2
8620952 Bennett et al. Dec 2013 B2
8621637 Al-Harbi et al. Dec 2013 B2
8626671 Federgreen Jan 2014 B2
8627114 Resch et al. Jan 2014 B2
8630961 Beilby et al. Jan 2014 B2
8631048 Davis et al. Jan 2014 B1
8640110 Kopp et al. Jan 2014 B2
8646072 Savant Feb 2014 B1
8650399 Le Bihan et al. Feb 2014 B2
8655939 Redlich et al. Feb 2014 B2
8656265 Paulin et al. Feb 2014 B1
8656456 Maxson et al. Feb 2014 B2
8661036 Turski et al. Feb 2014 B2
8667074 Farkas Mar 2014 B1
8667487 Boodman et al. Mar 2014 B1
8677472 Dotan et al. Mar 2014 B1
8681984 Lee et al. Mar 2014 B2
8682698 Cashman et al. Mar 2014 B2
8683502 Shkedi et al. Mar 2014 B2
8688601 Jaiswal Apr 2014 B2
8689292 Williams et al. Apr 2014 B2
8693689 Belenkiy et al. Apr 2014 B2
8700524 Williams et al. Apr 2014 B2
8700699 Shen et al. Apr 2014 B2
8706742 Ravid et al. Apr 2014 B1
8707451 Ture et al. Apr 2014 B2
8712813 King Apr 2014 B2
8713098 Adya et al. Apr 2014 B1
8713638 Hu et al. Apr 2014 B2
8719366 Mathew et al. May 2014 B2
8732839 Hohl May 2014 B2
8744894 Christiansen et al. Jun 2014 B2
8751285 Deb et al. Jun 2014 B2
8762406 Ho et al. Jun 2014 B2
8763071 Sinha et al. Jun 2014 B2
8763082 Huber et al. Jun 2014 B2
8763131 Archer et al. Jun 2014 B2
8767947 Ristock et al. Jul 2014 B1
8769242 Tkac et al. Jul 2014 B2
8769412 Gill et al. Jul 2014 B2
8769671 Shraim et al. Jul 2014 B2
8776241 Zaitsev Jul 2014 B2
8788935 Hirsch et al. Jul 2014 B1
8793614 Wilson et al. Jul 2014 B2
8793650 Hilerio et al. Jul 2014 B2
8793781 Grossi et al. Jul 2014 B2
8793809 Falkenburg et al. Jul 2014 B2
8799984 Ahn Aug 2014 B2
8805707 Schumann, Jr. et al. Aug 2014 B2
8805806 Amarendran et al. Aug 2014 B2
8805925 Price et al. Aug 2014 B2
8812342 Barcelo et al. Aug 2014 B2
8812752 Shih et al. Aug 2014 B1
8812766 Kranendonk et al. Aug 2014 B2
8813028 Farooqi Aug 2014 B2
8819253 Simeloff et al. Aug 2014 B2
8819617 Koenig et al. Aug 2014 B1
8826446 Liu et al. Sep 2014 B1
8832649 Bishop et al. Sep 2014 B2
8832854 Staddon et al. Sep 2014 B1
8839232 Taylor et al. Sep 2014 B2
8843487 McGraw et al. Sep 2014 B2
8843745 Roberts, Jr. Sep 2014 B2
8849757 Kruglick Sep 2014 B2
8856534 Khosravi et al. Oct 2014 B2
8862507 Sandhu et al. Oct 2014 B2
8875232 Blom et al. Oct 2014 B2
8893078 Schaude et al. Nov 2014 B2
8893286 Oliver Nov 2014 B1
8893297 Eversoll et al. Nov 2014 B2
8904494 Kindler et al. Dec 2014 B2
8914263 Shimada et al. Dec 2014 B2
8914299 Pesci-Anderson et al. Dec 2014 B2
8914342 Kalaboukis et al. Dec 2014 B2
8914902 Moritz et al. Dec 2014 B2
8918306 Cashman et al. Dec 2014 B2
8918392 Brooker et al. Dec 2014 B1
8918632 Sartor Dec 2014 B1
8930896 Wiggins Jan 2015 B1
8930897 Nassar Jan 2015 B2
8935198 Phillips et al. Jan 2015 B1
8935266 Wu Jan 2015 B2
8935342 Patel Jan 2015 B2
8935804 Clark et al. Jan 2015 B1
8938221 Brazier et al. Jan 2015 B2
8943076 Stewart et al. Jan 2015 B2
8943548 Drokov et al. Jan 2015 B2
8949137 Crapo et al. Feb 2015 B2
8955038 Nicodemus et al. Feb 2015 B2
8959568 Hudis et al. Feb 2015 B2
8959584 Piliouras Feb 2015 B2
8966575 McQuay et al. Feb 2015 B2
8966597 Saylor et al. Feb 2015 B1
8973108 Roth et al. Mar 2015 B1
8977234 Chava Mar 2015 B2
8977643 Schindlauer et al. Mar 2015 B2
8978158 Rajkumar et al. Mar 2015 B2
8983972 Kriebel et al. Mar 2015 B2
8984031 Todd Mar 2015 B1
8990933 Magdalin Mar 2015 B1
8996417 Channakeshava Mar 2015 B1
8996480 Agarwala et al. Mar 2015 B2
8997213 Papakipos et al. Mar 2015 B2
9003295 Baschy Apr 2015 B2
9003552 Goodwin et al. Apr 2015 B2
9009851 Droste Apr 2015 B2
9014661 Decharms Apr 2015 B2
9015796 Fujioka Apr 2015 B1
9021469 Hilerio et al. Apr 2015 B2
9026526 Bau et al. May 2015 B1
9030987 Bianchetti et al. May 2015 B2
9032067 Prasad et al. May 2015 B2
9043217 Cashman et al. May 2015 B2
9043480 Barton et al. May 2015 B2
9047463 Porras Jun 2015 B2
9047582 Hutchinson et al. Jun 2015 B2
9047639 Quintiliani et al. Jun 2015 B1
9049244 Prince et al. Jun 2015 B2
9049314 Pugh et al. Jun 2015 B2
9055071 Gates et al. Jun 2015 B1
9058590 Criddle et al. Jun 2015 B2
9064033 Jin et al. Jun 2015 B2
9069940 Hars Jun 2015 B2
9076231 Hill et al. Jul 2015 B1
9077736 Werth et al. Jul 2015 B2
9081952 Sagi et al. Jul 2015 B2
9087090 Cormier et al. Jul 2015 B1
9092796 Eversoll et al. Jul 2015 B2
9094434 Williams et al. Jul 2015 B2
9098515 Richter et al. Aug 2015 B2
9100778 Stogaitis et al. Aug 2015 B2
9106691 Burger et al. Aug 2015 B1
9106710 Feimster Aug 2015 B1
9111105 Barton et al. Aug 2015 B2
9111295 Tietzen et al. Aug 2015 B2
9123339 Shaw et al. Sep 2015 B1
9129311 Schoen et al. Sep 2015 B2
9135261 Maunder et al. Sep 2015 B2
9135444 Carter et al. Sep 2015 B2
9141823 Dawson Sep 2015 B2
9152818 Hathaway et al. Oct 2015 B1
9152820 Pauley, Jr. et al. Oct 2015 B1
9154514 Prakash Oct 2015 B1
9154556 Dotan et al. Oct 2015 B1
9158655 Wadhwani et al. Oct 2015 B2
9165036 Mehra Oct 2015 B2
9170996 Lovric et al. Oct 2015 B2
9172706 Krishnamurthy et al. Oct 2015 B2
9177293 Gagnon et al. Nov 2015 B1
9178901 Xue et al. Nov 2015 B2
9183100 Gventer et al. Nov 2015 B2
9189642 Perlman Nov 2015 B2
9201572 Lyon et al. Dec 2015 B2
9201770 Duerk Dec 2015 B1
9202026 Reeves Dec 2015 B1
9202085 Mawdsley et al. Dec 2015 B2
9215076 Roth et al. Dec 2015 B1
9215252 Smith et al. Dec 2015 B2
9218596 Ronca et al. Dec 2015 B2
9224009 Liu et al. Dec 2015 B1
9230036 Davis Jan 2016 B2
9231935 Bridge et al. Jan 2016 B1
9232040 Barash et al. Jan 2016 B2
9235476 McHugh et al. Jan 2016 B2
9240987 Barrett-Bowen et al. Jan 2016 B2
9241259 Daniela et al. Jan 2016 B2
9245126 Christodorescu et al. Jan 2016 B2
9245266 Hardt Jan 2016 B2
9253609 Hosier, Jr. Feb 2016 B2
9264443 Weisman Feb 2016 B2
9274858 Milliron et al. Mar 2016 B2
9280581 Grimes et al. Mar 2016 B1
9286149 Sampson et al. Mar 2016 B2
9286282 Ling, III et al. Mar 2016 B2
9288118 Pattan Mar 2016 B1
9288556 Kim et al. Mar 2016 B2
9294498 Yampolskiy et al. Mar 2016 B1
9299050 Stiffler et al. Mar 2016 B2
9306939 Chan et al. Apr 2016 B2
9317697 Maier et al. Apr 2016 B2
9317715 Schuette et al. Apr 2016 B2
9325731 McGeehan Apr 2016 B2
9336184 Mital et al. May 2016 B2
9336324 Lomme et al. May 2016 B2
9336332 Davis et al. May 2016 B2
9336400 Milman et al. May 2016 B2
9338188 Ahn May 2016 B1
9342706 Chawla et al. May 2016 B2
9344297 Shah et al. May 2016 B2
9344424 Tenenboym et al. May 2016 B2
9344484 Ferris May 2016 B2
9348802 Massand May 2016 B2
9348862 Kawecki, III May 2016 B2
9348929 Eberlein May 2016 B2
9349016 Brisebois et al. May 2016 B1
9350718 Sondhi et al. May 2016 B2
9355157 Mohammed et al. May 2016 B2
9356961 Todd et al. May 2016 B1
9361446 Demirjian et al. Jun 2016 B1
9369488 Woods et al. Jun 2016 B2
9374693 Olincy et al. Jun 2016 B1
9384199 Thereska et al. Jul 2016 B2
9384357 Patil Jul 2016 B2
9386104 Adams et al. Jul 2016 B2
9396332 Abrams et al. Jul 2016 B2
9401900 Levasseur et al. Jul 2016 B2
9411967 Parecki et al. Aug 2016 B2
9411982 Dippenaar et al. Aug 2016 B1
9417859 Gounares et al. Aug 2016 B2
9424021 Zamir Aug 2016 B2
9424414 Demirjian et al. Aug 2016 B1
9426177 Wang et al. Aug 2016 B2
9450940 Belov et al. Sep 2016 B2
9460136 Todd et al. Oct 2016 B1
9460171 Marrelli et al. Oct 2016 B2
9460307 Breslau et al. Oct 2016 B2
9461876 Van Dusen et al. Oct 2016 B2
9462009 Kolman et al. Oct 2016 B1
9465702 Gventer et al. Oct 2016 B2
9465800 Lacey Oct 2016 B2
9473446 Vijay et al. Oct 2016 B2
9473535 Sartor Oct 2016 B2
9477523 Warman et al. Oct 2016 B1
9477660 Scott et al. Oct 2016 B2
9477685 Leung et al. Oct 2016 B1
9477942 Adachi Oct 2016 B2
9483659 Bao et al. Nov 2016 B2
9489366 Scott et al. Nov 2016 B2
9495547 Schepis et al. Nov 2016 B1
9501523 Hyatt et al. Nov 2016 B2
9507960 Bell et al. Nov 2016 B2
9509674 Nasserbakht et al. Nov 2016 B1
9509702 Grigg et al. Nov 2016 B2
9514231 Eden Dec 2016 B2
9516012 Chochois et al. Dec 2016 B2
9521166 Wilson Dec 2016 B2
9524500 Dave et al. Dec 2016 B2
9529989 Kling et al. Dec 2016 B2
9536108 Powell et al. Jan 2017 B2
9537546 Cordeiro et al. Jan 2017 B2
9542568 Francis et al. Jan 2017 B2
9549047 Fredinburg et al. Jan 2017 B1
9552395 Bayer Jan 2017 B2
9552470 Turgeman et al. Jan 2017 B2
9553918 Manion et al. Jan 2017 B1
9558497 Carvalho Jan 2017 B2
9569752 Deering et al. Feb 2017 B2
9571509 Satish et al. Feb 2017 B1
9571526 Sartor Feb 2017 B2
9571559 Raleigh et al. Feb 2017 B2
9571991 Brizendine et al. Feb 2017 B1
9576289 Henderson et al. Feb 2017 B2
9578060 Brisebois et al. Feb 2017 B1
9578173 Sanghavi et al. Feb 2017 B2
9582681 Mishra Feb 2017 B2
9584964 Pelkey Feb 2017 B2
9589110 Carey et al. Mar 2017 B2
9600181 Patel et al. Mar 2017 B2
9602529 Jones et al. Mar 2017 B2
9606971 Seolas et al. Mar 2017 B2
9607041 Himmelstein Mar 2017 B2
9619652 Slater Apr 2017 B2
9619661 Finkelstein Apr 2017 B1
9621357 Williams et al. Apr 2017 B2
9621566 Gupta et al. Apr 2017 B2
9626124 Lipinski et al. Apr 2017 B2
9626680 Ryan et al. Apr 2017 B1
9629064 Graves et al. Apr 2017 B2
9642008 Wyatt et al. May 2017 B2
9646095 Gottlieb et al. May 2017 B1
9647949 Varki et al. May 2017 B2
9648036 Seiver et al. May 2017 B2
9652314 Mahiddini May 2017 B2
9654506 Barrett May 2017 B2
9654541 Kapczynski et al. May 2017 B1
9665722 Nagasundaram et al. May 2017 B2
9665733 Sills et al. May 2017 B1
9665883 Roullier et al. May 2017 B2
9672053 Tang et al. Jun 2017 B2
9672355 Titonis et al. Jun 2017 B2
9678794 Barrett et al. Jun 2017 B1
9691090 Barday Jun 2017 B1
9699209 Ng et al. Jul 2017 B2
9704103 Suskind et al. Jul 2017 B2
9705840 Pujare et al. Jul 2017 B2
9705880 Siris Jul 2017 B2
9721078 Cornick et al. Aug 2017 B2
9721108 Krishnamurthy et al. Aug 2017 B2
9727751 Oliver et al. Aug 2017 B2
9729583 Barday Aug 2017 B1
9734148 Bendersky et al. Aug 2017 B2
9734255 Jiang Aug 2017 B2
9740985 Byron et al. Aug 2017 B2
9740987 Dolan Aug 2017 B2
9749408 Subramani et al. Aug 2017 B2
9754091 Kode et al. Sep 2017 B2
9756059 Demirjian et al. Sep 2017 B2
9760620 Nachnani et al. Sep 2017 B2
9760635 Bliss et al. Sep 2017 B2
9760697 Walker Sep 2017 B1
9760849 Vinnakota et al. Sep 2017 B2
9762553 Ford et al. Sep 2017 B2
9767202 Darby et al. Sep 2017 B2
9767309 Patel et al. Sep 2017 B1
9769124 Yan Sep 2017 B2
9773269 Lazarus Sep 2017 B1
9785795 Grondin et al. Oct 2017 B2
9787671 Bogrett Oct 2017 B1
9798749 Saner Oct 2017 B2
9798826 Wilson et al. Oct 2017 B2
9798896 Jakobsson Oct 2017 B2
9800605 Baikalov et al. Oct 2017 B2
9800606 Yumer Oct 2017 B1
9804649 Cohen et al. Oct 2017 B2
9804928 Davis et al. Oct 2017 B2
9805381 Frank et al. Oct 2017 B2
9811532 Parkison et al. Nov 2017 B2
9817850 Dubbels et al. Nov 2017 B2
9817978 Marsh et al. Nov 2017 B2
9819684 Cernoch et al. Nov 2017 B2
9825928 Lelcuk et al. Nov 2017 B2
9830563 Paknad Nov 2017 B2
9832633 Gerber, Jr. et al. Nov 2017 B2
9836598 Iyer et al. Dec 2017 B2
9838407 Oprea et al. Dec 2017 B1
9838839 Vudali et al. Dec 2017 B2
9841969 Seibert, Jr. et al. Dec 2017 B2
9842042 Chhatwal et al. Dec 2017 B2
9842349 Sawczuk et al. Dec 2017 B2
9848005 Ardeli et al. Dec 2017 B2
9848061 Jain et al. Dec 2017 B1
9852150 Sharpe et al. Dec 2017 B2
9853959 Kapczynski et al. Dec 2017 B1
9860226 Thormaehlen Jan 2018 B2
9864735 Lamprecht Jan 2018 B1
9877138 Franklin Jan 2018 B1
9880157 Levak et al. Jan 2018 B2
9882935 Barday Jan 2018 B2
9887965 Kay et al. Feb 2018 B2
9888377 McCorkendale et al. Feb 2018 B1
9892441 Barday Feb 2018 B2
9892442 Barday Feb 2018 B2
9892443 Barday Feb 2018 B2
9892444 Barday Feb 2018 B2
9894076 Li et al. Feb 2018 B2
9898613 Swerdlow et al. Feb 2018 B1
9898769 Barday Feb 2018 B2
9912625 Mutha et al. Mar 2018 B2
9912677 Chien Mar 2018 B2
9912810 Segre et al. Mar 2018 B2
9916703 Levinson et al. Mar 2018 B2
9922124 Rathod Mar 2018 B2
9923927 McClintock et al. Mar 2018 B1
9928379 Hoffer Mar 2018 B1
9934493 Castinado et al. Apr 2018 B2
9934544 Whitfifi et al. Apr 2018 B1
9936127 Todasco Apr 2018 B2
9942214 Burciu et al. Apr 2018 B1
9942244 Lahoz et al. Apr 2018 B2
9942276 Sartor Apr 2018 B2
9946897 Lovin Apr 2018 B2
9948652 Yu et al. Apr 2018 B2
9948663 Wang et al. Apr 2018 B1
9953189 Cook et al. Apr 2018 B2
9954883 Ahuja et al. Apr 2018 B2
9959551 Schermerhorn et al. May 2018 B1
9959582 Sukman et al. May 2018 B2
9961070 Tang May 2018 B2
9973518 Lee et al. May 2018 B2
9973585 Ruback et al. May 2018 B2
9977904 Khan et al. May 2018 B2
9977920 Danielson et al. May 2018 B2
9983936 Dornemann et al. May 2018 B2
9984252 Pollard May 2018 B2
9990499 Chan et al. Jun 2018 B2
9992213 Sinnema Jun 2018 B2
10001975 Bharthulwar Jun 2018 B2
10002064 Muske Jun 2018 B2
10007895 Vanasco Jun 2018 B2
10013577 Beaumont et al. Jul 2018 B1
10015164 Hamburg et al. Jul 2018 B2
10019339 Von Hanxleden et al. Jul 2018 B2
10019588 Garcia et al. Jul 2018 B2
