Security service providers (e.g., managed security service providers (“MSSPs”), security analysts, researchers, etc.) generally go through complex manual triaging processes to identify malicious actors and their activities so that preventative or remedial actions can be taken (e.g., blocking network ingress or egress, adding malicious actors to blacklists, etc.). Existing identification processes, however, can be very data intensive and take significant time for human analysts. In addition, these manual processes typically only can be performed a limited number of times within a given timespan (e.g., once a day), and the human analysts performing these manual processes often make errors leading to false identifications, further increasing the time to identify malicious actors and their activities. As a result, malicious actors, who regularly update and/or change their tactics in order to avoid detection or reaction, are able to stay head of security service provides and avoid timely detection. That is, there is a significant delta between actions taken by malicious actors and detection thereof, since malicious actors can employ techniques that do not readily appear malicious and are only apparent to victims or security service providers after significant damage has been done and/or considerable time has passed following malicious activities. Accordingly, it can be seen that a need exists for systems and methods for identifying malicious actors and activities that helps to reduce false positives and also significantly reduce the time to detection such that security service providers and their clients can take preventative or remedial actions before significant damage is done. The present disclosure is directed to the foregoing and other related, and unrelated, problems or issues in the art.
Briefly described, according to various aspects, the present disclosure includes systems and methods for identifying malicious actors or malicious activities. For example, security data can be received from one or more data sources, and one or more security counter measures can be applied to the received security data, e.g., by an initial detector, for identifying signatures or patterns in the received security data and determining whether to promote identifiers (e.g., uniform resource locators (“URLs”), IP addresses, domain names, etc.) related to identified signatures or patterns to an attacker learning system. If the identified signatures or patterns and/or the identifiers related thereto are determined to meet a threshold criterion or condition, the identifiers related to the identified signatures or patterns are promoted to the attacker learning system. The attacker learning system includes a machine learning model that is applied to promoted identifiers and security data associated therewith. If the machine learning model determines that the promoted identifiers are malicious within a prescribed level of confidence, the identifiers determined to be malicious are added or otherwise included in an attacker database. Preventative or remedial actions can be taken that are responsive to malicious identifiers in the attacker database, e.g., communications, such as network egress/ingress, with malicious identifiers can be stopped, prevented, or otherwise limited; malicious actors can be included in one or more blacklists; etc.
In additional or alternative aspects, identifiers that are determined to meet the threshold criterion for promotion to the attacker learning system can be added to or otherwise included in a baseline attacker list that is submitted to or accessible by the attacker learning system.
In one aspect, the attacker learning system can extract or identify features from the security data associated with the promoted identifiers, and determine whether the promoted identifiers are malicious based on the extracted or identified features. In embodiments, the features can include the promoted identifiers, statistical features, DNS information, whois information, SSL certificates, information from online databases, such as information from Virus Total or NIST known hashes or other information from the National Software Reference Library (“NSRL”), etc., or combinations thereof.
In aspects, the attacker learning system can generate and provide performance information for an assessment or evaluation of the machine learning model, and the machine learning model can be trained or updated based on information or data related to the assessment or evaluation thereof.
According to one example, the security counter measures can include intrusion detection signatures (“IDSs”); however, any suitable security counter measures for identifying specific signatures, patterns, etc. in the received security data can be employed without departing from the scope of the present disclosure.
In some variations, the attacker learning system can develop or generate security countermeasures, e.g., specific signatures or patterns that indicate or relate to malicious activities, and provide the security counter measures to the initial detector for determining whether to promote future identifiers to the attacker learning system.
The security data can be aggregated, collected, or received from information handling systems, networks, security research analysts, threat intelligence communities, or combinations thereof.
Various objects, features and advantages of the present disclosure will become apparent to those skilled in the art upon a review of the following detail description, when taken in conjunction with the accompanying drawings.
It will be appreciated that for simplicity and clarity of illustration, elements illustrated in the Figures are not necessarily drawn to scale. For example, the dimensions of some elements may be exaggerated relative to other elements. Embodiments incorporating teachings of the present disclosure are shown and described with respect to the drawings herein, in which:
The use of the same reference symbols in different drawings indicates similar or identical items.
The following description in combination with the figures is provided to assist in understanding the teachings disclosed herein. The description is focused on specific implementations and embodiments of the teachings, and is provided to assist in describing the teachings. This focus should not be interpreted as a limitation on the scope or applicability of the teachings.
As shown in
As indicated in
In additional or alternative embodiments, the initial detector 14 can add identifiers that meet the threshold criterion for promotion to a baseline attacker list. This baseline attacker list can include a listing or other grouping of identifiers that meet the threshold criterion, as well as information or data related to the identifiers, such as place of origin, reason for promotion, etc. The baseline attacker list can be provided to the attacker learning system 14 for analysis/processing to determine which indictors in the baseline attacker list should be added to or otherwise include in the attacker database 18.