10019591 Beguin Jul 2018 B1
10019741 Hesselink Jul 2018 B2
10021143 Cabrera et al. Jul 2018 B2
10025804 Vranyes et al. Jul 2018 B2
10028226 Ayyagari et al. Jul 2018 B2
10032172 Barday Jul 2018 B2
10044761 Ducatel et al. Aug 2018 B2
10055426 Arasan et al. Aug 2018 B2
10055869 Borrelli et al. Aug 2018 B2
10061847 Mohammed et al. Aug 2018 B2
10069858 Robinson et al. Sep 2018 B2
10069914 Smith Sep 2018 B1
10073924 Karp et al. Sep 2018 B2
10075451 Hall et al. Sep 2018 B1
10084817 Saher et al. Sep 2018 B2
10091214 Godlewski et al. Oct 2018 B2
10091312 Khanwalkar et al. Oct 2018 B1
10102533 Barday Oct 2018 B2
10108409 Pirzadeh et al. Oct 2018 B2
10122663 Hu et al. Nov 2018 B2
10122760 Terrill et al. Nov 2018 B2
10127403 Kong et al. Nov 2018 B2
10129211 Heath Nov 2018 B2
10140666 Wang et al. Nov 2018 B1
10142113 Zaidi et al. Nov 2018 B2
10152560 Potiagalov et al. Dec 2018 B2
10158676 Barday Dec 2018 B2
10165011 Barday Dec 2018 B2
10169762 Ogawa Jan 2019 B2
10176503 Barday et al. Jan 2019 B2
10181043 Pauley, Jr. et al. Jan 2019 B1
10181051 Barday et al. Jan 2019 B2
10187363 Smirnoff et al. Jan 2019 B2
10187394 Bar et al. Jan 2019 B2
10204154 Barday et al. Feb 2019 B2
10205994 Splaine et al. Feb 2019 B2
10212134 Rai Feb 2019 B2
10212175 Seul et al. Feb 2019 B2
10223533 Dawson Mar 2019 B2
10230571 Rangasamy et al. Mar 2019 B2
10250594 Chathoth et al. Apr 2019 B2
10255602 Wang Apr 2019 B2
10257127 Dotan-Cohen et al. Apr 2019 B2
10257181 Sherif et al. Apr 2019 B1
10268838 Yadgiri et al. Apr 2019 B2
10275221 Thattai et al. Apr 2019 B2
10275614 Barday et al. Apr 2019 B2
10282370 Barday et al. May 2019 B1
10282559 Barday et al. May 2019 B2
10284604 Barday et al. May 2019 B2
10289584 Chiba May 2019 B2
10289857 Brinskelle May 2019 B1
10289866 Barday et al. May 2019 B2
10289867 Barday et al. May 2019 B2
10289870 Barday et al. May 2019 B2
10296504 Hock et al. May 2019 B2
10304442 Rudden et al. May 2019 B1
10310723 Rathod Jun 2019 B2
10311042 Kumar Jun 2019 B1
10311475 Yuasa Jun 2019 B2
10311492 Gelfenbeyn et al. Jun 2019 B2
10318761 Barday et al. Jun 2019 B2
10320940 Brennan et al. Jun 2019 B1
10324960 Skvortsov et al. Jun 2019 B1
10326768 Verweyst et al. Jun 2019 B2
10326798 Lambert Jun 2019 B2
10326841 Bradley et al. Jun 2019 B2
10331689 Sorrentino et al. Jun 2019 B2
10331904 Sher-Jan et al. Jun 2019 B2
10333975 Soman et al. Jun 2019 B2
10346186 Kalyanpur Jul 2019 B2
10346635 Kumar et al. Jul 2019 B2
10346637 Barday et al. Jul 2019 B2
10346638 Barday et al. Jul 2019 B2
10346849 Ionescu et al. Jul 2019 B2
10348726 Caluwaert Jul 2019 B2
10348775 Barday Jul 2019 B2
10353673 Barday et al. Jul 2019 B2
10361857 Woo Jul 2019 B2
10373119 Driscoll et al. Aug 2019 B2
10373409 White et al. Aug 2019 B2
10375115 Mallya Aug 2019 B2
10387559 Wendt et al. Aug 2019 B1
10387657 Belfiore, Jr. et al. Aug 2019 B2
10387952 Sandhu et al. Aug 2019 B1
10395201 Vescio Aug 2019 B2
10402545 Gorfein et al. Sep 2019 B2
10404729 Turgeman Sep 2019 B2
10417401 Votaw et al. Sep 2019 B2
10417621 Cassel et al. Sep 2019 B2
10419476 Parekh Sep 2019 B2
10423985 Dutta et al. Sep 2019 B1
10425492 Comstock et al. Sep 2019 B2
10430608 Peri et al. Oct 2019 B2
10435350 Ito et al. Oct 2019 B2
10437412 Barday et al. Oct 2019 B2
10437860 Barday et al. Oct 2019 B2
10438016 Barday et al. Oct 2019 B2
10438273 Burns et al. Oct 2019 B2
10440062 Barday et al. Oct 2019 B2
10445508 Sher-Jan et al. Oct 2019 B2
10445526 Barday et al. Oct 2019 B2
10452864 Barday et al. Oct 2019 B2
10452866 Barday et al. Oct 2019 B2
10453076 Parekh et al. Oct 2019 B2
10453092 Wang et al. Oct 2019 B1
10454934 Parimi et al. Oct 2019 B2
10481763 Bartkiewicz et al. Nov 2019 B2
10489454 Chen Nov 2019 B1
10503926 Barday et al. Dec 2019 B2
10510031 Barday et al. Dec 2019 B2
10521623 Rodriguez et al. Dec 2019 B2
10534851 Chan et al. Jan 2020 B1
10535081 Ferreira et al. Jan 2020 B2
10536475 McCorkle, Jr. et al. Jan 2020 B1
10541938 Timmerman et al. Jan 2020 B1
10546135 Kassoumeh et al. Jan 2020 B1
10552462 Hart Feb 2020 B1
10558821 Barday et al. Feb 2020 B2
10564815 Soon-Shiong Feb 2020 B2
10564935 Barday et al. Feb 2020 B2
10564936 Barday et al. Feb 2020 B2
10565161 Barday et al. Feb 2020 B2
10565236 Barday et al. Feb 2020 B1
10567439 Barday Feb 2020 B2
10567517 Weinig et al. Feb 2020 B2
10572684 Lafever et al. Feb 2020 B2
10572686 Barday et al. Feb 2020 B2
10574705 Barday et al. Feb 2020 B2
10592648 Barday et al. Mar 2020 B2
10592692 Brannon et al. Mar 2020 B2
10606916 Brannon et al. Mar 2020 B2
10613971 Vasikarla Apr 2020 B1
10628553 Murrish et al. Apr 2020 B1
10645102 Hamdi May 2020 B2
10645548 Reynolds et al. May 2020 B2
10649630 Vora et al. May 2020 B1
10650408 Andersen et al. May 2020 B1
10657469 Bade et al. May 2020 B2
10659566 Luah et al. May 2020 B1
10671749 Felice-Steele et al. Jun 2020 B2
10671760 Esmailzadeh et al. Jun 2020 B2
10678945 Barday et al. Jun 2020 B2
10685140 Barday et al. Jun 2020 B2
10706176 Brannon et al. Jul 2020 B2
10706226 Byun et al. Jul 2020 B2
10708305 Barday et al. Jul 2020 B2
10713387 Brannon et al. Jul 2020 B2
10726153 Nerurkar et al. Jul 2020 B2
10726158 Brannon et al. Jul 2020 B2
10732865 Jain et al. Aug 2020 B2
10735388 Rose et al. Aug 2020 B2
10740487 Barday et al. Aug 2020 B2
10747893 Kiriyama et al. Aug 2020 B2
10747897 Cook Aug 2020 B2
10749870 Brouillette et al. Aug 2020 B2
10762213 Rudek et al. Sep 2020 B2
10762236 Brannon et al. Sep 2020 B2
10769302 Barday et al. Sep 2020 B2
10769303 Brannon et al. Sep 2020 B2
10776510 Antonelli et al. Sep 2020 B2
10776518 Barday et al. Sep 2020 B2
10778792 Handy Bosma et al. Sep 2020 B1
10783256 Brannon et al. Sep 2020 B2
10785173 Willett et al. Sep 2020 B2
10785299 Gupta et al. Sep 2020 B2
10791150 Barday et al. Sep 2020 B2
10795527 Legge Oct 2020 B1
10796020 Barday et al. Oct 2020 B2
10796260 Brannon et al. Oct 2020 B2
10798133 Barday et al. Oct 2020 B2
10803196 Bodegas Martinez et al. Oct 2020 B2
10831831 Greene Nov 2020 B2
10834590 Turgeman et al. Nov 2020 B2
10846433 Brannon et al. Nov 2020 B2
10853501 Brannon Dec 2020 B2
10860721 Gentile Dec 2020 B1
10860742 Joseph et al. Dec 2020 B2
10860979 Geffen et al. Dec 2020 B2
10878127 Brannon et al. Dec 2020 B2
10885485 Brannon et al. Jan 2021 B2
10891393 Currier et al. Jan 2021 B2
10893074 Sartor Jan 2021 B2
10896394 Brannon et al. Jan 2021 B2
10902490 He et al. Jan 2021 B2
10909488 Hecht et al. Feb 2021 B2
10949555 Rattan et al. Mar 2021 B2
10949565 Barday et al. Mar 2021 B2
10957326 Bhaya et al. Mar 2021 B2
10963571 Bar Joseph et al. Mar 2021 B2
10963572 Belfiore, Jr. et al. Mar 2021 B2
10965547 Esposito et al. Mar 2021 B1
10972509 Barday et al. Apr 2021 B2
10976950 Trezzo et al. Apr 2021 B1
10983963 Venkatasubramanian et al. Apr 2021 B1
10984458 Gutierrez Apr 2021 B1
10997318 Barday et al. May 2021 B2
11003748 Oliker et al. May 2021 B2
11012475 Patnala et al. May 2021 B2
11057356 Malhotra et al. Jul 2021 B2
11057427 Wright et al. Jul 2021 B2
11062051 Barday et al. Jul 2021 B2
11068318 Kuesel et al. Jul 2021 B2
11068584 Burriesci et al. Jul 2021 B2
11068618 Brannon et al. Jul 2021 B2
11068797 Bhide et al. Jul 2021 B2
11093950 Hersh et al. Aug 2021 B2
11138299 Brannon et al. Oct 2021 B2
11144622 Brannon et al. Oct 2021 B2
11144862 Jackson et al. Oct 2021 B1
11195134 Brannon et al. Dec 2021 B2
11201929 Dudmesh et al. Dec 2021 B2
11210420 Brannon et al. Dec 2021 B2
11238390 Brannon et al. Feb 2022 B2
11240273 Barday et al. Feb 2022 B2
11256777 Brannon et al. Feb 2022 B2
20020004736 Roundtree et al. Jan 2002 A1
20020049907 Woods et al. Apr 2002 A1
20020055932 Wheeler et al. May 2002 A1
20020077941 Halligan et al. Jun 2002 A1
20020103854 Okita Aug 2002 A1
20020129216 Collins Sep 2002 A1
20020161594 Bryan et al. Oct 2002 A1
20020161733 Grainger Oct 2002 A1
20030041250 Proudler Feb 2003 A1
20030065641 Chaloux Apr 2003 A1
20030093680 Astley et al. May 2003 A1
20030097451 Bjorksten et al. May 2003 A1
20030097661 Li et al. May 2003 A1
20030115142 Brickell et al. Jun 2003 A1
20030130893 Farmer Jul 2003 A1
20030131001 Matsuo Jul 2003 A1
20030131093 Aschen et al. Jul 2003 A1
20030140150 Kemp et al. Jul 2003 A1
20030167216 Brown et al. Sep 2003 A1
20030212604 Cullen Nov 2003 A1
20040002818 Kulp et al. Jan 2004 A1
20040025053 Hayward Feb 2004 A1
20040088235 Ziekle et al. May 2004 A1
20040098366 Sinclair et al. May 2004 A1
20040098493 Rees May 2004 A1
20040111359 Hudock Jun 2004 A1
20040186912 Harlow et al. Sep 2004 A1
20040193907 Patanella Sep 2004 A1
20050022198 Olapurath et al. Jan 2005 A1
20050033616 Vavul et al. Feb 2005 A1
20050076294 Dehamer et al. Apr 2005 A1
20050114343 Wesinger, Jr. et al. May 2005 A1
20050144066 Cope et al. Jun 2005 A1
20050197884 Mullen Sep 2005 A1
20050198177 Black Sep 2005 A1
20050198646 Kortela Sep 2005 A1
20050246292 Sarcanin Nov 2005 A1
20050278538 Fowler Dec 2005 A1
20060031078 Pizzinger et al. Feb 2006 A1
20060035204 Lamarche et al. Feb 2006 A1
20060075122 Lindskog et al. Apr 2006 A1
20060149730 Curtis Jul 2006 A1
20060156052 Bodnar et al. Jul 2006 A1
20060190280 Hoebel et al. Aug 2006 A1
20060206375 Scott et al. Sep 2006 A1
20060224422 Cohen Oct 2006 A1
20060253597 Mujica Nov 2006 A1
20060259416 Johnson Nov 2006 A1
20070011058 Dev Jan 2007 A1
20070027715 Gropper et al. Feb 2007 A1
20070061393 Moore Mar 2007 A1
20070130101 Anderson et al. Jun 2007 A1
20070130323 Landsman et al. Jun 2007 A1
20070157311 Meier et al. Jul 2007 A1
20070173355 Klein Jul 2007 A1
20070179793 Bagchi et al. Aug 2007 A1
20070180490 Renzi et al. Aug 2007 A1
20070192438 Goei Aug 2007 A1
20070266420 Hawkins et al. Nov 2007 A1
20070283171 Breslin et al. Dec 2007 A1
20080015927 Ramirez Jan 2008 A1
20080028065 Caso et al. Jan 2008 A1
20080028435 Strickland et al. Jan 2008 A1
20080047016 Spoonamore Feb 2008 A1
20080120699 Spear May 2008 A1
20080140696 Mathuria Jun 2008 A1
20080189306 Hewett et al. Aug 2008 A1
20080195436 Whyte Aug 2008 A1
20080222271 Spires Sep 2008 A1
20080235177 Kim et al. Sep 2008 A1
20080270203 Holmes et al. Oct 2008 A1
20080270351 Thomsen Oct 2008 A1
20080270381 Thomsen Oct 2008 A1
20080270382 Thomsen et al. Oct 2008 A1
20080270451 Thomsen et al. Oct 2008 A1
20080270462 Thomsen Oct 2008 A1
20080281649 Morris Nov 2008 A1
20080282320 Denovo et al. Nov 2008 A1
20080288271 Faust Nov 2008 A1
20080288299 Schultz Nov 2008 A1
20090012896 Arnold Jan 2009 A1
20090022301 Mudaliar Jan 2009 A1
20090037975 Ishikawa et al. Feb 2009 A1
20090119500 Roth et al. May 2009 A1
20090138276 Hayashida et al. May 2009 A1
20090140035 Miller Jun 2009 A1
20090144702 Atkin et al. Jun 2009 A1
20090158249 Tomkins et al. Jun 2009 A1
20090172705 Cheong Jul 2009 A1
20090182818 Krywaniuk Jul 2009 A1
20090187764 Astakhov et al. Jul 2009 A1
20090204452 Iskandar et al. Aug 2009 A1
20090204820 Brandenburg et al. Aug 2009 A1
20090210347 Sarcanin Aug 2009 A1
20090216610 Chorny Aug 2009 A1
20090249076 Reed et al. Oct 2009 A1
20090303237 Liu et al. Dec 2009 A1
20100010912 Jones et al. Jan 2010 A1
20100010968 Redlich et al. Jan 2010 A1
20100077484 Paretti et al. Mar 2010 A1
20100082533 Nakamura et al. Apr 2010 A1
20100094650 Tran et al. Apr 2010 A1
20100100398 Auker et al. Apr 2010 A1
20100121773 Currier et al. May 2010 A1
20100192201 Shimoni et al. Jul 2010 A1
20100205057 Hook et al. Aug 2010 A1
20100223349 Thorson Sep 2010 A1
20100228786 Török Sep 2010 A1
20100234987 Benschop et al. Sep 2010 A1
20100235297 Mamorsky Sep 2010 A1
20100235915 Memon et al. Sep 2010 A1
20100262624 Pullikottil Oct 2010 A1
20100268628 Pitkow et al. Oct 2010 A1
20100268932 Bhattacharjee Oct 2010 A1
20100281313 White et al. Nov 2010 A1
20100287114 Bartko et al. Nov 2010 A1
20100333012 Adachi et al. Dec 2010 A1
20110006996 Smith et al. Jan 2011 A1
20110010202 Neale Jan 2011 A1
20110082794 Blechman Apr 2011 A1
20110137696 Meyer et al. Jun 2011 A1
20110145154 Rivers et al. Jun 2011 A1
20110153396 Marcuvitz et al. Jun 2011 A1
20110191664 Sheleheda et al. Aug 2011 A1
20110208850 Sheleheda et al. Aug 2011 A1
20110209067 Bogess et al. Aug 2011 A1
20110231896 Tovar Sep 2011 A1
20110238573 Varadarajan Sep 2011 A1
20110252456 Hatakeyama Oct 2011 A1
20110302643 Pichna et al. Dec 2011 A1
20120041939 Amsterdamski Feb 2012 A1
20120084151 Kozak et al. Apr 2012 A1
20120084349 Lee et al. Apr 2012 A1
20120102411 Sathish Apr 2012 A1
20120102543 Kohli et al. Apr 2012 A1
20120110674 Belani et al. May 2012 A1
20120116923 Irving et al. May 2012 A1
20120131438 Li et al. May 2012 A1
20120143650 Crowley et al. Jun 2012 A1
20120144499 Tan et al. Jun 2012 A1
20120226621 Petran et al. Sep 2012 A1
20120239557 Weinflash Sep 2012 A1
20120254320 Dove et al. Oct 2012 A1
20120259752 Agee Oct 2012 A1
20120323700 Aleksandrovich et al. Dec 2012 A1
20120330769 Arceo Dec 2012 A1
20120330869 Durham Dec 2012 A1
20130004933 Bhaskaran Jan 2013 A1
20130018954 Cheng Jan 2013 A1
20130085801 Sharpe et al. Apr 2013 A1
20130091156 Raiche et al. Apr 2013 A1
20130103485 Postrel Apr 2013 A1
20130111323 Taghaddos et al. May 2013 A1
20130124257 Schubert May 2013 A1
20130159351 Hamann et al. Jun 2013 A1
20130171968 Wang Jul 2013 A1
20130179982 Bridges et al. Jul 2013 A1
20130179988 Bekker et al. Jul 2013 A1
20130185806 Hatakeyama Jul 2013 A1
20130218829 Martinez Aug 2013 A1
20130219459 Bradley Aug 2013 A1
20130254649 ONeill Sep 2013 A1
20130254699 Bashir et al. Sep 2013 A1
20130262328 Federgreen Oct 2013 A1
20130282466 Hampton Oct 2013 A1
20130290169 Bathula et al. Oct 2013 A1
20130298071 Wine Nov 2013 A1
20130311224 Heroux et al. Nov 2013 A1
20130318207 Dotter Nov 2013 A1
20130326112 Park et al. Dec 2013 A1
20130332362 Ciurea Dec 2013 A1
20130340086 Blom Dec 2013 A1
20140006355 Kirihata Jan 2014 A1
20140006616 Aad et al. Jan 2014 A1
20140012833 Humprecht Jan 2014 A1
20140019561 Belity et al. Jan 2014 A1
20140032259 Lafever et al. Jan 2014 A1
20140032265 Paprocki Jan 2014 A1
20140040134 Ciurea Feb 2014 A1
20140040161 Berlin Feb 2014 A1
20140040979 Barton et al. Feb 2014 A1
20140041048 Goodwin et al. Feb 2014 A1
20140047551 Nagasundaram et al. Feb 2014 A1
20140052463 Cashman et al. Feb 2014 A1
20140067973 Eden Mar 2014 A1
20140074645 Ingram Mar 2014 A1
20140089027 Brown Mar 2014 A1
20140089039 McClellan Mar 2014 A1
20140108173 Cooper et al. Apr 2014 A1
20140108968 Vishria Apr 2014 A1
20140142988 Grosso et al. May 2014 A1
20140143011 Mudugu et al. May 2014 A1
20140164476 Thomson Jun 2014 A1
20140188956 Subba et al. Jul 2014 A1
20140196143 Fliderman et al. Jul 2014 A1
20140208418 Libin Jul 2014 A1
20140222468 Araya et al. Aug 2014 A1
20140244309 Francois Aug 2014 A1
20140244325 Cartwright Aug 2014 A1
20140244375 Kim Aug 2014 A1
20140244399 Orduna et al. Aug 2014 A1
20140257917 Spencer et al. Sep 2014 A1
20140258093 Gardiner et al. Sep 2014 A1
20140278539 Edwards Sep 2014 A1
20140278663 Samuel et al. Sep 2014 A1
20140278730 Muhart et al. Sep 2014 A1
20140283027 Orona et al. Sep 2014 A1
20140283106 Stahura et al. Sep 2014 A1
20140288971 Whibbs, III Sep 2014 A1
20140289681 Wielgosz Sep 2014 A1
20140289862 Gorfein et al. Sep 2014 A1
20140317171 Fox et al. Oct 2014 A1
20140324480 Dufel et al. Oct 2014 A1
20140337041 Madden et al. Nov 2014 A1
20140337466 Li et al. Nov 2014 A1
20140344015 Puértolas-Montañés et al. Nov 2014 A1
20150012363 Grant et al. Jan 2015 A1
20150019530 Felch Jan 2015 A1
20150026056 Calman et al. Jan 2015 A1
20150026260 Worthley Jan 2015 A1
20150033112 Norwood et al. Jan 2015 A1
20150066577 Christiansen et al. Mar 2015 A1
20150066865 Yara et al. Mar 2015 A1
20150088598 Acharyya et al. Mar 2015 A1
20150106264 Johnson Apr 2015 A1
20150106867 Liang Apr 2015 A1
20150106948 Holman et al. Apr 2015 A1
20150106949 Holman et al. Apr 2015 A1
20150121462 Courage et al. Apr 2015 A1
20150143258 Carolan et al. May 2015 A1
20150149362 Baum et al. May 2015 A1
20150154520 Federgreen et al. Jun 2015 A1
20150169318 Nash Jun 2015 A1
20150172296 Fujioka Jun 2015 A1
20150178740 Borawski et al. Jun 2015 A1
20150199534 Francis et al. Jul 2015 A1
20150199541 Koch et al. Jul 2015 A1
20150199702 Singh Jul 2015 A1
20150229664 Hawthorn et al. Aug 2015 A1
20150235049 Cohen et al. Aug 2015 A1
20150235050 Wouhaybi et al. Aug 2015 A1
20150235283 Nishikawa Aug 2015 A1
20150242778 Wilcox et al. Aug 2015 A1
20150242858 Smith et al. Aug 2015 A1
20150248391 Watanabe Sep 2015 A1
20150254597 Jahagirdar Sep 2015 A1
20150261887 Joukov Sep 2015 A1
20150262189 Vergeer Sep 2015 A1
20150264417 Spitz et al. Sep 2015 A1
20150269384 Holman et al. Sep 2015 A1
20150271167 Kalai Sep 2015 A1
20150309813 Patel Oct 2015 A1
20150310227 Ishida Oct 2015 A1
20150310575 Shelton Oct 2015 A1
20150348200 Fair et al. Dec 2015 A1
20150356362 Demos Dec 2015 A1
20150379430 Dirac et al. Dec 2015 A1
20160006760 Lala et al. Jan 2016 A1
20160012465 Sharp Jan 2016 A1
20160026394 Goto Jan 2016 A1
20160034918 Bjelajac et al. Feb 2016 A1
20160048700 Stransky-Heilkron Feb 2016 A1
20160050213 Storr Feb 2016 A1
20160063523 Nistor et al. Mar 2016 A1
20160063567 Srivastava Mar 2016 A1
20160071112 Unser Mar 2016 A1
20160080405 Schler et al. Mar 2016 A1
20160099963 Mahaffey et al. Apr 2016 A1
20160103963 Mishra Apr 2016 A1
20160125550 Joao et al. May 2016 A1
20160125749 Delacroix et al. May 2016 A1
20160125751 Barker et al. May 2016 A1
20160140466 Sidebottom et al. May 2016 A1
20160143570 Valaoich et al. May 2016 A1
20160148143 Anderson et al. May 2016 A1
20160162269 Pogorelik et al. Jun 2016 A1
20160164915 Cook Jun 2016 A1
20160180386 Konig Jun 2016 A1
20160188450 Appusamy et al. Jun 2016 A1
20160189156 Kim et al. Jun 2016 A1
20160196189 Miyagi et al. Jul 2016 A1
20160225000 Glasgow Aug 2016 A1
20160232465 Kurtz et al. Aug 2016 A1
20160232534 Lacey et al. Aug 2016 A1
20160234319 Griffin Aug 2016 A1
20160253497 Christodorescu et al. Sep 2016 A1
20160255139 Rathod Sep 2016 A1
20160261631 Vissamsetty et al. Sep 2016 A1
20160262163 Gonzalez Garrido et al. Sep 2016 A1
20160292621 Ciccone et al. Oct 2016 A1
20160321582 Broudou et al. Nov 2016 A1
20160321748 Mahatma et al. Nov 2016 A1
20160330237 Edlabadkar Nov 2016 A1
20160342811 Whitcomb et al. Nov 2016 A1
20160364736 Maugans, III Dec 2016 A1
20160370954 Burningham et al. Dec 2016 A1
20160378762 Rohter Dec 2016 A1
20160381064 Chan et al. Dec 2016 A1
20160381560 Margaliot Dec 2016 A1
20170004055 Horan et al. Jan 2017 A1
20170032395 Kaufman et al. Feb 2017 A1
20170032408 Kumar et al. Feb 2017 A1
20170034101 Kumar et al. Feb 2017 A1
20170041324 Ionutescu et al. Feb 2017 A1
20170046399 Sankaranarasimhan et al. Feb 2017 A1
20170046753 Deupree, IV Feb 2017 A1
20170061501 Horwich Mar 2017 A1
20170068785 Experton et al. Mar 2017 A1
20170070495 Cherry et al. Mar 2017 A1
20170093917 Chandra et al. Mar 2017 A1
20170115864 Thomas et al. Apr 2017 A1
20170124570 Nidamanuri et al. May 2017 A1
20170140174 Lacey et al. May 2017 A1
20170140467 Neag et al. May 2017 A1
20170142158 Laoutaris et al. May 2017 A1
20170142177 Hu May 2017 A1
20170154188 Meier et al. Jun 2017 A1
20170161520 Lockhart, III et al. Jun 2017 A1
20170171235 Mulchandani et al. Jun 2017 A1
20170171325 Perez Jun 2017 A1
20170177324 Frank et al. Jun 2017 A1
20170180378 Tyler et al. Jun 2017 A1
20170180505 Shaw et al. Jun 2017 A1
20170193017 Migliori Jul 2017 A1
20170193624 Tsai Jul 2017 A1
20170201518 Holmqvist et al. Jul 2017 A1
20170206707 Guay et al. Jul 2017 A1
20170208084 Steelman et al. Jul 2017 A1
20170220685 Yan et al. Aug 2017 A1
20170220964 Datta Ray Aug 2017 A1
20170249710 Guillama et al. Aug 2017 A1
20170269791 Meyerzon et al. Sep 2017 A1
20170270318 Ritchie Sep 2017 A1
20170278004 McElhinney et al. Sep 2017 A1
20170278117 Wallace et al. Sep 2017 A1
20170286719 Krishnamurthy et al. Oct 2017 A1
20170287031 Barday Oct 2017 A1
20170289199 Barday Oct 2017 A1
20170308875 O'Regan et al. Oct 2017 A1
20170316400 Venkatakrishnan et al. Nov 2017 A1
20170330197 DiMaggio et al. Nov 2017 A1
20170353404 Hodge Dec 2017 A1
20180032757 Michael Feb 2018 A1
20180039975 Hefetz Feb 2018 A1
20180041498 Kikuchi Feb 2018 A1
20180046753 Shelton Feb 2018 A1
20180046939 Meron et al. Feb 2018 A1
20180063174 Grill et al. Mar 2018 A1
20180063190 Wright et al. Mar 2018 A1
20180082368 Weinflash et al. Mar 2018 A1
20180083843 Sambandam Mar 2018 A1
20180091476 Jakobsson et al. Mar 2018 A1
20180131574 Jacobs et al. May 2018 A1
20180131658 Bhagwan et al. May 2018 A1
20180165637 Romero et al. Jun 2018 A1
20180198614 Neumann Jul 2018 A1
20180219917 Chiang Aug 2018 A1
20180239500 Allen et al. Aug 2018 A1
20180248914 Sartor Aug 2018 A1
20180285887 Maung Oct 2018 A1
20180301222 Dew, Sr. et al. Oct 2018 A1
20180307859 Lafever et al. Oct 2018 A1
20180349583 Turgeman et al. Dec 2018 A1
20180351888 Howard Dec 2018 A1
20180352003 Winn et al. Dec 2018 A1
20180357243 Yoon Dec 2018 A1
20180365720 Goldman et al. Dec 2018 A1
20180374030 Barday et al. Dec 2018 A1
20180375814 Hart Dec 2018 A1
20190005210 Wiederspohn et al. Jan 2019 A1
20190012672 Francesco Jan 2019 A1
20190019184 Lacey et al. Jan 2019 A1
20190050547 Welsh et al. Feb 2019 A1
20190050596 Barday Feb 2019 A1
20190087570 Sloane Mar 2019 A1
20190096020 Barday et al. Mar 2019 A1
20190108353 Sadeh et al. Apr 2019 A1
20190130132 Barbas et al. May 2019 A1
20190138496 Yamaguchi May 2019 A1
20190148003 Van Hoe May 2019 A1
20190156053 Vogel et al. May 2019 A1
20190156058 Van Dyne et al. May 2019 A1
20190171801 Barday et al. Jun 2019 A1
20190179652 Hesener et al. Jun 2019 A1
20190180051 Barday et al. Jun 2019 A1
20190182294 Rieke et al. Jun 2019 A1
20190188402 Wang et al. Jun 2019 A1
20190266200 Francolla Aug 2019 A1
20190266201 Barday et al. Aug 2019 A1
20190266350 Barday et al. Aug 2019 A1
20190268343 Barday et al. Aug 2019 A1
20190268344 Barday et al. Aug 2019 A1
20190272492 Elledge et al. Sep 2019 A1
20190294818 Barday et al. Sep 2019 A1
20190332802 Barday et al. Oct 2019 A1
20190332807 Lafever et al. Oct 2019 A1
20190333118 Crimmins et al. Oct 2019 A1
20190354709 Brinskelle Nov 2019 A1
20190356684 Sinha et al. Nov 2019 A1
20190362169 Lin et al. Nov 2019 A1
20190362268 Fogarty et al. Nov 2019 A1
20190378073 Lopez et al. Dec 2019 A1
20190384934 Kim Dec 2019 A1
20190392170 Barday et al. Dec 2019 A1
20190392171 Barday et al. Dec 2019 A1
20200020454 McGarvey et al. Jan 2020 A1
20200050966 Enuka et al. Feb 2020 A1
20200051117 Mitchell Feb 2020 A1
20200057781 McCormick Feb 2020 A1
20200074471 Adjaoute Mar 2020 A1
20200081865 Farrar et al. Mar 2020 A1
20200082270 Gu et al. Mar 2020 A1
20200090197 Rodriguez et al. Mar 2020 A1
20200092179 Chieu et al. Mar 2020 A1
20200110589 Bequet et al. Apr 2020 A1
20200110904 Shinde et al. Apr 2020 A1
20200117737 Gopalakrishnan et al. Apr 2020 A1
20200137097 Zimmermann et al. Apr 2020 A1
20200143301 Bowers May 2020 A1
20200143797 Manoharan May 2020 A1
20200159952 Dain et al. May 2020 A1
20200159955 Barlik et al. May 2020 A1
20200167653 Manjunath et al. May 2020 A1
20200175424 Kursun Jun 2020 A1
20200183655 Barday et al. Jun 2020 A1
20200186355 Davies Jun 2020 A1
20200193018 Van Dyke Jun 2020 A1
20200193022 Lunsford et al. Jun 2020 A1
20200210558 Barday et al. Jul 2020 A1
20200210620 Haletky Jul 2020 A1
20200220901 Barday et al. Jul 2020 A1
20200226156 Borra et al. Jul 2020 A1
20200226196 Brannon et al. Jul 2020 A1
20200242259 Chirravuri et al. Jul 2020 A1
20200242719 Lee Jul 2020 A1
20200250342 Miller et al. Aug 2020 A1
20200252413 Buzbee et al. Aug 2020 A1
20200252817 Brouillette et al. Aug 2020 A1
20200272764 Brannon et al. Aug 2020 A1
20200293679 Handy Bosma et al. Sep 2020 A1
20200296171 Mocanu et al. Sep 2020 A1
20200302089 Barday et al. Sep 2020 A1
20200310917 Tkachev et al. Oct 2020 A1
20200311310 Barday et al. Oct 2020 A1
20200344243 Brannon et al. Oct 2020 A1
20200356695 Brannon et al. Nov 2020 A1
20200364369 Brannon et al. Nov 2020 A1
20200372178 Barday et al. Nov 2020 A1
20200394327 Childress et al. Dec 2020 A1
20200401380 Jacobs et al. Dec 2020 A1
20200401962 Gottemukkala et al. Dec 2020 A1
20200410117 Barday et al. Dec 2020 A1
20200410131 Barday et al. Dec 2020 A1
20200410132 Brannon et al. Dec 2020 A1
20210012341 Garg et al. Jan 2021 A1
20210056569 Silberman et al. Feb 2021 A1
20210081567 Park et al. Mar 2021 A1
20210125089 Nickl et al. Apr 2021 A1
20210152496 Kim et al. May 2021 A1
20210233157 Crutchfield, Jr. Jul 2021 A1
20210243595 Buck et al. Aug 2021 A1
20210248247 Poothokaran et al. Aug 2021 A1
20210256163 Fleming et al. Aug 2021 A1
20210279360 Gimenez Palop et al. Sep 2021 A1
20210297441 Olalere Sep 2021 A1
20210303828 Lafreniere et al. Sep 2021 A1
20210312061 Schroeder et al. Oct 2021 A1
20210326786 Sun et al. Oct 2021 A1
20210382949 Yastrebenetsky et al. Dec 2021 A1
20210397735 Samatov et al. Dec 2021 A1
20210400018 Vettaikaran et al. Dec 2021 A1
20210406712 Bhide et al. Dec 2021 A1
Foreign Referenced Citations (14)
Number Date Country
111496802 Aug 2020 CN
112115859 Dec 2020 CN
1394698 Mar 2004 EP
2031540 Mar 2009 EP
20130062500 Jun 2013 KR
2001033430 May 2001 WO
20020067158 Aug 2002 WO
20030050773 Jun 2003 WO
2005008411 Jan 2005 WO
2007002412 Jan 2007 WO
2008134203 Nov 2008 WO
2012174659 Dec 2012 WO
2015116905 Aug 2015 WO
2020146028 Jul 2020 WO
Non-Patent Literature Citations (821)
Entry
Bjorn Greif, “Cookie Pop-up Blocker: Cliqz Automatically Denies Consent Requests,” Cliqz.com, pp. 1-9, Aug. 11, 2019 (Year: 2019).