According to embodiments of the present disclosure, the security counter measures 22 can be designed to recognize or identify signatures or patterns that are indicative of one or more tactics, techniques, actions, etc. taken by malicious actors or other relevant communications with malicious actors. These signatures or patterns can be developed by MSSPs, security researchers or analysists, etc., and further can be shared between these entities or within one or more threat intelligence communities. The initial detector 14 can process or analyze the security data 12 against these developed signatures or patterns (e.g., the computer program(s) of the initial detector 14 can apply security countermeasures to the security data 12 to look for and determine existence of such developed signatures or patterns. In embodiments of the present disclosure, this analysis/processing can be done by comparing developed signatures or patterns with the security data 12; extracting or identifying signatures or patterns in the security data 12; using an enterprise detection and response tool, such as Red Cloak™ Threat & Detection Response by SecureWorks Corp. headquartered in Atlanta, Ga.; using Instruction Detection Systems, such as Snort or Suricata based Network Intrusion Detection Systems; or combinations thereof. If the initial detector 14 detects or identifies one or more of these signatures or patterns in the received security data 12, the initial detector 14 can promote identifiers (e.g., IP addresses, URLs, domain names, etc.) associated with the detected signature(s) or pattern(s) in the security data 12 to the attacker learning system 14 (or, optionally, to the baseline attacker list that is provided to, or otherwise accessible by, the attacker learning system 14).
In one example, the initial detector 14 will promote an identifier to the attacker learning system 16 (or the baseline list) when the initial detector 14 detects that two or more entities, e.g., clients, that generated the security data 12 share a set of develop signatures or patterns, or experienced activities that include one or more of the developed signatures or patterns from a specific identifier. For example, if two or more clients of an MSSP collecting security data 12 share specific signatures/patterns, such as a set of signatures/patterns, one or more signatures or patterns from a specific IP address, URL, or domain, either as a destination or a source, etc., the IP addresses, URLs, or domain related to the specific signatures/patterns is promoted to the attacker learning system 16 (or baseline list) for further investigation or processing, i.e., to determine whether to include the specific IP address(es), URL(s), or domain(s) in the attacker database; however, other criteria for promotion of identifiers based on detected signatures or patterns can be employed without departing from the scope of the present disclosure, e.g., if the signatures or patterns include or are other indicative of: malware; bot activity; specific types of traffic, such as chanitor traffic; certain certificates, etc.
In one embodiment, the security counter measures 22 can include intrusion detection signatures (IDSs). The IDSs can be developed by MSSPs, security researchers or analysts, or other entities to identify actions, activities, communications, etc. indicative of, or otherwise related to, malicious actors, and further can be shared between MSSPs, security researchers or analysts, etc. and/or within one or more threat intelligence communities. For example, for development of IDSs, MSSPs, security researchers or analysts, etc. can attempt to exploit or find vulnerabilities in test systems or networks (e.g., developed by the MSSPs, security researchers or analysts, etc.), and based on these exploited or discovered vulnerabilities, develop, write or otherwise generate regular expression type signatures, e.g., Snort, Suricata, etc. indicative or otherwise related to the vulnerabilities of the test systems/networks. In addition, or in the alternative, MSSPs, security researchers or analysts, etc. can detonate or test known malware to identify attributes, sequences, etc., (e.g., specific captures the malware produces as it attempts to make network activities, byte sequences within encryption algorithms, etc.) that are particular to, or otherwise indicative of, actions of the known malware, and based on commonalities between these attributes, sequences, etc., write or develop signatures that are representative of actions taken by known malware.
In addition, or in the alternative, other sources of security countermeasures 22 can be employed, such as YARA rules, Sigma rules, tactic graphs. The security counter measures 22 further can include information from the attacker learning system 14. For example, the attacker learning system 14 can communicate information related to identifiers that are determined to be malicious to be included in the security counter measures 22, e.g., a detected hash or other data indicative of communication with a malicious IP address.
As further indicated in
In an example embodiment, the machine learning model 20 includes a supervised or semi-supervised machine learning model, such as one or more neural networks, linear regression models, support vector machines (SVMs), etc. However, any suitable supervised or unsupervised (e.g., descriptive models, clustering algorithms, Association rule learning algorithms, etc.) learning models, active learning models, reinforcement models, etc. can be used without departing from the scope of the present disclosure.
Additionally, or in the alternative, the machine learning model 20 can ingest or otherwise review the security data 12 or portions thereof for identification of the features 24. The attacker learning system 16 and/or the machine learning model 20 also can include or communicate with one or more data stores, databases, etc. to obtain features 24 related to the identifiers, e.g., the attacker learning system 16 and/or the machine learning model 20 can access or otherwise communicate with a Domain Name System or Database for obtaining the DNS information.