Final Office Action, dated Dec. 10, 2021, from corresponding U.S. Appl. No. 17/187,329.
He et al, “A Crowdsourcing Framework for Detecting of Cross-Browser Issues in Web Application,” ACM, pp. 1-4, Nov. 6, 2015 (Year: 2015).
International Search Report, dated Dec. 22, 2021, from corresponding International Application No. PCT/US2021/051217.
Jones et al, “AI and the Ethics of Automating Consent,” IEEE, pp. 64-72, May 2018 (Year: 2018).
Liu et al, “A Novel Approach for Detecting Browser-based Silent Miner,” IEEE, pp. 490-497 (Year: 2018).
Lu et al, “An HTTP Flooding Detection Method Based on Browser Behavior,” IEEE, pp. 1151-1154 (Year: 2006).
Notice of Allowance, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 16/908,081.
Notice of Allowance, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 17/347,853.
Notice of Allowance, dated Dec. 2, 2021, from corresponding U.S. Appl. No. 16/901,654.
Notice of Allowance, dated Decembers, 2021, from corresponding U.S. Appl. No. 17/397,472.
Nouwens et al, “Dark Patterns after the GDPR: Scraping Consent Pop-ups and Demonstrating their Influence,” ACM, pp. 1-13, Apr. 25, 2020 (Year: 2020).
Office Action, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 17/476,209.
Office Action, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/395,759.
Office Action, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/499,582.
Office Action, dated Dec. 2, 2021, from corresponding U.S. Appl. No. 17/504,102.
Office Action, dated Dec. 27, 2021, from corresponding U.S. Appl. No. 17/493,332.
Office Action, dated Dec. 29, 2021, from corresponding U.S. Appl. No. 17/479,807.
Office Action, dated Dec. 7, 2021, from corresponding U.S. Appl. No. 17/499,609.
Paes, “Student Research Abstract: Automatic Detection of Cross-Browser Incompatibilities using Machine Learning and Screenshot Similarity,” ACM, pp. 697-698, Apr. 3, 2017 (Year: 2017).
Restriction Requirement, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/475,244.
Shahriar et al, “A Model-Based Detection of Vulnerable and Malicious Browser Extensions,” IEEE, pp. 198-207 (Year: 2013).
Sjosten et al, “Discovering Browser Extensions via Web Accessible Resources,” ACM, pp. 329-336, Mar. 22, 2017 (Year: 2017).
Written Opinion of the International Searching Authority, dated Dec. 22, 2021, from corresponding International Application No. PCT/US2021/051217.
Amar et al, “Privacy-Aware Infrastructure for Managing Personal Data,” ACM, pp. 571-572, Aug. 22-26, 2016 (Year: 2016).
Banerjee et al, “Link Before You Share: Managing Privacy Policies through Blockchain,” IEEE, pp. 4438-4447 (Year: 2017).
Civili et al, “Mastro Studio: Managing Ontology-Based Data Access Applications,” ACM, pp. 1314-1317, Aug. 26-30, 2013 (Year: 2013).
Degeling et al, “We Value Your Privacy . . . Now Take Some Cookies: Measuring the GDPRs Impact on Web Privacy,” arxiv.org, Cornell University Library, 201 Olin Library Cornell University, Ithaca, NY 14853, Aug. 15, 2018, pp. 1-15 (Year: 2019).
Geko et al, “An Ontology Capturing the Interdependence of the General Data Protection Regulation (GDPR) and Information Security,” ACM, pp. 1-6, Nov. 15-16, 2018 (Year: 2018).
International Search Report, dated Jan. 5, 2022, from corresponding International Application No. PCT/US2021/050497.
Lu, “How Machine Learning Mitigates Racial Bias in the US Housing Market,” Available as SSRN 3489519, pp. 1-73, Nov. 2019 (Year: 2019).
Notice of Allowance, dated Dec. 30, 2021, from corresponding U.S. Appl. No. 16/938,520.
Notice of Allowance, dated Jan. 11, 2022, from corresponding U.S. Appl. No. 17/371,350.
Notice of Allowance, dated Jan. 12, 2022, from corresponding U.S. Appl. No. 17/334,948.
Notice of Allowance, dated Jan. 12, 2022, from corresponding U.S. Appl. No. 17/463,775.
Notice of Allowance, dated Jan. 24, 2022, from corresponding U.S. Appl. No. 17/340,699.
Notice of Allowance, dated Jan. 26, 2022, from corresponding U.S. Appl. No. 17/491,906.
Notice of Allowance, dated Jan. 5, 2022, from corresponding U.S. Appl. No. 17/475,241.
Notice of Allowance, dated Jan. 6, 2022, from corresponding U.S. Appl. No. 17/407,765.
Notice of Allowance, dated Jan. 7, 2022, from corresponding U.S. Appl. No. 17/222,725.
Office Action, dated Dec. 30, 2021, from corresponding U.S. Appl. No. 17/149,421.
Office Action, dated Jan. 14, 2022, from corresponding U.S. Appl. No. 17/499,595.
Office Action, dated Jan. 21, 2022, from corresponding U.S. Appl. No. 17/499,624.
Office Action, dated Jan. 25, 2022, from corresponding U.S. Appl. No. 17/494,220.
Office Action, dated Jan. 4, 2022, from corresponding U.S. Appl. No. 17/480,377.
Office Action, dated Jan. 7, 2022, from corresponding U.S. Appl. No. 17/387,421.
Rakers, “Managing Professional and Personal Sensitive Information,” ACM, pp. 9-13, Oct. 24-27, 2010 (Year: 2010).
Sachinopoulou et al, “Ontology-Based Approach for Managing Personal Health and Wellness Information,” IEEE, pp. 1802-1805 (Year: 2007).
Shankar et al, “Doppleganger: Better Browser Privacy Without the Bother,” Proceedings of the 13th ACM Conference on Computer and Communications Security; [ACM Conference on Computer and Communications Security], New York, NY : ACM, US, Oct. 30, 2006, pp. 154-167 (Year: 2006).
Written Opinion of the International Searching Authority, dated Jan. 5, 2022, from corresponding International Application No. PCT/US2021/050497.
Yue et al, “An Automatic HTTP Cookie Management System,” Computer Networks, Elsevier, Amsterdam, NL, vol. 54, No. 13, Sep. 15, 2010, pp. 2182-2198 (Year: 2010).
Milic et al, “Comparative Analysis of Metadata Models on e-Government Open Data Platforms,” IEEE, pp. 119-130 (Year: 2021).
Notice of Allowance, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/479,807.
Notice of Allowance, dated Apr. 14, 2022, from corresponding U.S. Appl. No. 17/572,276.
Notice of Allowance, dated Apr. 20, 2022, from corresponding U.S. Appl. No. 17/573,808.
Notice of Allowance, dated Apr. 27, 2022, from corresponding U.S. Appl. No. 17/573,999.
Notice of Allowance, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 17/670,352.
Notice of Allowance, dated Apr. 4, 2022, from corresponding U.S. Appl. No. 17/493,332.
Notice of Allowance, dated Apr. 4, 2022, from corresponding U.S. Appl. No. 17/572,298.
Notice of Allowance, dated Mar. 31, 2022, from corresponding U.S. Appl. No. 17/476,209.
Office Action, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/670,341.
Office Action, dated Apr. 18, 2022, from corresponding U.S. Appl. No. 17/670,349.
Office Action, dated Apr. 25, 2022, from corresponding U.S. Appl. No. 17/588,645.
Office Action, dated Apr. 26, 2022, from corresponding U.S. Appl. No. 17/151,334.
Office Action, dated Apr. 8, 2022, from corresponding U.S. Appl. No. 16/938,509.
Qu et al, “Metadata Type System: Integrate Presentation, Data Models and Extraction to Enable Exploratory Browsing Interfaces,” ACM, pp. 107-116 (Year: 2014).
Restriction Requirement, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/584,187.
Shulz et al, “Generative Data Models for Validation and Evaluation of Visualization Techniques,” ACM, pp. 1-13 (Year: 2016).
Written Opinion of the International Searching Authority, dated Apr. 12, 2022, from corresponding International Application No. PCT/US2022/016735.
Written Opinion of the International Searching Authority, dated Feb. 14, 2022, from corresponding International Application No. PCT/US2021/058274.
Written Opinion of the International Searching Authority, dated Mar. 18, 2022, from corresponding International Application No. PCT/US2022/013733.
Final Office Action, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 16/925,550.
Notice of Allowance, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 17/592,922.
Notice of Allowance, dated Apr. 29, 2022, from corresponding U.S. Appl. No. 17/387,421.
International Search Report, dated Feb. 11, 2022, from corresponding International Application No. PCT/US2021/053518.
Jiahao Chen et al. “Fairness Under Unawareness: Assessing Disparity when Protected Class is Unobserved,” ARXIV.ORG, Cornell University Library, 201 Olin Library Cornell University, Ithaca, NY 14853, Nov. 27, 2018 (Nov. 27, 2018), Section 2, Figure 2. (Year 2018).
Notice of Allowance, dated Feb. 1, 2022, from corresponding U.S. Appl. No. 17/346,509.
Notice of Allowance, dated Feb. 14, 2022, from corresponding U.S. Appl. No. 16/623,157.
Notice of Allowance, dated Feb. 22, 2022, from corresponding U.S. Appl. No. 17/535,065.
Notice of Allowance, dated Feb. 8, 2022, from corresponding U.S. Appl. No. 17/342,153.
Notice of Allowance, dated Jan. 31, 2022, from corresponding U.S. Appl. No. 17/472,948.
Office Action, dated Feb. 16, 2022, from corresponding U.S. Appl. No. 16/872,031.
Office Action, dated Feb. 9, 2022, from corresponding U.S. Appl. No. 17/543,546.
Office Action, dated Jan. 31, 2022, from corresponding U.S. Appl. No. 17/493,290.
Sarkar et al, “Towards Enforcement of the EU GDPR: Enabling Data Erasure,” 2018 IEEE Confs on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatics, 2018, pp. 222-229, IEEE (Year: 2018).
Written Opinion of the International Searching Authority, dated Feb. 11, 2022, from corresponding International Application No. PCT/US2021/053518.
Czeskis et al, “Lightweight Server Support for Browser-based CSRF Protection,” Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 273-284 (Year: 2013).
Final Office Action, dated Feb. 25, 2022, from corresponding U.S. Appl. No. 17/346,586.
Final Office Action, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/373,444.
Final Office Action, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/380,485.
Matte et al, “Do Cookie Banners Respect my Choice?: Measuring Legal Compliance of Banners from IAB Europe's Transparency and Consent Framework,” 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 791-809 (Year: 2020).
Notice of Allowance, dated Feb. 24, 2022, from corresponding U.S. Appl. No. 17/234,205.
Notice of Allowance, dated Feb. 24, 2022, from corresponding U.S. Appl. No. 17/549,170.
Notice of Allowance, dated Mar. 16, 2022, from corresponding U.S. Appl. No. 17/486,350.
Notice of Allowance, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 16/872,130.
Notice of Allowance, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/535,098.
Notice of Allowance, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/366,754.
Notice of Allowance, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/475,244.
Notice of Allowance, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/504,102.
Notice of Allowance, dated Mar. 28, 2022, from corresponding U.S. Appl. No. 17/499,609.
Notice of Allowance, dated Mar. 4, 2022, from corresponding U.S. Appl. No. 17/409,999.
Office Action, dated Mar. 1, 2022, from corresponding U.S. Appl. No. 17/119,080.
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/020,275.
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/161,159.
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/200,698.
Office Action, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/571,871.
Office Action, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/187,329.
Sanchez-Rola et al, “Can I Opt Out Yet?: GDPR and the Global Illusion of Cookie Control,” Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, 2019, pp. 340-351 (Year: 2019).
Ali et al, “Age Estimation from Facial Images Using Biometric Ratios and Wrinkle Analysis,” IEEE, 2015, pp. 1-5 (Year: 2015).
Chang et al, “A Ranking Approach for Human Age Estimation Based on Face Images,” IEEE, 2010, pp. 3396-3399 (Year: 2010).
Edinger et al, “Age and Gender Estimation of Unfiltered Faces,” IEEE, 2014, pp. 2170-2179 (Year: 2014).
Final Office Action, dated Apr. 1, 2022, from corresponding U.S. Appl. No. 17/370,650.
Final Office Action, dated Apr. 25, 2022, from corresponding U.S. Appl. No. 17/149,421.
Final Office Action, dated Apr. 5, 2022, from corresponding U.S. Appl. No. 17/013,756.
Han et al, “Demographic Estimation from Face Images: Human vs. Machine Performance,” IEEE, 2015, pp. 1148-1161 (Year: 2015).
Huettner, “Digital Risk Management: Protecting Your Privacy, Improving Security, and Preparing for Emergencies,” IEEE, pp. 136-138 (Year: 2006).
International Search Report, dated Apr. 12, 2022, from corresponding International Application No. PCT/US2022/016735.
International Search Report, dated Feb. 14, 2022, from corresponding International Application No. PCT/US2021/058274.
International Search Report, dated Mar. 18, 2022, from corresponding International Application No. PCT/US2022/013733.
Jayasinghe et al, “Matching Facial Images Using Age Related Morphing Changes,” ISSRI, 2009, pp. 2901-2907 (Year: 2009).
Khan et al, “Wrinkles Energy Based Age Estimation Using Discrete Cosine Transform,” IEEE, 2015, pp. 1-4 (Year 2015).
Kristian et al, “Human Facial Age Classification Using Active Shape Module, Geometrical Feature, and Support Vendor Machine on Early Growth Stage,” ISICO, 2015, pp. 1-8 (Year: 2015).
Lewis, James et al, “Microservices,” Mar. 25, 2014 (Mar. 25, 2014), XP055907494, Retrieved from the Internet: https://martinfowler.com/articles/micr oservices.html [retrieved on Mar. 31, 2022].
Liu et al, “Overview on Ontology Mapping and Approach,” IEEE, pp. 592-595 (Year: 2011).
Final Office Action, dated May 2, 2022, from corresponding U.S. Appl. No. 17/499,595.
Regulation (EU) 2016/679, “On the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation),” Official Journal of the European Union, May 4, 2016, pp. L 119/1-L 119/88 (Year: 2016).
Roesner et al., “Detecting and Defending Against Third-Party Tracking on the Web,” 9th USENIX Symposium on Networked Systems Design and Implementation, Apr. 11, 2013, pp. 1-14, ACM (Year: 2013).
Rozepz, “What is Google Privacy Checkup? Everything You Need to Know,” Tom's Guide web post, Apr. 26, 2018, pp. 1-11 (Year: 2018).
Salim et al, “Data Retrieval and Security using Lightweight Directory Access Protocol”, IEEE, pp. 685-688 (Year: 2009).
Santhisree, et al, “Web Usage Data Clustering Using Dbscan Algorithm and Set Similarities,” IEEE, pp. 220-224 (Year: 2010).
Sanzo et al, “Analytical Modeling of Lock-Based Concurrency Control with Arbitrary Transaction Data Access Patterns,” ACM, pp. 69-78 (Year: 2010).
Schwartz, Edward J., et al, 2010 IEEE Symposium on Security and Privacy: All You Ever Wanted to Know About Dynamic Analysis and forward Symbolic Execution (but might have been afraid to ask), Carnegie Mellon University, IEEE Computer Society, 2010, p. 317-331.
Sedinic et al, “Security Risk Management in Complex Organization,” May 29, 2015, IEEE, pp. 1331-1337 (Year 2015).
Singh, et al, “A Metadata Catalog Service for Data intensive Applications,” ACM, pp. 1-17 (Year: 2003).
Slezak, et al, “Brighthouse: An Analytic Data Warehouse for Ad-hoc Queries,” ACM, pp. 1337-1345 (Year: 2008).
Soceanu, et al, “Managing the Privacy and Security of eHealth Data,” May 29, 2015, IEEE, pp. 1-8 (Year: 2015).
Srinivasan et al, “Descriptive Data Analysis of File Transfer Data,” ACM, pp. 1-8 (Year: 2014).
Srivastava, Agrima, et al, Measuring Privacy Leaks in Online Social Networks, International Conference on Advances in Computing, Communications and informatics (ICACCI), 2013.
Stack Overflow, “Is there a way to force a user to scroll to the bottom of a div?,” Stack Overflow, pp. 1-11, Nov. 2013. [Online]. Available: https://stackoverflow.com/questions/2745935/is-there-a-way-to-force-a-user-to-scroll-to-the-bottom-of-a-div (Year: 2013).
Stern, Joanna, “IPhone Privacy Is Broken . . . and Apps Are to Blame”, The Wall Street Journal, wsj.com, May 31, 2019.
Strodl, et al, “Personal & SOHO Archiving,” Vienna University of Technology, Vienna, Austria, JCDL '08, Jun. 16-20, 2008, Pittsburgh, Pennsylvania, USA, pp. 115-123 (Year: 2008).
Sukumar et al, “Review on Modern Data Preprocessing Techniques in Web Usage Mining (WUM),” IEEE, 2016, pp. 64-69 (Year: 2016).
Symantec, Symantex Data Loss Prevention—Discover, monitor, and protect confidential data; 2008; Symantec Corporation; http://www.mssuk.com/images/Symantec%2014552315_IRC_BR_DLP_03.09_sngl. pdf.
Tanasa et al, “Advanced Data Preprocessing for Intersites Web Usage Mining” IEEE, Mar. 2004, pp. 59-65 (Year 2004).
Tanwar, et al, “Live Forensics Analysis: Violations of Business Security Policy,” 2014 International Conference on Contemporary Computing and Informatics (IC31), 2014, pp. 971-976 (Year: 2014).
The Cookie Collective, Optanon Cookie Policy Generator, The Cookie Collective, Year 2016, http:web.archive.org/web/20160324062743/https:/optanon.com/.
Thuraisingham, “Security Issues for the Semantic Web,” Proceedings 27th Annual International Computer Software and Applications Conference, COMPSAC 2003, Dallas, TX, USA, 2003, pp. 633-638 (Year: 2003).
TRUSTe Announces General Availability of Assessment Manager for Enterprises to Streamline Data Privacy Management with Automation, PRNewswire, 20150304.
Tsai et al, “Determinants of Intangible Assets Value: The Data Mining Approach,” Knowledge Based System, pp. 67-77 http://www.elsevier.com/locate/knosys (Year: 2012).
Tuomas Aura et al., Scanning Electronic Documents for Personally identifiable Information, ACM, Oct. 30, 2006, retrieved online on Jun. 13, 2019, pp. 41-49. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/1180000/1179608/p41-aura.pdf? (Year: 2006).
Van Eijk et al, “The Impact of User Location on Cookie Notices (Inside and Outside of the European Union,” IEEE Security & Privacy Workshop on Technology and Consumer Protection (CONPRO '19), Jan. 1, 2019 (Year: 2019).
Wang et al, “Revealing Key Non-Financial Factors for Online Credit-Scoring in E-Financing,” 2013, IEEE, pp. 1-6 (Year: 2013).
Wang et al, “Secure and Efficient Access to Outsourced Data,” ACM, pp. 55-65 (Year: 2009).
Weaver et al, “Understanding information Preview in Mobile Email Processing”, ACM, pp. 303-312, 2011 (Year: 2011).
Wu et al, “Data Mining with Big Data,” IEEE, Jan. 2014, pp. 97-107, vol. 26, No. 1, (Year: 2014).
www.truste.com (1), 200150207, Internet Archive Wayback Machine, www.archive.org,2_7_2015.
Xu, et al, “GatorShare: A File System Framework for High-Throughput Data Management,” ACM, pp. 776-786 (Year 2010).
Yang et al, “DAC-MACS: Effective Data Access Control for Multiauthority Cloud Storage Systems,” IEEE, pp. 1790-1801 (Year: 2013).
Yang et al, “Mining Web Access Sequence with improved Apriori Algorithm,” IEEE, 2017, pp. 780-784 (Year: 2017).
Ye et al, “An Evolution-Based Cache Scheme for Scalable Mobile Data Access,” ACM, pp. 1-7 (Year: 2007).
Yin et al, “Multibank Memory Optimization for Parallel Data Access in Multiple Data Arrays”, ACM, pp. 1-8 (Year: 2016).
Yiu et al, “Outsourced Similarity Search on Metric Data Assets”, IEEE, pp. 338-352 (Year: 2012).
Yu, “Using Data from Social Media Websites to Inspire the Design of Assistive Technology”, ACM, pp. 1-2 (Year: 2016).
Yu, et al, “Performance and Fairness Issues in Big Data Transfers,” ACM, pp. 9-1 1 (Year: 2014).
Zannone, et al, “Maintaining Privacy on Derived Objects,” ACM, pp. 10-19 (Year: 2005).
Zeldovich, Nickolai, et al, Making Information Flow Explicit in HiStar, OSDI '06: 7th USENIX Symposium on Operating Systems Design and Implementation, USENIX Association, p. 263-278.
Zhang et al, “Data Transfer Performance Issues for a Web Services Interface to Synchrotron Experiments”, ACM, pp. 59-65 (Year: 2007).
Zhang et al, “Dynamic Topic Modeling for Monitoring Market Competition from Online Text and Image Data”, ACM, pp. 1425-1434 (Year: 2015).
Zheng, et al, “Methodologies for Cross-Domain Data Fusion: An Overview,” IEEE, pp. 16-34 (Year: 2015).
Zheng, et al, “Toward Assured Data Deletion In Cloud Storage,” IEEE, vol. 34, No. 3, pp. 101-107 May/Jun. 2020 (Year: 2020).
Zhu, et al, “Dynamic Data Integration Using Web Services,” IEEE, pp. 1-8 (Year: 2004).
Written Opinion of the International Searching Authority, dated Jan. 14, 2019, from corresponding International Application No. PCT/US2018/046949.
Written Opinion of the International Searching Authority, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055772.
Written Opinion of the International Searching Authority, dated Jun. 21, 2017, from corresponding International Application No. PCT/US2017/025600.
Written Opinion of the International Searching Authority, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025605.
Written Opinion of the International Searching Authority, dated Mar. 14, 2019, from corresponding Internationa Applicatlon No. PCT/US2018/055736.
Written Opinion of the International Searching Authority, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055773.
Written Opinion of the International Searching Authority, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055774.
Written Opinion of the International Searching Authority, dated Nov. 12, 2021, from corresponding International Application No. PCT/US2021/043481.
Written Opinion of the International Searching Authority, dated Nov. 19, 2018, from corresponding International Application No. PCT/US2018/046939.
Written Opinion of the International Searching Authority, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/040893.
Written Opinion of the International Searching Authority, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/044910.
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043975.
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043976.
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043977.
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/044026.
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/045240.
Written Opinion of the International Searching Authority, dated Oct. 12, 2017, from corresponding International Application No. PCT/US2017/036888.
Written Opinion of the International Searching Authority, dated Oct. 12, 2018, from corresponding International Application No. PCT/US2018/044046.
Written Opinion of the International Searching Authority, dated Oct. 16, 2018, from corresponding International Application No. PCT/US2018/045243.
Written Opinion of the International Searching Authority, dated Oct. 18, 2018, from corresponding International Application No. PCT/US2018/045249.
Written Opinion of the International Searching Authority, dated Oct. 20, 2017, from corresponding International Application No. PCT/US2017/036917.
Written Opinion of the International Searching Authority, dated Oct. 3, 2017, from corresponding International Application No. PCT/US2017/036912.
Written Opinion of the International Searching Authority, dated Sep. 1, 2017, from corresponding International Application No. PCT/US2017/036896.
Written Opinion of the International Searching Authority, dated Sep. 12, 2018, from corresponding International Application No. PCT/US2018/037504.
Written Opinion of the International Searching Authority, dated Sep. 15, 2021, from corresponding International Application No. PCT/US2021/033631.
International Search Report, dated Aug. 15, 2017, from corresponding International Application No. PCT/US2017/036919.
International Search Report, dated Aug. 21, 2017, from corresponding International Application No. PCT/US2017/036914.
International Search Report, dated Aug. 29, 2017, from corresponding International Application No. PCT/US2017/036898.
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036889.
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036890.
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036893.
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036901.
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036913.
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036920.
International Search Report, dated Dec. 14, 2018, from corresponding International Application No. PCT/US2018/045296.
International Search Report, dated Jan. 14, 2019, from corresponding International Application No. PCT/US2018/046949.
International Search Report, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055772.
International Search Report, dated Jun. 21, 2017, from corresponding International Application No. PCT/US2017/025600.
International Search Report, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025605.
International Search Report, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025611.
International Search Report, dated Mar. 14, 2019, from corresponding International Application No. PCT/US2018/055736.
International Search Report, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055773.
International Search Report, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055774.
International Search Report, dated Nov. 12, 2021, from corresponding International Application No. PCT/US2021/043481.
International Search Report, dated Nov. 19, 2018, from corresponding International Application No. PCT/US2018/046939.
International Search Report, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/040893.
International Search Report, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/044910.
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043975.
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043976.
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043977.
Office Action, dated Nov. 1, 2017, from corresponding U.S. Appl. No. 15/169,658.
Office Action, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/380,485.
Office Action, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/034,355.
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,355.
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,772.
Office Action, dated Nov. 12, 2021, from corresponding U.S. Appl. No. 17/346,586.
Office Action, dated Nov. 12, 2021, from corresponding U.S. Appl. No. 17/373,444.
Office Action, dated Nov. 15, 2018, from corresponding U.S. Appl. No. 16/059,911.
Office Action, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/552,758.
Office Action, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/370,650.
Office Action, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/486,350.
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,885.
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,889.
Office Action, dated Nov. 19, 2019, from corresponding U.S. Appl. No. 16/572,347.
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/595,342.
Office Action, dated Nov. 20, 2019, from corresponding U.S. Appl. No. 16/595,327.
Office Action, dated Nov. 23, 2018, from corresponding U.S. Appl. No. 16/042,673.
Office Action, dated Nov. 23, 2020, from corresponding U.S. Appl. No. 16/013,756.
Office Action, dated Nov. 24, 2021, from corresponding U.S. Appl. No. 16/925,628.
Office Action, dated Nov. 26, 2021, from corresponding U.S. Appl. No. 16/925,550.
Office Action, dated Nov. 4, 2021, from corresponding U.S. Appl. No. 16/491,906.
Office Action, dated Nov. 8, 2021, from corresponding U.S. Appl. No. 16/872,130.
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/041,563.
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,083.
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,944.
Office Action, dated Oct. 12, 2021, from corresponding U.S. Appl. No. 17/346,509.
Office Action, dated Oct. 14, 2020, from corresponding U.S. Appl. No. 16/927,658.
Office Action, dated Oct. 15, 2018, from corresponding U.S. Appl. No. 16/054,780.
Office Action, dated Oct. 15, 2021, from corresponding U.S. Appl. No. 16/908,081.
Office Action, dated Oct. 16, 2019, from corresponding U.S. Appl. No. 16/557,392.
Office Action, dated Oct. 16, 2020, from corresponding U.S. Appl. No. 16/808,489.
Office Action, dated Oct. 23, 2018, from corresponding U.S. Appl. No. 16/055,961.
Office Action, dated Oct. 26, 2018, from corresponding U.S. Appl. No. 16/041,468.
Office Action, dated Oct. 8, 2019, from corresponding U.S. Appl. No. 16/552,765.
Office Action, dated Sep. 1, 2017, from corresponding U.S. Appl. No. 15/619,459.
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,375.
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,478.
Office Action, dated Sep. 15, 2021, from corresponding U.S. Appl. No. 16/623,157.
Office Action, dated Sep. 16, 2019, from corresponding U.S. Appl. No. 16/277,715.
Office Action, dated Sep. 19, 2017, from corresponding U.S. Appl. No. 15/671,073.
Office Action, dated Sep. 22, 2017, from corresponding U.S. Appl. No. 15/619,278.
Office Action, dated Sep. 24, 2021, from corresponding U.S. Appl. No. 17/342,153.
Office Action, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/989,086.
Office Action, dated Sep. 5, 2017, from corresponding U.S. Appl. No. 15/619,469.
Office Action, dated Sep. 6, 2017, from corresponding U.S. Appl. No. 15/619,479.
Office Action, dated Sep. 7, 2017, from corresponding U.S. Appl. No. 15/633,703.
Office Action, dated Sep. 8, 2017, from corresponding U.S. Appl. No. 15/619,251.
Notice of Allowance, dated Apr. 12, 2017, from corresponding U.S. Appl. No. 15/256,419.
Notice of Allowance, dated Apr. 17, 2020, from corresponding U.S. Appl. No. 16/593,639.
Notice of Allowance, dated Apr. 19, 2021, from corresponding U.S. Appl. No. 17/164,029.
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 16/862,948.
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 16/862,952.
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 17/216,436.
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/278,123.
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/363,454.
Notice of Allowance, dated Jun. 16, 2020, from corresponding U.S. Appl. No. 16/798,818.
Notice of Allowance, dated Jun. 17, 2020, from corresponding U.S. Appl. No. 16/656,895.
Notice of Allowance, dated Jun. 18, 2019, from corresponding U.S. Appl. No. 16/410,566.
Notice of Allowance, dated Jun. 19, 2018, from corresponding U.S. Appl. No. 15/894,890.
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/042,673.
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/055,984.
Notice of Allowance, dated Jun. 2, 2021, from corresponding U.S. Appl. No. 17/198,581.
Notice of Allowance, dated Jun. 21, 2019, from corresponding U.S. Appl. No. 16/404,439.
Notice of Allowance, dated Jun. 22, 2020, from corresponding U.S. Appl. No. 16/791,337.
Notice of Allowance, dated Jun. 27, 2018, from corresponding U.S. Appl. No. 15/882,989.
Notice of Allowance, dated Jun. 4, 2019, from corresponding U.S. Appl. No. 16/159,566.
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/220,899.
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/357,260.
Notice of Allowance, dated Jun. 6, 2018, from corresponding U.S. Appl. No. 15/875,570.
Notice of Allowance, dated Jun. 6, 2019, from corresponding U.S. Appl. No. 16/159,628.
Notice of Allowance, dated Jun. 7, 2021, from corresponding U.S. Appl. No. 16/099,270.
Notice of Allowance, dated Jun. 8, 2020, from corresponding U.S. Appl. No. 16/712,104.
Notice of Allowance, dated Mar. 1, 2018, from corresponding U.S. Appl. No. 15/853,674.
Notice of Allowance, dated Mar. 1, 2021, from corresponding U.S. Appl. No. 16/059,911.
Notice of Allowance, dated Mar. 10, 2019, from corresponding U.S. Appl. No. 16/925,628.
Notice of Allowance, dated Mar. 10, 2021, from corresponding U.S. Appl. No. 17/128,666.
Notice of Allowance, dated Mar. 13, 2019, from corresponding U.S. Appl. No. 16/055,083.
Notice of Allowance, dated Mar. 14, 2019, from corresponding U.S. Appl. No. 16/055,944.
Notice of Allowance, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/778,704.
Notice of Allowance, dated Mar. 16, 2021, from corresponding U.S. Appl. No. 17/149,380.
Notice of Allowance, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/560,885.
Notice of Allowance, dated Mar. 18, 2020, from corresponding U.S. Appl. No. 17/560,963.
Notice of Allowance, dated Mar. 19, 2021, from corresponding U.S. Appl. No. 17/013,757.
Notice of Allowance, dated Mar. 2, 2018, from corresponding U.S. Appl. No. 15/858,802.
Notice of Allowance, dated Mar. 24, 2020, from corresponding U.S. Appl. No. 16/552,758.
Notice of Allowance, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/054,780.
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/560,889.
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/578,712.
Notice of Allowance, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/226,280.