In one example, the statistical information 24B can include information related to a frequency of activity or hits of the promoted identifiers across the security data 12, such as a noise level of identifiers, an average number daily hits of identifiers, an amount or number of clients communicating with identifiers, etc. For example, if an identifier's activities are noisy, generating a large number of hits across a higher number of clients from which the security data 12 is collected, the machine learning model 20 may be more likely to determine that this identifier is not malicious and should not be added to the attacker database 18. However, if the identifier's activities are less noisy and experienced across only a few clients, the machine learning model 20 may be more likely to determine that the identifier is malicious and should be included in the attacker database 18.
The DNS information can include IP addresses associated with the identifiers, e.g., the DNS information can include a specific IP address for a URL or domain name. If the DNS information, e.g., a specific IP address or addresses, is known to be related to a safe actor, the machine learning model 20 is more likely to determine that the identifiers associated with the DNS information are not malicious and should not be include in the attacker database 18. If the DNS information, e.g., a specific IP address or addresses, is unknown or known to be related to a malicious actor(s), the machine learning model 20 is more likely to determine that the identifiers are malicious and should be included in the attacker database 18.
The other features, values, etc. 24D of the features 24 input to the machine learning model 20 can include temporal information, such as time and date information related to the activity of the identifiers. For example, if the activity of the identifiers is occurring at times/dates that are indicative of malicious activity, e.g., early in the morning, outside of regular business hours, etc., the machine learning model 20 may be more likely to determine that the identifiers are malicious and should be included in the attacker database 18. The other features, values, etc., 24D also can include other information indicative or related to safe or malicious activities. The other features 24D also can include other suitable information or data. For example, for identifiers that include domain names, whois information can be identified or obtained by the attacker learning system 14. If is a website or web service is using encryption, the attacker learning system 14 can obtain SSL certificates. Still further, for cryptographic hashes, that attacker learning system 14 can obtain information or data from online databases, such as VirusTotal or NSRL (e.g., NIST known hashes from NSRL). However, any other suitable features, values, etc., e.g., features indicative of malicious or benign activities, can be used without departing from the scope of the presented disclosure.
Accordingly, based on the identified, extracted, or obtained features 24, and/or other relevant security data, values, information etc., the machine learning model 20 determines or generates a specific probability or level of confidence of whether the promoted identifiers are malicious, and the attacker learning system 16 takes one or more actions based on the determined probability or level of confidence. For example, if the probability or confidence level that an identifier is malicious, or is taking part in malicious activities, determined or generated by the machine learning model 20's is greater than, or equal to, a prescribed threshold value, e.g., in some embodiments, about 90%, about 95%, about 99% or above, the attacker learning system 16 will add or otherwise include the identifier in the attacker learning database 18. If the determined probability is below the selected or prescribed threshold value, the attacker learning system 16 generally will not add or include the identifier in the attacker database 18. This prescribed threshold value can be selected, changed, or updated by an operator (e.g., an MSSP) of the system 10. In some variations, the attacker learning system 16 can remove identifiers from the attacker database 18 if they are determined to have a probability below the threshold value. As a result, the attacker database 18 can be continuously or dynamically updated based on application of the machine learning model 20 to the security data 12 or portions thereof.
In addition, or in alternative variations, the attacker learning system 16 can take other additional or alternative actions based on the determined probability or confidence level. For example, if the determined probability or confidence level is within a specific interval or range of the threshold value, e.g., plus or minus about 1%, about 2%, or about 3%, within a specific, e.g., one or two, standard deviations, etc., or at or above an additional threshold value, e.g., about 50%, about 60%, about 70%, or more, the attacker learning system 16 can submit the identifier and security data associated therewith to a model evaluation, assessment, and training program 26 for assessment by human analysts. The analysts can review the identifier and security data associated therewith, e.g., including the identified features 24, to determine whether the identifier should be included in the attacker database 18. The analysts further can add the identifier to the attacker database 18 if appropriate, and can provide labeled data to the machine learning model 20 (e.g., labeled data indicating that the features 24 relate to a safe or malicious actor) for further training or updating of the machine learning model 20.
Still further, if the probability that the identifier is malicious is determined to be at or below a low end threshold value, e.g., about 25%, about 10%, about 5%, etc., the identifier can be added to and/or included in one or more white lists of safe actors. The initial detector 14 also can be enabled to access such white lists and may not promote identifiers therein for analysis by the attacker database 18; though identifiers in white lists can be promoted and the white lists can be updated as necessary.
According to embodiments of the present disclosure, the attacker learning system 16 also will provide metric or performance information to the evaluation, assessment, or training programs 26 to allow human analysts to continuously check or test the accuracy or efficacy of the machine learning model 20 in identifying malicious actors or activities. For example, metric information can be provided to the evaluation, assessment, or training programs 26 at a given time interval, e.g., daily, weekly, monthly, etc., or after a prescribed number of iterations of the machine learning model 20.