Notice of Allowance, dated Mar. 29, 2019, from corresponding U.S. Appl. No. 16/055,998.
Notice of Allowance, dated Mar. 31, 2020, from corresponding U.S. Appl. No. 16/563,744.
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/013,758.
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/162,205.
Notice of Allowance, dated May 1, 2020, from corresponding U.S. Appl. No. 16/586,202.
Notice of Allowance, dated May 11, 2020, from corresponding U.S. Appl. No. 16/786,196.
Notice of Allowance, dated May 13, 2021, from corresponding U.S. Appl. No. 17/101,915.
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/505,430.
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/808,496.
Notice of Allowance, dated May 20, 2020, from corresponding U.S. Appl. No. 16/707,762.
Notice of Allowance, dated May 21, 2018, from corresponding U.S. Appl. No. 15/896,790.
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/505,430.
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/512,033.
Office Action, dated Aug. 15, 2019, from corresponding U.S. Appl. No. 16/505,461.
Office Action, dated Aug. 18, 2021, from corresponding U.S. Appl. No. 17/222,725.
Office Action, dated Aug. 19, 2019, from corresponding U.S. Appl. No. 16/278,122.
Office Action, dated Aug. 20, 2020, from corresponding U.S. Appl. No. 16/817,136.
Office Action, dated Aug. 23, 2017, from corresponding U.S. Appl. No. 15/626,052.
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/169,643.
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/619,451.
Office Action, dated Aug. 24, 2020, from corresponding U.S. Appl. No. 16/595,327.
Office Action, dated Aug. 27, 2019, from corresponding U.S. Appl. No. 16/410,296.
Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/187,329.
Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/334,948.
Office Action, dated Aug. 29, 2017, from corresponding U.S. Appl. No. 15/619,237.
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,212.
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,382.
Office Action, dated Aug. 30, 2021, from corresponding U.S. Appl. No. 16/938,520.
Office Action, dated Aug. 6, 2019, from corresponding U.S. Appl. No. 16/404,491.
Office Action, dated Aug. 6, 2020, from corresponding U.S. Appl. No. 16/862,956.
Office Action, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/578,712.
Office Action, dated Dec. 14, 2018, from corresponding U.S. Appl. No. 16/104,393.
Office Action, dated Dec. 15, 2016, from corresponding U.S. Appl. No. 15/256,419.
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/563,754.
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/565,265.
Office Action, dated Dec. 16, 2020, from corresponding U.S. Appl. No. 17/020,275.
Office Action, dated Dec. 18, 2020, from corresponding U.S. Appl. No. 17/030,714.
Office Action, dated Dec. 19, 2019, from corresponding U.S. Appl. No. 16/410,866.
Office Action, dated Dec. 2, 2019, from corresponding U.S. Appl. No. 16/560,963.
Office Action, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/593,639.
Office Action, dated Dec. 24, 2020, from corresponding U.S. Appl. No. 17/068,454.
Office Action, dated Dec. 3, 2018, from corresponding U.S. Appl. No. 16/055,998.
Office Action, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/160,577.
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/013,758.
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/068,198.
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 16/862,944.
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 16/106,469.
Office Action, dated Feb. 15, 2019, from corresponding U.S. Appl. No. 16/220,899.
Office Action, dated Feb. 17, 2021, from corresponding U.S. Appl. No. 16/862,948.
Office Action, dated Feb. 18, 2021, from corresponding U.S. Appl. No. 16/862,952.
Office Action, dated Feb. 2, 2021, from corresponding U.S. Appl. No. 17/101,915.
Office Action, dated Feb. 26, 2019, from corresponding U.S. Appl. No. 16/228,250.
Office Action, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/013,757.
Office Action, dated Feb. 5, 2020, from corresponding U.S. Appl. No. 16/586,202.
Office Action, dated Feb. 6, 2020, from corresponding U.S. Appl. No. 16/707,762.
Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 17/139,650.
Office Action, dated Feb. 9, 2021, from corresponding U.S. Appl. No. 16/808,493.
Office Action, dated Jan. 18, 2019, from corresponding U.S. Appl. No. 16/055,984.
Office Action, dated Jan. 22, 2021, from corresponding U.S. Appl. No. 17/099,270.
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/505,426.
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/700,049.
IAPP, ISO/IEC 27001 Information Security Management Template, Resource Center, International Association of Privacy Professionals.
Imran et al, “Searching in Cloud Object Storage by Using a Metadata Model”, IEEE, 2014, retrieved online on Apr. 1, 2020, pp. 121-128, Retrieved from the Internet: URL: https://ieeeexplore.IEEE.org/stamp/stamp.jsp? (Year: 2014).
Iordanou et al, “Tracing Cross Border Web Tracking,” Oct. 31, 2018, pp. 329-342, ACM (Year: 2018).
Islam, et al, “Mixture Model Based Label Association Techniques for Web Accessibility,” ACM, pp. 67-76 (Year 2010).
Jensen, et al, “Temporal Data Management,” IEEE Transactions on Knowledge and Data Engineering, vol. 11, No. 1, Jan./Feb. 1999, pp. 36-44 (Year: 1999).
Joel Reardon et al., Secure Data Deletion from Persistent Media, ACM, Nov. 4, 2013, retrieved online on Jun. 13, 2019, pp. 271-283. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/2520000/2516699/p271-reardon.pdf? (Year: 2013).
Joonbakhsh et al, “Mining and Extraction of Personal Software Process measures through IDE interaction logs,” ACM/IEEE, 2018, retrieved online on Dec. 2, 2019, pp. 78-81. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/3200000/3196462/p78-joonbakhsh.pdf? (Year: 2018).
Jun et al, “Scalable Multi-Access Flash Store for Big Data Analytics,” ACM, pp. 55-64 (Year: 2014).
Kirkham, et al, “A Personal Data Store for an Internet of Subjects,” IEEE, pp. 92-97 (Year: 2011).
Korba, Larry et al.; “Private Data Discovery for Privacy Compliance in Collaborative Environments”; Cooperative Design, Visualization, and Engineering; Springer Berlin Heidelberg; Sep. 21, 2008; pp. 142-150.
Krol, Kat, et al, Control versus Effort in Privacy Warnings for Webforms, ACM, Oct. 24, 2016, pp. 13-23.
Lamb et al, “Role-Based Access Control for Data Service Integration”, ACM, pp. 3-11 (Year: 2006).
Leadbetter, et al, “Where Big Data Meets Linked Data: Applying Standard Data Models to Environmental Data Streams,” IEEE, pp. 2929-2937 (Year: 2016).
Lebau, Franck, et al, “Model-Based Vulnerability Testing for Web Applications,” 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops, pp. 445-452, IEEE, 2013 (Year: 2013).
Li, Ninghui, et al, t-Closeness: Privacy Beyond k-Anonymity and l-Diversity, IEEE, 2014, p. 106-115.
Liu et al, “Cross-Geography Scientific Data Transferring Trends and Behavior,” ACM, pp. 267-278 (Year: 2018).
Liu, Kun, et al, A Framework for Computing the Privacy Scores of Users in Online Social Networks, ACM Transactions on Knowledge Discovery from Data, vol. 5, No. 1, Article 6, Dec. 2010, 30 pages.
Liu, Yandong, et al, “Finding the Right Consumer: Optimizing for Conversion in Display Advertising Campaigns,” Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, Feb. 2, 2012, pp. 473-428 (Year: 2012).
Lizar et al, “Usable Consents: Tracking and Managing Use of Personal Data with a Consent Transaction Receipt,” Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014, pp. 647-652 (Year: 2014).
Luu, et al, “Combined Local and Holistic Facial Features for Age-Determination,” 2010 11th Int. Conf. Control, Automation, Robotics and Vision, Singapore, Dec. 7, 2010, IEEE, pp. 900-904 (Year: 2010).
Ma Ziang, et al, “LibRadar: Fast and Accurate Detection of Third-Party Libraries in Android Apps,” 2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion (ICSE-C), ACM, May 14, 2016, pp. 653-656, DOI: http://dx.doi.org/10.1145/2889160.2889178, p. 653, r.col, par. 1-3: figure 3 (Year: 2016).
Mandal, et al, “Automated Age Prediction Using Wrinkles Features of Facial images and Neural Network,” International Journal of Emerging Engineering Research and Technology, vol. 5, Issue 2, Feb. 2017, pp. 12-20 (Year: 2017).
Maret et al, “Multimedia Information Interchange: Web Forms Meet Data Servers”, IEEE, pp. 499-505 (Year: 1999).
Martin, et al, “Hidden Surveillance by Web Sites: Web Bugs in Contemporary Use,” Communications of the ACM, vol. 46, No. 12, Dec. 2003, pp. 258-264, Internet source https://doi.org/10.1145/953460.953509. (Year: 2003).
McGarth et al, “Digital Library Technology for Locating and Accessing Scientific Data”, ACM, pp. 188-194 (Year: 1999).
Mesbah et al, “Crawling Ajax-Based Web Applications Through Dynamic Analysis of User Interface State Changes,” ACM Transactions on the Web (TWEB) vol. 6, No. 1, Article 3, Mar. 2012, pp. 1-30 (Year: 2012).
Moiso et al, “Towards a User-Centric Personal Data Ecosystem The Role of the Bank of Individual's Data,” 2012 16th International Conference on Intelligence in Next Generation Networks, Berlin, 2012, pp. 202-209 (Year: 2012).
Moscoso-Zea et al, “Datawarehouse Design for Educational Data Mining,” IEEE, pp. 1-6 (Year: 2016).
Mudepalli et al, “An efficient data retrieval approach using blowfish encryption on cloud CipherText Retrieval in Cloud Computing” IEEE, pp. 267-271 (Year: 2017).
Mundada et al, “Half-Baked Cookies: Hardening Cookie-Based Authentication for the Modern Web,” Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, 2016, pp. 675-685 (Year: 2016).
Newman et al, “High Speed Scientific Data Transfers using Software Defined Networking,” ACM, pp. 1-9 (Year 2015).
Newman, “Email Archive Overviews using Subject Indexes”, ACM, pp. 652-653, 2002 (Year: 2002).
Nishikawa, Taiji, English Translation of JP 2019154505, dated Aug. 27, 2019 (Year: 2019).
Notice of Filing Date for Petition for Post-Grant Review of related Patent No. 9,691,090 dated Apr. 12, 2018.
O'Keefe et al, “Privacy-Preserving Data Linkage Protocols,” Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, 2004, pp. 94-102 (Year: 2004).
Olenski, Steve, For Consumers, Data Is A Matter Of Trust, CMO Network, Apr. 18, 2016, https://www.forbes.com/sites/steveolenski/2016/04/18/for-consumers-data-is-a-matter-of-trust/#2e48496278b3.
Pearson, et al, “A Model-Based Privacy Compliance Checker,” IJEBR, vol. 5, No. 2, pp. 63-83, 2009, Nov. 21, 2008. [Online] Available: http://dx.doi.org/10.4018/jebr.2009040104 (Year: 2008).
Pechenizkiy et al, “Process Mining Online Assessment Data,” Educational Data Mining, pp. 279-288 (Year: 2009).
Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Mar. 27, 2018.
Petrie et al, “The Relationship between Accessibility and Usability of Websites”, ACM, pp. 397-406 (Year: 2007).
Pfeifle, Sam, The Privacy Advisor, IAPP and AvePoint Launch New Free PIA Tool, International Association of Privacy Professionals, Mar. 5, 2014.
Pfeifle, Sam, The Privacy Advisor, IAPP Heads to Singapore with APIA Template in Tow, International Association of Privacy Professionals, https://iapp.org/news/a/iapp-heads-to-singapore-with-apia-template_in_tow/, Mar. 28, 2014, p. 1-3.
Ping et al, “Wide Area Placement of Data Replicas for Fast and Highly Available Data Access,” ACM, pp. 1-8 (Year 2011).
Popescu-Zeletin, “The Data Access and Transfer Support in a Local Heterogeneous Network (HMINET)”, IEEE, pp. 147-152 (Year: 1979).
Porter, “De-ldentified Data and Third Party Data Mining: The Risk of Re-Identification of Personal Information,” Shidler JL Com. & Tech. 5, 2008, pp. 1-9 (Year: 2008).
Pretorius, et al, “Attributing Users Based on Web Browser History,” 2017 IEEE Conference on Application, Information and Network Security (AINS), 2017, pp. 69-74 (Year: 2017).
Qing-Jiang et al, “The (P, a, K) Anonymity Model for Privacy Protection of Personal Information in the Social Networks,” 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, vol. 2 IEEE, 2011, pp. 420-423 (Year: 2011).
Qiu, et al, “Design and Application of Data Integration Platform Based on Web Services and XML,” IEEE, pp. 253-256 (Year: 2016).
Radu, et al, “Analyzing Risk Evaluation Frameworks and Risk Assessment Methods,” IEEE, Dec. 12, 2020, pp. 1-6 (Year: 2020).
Reardon et al, User-Level Secure Deletion on Log-Structured File Systems, ACM, 2012, retrieved online on Apr. 22, 2021, pp. 1-11. Retrieved from the Internet: URL: http://citeseefx.ist.psu.edu/viewdoc/download;jsessionid=450713515DC7F19F8ED09AE961D4B60E. (Year: 2012).
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/044026.
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/045240.
International Search Report, dated Oct. 12, 2017, from corresponding international Application No. PCT/US2017/036888.
International Search Report, dated Oct. 12, 2018, from corresponding international Application No. PCT/US2018/044046.
International Search Report, dated Oct. 16, 2018, from corresponding international Application No. PCT/US2018/045243.
International Search Report, dated Oct. 18, 2018, from corresponding International Application No. PCT/US2018/045249.
International Search Report, dated Oct. 20, 2017, from corresponding international Application No. PCT/US201 7/036917.
International Search Report, dated Oct. 3, 2017, from corresponding international Application No. PCT/US2017/036912.
International Search Report, dated Sep. 1, 2017, from corresponding International Application No. PCT/US2017/036896.
International Search Report, dated Sep. 12, 2018, from corresponding International Application No. PCT/US2018/037504.
International Search Report, dated Sep. 15, 2021, from corresponding International Application No. PCT/US2021/033631.
Invitation to Pay Additional Search Fees, dated Aug. 10, 2017, from corresponding international Application No. PCT/US2017/036912.
Invitation to Pay Additional Search Fees, dated Aug. 10, 2017, from corresponding International Application No. PCT/US2017/036917.
Invitation to Pay Additional Search Fees, dated Aug. 24, 2017, from corresponding International Application No. PCT/US2017/036888.
Invitation to Pay Additional Search Fees, dated Jan. 18, 2019, from corresponding International Application No. PCT/US2018/055736.
Invitation to Pay Additional Search Fees, dated Jan. 7, 2019, from corresponding international Application No. PCT/US2018/055773.
Invitation to Pay Additional Search Fees, dated Jan. 8, 2019, from corresponding International Application No. PCT/US2018/055774.
Invitation to Pay Additional Search Fees, dated Oct. 23, 2018, from corresponding International Application No. PCT/US2018/045296.
Abdullah et al., “The Mapping Process of Unstructured Data to the Structured Data”, ACM, pp. 151-155 (Year: 2013).
Acar, Gunes, et al., The Web Never Forgets, Computer and Communications Security, ACM, Nov. 3, 2014, pp. 674-689.
Aghasian, Erfan, et al, Scoring Users' Privacy Disclosure Across Multiple Online Social Networks,IEEE Access, Multidisciplinary Rapid Review Open Access Journal, Jul. 31, 2017, vol. 5, 2017.
Agosti et al., “Access and Exchange of Hierarchically Structured Resources on the Web with the NESTOR Framework”, IEEE, pp. 659-662 (Year: 2009).
Agrawal et al, “Securing Electronic Health Records Without Impeding the Flow of Information,” International Journal of Medical Informatics 76, 2007, pp. 471-479 (Year: 2007).
Ahmad et al, “Task-Oriented Access Model for Secure Data Sharing Over Cloud,” ACM, pp. 1-7 (Year: 2015).
Ahmad, et al, “Performance of Resource Management Algorithms for Processable Bulk Data Transfer Tasks in Grid Environments,” ACM, pp. 177-188 (Year: 2008).
Alaa et al, “Personalized Risk Scoring for Critical Care Prognosis Using Mixtures of Gaussian Processes,” Apr. 27, 2017, IEEE, vol. 65, issue 1, pp. 207-217 (Year: 2017).
Aman et al, “Detecting Data Tampering Attacks in Synchrophasor Networks using Time Hopping,” IEEE, pp. 1-6 (Year 2016).
Antunes et al, “Preserving Digital Data in Heterogeneous Environments”, ACM, pp. 345-348, 2009 (Year: 2009).
Ardagna, et al, “A Privacy-Aware Access Control System,” Journal of Computer Security, 16:4, pp. 369-397 (Year 2008).
Avepoint, Automating Privacy impact Assessments, AvePoint, Inc.
Avepoint, AvePoint Privacy Impact Assessment 1: User Guide, Cumulative Update 2, Revision E, Feb. 2015, AvePoint, Inc.
Avepoint, Installing and Configuring the APIA System, International Association of Privacy Professionals, AvePoint, Inc.
Ball, et al, “Aspects of the Computer-Based Patient Record,” Computers in Healthcare, Springer-Verlag New York Inc., pp. 1-23 (Year: 1992).
Bang et al, “Building an Effective and Efficient Continuous Web Application Security Program,” 2016 International Conference on Cyber Security Situational Awareness, Data Analytics and Assessment (CyberSA), London, 2016, pp. 1-4 (Year: 2016).
Barker, “Personalizing Access Control by Generalizing Access Control,” ACM, pp. 149-158 (Year: 2010).
Barr, “Amazon Rekognition Update—Estimated Age Range for Faces,” AWS News Blog, Feb. 10, 2017, pp. 1-5 (Year: 2017).
Bayardo et al, “Technological Solutions for Protecting Privacy,” Computer 36.9 (2003), pp. 115-118, (Year: 2003).
Berezovskly et al, “A framework for dynamic data source identification and orchestration on the Web”, ACM, pp. 1-8 (Year: 2010).
Bertino et al, “On Specifying Security Policies for Web Documents with an XML-based Language,” ACM, pp. 57-65 (Year: 2001).
Bertino et al, “Towards Mechanisms for Detection and Prevention of Data Exfiltration by Insiders,” Mar. 22, 2011, ACM, pp. 10-19 (Year: 2011).
Bhargav-Spantzel et al, Receipt Management—Transaction History based Trust Establishment, 2007, ACM, p. 82-91.
Bhuvaneswaran et al, “Redundant Parallel Data Transfer Schemes for the Grid Environment”, ACM, pp. 18 (Year 2006).
Bieker, et al, “Privacy-Preserving Authentication Solutions—Best Practices for Implementation and EU Regulatory Perspectives,” Oct. 29, 2014, IEEE, pp. 1-10 (Year: 2014).
Bin, et al, “Research on Data Mining Models for the Internet of Things,” IEEE, pp. 1-6 (Year: 2010).
Binns, et al, “Data Havens, or Privacy Sans Frontières? A Study of International Personal Data Transfers,” ACM, pp. 273-274 (Year: 2002).
Borgida, “Description Logics in Data Management,” IEEE Transactions on Knowledge and Data Engineering, vol. 7, No. 5, Oct. 1995, pp. 671-682 (Year: 1995).
Brandt et al, “Efficient Metadata Management in Large Distributed Storage Systems,” IEEE, pp. 1-9 (Year: 2003).
Bujlow et al, “Web Tracking: Mechanisms, Implications, and Defenses,” Proceedings of the IEEE, Aug. 1, 2017, vol. 5, No. 8, pp. 1476-1510 (Year: 2017).
Byun, Ji-Won, Elisa Bertino, and Ninghui Li, “Purpose based access control of complex data for privacy protection,” Proceedings of the tenth ACM symposium on Access control models and technologies. ACM, 2005. (Year: 2005).
Carminati et al, “Enforcing Access Control Over Data Streams,” ACM, pp. 21-30 (Year: 2007).
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/808,493.
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/865,874.
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 17/199,514.
Notice of Allowance, dated May 27, 2020, from corresponding U.S. Appl. No. 16/820,208.
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 16/927,658.
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 17/198,757.
Notice of Allowance, dated May 28, 2019, from corresponding U.S. Appl. No. 16/277,568.
Notice of Allowance, dated May 28, 2020, from corresponding U.S. Appl. No. 16/799,279.
Notice of Allowance, dated May 28, 2021, from corresponding U.S. Appl. No. 16/862,944.
Notice of Allowance, dated May 5, 2017, from corresponding U.S. Appl. No. 16/254,901.
Notice of Allowance, dated May 5, 2020, from corresponding U.S. Appl. No. 16/563,754.
Notice of Allowance, dated May 7, 2020, from corresponding U.S. Appl. No. 16/505,426.
Notice of Allowance, dated May 7, 2021, from corresponding U.S. Appl. No. 17/194,662.
Notice of Allowance, dated Nov. 14, 2019, from corresponding U.S. Appl. No. 16/436,616.
Notice of Allowance, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/491,871.
Notice of Allowance, dated Nov. 2, 2018, from corresponding U.S. Appl. No. 16/054,762.
Notice of Allowance, dated Nov. 22, 2021, from corresponding U.S. Appl. No. 17/383,889.
Notice of Allowance, dated Nov. 23, 2020, from corresponding U.S. Appl. No. 16/791,589.
Notice of Allowance, dated Nov. 24, 2020, from corresponding U.S. Appl. No. 17/027,019.
Notice of Allowance, dated Nov. 25, 2020, from corresponding U.S. Appl. No. 17/019,771.
Notice of Allowance, dated Nov. 26, 2019, from corresponding U.S. Appl. No. 16/563,735.
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/570,712.
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/577,634.
Notice of Allowance, dated Nov. 3, 2019, from corresponding U.S. Appl. No. 16/719,071
Notice of Allowance, dated Nov. 5, 2020, from corresponding U.S. Appl. No. 16/560,965.
Notice of Allowance, dated Nov. 7, 2017, from corresponding U.S. Appl. No. 15/671,073.
Notice of Allowance, dated Nov. 8, 2018, from corresponding U.S. Appl. No. 16/042,642.
Notice of Allowance, dated Nov. 9, 2020, from corresponding U.S. Appl. No. 17/595,342.
Notice of Allowance, dated Oct. 1, 2021, from corresponding U.S. Appl. No. 17/340,395.
Notice of Allowance, dated Oct. 10, 2019, from corresponding U.S. Appl. No. 16/277,539.
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 15/896,790.
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/054,672.
Notice of Allowance, dated Oct. 17, 2019, from corresponding U.S. Appl. No. 16/563,741.
Notice of Allowance, dated Oct. 21, 2019, from corresponding U.S. Appl. No. 16/404,405.
Notice of Allowance, dated Oct. 21, 2020, from corresponding U.S. Appl. No. 16/834,812.
Notice of Allowance, dated Oct. 22, 2020, from corresponding U.S. Appl. No. 17/346,847.
Notice of Allowance, dated Oct. 3, 2019, from corresponding U.S. Appl. No. 16/511,700.
Notice of Allowance, dated Sep. 1, 2021, from corresponding U.S. Appl. No. 17/196,570.
Notice of Allowance, dated Sep. 1, 2021, from corresponding U.S. Appl. No. 17/222,556.
Notice of Allowance, dated Sep. 12, 2019, from corresponding U.S. Appl. No. 16/512,011.
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,809.
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,890.
Notice of Allowance, dated Sep. 14, 2021, from corresponding U.S. Appl. No. 16/808,497.
Notice of Allowance, dated Sep. 16, 2020, from corresponding U.S. Appl. No. 16/915,097.
Notice of Allowance, dated Sep. 17, 2020, from corresponding U.S. Appl. No. 16/863,226.
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 15/894,819.
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 16/041,545.
Notice of Allowance, dated Sep. 18, 2020, from corresponding U.S. Appl. No. 16/812,795.
Notice of Allowance, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/811,793.
Notice of Allowance, dated Sep. 23, 2021, from corresponding U.S. Appl. No. 17/068,454.
Notice of Allowance, dated Apr. 2, 2019, from corresponding U.S. Appl. No. 16/160,577.
Notice of Allowance, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/162,006.
Notice of Allowance, dated Apr. 22, 2021, from corresponding U.S. Appl. No. 17/163,701.
Notice of Allowance, dated Apr. 25, 2018, from corresponding U.S. Appl. No. 15/883,041.
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/135,445.
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 16/700,049.
Notice of Allowance, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/700,049.
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/565,265.
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/820,346.
Notice of Allowance, dated Apr. 30, 2021, from corresponding U.S. Appl. No. 16/410,762.
Notice of Allowance, dated Apr. 8, 2019, from corresponding U.S. Appl. No. 16/228,250.
Notice of Allowance, dated Apr. 8, 2020, from corresponding U.S. Appl. No. 16/791,348.
Notice of Allowance, dated Apr. 9, 2020, from corresponding U.S. Appl. No. 16/791,075.
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/671,444.
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/788,633.
Notice of Allowance, dated Aug. 12, 2020, from corresponding U.S. Appl. No. 16/719,488.
Notice of Allowance, dated Aug. 12, 2021, from corresponding U.S. Appl. No. 16/881,832.
Notice of Allowance, dated Aug. 14, 2018, from corresponding U.S. Appl. No. 15/989,416.
Notice of Allowance, dated Aug. 18, 2017, from corresponding U.S. Appl. No. 15/619,455.
Notice of Allowance, dated Aug. 20, 2019, from corresponding U.S. Appl. No. 16/241,710.
Notice of Allowance, dated Aug. 24, 2018, from corresponding U.S. Appl. No. 15/619,479.
Notice of Allowance, dated Aug. 26, 2019, from corresponding U.S. Appl. No. 16/443,374.
Notice of Allowance, dated Aug. 26, 2020, from corresponding U.S. Appl. No. 16/808,503.
Notice of Allowance, dated Aug. 28, 2019, from corresponding U.S. Appl. No. 16/278,120.
Notice of Allowance, dated Aug. 30, 2018, from corresponding U.S. Appl. No. 15/996,208.
Notice of Allowance, dated Aug. 31, 2021, from corresponding U.S. Appl. No. 17/326,901.
Notice of Allowance, dated Aug. 4, 2021, from corresponding U.S. Appl. No. 16/895,278.
Notice of Allowance, dated Aug. 7, 2020, from corresponding U.S. Appl. No. 16/901,973.
Notice of Allowance, dated Aug. 9, 2018, from corresponding U.S. Appl. No. 15/882,989.
Notice of Allowance, dated Aug. 9, 2021, from corresponding U.S. Appl. No. 16/881,699.
Notice of Allowance, dated Dec. 10, 2018, from corresponding U.S. Appl. No. 16/105,602.
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/278,122.
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/593,634.
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/169,643.
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,212.
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,382.
Notice of Allowance, dated Dec. 13, 2019, from corresponding U.S. Appl. No. 16/512,033.
Notice of Allowance, dated Dec. 15, 2020, from corresponding U.S. Appl. No. 16/989,086.
Notice of Allowance, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/505,461.
Notice of Allowance, dated Dec. 17, 2020, from corresponding U.S. Appl. No. 17/034,772.
Notice of Allowance, dated Dec. 18, 2019, from corresponding U.S. Appl. No. 16/659,437.
Notice of Allowance, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/656,835.
Notice of Allowance, dated Dec. 23, 2020, from corresponding U.S. Appl. No. 17/068,557.
Notice of Allowance, dated Dec. 3, 2019, from corresponding U.S. Appl. No. 16/563,749.
Notice of Allowance, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/159,634.
Notice of Allowance, dated Dec. 31, 2019, from corresponding U.S. Appl. No. 16/404,399.
Notice of Allowance, dated Dec. 4, 2019, from corresponding U.S. Appl. No. 16/594,670.
Notice of Allowance, dated Dec. 5, 2017, from corresponding U.S. Appl. No. 15/633,703.
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,451.
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,459.
Office Action, dated Jan. 27, 2020, from corresponding U.S. Appl. No. 16/656,895.
Office Action, dated Jan. 28, 2020, from corresponding U.S. Appl. No. 16/712,104.
Office Action, dated Jan. 29, 2021, from corresponding U.S. Appl. No. 17/101,106.
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,566.
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,628.
Office Action, dated Jan. 4, 2021, from corresponding U.S. Appl. No. 17/013,756.
Office Action, dated Jan. 7, 2020, from corresponding U.S. Appl. No. 16/572,182.
Office Action, dated Jul. 13, 2021, from corresponding U.S. Appl. No. 17/306,496.
Office Action, dated Jul. 15, 2021, from corresponding U.S. Appl. No. 17/020,275.
Office Action, dated Jul. 18, 2019, from corresponding U.S. Appl. No. 16/410,762.
Office Action, dated Jul. 19, 2021, from corresponding U.S. Appl. No. 17/316,179.
Office Action, dated Jul. 21, 2017, from corresponding U.S. Appl. No. 15/256,430.
Office Action, dated Jul. 21, 2021, from corresponding U.S. Appl. No. 16/901,654.
Office Action, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/436,616.
Office Action, dated Jul. 24, 2020, from corresponding U.S. Appl. No. 16/404,491.
Office Action, dated Jul. 27, 2020, from corresponding U.S. Appl. No. 16/595,342.
Office Action, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/862,952.
Office Action, dated Jun. 24, 2019, from corresponding U.S. Appl. No. 16/410,336.
Office Action, dated Jun. 24, 2021, from corresponding U.S. Appl. No. 17/234,205.
Office Action, dated Jun. 27, 2019, from corresponding U.S. Appl. No. 16/404,405.
Office Action, dated Jun. 7, 2021, from corresponding U.S. Appl. No. 17/200,698.
Office Action, dated Jun. 9, 2021, from corresponding U.S. Appl. No. 17/222,523.
Office Action, dated Mar. 11, 2019, from corresponding U.S. Appl. No. 16/220,978.
Office Action, dated Mar. 12, 2019, from corresponding U.S. Appl. No. 16/221,153.
Office Action, dated Mar. 15, 2021, from corresponding U.S. Appl. No. 17/149,421.
Office Action, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/719,488.
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/565,395.
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/719,071.
Office Action, dated Mar. 20, 2020, from corresponding U.S. Appl. No. 16/778,709.
Office Action, dated Mar. 23, 2020, from corresponding U.S. Appl. No. 16/671,444.
Office Action, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/278,121.
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/701,043.
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/791,006.
Office Action, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/278,120.
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/894,890.
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/896,790.
Office Action, dated Mar. 30, 2021, from corresponding U.S. Appl. No. 17/151,399.
Office Action, dated Mar. 4, 2019, from corresponding U.S. Appl. No. 16/237,083.
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,497.
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,503.
Office Action, dated May 15, 2020, from corresponding U.S. Appl. No. 16/808,493.
Office Action, dated May 16, 2018, from corresponding U.S. Appl. No. 15/882,989.
Office Action, dated May 17, 2019, from corresponding U.S. Appl. No. 16/277,539.
Office Action, dated May 18, 2021, from corresponding U.S. Appl. No. 17/196,570.
Office Action, dated May 2, 2018, from corresponding U.S. Appl. No. 15/894,809.
Office Action, dated May 2, 2019, from corresponding U.S. Appl. No. 16/104,628.
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,944.
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,948.
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/863,226.
Office Action, dated May 5, 2020, from corresponding U.S. Appl. No. 16/410,336.
Carpineto et al, “Automatic Assessment of Website Compliance to the European Cookie Law with CooLCheck,” Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society, 2016, pp. 135-138 (Year: 2016).
Cerpzone, “How to Access Data on Data Archival Storage and Recovery System”, https://www.saj.usace.army.mil/Portals/44/docs/Environmental/Lake%200%20Watershed/15February2017/How%20T0%20Access%20Model%20Data%20on%20DASR.pdf?ver=2017-02-16-095535-633, Feb. 16, 2017.
Cha et al, “A Data-Driven Security Risk Assessment Scheme for Personal Data Protection,” IEEE, pp. 50510-50517 (Year: 2018).
Cha, et al, “Process-Oriented Approach for Validating Asset Value for Evaluating Information Security Risk,” IEEE, Aug. 31, 2009, pp. 379-385 (Year: 2009).
Chapados et al, “Scoring Models for Insurance Risk Sharing Pool Optimization,” 2008, IEEE, pp. 97-105 (Year 2008).
Cheng, Raymond, et al, “Radiatus: A Shared-Nothing Server-Side Web Architecture,” Proceedings of the Seventh ACM Symposium on Cloud Computing, Oct. 5, 2016, pp. 237-250 (Year: 2016).
Choi et al, “Retrieval Effectiveness of Table of Contents and Subject Headings,” ACM, pp. 103-104 (Year: 2007).
Chowdhury et al, “A System Architecture for Subject-Centric Data Sharing”, ACM, pp. 1-10 (Year: 2018).
Chowdhury et al, “Managing Data Transfers in Computer Clusters with Orchestra,” ACM, pp. 98-109 (Year: 2011).
Decision Regarding Institution of Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, dated Oct. 11, 2018.
Dimou et al, “Machine-Interpretable Dataset and Service Descriptions for Heterogeneous Data Access and Retrieval”, ACM, pp. 145-152 (Year: 2015).
Dokholyan et al, “Regulatory and Ethical Considerations for Linking Clinical and Administrative Databases,” American Heart Journal 157.6 (2009), pp. 971-982 (Year: 2009).
Dunkel et al, “Data Organization and Access for Efficient Data Mining”, IEEE, pp. 522-529 (Year: 1999).
Dwork, Cynthia, Differential Privacy, Microsoft Research, p. 1-12.
Emerson, et al, “A Data Mining Driven Risk Profiling Method for Road Asset Management,” ACM, pp. 1267-1275 (Year: 2013).
Enck, William, et al, TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones, ACM Transactions on Computer Systems, vol. 32, No. 2, Article 5, Jun. 2014, p. 5:1-5:29.
Everypixel Team, “A New Age Recognition API Detects the Age of People on Photos,” May 20, 2019, pp. 1-5 (Year: 2019).
Falahrastegar, Marjan, et al, Tracking Personal Identifiers Across the Web, Medical Image Computing and Computer-Assisted Intervention—Miccai 2015, 18th International Conference, Oct. 5, 2015, Munich, Germany.
Fan et al, “Intrusion Investigations with Data-hiding for Computer Log-file Forensics,” IEEE, pp. 1-6 (Year: 2010).
Final Written Decision Regarding Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, dated Oct. 10, 2019.