To train, update, and/or improve the accuracy/efficacy of the machine learning model 20, e.g., initially or if the model 20 is not meeting a prescribed accuracy/efficacy, analysts can develop training sets of labeled data (e.g., one or more features 24 labeled as being malicious or safe) and provide the training sets of labeled data to the machine learning model 26. The analysts further can develop testing sets of data (e.g., non-labeled sets of indicators that the analysts found to be malicious or safe) and apply the machine learning model 20 to the testing sets of data for determining an accuracy, efficacy, etc., of the machine learning model 20.
In some aspects, the attacker learning system 16 can automatically develop security counter measures 22 that are used by the initial detector 14. For example, the attacker learning system 16 can generate patterns, signatures, etc., that are indicative of malicious activities, and thus, the security counter measures 22 can be expanded on or updated with applications of the machine learning model 20, e.g., to help to improve on the selection of identifiers that are to be promoted to the attacker learning system 16, or to even detect malicious identifiers without promotion to the attacker learning system 16.
In addition, the system 10 may take one or more preventative or remedial actions based on identifiers listed in the attacker database 18 or otherwise indicated as being malicious. For example, the system 10 may communicate with one or more information handling systems, networks, or other systems in communication therewith to initiate a protect or prevent mode for identifiers list in the attacker database 18 (e.g., such that communications between the information handling systems, networks, or other systems and the malicious actors associated with the identifiers are stopped, prohibited, or substantially reduced). In one embodiment, network egress and/or ingress of malicious identifiers in the attacker data base 18 can be blocked. Furthermore, blacklists and/or white lists can be compiled based on the attacker database 18 or results of the model 20 and shared between members of one or more threat intelligence communities, e.g., for the development of tools, programs, etc., to combat malicious actors provided in the black lists.
It will be understood that the accuracy, efficacy, etc. of the machine learning model 20 generally improves with each application thereof and as the machine learning model 20 processes more and more security data 12. Accordingly, the system 10 will be able to more quickly and more accurately identify malicious actors and malicious activities as time goes on, potentially providing MSSPs, security analysts, etc. an advantage in combating malicious actors, and helping the system 10 or MSSPs, security analysts, etc. to take preventative or remedial actions before significant damage or loss occurs.
If the initial detector 14 determines that identifiers meet a threshold criterion for promotion, at 206, the identifiers and security data associated therewith are submitted or otherwise provided to the attacker learning system 16. For example, if the initial detector 14 determines that activities or communications of the identifiers match or are otherwise related to the patterns or signatures of the security countermeasures, the identifiers can be promoted to the attacker learning system 18 at 208. In one embodiment, if two or more clients or entities of a security service provider experience activities or communications indicative of a specific signature or pattern and/or activities or communications from a malicious actor that match or are other related to specific patterns or signatures, the identifier(s) for that malicious actor is promoted to the attacker learning system 16.
However, if the identifiers do not meet the threshold criterion for promotion at 206, the identifiers will not be promoted to the attacker learning system 16 and will be able to continue communications as normal at 210. Furthermore, at 210, data or information may be collected for training, updating, etc. of the machine learning model 20.
For the identifiers received by the attacker learning system 16, one or more features, values, etc. (e.g., identifiers such as attacked IPs, attacker IPs, etc.; statistical features; DNS based information; other suitable features; or combinations thereof) can be extracted or identified by the attacker learning system 16 as indicated at 212. Thereafter, at 214, the attacker learning system 16 can apply the machine learning model 20 to the one or more identifiers, extracted features, and/or other relevant security data values to determining whether the identifiers are malicious (e.g., to determine or generate a probability or confidence level that the identifiers are malicious).
As further shown in
If the identifiers are not determined to be malicious according to the prescribed level of confidence or probability at 216, the identifiers generally will not be added to the attacker database 18 as indicated at 218. However, as shown in
According to embodiments of the present disclosure, the various components of the system 10 (such as the initial detector 14, attacker learning system 26, evaluation program 26 shown in
For purposes of this disclosure, an information handling system 80 (
As shown in
In one embodiment, the monitoring device(s) 86 may include a server or sequence analyzer or other client suitable computing device that has a processor and a memory or other suitable storage. The memory can include a random access memory (RAM), read only memory (ROM), and/or other non-transitory computer readable medium. The monitoring device(s) 56 further typically will be operable to store and execute computer readable instructions to continuously monitor, in real-time, activity at each networked system, for example, activity of the information handling systems 80 connected to network 84. The monitoring device(s) 86 can ingest or aggregate information or data logs related to activities of the information handling systems 80 and can provide these ingested/aggregate data logs or information or data related thereto to by the system 10 for processing thereby. In addition, or in the alternative, the system 10 can include a data center 88, such as a data center 88 management by an MSSP, with a plurality of networked information handling systems 80, e.g., including one or more servers 90 with at least one memory 92 and one or more processors 94 for receiving information or data logs related to activities of the information handling systems 80 of system 82. These information/data logs can be a part of the security data 12 provided to the system 10.