Francis, Andre, Business Mathematics and Statistics, South-Western Cengage Learning, 2008, Sixth Edition.
Friedman et al, “Data Mining with Differential Privacy,” ACM, Jul. 2010, pp. 493-502 (Year: 2010).
Friedman et al, “Informed Consent in the Mozilla Browser: Implementing Value-Sensitive Design,” Proceedings of the 35th Annual Hawaii International Conference on System Sciences, 2002, IEEE, pp. 1-10 (Year: 2002).
Frikken, Keith B., et al, Yet Another Privacy Metric for Publishing Micro-data, Miami University, Oct. 27, 2008, p. 117-121.
Fung et al, “Discover Information and Knowledge from Websites using an Integrated Summarization and Visualization Framework”, IEEE, pp. 232-235 (Year: 2010).
Gajare et al, “Improved Automatic Feature Selection Approach for Health Risk Prediction,” Feb. 16, 2018, IEEE, pp. 816-819 (Year: 2018).
Ghiglieri, Marco et al; Personal DLP for Facebook, 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (Percom Workshops); IEEE; Mar. 24, 2014; pp. 629-634.
Gilda, et al, “Blockchain for Student Data Privacy and Consent,” 2018 International Conference on Computer Communication and Informatics, Jan. 4-6, 2018, IEEE, pp. 1-5 (Year: 2018).
Golab, et al, “Issues in Data Stream Management,” ACM, SIGMOD Record, vol. 32, No. 2, Jun. 2003, pp. 5-14 (Year: 2003).
Golfarelli et al, “Beyond Data Warehousing: What's Next in Business Intelligence?,” ACM, pp. 1-6 (Year: 2004).
Gonçalves et al, “The XML Log Standard for Digital Libraries: Analysis, Evolution, and Deployment,” IEEE, pp. 312-314 (Year: 2003).
Goni, Kyriaki, “Deletion Process_Only you can see my history: Investigating Digital Privacy, Digital Oblivion, and Control on Personal Data Through an Interactive Art Installation,” ACM, 2016, retrieved online on Oct. 3, 2019, pp. 324-333. Retrieved from the Internet URL: http://delivery.acm.org/10.1145/2920000/291.
Gowadia et al, “RDF Metadata for XML Access Control,” ACM, pp. 31-48 (Year: 2003).
Grolinger, et al, “Data Management in Cloud Environments: NoSQL and NewSQL Data Stores,” Journal of Cloud Computing: Advances, Systems and Applications, pp. 1-24 (Year: 2013).
Guo, et al, “OPAL: A Passe-partout for Web Forms,” ACM, pp. 353-356 (Year: 2012).
Gustarini, et al, “Evaluation of Challenges in Human Subject Studies “In-the-Wild” Using Subjects' Personal Smartphones,” ACM, pp. 1447-1456 (Year: 2013).
Hacigümüs, Hakan, et al., Executing SQL over Encrypted Data in the Database-Service-Provider Model, ACM, Jun. 4, 2002, pp. 216-227.
Halevy, et al, “Schema Mediation in Peer Data Management Systems,” IEEE, Proceedings of the 19th international Conference on Data Engineering, 2003, pp. 505-516 (Year: 2003).
Hauch, et al, “Information Intelligence: Metadata for Information Discovery, Access, and integration,” ACM, pp. 793-798 (Year: 2005).
Hernandez, et al, “Data Exchange with Data-Metadata Translations,” ACM, pp. 260-273 (Year: 2008).
Hinde, “A Model to Assess Organisational Information Privacy Maturity Against the Protection of Personal Information Act” Dissertation University of Cape Town 2014, pp. 1-121 (Year: 2014).
Hodge, et al., “Managing Virtual Data Marts with Metapointer Tables,” pp. 1-7 (Year: 2002).
Horrall et al, “Evaluating Risk: IBM's Country Financial Risk and Treasury Risk Scorecards,” Jul. 21, 2014, IBM, vol. 58, issue 4, pp. 2:1-2:9 (Year: 2014).
Hu, et al, “Attribute Considerations for Access Control Systems,” NIST Special Publication 800-205, Jun. 2019, pp. 1-42 (Year: 2019).
Hu, et al, “Guide to Attribute Based Access Control (ABAC) Definition and Considerations (Draft),” NIST Special Publication 800-162, pp. 1-54 (Year: 2013).
Huang, et al, “A Study on Information Security Management with Personal Data Protection,” IEEE, Dec. 9, 2011, pp. 624-630 (Year: 2011).
Huner et al, “Towards a Maturity Model for Corporate Data Quality Management”, ACM, pp. 231-238, 2009 (Year 2009).
Hunton & Williams LLLP, The Role of Risk Management in Data Protection, Privacy Risk Framework and the Risk-based Approach to Privacy, Centre for Information Policy Leadership, Workshop II, Nov. 23, 2014.
Huo et al., “A Cloud Storage Architecture Model for Data-Intensive Applications,” IEEE, pp. 1-4 (Year: 2011).
IAPP, Daily Dashboard, PIA Tool Stocked With New Templates for DPI, Infosec, International Association of Privacy Professionals, Apr. 22, 2014.
Notice of Allowance, dated Sep. 24, 2021, from corresponding U.S. Appl. No. 17/334,939.
Notice of Allowance, dated Sep. 25, 2020, from corresponding U.S. Appl. No. 16/983,536.
Notice of Allowance, dated Sep. 27, 2017, from corresponding U.S. Appl. No. 15/626,052.
Notice of Allowance, dated Sep. 27, 2021, from corresponding U.S. Appl. No. 17/222,523.
Notice of Allowance, dated Sep. 28, 2018, from corresponding U.S. Appl. No. 16/041,520.
Notice of Allowance, dated Sep. 29, 2021, from corresponding U.S. Appl. No. 17/316,179.
Notice of Allowance, dated Sep. 4, 2018, from corresponding U.S. Appl. No. 15/883,041.
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/808,500.
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/901,662.
Notice of Allowance, dated Sep. 9, 2021, from corresponding U.S. Appl. No. 17/334,909.
Restriction Requirement, dated Apr. 10, 2019, from corresponding U.S. Appl. No. 16/277,715.
Restriction Requirement, dated Apr. 13, 2020, from corresponding U.S. Appl. No. 16/817,136.
Restriction Requirement, dated Apr. 24, 2019, from corresponding U.S. Appl. No. 16/278,122.
Restriction Requirement, dated Aug. 7, 2019, from corresponding U.S. Appl. No. 16/410,866.
Restriction Requirement, dated Aug. 9, 2019, from corresponding U.S. Appl. No. 16/404,399.
Restriction Requirement, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 15/169,668.
Restriction Requirement, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,395.
Restriction Requirement, dated Jan. 18, 2017, from corresponding U.S. Appl. No. 15/256,430.
Restriction Requirement, dated Jul. 28, 2017, from corresponding U.S. Appl. No. 15/169,658.
Restriction Requirement, dated Jun. 15, 2021, from corresponding U.S. Appl. No. 17/187,329.
Restriction Requirement, dated Jun. 15, 2021, from corresponding U.S. Appl. No. 17/222,556.
Restriction Requirement, dated Jun. 9, 2021, from corresponding U.S. Appl. No. 17/222,725.
Restriction Requirement, dated May 5, 2020, from corresponding U.S. Appl. No. 16/808,489.
Restriction Requirement, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/366,754.
Restriction Requirement, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/586,202.
Restriction Requirement, dated Nov. 21, 2016, from corresponding U.S. Appl. No. 15/254,901.
Restriction Requirement, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/563,744.
Restriction Requirement, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/055,984.
Restriction Requirement, dated Oct. 6, 2021, from corresponding U.S. Appl. No. 17/340,699.
Restriction Requirement, dated Sep. 15, 2020, from corresponding U.S. Appl. No. 16/925,628.
Restriction Requirement, dated Sep. 9, 2019, from corresponding U.S. Appl. No. 16/505,426.
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/808,493.
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,944.
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,948.
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,952.
Advisory Action, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/808,497.
Advisory Action, dated Jun. 19, 2020, from corresponding U.S. Appl. No. 16/595,342.
Advisory Action, dated Jun. 2, 2020, from corresponding U.S. Appl. No. 16/404,491.
Advisory Action, dated May 21, 2020, from corresponding U.S. Appl. No. 16/557,392.
Written Opinion of the International Searching Authority, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025611.
Written Opinion of the International Searching Authority, dated Aug. 15, 2017, from corresponding International Application No. PCT/US2017/036919.
Written Opinion of the International Searching Authority, dated Aug. 21, 2017, from corresponding International Application No. PCT/US2017/036914.
Written Opinion of the International Searching Authority, dated Aug. 29, 2017, from corresponding International Application No. PCT/US2017/036898.
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036889.
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036890.
Written Opinion of the international Searching Authority, dated Aug. 8, 2017, from corresponding Internationa Application No. PCT/US2017/036893.
Whiten Opinion of the International Searching Authority, dated Aug. 8, 2017, rrom corresponding International Application No. PCT/US2017/036901.
Written Opinion of the international Searching Authority, dated Aug. 8, 2017, from corresponding Internationa Application No. PCT/US2017/036913.
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036920.
Written Opinion of the International Searching Authority, dated Dec. 14, 2018, from corresponding International Application No. PCT/US2018/045296.
Notice of Allowance, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/817,136.
Notice of Allowance, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,261.
Notice of Allowance, dated Dec. 9, 2020, from corresponding U.S. Appl. No. 16/404,491.
Notice of Allowance, dated Feb. 10, 2020, from corresponding U.S. Appl. No. 16/552,765.
Notice of Allowance, dated Feb. 11, 2021, from corresponding U.S. Appl. No. 17/086,732.
Notice of Allowance, dated Feb. 12, 2020, from corresponding U.S. Appl. No. 16/572,182.
Notice of Allowance, dated Feb. 13, 2019, from corresponding U.S. Appl. No. 16/041,563.
Notice of Allowance, dated Feb. 14, 2019, from corresponding U.S. Appl. No. 16/226,272.
Notice of Allowance, dated Feb. 19, 2019, from corresponding U.S. Appl. No. 16/159,632.
Notice of Allowance, dated Feb. 19, 2021, from corresponding U.S. Appl. No. 16/832,451.
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/034,355.
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/068,198.
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,106.
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,253.
Notice of Allowance, dated Feb. 25, 2020, from corresponding U.S. Appl. No. 16/714,355.
Notice of Allowance, dated Feb. 25, 2021, from corresponding U.S. Appl. No. 17/106,469.
Notice of Allowance, dated Feb. 26, 2021, from corresponding U.S. Appl. No. 17/139,650.
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/041,468.
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/226,290.
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 16/827,039.
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/068,558.
Notice of Allowance, dated Jan. 1, 2021, from corresponding U.S. Appl. No. 17/026,727.
Notice of Allowance, dated Jan. 14, 2020, from corresponding U.S. Appl. No. 16/277,715.
Notice of Allowance, dated Jan. 15, 2021, from corresponding U.S. Appl. No. 17/030,714.
Notice of Allowance, dated Jan. 18, 2018, from corresponding U.S. Appl. No. 15/619,478.
Notice of Allowance, dated Jan. 18, 2019 from corresponding U.S. Appl. No. 16/159,635.
Notice of Allowance, dated Jan. 2, 2020, from corresponding U.S. Appl. No. 16/410,296.
Notice of Allowance, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,251.
Notice of Allowance, dated Jan. 25, 2021, from corresponding U.S. Appl. No. 16/410,336.
Notice of Allowance, dated Jan. 26, 2018, from corresponding U.S. Appl. No. 15/619,469.
Notice of Allowance, dated Jan. 29, 2020, from corresponding U.S. Appl. No. 16/278,119.
Notice of Allowance, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/595,327.
Notice of Allowance, dated Jan. 8, 2020, from corresponding U.S. Appl. No. 16/600,879.
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/237,083.
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/403,358.
Notice of Allowance, dated Jul. 12, 2019, from corresponding U.S. Appl. No. 16/278,121.
Notice of Allowance, dated Jul. 14, 2020, from corresponding U.S. Appl. No. 16/701,043.
Notice of Allowance, dated Jul. 15, 2020, from corresponding U.S. Appl. No. 16/791,006.
Notice of Allowance, dated Jul. 16, 2020, from corresponding U.S. Appl. No. 16/901,979.
Notice of Allowance, dated Jul. 17, 2019, from corresponding U.S. Appl. No. 16/055,961.
Notice of Allowance, dated Jul. 17, 2020, from corresponding U.S. Appl. No. 16/778,709.
Notice of Allowance, dated Jul. 19, 2021, from corresponding U.S. Appl. No. 17/306,252.
Notice of Allowance, dated Jul. 21, 2020, from corresponding U.S. Appl. No. 16/557,392.
Notice of Allowance, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/220,978.
Notice of Allowance, dated Jul. 26, 2019, from corresponding U.S. Appl. No. 16/409,673.
Notice of Allowance, dated Jul. 26, 2021, from corresponding U.S. Appl. No. 17/151,399.
Notice of Allowance, dated Jul. 26, 2021, from corresponding U.S. Appl. No. 17/207,316.
Notice of Allowance, dated Jul. 31, 2019, from corresponding U.S. Appl. No. 16/221,153.
Notice of Allowance, dated Jul. 8, 2021, from corresponding U.S. Appl. No. 17/201,040.
Notice of Allowance, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/813,321.
Final Office Action, dated Apr. 23, 2020, from corresponding U.S. Appl. No. 16/572,347.
Final Office Action, dated Apr. 27, 2021, from corresponding U.S. Appl. No. 17/068,454.
Final Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/595,327.
Final Office Action, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/791,589.
Final Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/161,159.
Final Office Action, dated Aug. 28, 2020, from corresponding U.S. Appl. No. 16/410,336.
Final Office Action, dated Aug. 5, 2020, from corresponding U.S. Appl. No. 16/719,071.
Final Office Action, dated Aug. 9, 2021, from corresponding U.S. Appl. No. 17/119,080.
Final Office Action, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/862,956.
Final Office Action, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/410,336.
Final Office Action, dated Feb. 19, 2020, from corresponding U.S. Appl. No. 16/404,491.
Final Office Action, dated Feb. 3, 2020, from corresponding U.S. Appl. No. 16/557,392.
Final Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 16/927,658.
Final Office Action, dated Jan. 17, 2018, from corresponding U.S. Appl. No. 15/619,278.
Final Office Action, dated Jan. 21, 2020, from corresponding U.S. Appl. No. 16/410,762.
Final Office Action, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,479.
Final Office Action, dated Jan. 23, 2020, from corresponding U.S. Appl. No. 16/505,430.
Final Office Action, dated Jul. 21, 2021, from corresponding U.S. Appl. No. 17/151,334.
Final Office Action, dated Jul. 7, 2021, from corresponding U.S. Appl. No. 17/149,421.
Final Office Action, dated Mar. 26, 2021, from corresponding U.S. Appl. No. 17/020,275.
Final Office Action, dated Mar. 5, 2019, from corresponding U.S. Appl. No. 16/055,961.
Final Office Action, dated Mar. 6, 2020, from corresponding U.S. Appl. No. 16/595,342.
Final Office Action, dated May 14, 2021, from corresponding U.S. Appl. No. 17/013,756.
Final Office Action, dated Nov. 29, 2017, from corresponding U.S. Appl. No. 15/619,237.
Final Office Action, dated Oct. 26, 2021, from corresponding U.S. Appl. No. 17/306,496.
Final Office Action, dated Oct. 28, 2021, from corresponding U.S. Appl. No. 17/234,205.
Final Office Action, dated Oct. 29, 2021, from corresponding U.S. Appl. No. 17/020,275.
Final Office Action, dated Sep. 17, 2021, from corresponding U.S. Appl. No. 17/200,698.
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/808,493.
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/862,944.
Final Office Action, dated Sep. 22, 2020, from corresponding U.S. Appl. No. 16/808,497.
Final Office Action, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/862,948.
Final Office Action, dated Sep. 24, 2020, from corresponding U.S. Appl. No. 16/862,952.
Final Office Action, dated Sep. 25, 2019, from corresponding U.S. Appl. No. 16/278,119.
Final Office Action, dated Sep. 28, 2020, from corresponding U.S. Appl. No. 16/565,395.
Final Office Action, dated Sep. 8, 2020, from corresponding U.S. Appl. No. 16/410,866.
Office Action, dated Apr. 1, 2021, from corresponding U.S. Appl. No. 17/119,080.
Office Action, dated Apr. 15, 2021, from corresponding U.S. Appl. No. 17/161,159.
Office Action, dated Apr. 18, 2018, from corresponding U.S. Appl. No. 15/894,819.
Office Action, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/151,334.
Office Action, dated Apr. 20, 2020, from corresponding U.S. Appl. No. 16/812,795.
Office Action, dated Apr. 22, 2019, from corresponding U.S. Appl. No. 16/241,710.
Office Action, dated Apr. 22, 2020, from corresponding U.S. Appl. No. 16/811,793.
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/798,818.
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/808,500.
Office Action, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 16/808,497.
Office Action, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/791,337.
Office Action, dated Apr. 5, 2019, from corresponding U.S. Appl. No. 16/278,119.
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/788,633.
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/791,589.
Related Publications (1)
Number Date Country
20220147638 A1 May 2022 US
Provisional Applications (1)
Number Date Country
63110557 Nov 2020 US