The foregoing description generally illustrates and describes various embodiments of the present disclosure. It will, however, be understood by those skilled in the art that various changes and modifications can be made to the above-discussed construction of the present disclosure without departing from the spirit and scope of the disclosure as disclosed herein, and that it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as being illustrative, and not to be taken in a limiting sense. Furthermore, the scope of the present disclosure shall be construed to cover various modifications, combinations, additions, alterations, etc., above and to the above-described embodiments, which shall be considered to be within the scope of the present disclosure. Accordingly, various features and characteristics of the present disclosure as discussed herein may be selectively interchanged and applied to other illustrated and non-illustrated embodiments of the disclosure, and numerous variations, modifications, and additions further can be made thereto without departing from the spirit and scope of the present invention as set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5937066 | Gennaro et al. | Aug 1999 | A |
6357010 | Viets et al. | Mar 2002 | B1 |
7269578 | Sweeney | Sep 2007 | B2 |
7331061 | Ramsey et al. | Feb 2008 | B1 |
7492957 | Bonhaus | Feb 2009 | B1 |
7548932 | Horvitz et al. | Jun 2009 | B2 |
7555482 | Korkus | Jun 2009 | B2 |
7571474 | Ross et al. | Aug 2009 | B2 |
7594270 | Church et al. | Sep 2009 | B2 |
7606801 | Faitelson et al. | Oct 2009 | B2 |
7613722 | Horvitz et al. | Nov 2009 | B2 |
7770031 | MacKay et al. | Aug 2010 | B2 |
7856411 | Darr | Dec 2010 | B2 |
7926113 | Gula et al. | Apr 2011 | B1 |
8079081 | Lavrik et al. | Dec 2011 | B1 |
8122495 | Ramsey et al. | Feb 2012 | B2 |
8156553 | Church et al. | Apr 2012 | B1 |
8327419 | Korablev et al. | Dec 2012 | B1 |
8407335 | Church et al. | Mar 2013 | B1 |
8490193 | Sarraute et al. | Jul 2013 | B2 |
8490196 | Lucangeli et al. | Jul 2013 | B2 |
8522350 | Davenport et al. | Aug 2013 | B2 |
8539575 | Schmitlin et al. | Sep 2013 | B2 |
8578393 | Fisher | Nov 2013 | B1 |
8595170 | Gladstone et al. | Nov 2013 | B2 |
8621618 | Ramsey et al. | Dec 2013 | B1 |
8701176 | Ramsey et al. | Apr 2014 | B2 |
8793786 | Bhesania et al. | Jul 2014 | B2 |
8805881 | Hom et al. | Aug 2014 | B2 |
8832048 | Lim | Sep 2014 | B2 |
8839414 | Mantle et al. | Sep 2014 | B2 |
8898777 | Oliver | Nov 2014 | B1 |
8909673 | Faitelson et al. | Dec 2014 | B2 |
8931095 | Ramsey et al. | Jan 2015 | B2 |
8938802 | Davenport et al. | Jan 2015 | B2 |
8959115 | Marathe | Feb 2015 | B2 |
8984644 | Oliphant et al. | Mar 2015 | B2 |
9009828 | Ramsey et al. | Apr 2015 | B1 |
9032478 | Ballesteros et al. | May 2015 | B2 |
8928476 | Jerhotova et al. | Jun 2015 | B2 |
9046886 | Chong et al. | Jun 2015 | B2 |
9047336 | Hom et al. | Jun 2015 | B2 |
9069599 | Martinez et al. | Jun 2015 | B2 |
9098702 | Rubin et al. | Aug 2015 | B2 |
9129105 | Donley et al. | Sep 2015 | B2 |
9130988 | Seifert et al. | Sep 2015 | B2 |
9137262 | Qureshi et al. | Sep 2015 | B2 |
9191400 | Ptasinski | Nov 2015 | B1 |
9298895 | Lim | Mar 2016 | B2 |
9319426 | Webb et al. | Apr 2016 | B2 |
9338134 | Yin | May 2016 | B2 |
9338180 | Ramsey et al. | May 2016 | B2 |
9430534 | Bhattacharya et al. | Aug 2016 | B2 |
9438563 | Yin | Sep 2016 | B2 |
9519756 | Bitran et al. | Dec 2016 | B2 |
9544273 | Fleury et al. | Jan 2017 | B2 |
9548994 | Pearcy et al. | Jan 2017 | B2 |
9558352 | Dennison et al. | Jan 2017 | B1 |
9560062 | Khatri et al. | Jan 2017 | B2 |
9560068 | Figlin et al. | Jan 2017 | B2 |
9596252 | Coates et al. | Mar 2017 | B2 |
9628511 | Ramsey et al. | Apr 2017 | B2 |
9667656 | Banerjee et al. | May 2017 | B2 |
9667661 | Sharma et al. | May 2017 | B2 |
9710672 | Braun | Jul 2017 | B2 |
9712549 | Almurayh | Jul 2017 | B2 |
9742559 | Christodorescu et al. | Aug 2017 | B2 |
9767302 | Lim | Sep 2017 | B2 |
9805202 | Medeiros et al. | Oct 2017 | B2 |
9910986 | Saxe | Mar 2018 | B1 |
9973524 | Boyer et al. | May 2018 | B2 |
10050992 | Thyni et al. | Aug 2018 | B2 |
10063582 | Feng et al. | Aug 2018 | B1 |
10116500 | Long et al. | Oct 2018 | B1 |
10311231 | Kayyoor | Jun 2019 | B1 |
10356125 | Goutal et al. | Jul 2019 | B2 |
10382489 | Das et al. | Aug 2019 | B2 |
10419903 | Singh et al. | Sep 2019 | B2 |
10425223 | Roth et al. | Sep 2019 | B2 |
10474820 | Manadhata | Nov 2019 | B2 |
10491632 | Natarajan | Nov 2019 | B1 |
10567407 | Tang et al. | Feb 2020 | B2 |
10594713 | McLean | Mar 2020 | B2 |
10601865 | Mesdaq et al. | Mar 2020 | B1 |
10728263 | Neumann | Jul 2020 | B1 |
10762206 | Titonis et al. | Sep 2020 | B2 |
10834128 | Rajogopalan et al. | Nov 2020 | B1 |
10853431 | Lin et al. | Dec 2020 | B1 |
10915828 | Qhi | Feb 2021 | B2 |
11044263 | McLean et al. | Jun 2021 | B2 |
11165862 | Austin et al. | Nov 2021 | B2 |
11275831 | Aouad | Mar 2022 | B1 |
20020129135 | Delany et al. | Sep 2002 | A1 |
20050060295 | Gould et al. | Mar 2005 | A1 |
20050138204 | Iyer et al. | Jun 2005 | A1 |
20050288939 | Peled et al. | Dec 2005 | A1 |
20060012815 | Ebner et al. | Jan 2006 | A1 |
20060037076 | Roy | Feb 2006 | A1 |
20060195575 | Delany et al. | Aug 2006 | A1 |
20060253447 | Judge | Nov 2006 | A1 |
20070192867 | Miliefsky | Aug 2007 | A1 |
20070226248 | Darr | Sep 2007 | A1 |
20070226807 | Ginter et al. | Sep 2007 | A1 |
20080077593 | Abrams et al. | Mar 2008 | A1 |
20080219334 | Brainos et al. | Sep 2008 | A1 |
20080255997 | Bluhm et al. | Oct 2008 | A1 |
20080262991 | Kapoor | Oct 2008 | A1 |
20080320000 | Gaddam | Dec 2008 | A1 |
20090198682 | Buehler et al. | Aug 2009 | A1 |
20100083374 | Schmitlin et al. | Apr 2010 | A1 |
20100125913 | Davenport et al. | May 2010 | A1 |
20100251329 | Wei et al. | Sep 2010 | A1 |
20110004771 | Matsushima et al. | Jan 2011 | A1 |
20110179492 | Markopoulou et al. | Jul 2011 | A1 |
20110276604 | Hom et al. | Nov 2011 | A1 |
20110276716 | Coulson | Nov 2011 | A1 |
20120072983 | McCusker et al. | Mar 2012 | A1 |
20120117640 | Ramsey et al. | May 2012 | A1 |
20120185275 | Loghmani | Jul 2012 | A1 |
20120246730 | Raad | Sep 2012 | A1 |
20120254333 | Chandramouli | Oct 2012 | A1 |
20120260341 | Chan et al. | Oct 2012 | A1 |
20130104191 | Peled et al. | Apr 2013 | A1 |
20130138428 | Chandramouli | May 2013 | A1 |
20130173620 | Takenouchi | Jul 2013 | A1 |
20130226938 | Risher et al. | Aug 2013 | A1 |
20130238319 | Minegishi et al. | Sep 2013 | A1 |
20130282746 | Balko et al. | Oct 2013 | A1 |
20130291103 | Davenport et al. | Oct 2013 | A1 |
20130318604 | Coates et al. | Nov 2013 | A1 |
20140041028 | Ramsey et al. | Feb 2014 | A1 |
20140047544 | Jakobsson | Feb 2014 | A1 |
20140051432 | Gupta et al. | Feb 2014 | A1 |
20140222712 | Samaha et al. | Aug 2014 | A1 |
20140373151 | Webb et al. | Dec 2014 | A1 |
20150040225 | Coates et al. | Feb 2015 | A1 |
20150074390 | Stoback | Mar 2015 | A1 |
20150135287 | Medeiros et al. | May 2015 | A1 |
20150135320 | Coskun | May 2015 | A1 |
20150156212 | Khatri et al. | Jun 2015 | A1 |
20150186618 | Poorvin | Jul 2015 | A1 |
20150193231 | Goldberg | Jul 2015 | A1 |
20150222652 | Ramsey et al. | Aug 2015 | A1 |
20150271047 | McLean | Sep 2015 | A1 |
20150324457 | McLean | Nov 2015 | A1 |
20160006749 | Cohen et al. | Jan 2016 | A1 |
20160014140 | Akireddy et al. | Jan 2016 | A1 |
20160014151 | Prakash | Jan 2016 | A1 |
20160078365 | Baumard | Mar 2016 | A1 |
20160099963 | Mahaffey | Apr 2016 | A1 |
20160139886 | Perdriau et al. | May 2016 | A1 |
20160156655 | Lotem et al. | Jun 2016 | A1 |
20160182546 | Coates et al. | Jun 2016 | A1 |
20160241591 | Ramsey et al. | Aug 2016 | A1 |
20160277423 | Apostolescu et al. | Sep 2016 | A1 |
20160313709 | Biesdorf et al. | Oct 2016 | A1 |
20160337400 | Gupta | Nov 2016 | A1 |
20160342805 | Lim | Nov 2016 | A1 |
20160378978 | Singla | Dec 2016 | A1 |
20170026343 | Wardman | Jan 2017 | A1 |
20170063893 | Franc et al. | Mar 2017 | A1 |
20170063905 | Muddu et al. | Mar 2017 | A1 |
20170098087 | Li | Apr 2017 | A1 |
20170111379 | Khatri et al. | Apr 2017 | A1 |
20170140295 | Bandara | May 2017 | A1 |
20170142149 | Coates et al. | May 2017 | A1 |
20170169154 | Lin et al. | Jun 2017 | A1 |
20170171228 | McLean | Jun 2017 | A1 |
20170180418 | Shen | Jun 2017 | A1 |
20170201381 | Kinder et al. | Jul 2017 | A1 |
20170201431 | Kinder et al. | Jul 2017 | A1 |
20170201490 | Kinder et al. | Jul 2017 | A1 |
20170201548 | Kinder et al. | Jul 2017 | A1 |
20170208084 | Steelman et al. | Jul 2017 | A1 |
20170208085 | Steelman et al. | Jul 2017 | A1 |
20170024475 | Kinder et al. | Aug 2017 | A1 |
20170243004 | Kinder et al. | Aug 2017 | A1 |
20170243005 | Kinder et al. | Aug 2017 | A1 |
20170244734 | Kinder et al. | Aug 2017 | A1 |
20170244754 | Kinder et al. | Aug 2017 | A1 |
20170244762 | Kinder et al. | Aug 2017 | A1 |
20170318033 | Holland | Nov 2017 | A1 |
20170318034 | Holland | Nov 2017 | A1 |
20170359368 | Hodgman | Dec 2017 | A1 |
20180077189 | Doppke | Mar 2018 | A1 |
20180089574 | Goto | Mar 2018 | A1 |
20180091306 | Antonopoulos et al. | Mar 2018 | A1 |
20180103010 | Diaz Cuellar et al. | Apr 2018 | A1 |
20180124073 | Scherman et al. | May 2018 | A1 |
20180124085 | Frayman et al. | May 2018 | A1 |
20180152480 | Kinder et al. | May 2018 | A1 |
20180181599 | Crabtree et al. | Jun 2018 | A1 |
20180288198 | Pope et al. | Oct 2018 | A1 |
20180367550 | Musuvathi et al. | Dec 2018 | A1 |
20190014149 | Cleveland et al. | Jan 2019 | A1 |
20190037406 | Wash | Jan 2019 | A1 |
20190050554 | Fiske | Feb 2019 | A1 |
20190068630 | Valecha et al. | Feb 2019 | A1 |
20190095801 | Saillet et al. | Mar 2019 | A1 |
20190102554 | Luo | Apr 2019 | A1 |
20190102646 | Redmon | Apr 2019 | A1 |
20190104154 | Kumar et al. | Apr 2019 | A1 |
20190109717 | Reddy et al. | Apr 2019 | A1 |
20190122258 | Bramberger et al. | Apr 2019 | A1 |
20190132344 | Lem et al. | May 2019 | A1 |
20190141079 | Vidas et al. | May 2019 | A1 |
20190149564 | McLean | May 2019 | A1 |
20190173919 | Irimie | Jun 2019 | A1 |
20190242718 | Siskind et al. | Aug 2019 | A1 |
20190258807 | DiMaggio | Aug 2019 | A1 |
20190297096 | Ahmed et al. | Sep 2019 | A1 |
20190342296 | Anandam et al. | Nov 2019 | A1 |
20190347433 | Chakravorty et al. | Nov 2019 | A1 |
20190377832 | McLean et al. | Dec 2019 | A1 |
20190379678 | McLean et al. | Dec 2019 | A1 |
20200036750 | Bahnsen | Jan 2020 | A1 |
20200036751 | Kohavi | Jan 2020 | A1 |
20200186544 | Dichiu et al. | Jun 2020 | A1 |
20200195683 | Kuppa et al. | Jun 2020 | A1 |
20200259791 | Garcia et al. | Aug 2020 | A1 |
20200274894 | Argoeti et al. | Aug 2020 | A1 |
20200285737 | Kraus | Sep 2020 | A1 |
20200285952 | Liu | Sep 2020 | A1 |
20200314122 | Jones et al. | Oct 2020 | A1 |
20200336497 | Seul et al. | Oct 2020 | A1 |
20200351285 | Eisenkot | Nov 2020 | A1 |
20200351302 | Kyle | Nov 2020 | A1 |
20200351307 | Vidas et al. | Nov 2020 | A1 |
20200356665 | Denney et al. | Nov 2020 | A1 |
20200358795 | Urbanski et al. | Nov 2020 | A1 |
20200358819 | Bowditch et al. | Nov 2020 | A1 |
20200364338 | Ducau et al. | Nov 2020 | A1 |
20200394309 | Angelo et al. | Dec 2020 | A1 |
20210067562 | Kinder et al. | Mar 2021 | A1 |
20210109797 | Zhou | Apr 2021 | A1 |
20210112087 | Tassoumt | Apr 2021 | A1 |
20210112090 | Rivera | Apr 2021 | A1 |
20210173930 | Dahal | Jun 2021 | A1 |
20210226970 | Ross et al. | Jul 2021 | A1 |
20210258327 | Felke et al. | Aug 2021 | A1 |
20220038424 | Liu et al. | Feb 2022 | A1 |
20220070182 | Bowditch et al. | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
3599753 | Jan 2020 | EP |
2738344 | Dec 2020 | RU |
WO2007002749 | Jan 2007 | WO |
WO2007090605 | Aug 2007 | WO |
WO2010059843 | May 2010 | WO |
WO2021067238 | Apr 2021 | WO |
Entry |
---|
Afroz, S. and Greenstadt, R. “PhishZoo: Detecting Phishing Websites by Looking at Them”; IEEE Fifth International Conference on Semantic Computing, 2011; pp. 368-375; doi: 10.1109/ICSC.2011.52; 2011. |
Alkhawlani, Mohammed, Elmogy, Mohammed and Elbakry, Hazem; “Content-based image retrieval using local features descriptors and bag-of-visual words”; International Journal of Advanced Computer Science and Applications, vol. 6 No. 9 2015; pp. 212-219; 2015. |
Buber, E., Demir, O. and Sahingoz, O.K.; “Feature selections for the machine learning based detection of phishing websites”; 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), 2017; pp. 1-5; doi: 10.1109/DAP.2017.8090317; 2017. |
Lin, Tsung-Yi, et al.; “Microsoft coco: Common objects in context”; European Conference on Computer Vision, Springer, Cham, 2014; 2014. |
Liu, Y., Wang, Q., Zhuang, M. and Zhu, Y.; Reengineering Legacy Systems with RESTFul Web Service; 2008 32nd Annual IEEE International Computer Software and Applications Conference, 2008; pp. 785-790; doi: 10.1109/COMPSAC.2008.89; 2008. |
White, Joshua S., Matthews, Jeanna N., and Stacy, John L.; A method for the automated detection phishing websites through both site characteristics and image analysis Cyber Sensing 2012; vol. 8408; International Society for Optics and Photonics, 2012; 2012. |
URLVoid; URLVoid.com; retrieved from archives.org: https:web.archive.org/web/20180730215132/https.://www.urlvoid.com/); Published Jul. 30, 2018. |
Buyukkayhan, Ahmet Sali; Oprea, Alina; Li, Zhou; and Robertson, William; “Lens on the endpoint; Hunting for malicious software through endpoint data analysis”; International Symposium on Research in Attacks, Intrusions, and Defenses; RAID 2017: Research in Attacks, Intrusions, and Defenses Proceedings; pp. 73-79; Sep. 18-20, 2017; Atlanta, GA, USA. |
SecureWorks—Log Management—Protect your infrastructure from known and emerging threats; www.secureworks.com/resources/ds-log-management; 2015 (available). |
Sofya Raskhodnikova & Adam Smith; CSE 598A Algorithmic Challenges in Data Privacy; Lecture 2; Jan. 19, 2010. |
Number | Date | Country | |
---|---|---|---|
20210185057 A1 | Jun 2021 | US |