Systems and methods for identifying parallel documents and sentence fragments in multilingual document collections

Information

  • Patent Grant
  • 8943080
  • Patent Number
    8,943,080
  • Date Filed
    Tuesday, December 5, 2006
    17 years ago
  • Date Issued
    Tuesday, January 27, 2015
    9 years ago
Abstract
Systems, computer programs, and methods for identifying parallel documents and/or fragments in a bilingual collection are provided. The method for identifying parallel sub-sentential fragments in a bilingual collection comprises translating a source document from a bilingual collection. The method further includes querying a target library associated with the bilingual collection using the translated source document, and identifying one or more target documents based on the query. Subsequently, a source sentence associated with the source document is aligned to one or more target sentences associated with the one or more target documents. Finally, the method includes determining whether a source fragment associated with the source sentence comprises a parallel translation of a target fragment associated with the one or more target sentences.
Description
BACKGROUND

1. Field of the Invention


The present invention relates generally to statistical machine translation of multilingual documents and more specifically to systems and methods for identifying parallel segments in multilingual document collections.


2. Description of the Related Art


In the field of statistical machine translation, large collections of training data are required to develop and implement systems and methods for translating documents. Training data comprises parallel segments which are documents or fragments that are literal, or parallel, translations of each other in two languages. Currently, there is a lack of sufficiently large parallel corpora for most language pairs. A language pair refers to the two languages used within the parallel corpora. Examples of language pairs include English-Romanian or English-Arabic.


Large volumes of material in many languages are produced daily, and in some instances, this material may comprise translational equivalents. For example, a news story posted on the World Wide Web (WWW) on an English-language website may be a translation of the same story posted on a Romanian-language website. The ability to identify these translations is important for generating large collections of parallel training data.


However, because news web pages published on a news website typically have the same structure. As such, structural properties, such as HTML structures, can not be used to identify parallel documents. Further, because web sites in different languages are often organized differently and a connection is not always maintained between translated versions of the same story, URLs of articles may be unreliable. Further, a news website may contain comparable segments of text that relate to the same news story, but the comparable segments or articles should not necessarily be identified as parallel documents. Comparable segments may be referred to as “noisy translations” of the sentences.


However, these comparable segments may include one or more parallel fragments that can be added to the training data even though the entire segment is not a parallel translation of a comparable segment. For example, a quote within a news article may be translated literally even though the rest of the document is merely related to a comparable segment in another language.


Current methods perform computations at a word level and do not distinguish parallel translations of documents from comparable documents. As such, these methods result in many false positives where a comparable document may be erroneously classified as a parallel translation.


SUMMARY

Systems, computer programs, and methods for identifying parallel documents and/or fragments in a bilingual collection are provided. The method for identifying parallel sub-sentential fragments in a bilingual collection comprises translating a source document from a bilingual collection. The method further includes querying a target library associated with the bilingual collection using the translated source document, and identifying one or more target documents based on the query. Subsequently, a source sentence associated with the source document is aligned to one or more target sentences associated with the one or more target documents. Finally, the method includes determining whether a source fragment associated with the source sentence comprises a parallel translation of a target fragment associated with the one or more target sentences.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 depicts an illustration of an environment in which some embodiments may be practiced;



FIG. 2 depicts a block diagram illustrating an exemplary training set generator according to exemplary embodiments;



FIG. 3 depicts a block diagram illustrating an exemplary parallel document engine according to exemplary embodiments;



FIG. 4 depicts a block diagram illustrating an exemplary parallel fragment engine according to exemplary embodiments;



FIG. 5 depicts a flowchart illustrating an exemplary process for automatically generating parallel corpora from multi-lingual document sources according to exemplary embodiments;



FIG. 6 depicts a flowchart of an exemplary process for determining whether documents are parallel based on sentence alignments according to exemplary embodiments;



FIG. 7 depicts a flowchart of an exemplary process for extracting parallel sentence fragments from comparable corpora according to exemplary embodiments; and



FIG. 8 depicts a flowchart of an exemplary process for generating a fine lexicon according to exemplary embodiments.





DETAILED DESCRIPTION

A system and method for identifying parallel documents and/or fragments in a bilingual document collection is provided. The present method and system can be used with documents posted on the Internet without relying on properties such as page structure or URL. Further, the system and method is able to distinguish between parallel documents and comparable documents. The method and system may alternatively or additionally be used to extract parallel fragments from comparable corpora at the sub-sentential level to increase the amount of parallel data for statistical machine translation (SMT).



FIG. 1 depicts an illustration of an environment 100 in which some embodiments may be practiced. The environment 100 may comprise a document collection server 102 communicatively connected to a client 106 via a network 104. The document collection server 102 may comprise a memory 110 configured to store one or more bilingual document collections, one or more parallel documents, one or more parallel fragments, and/or one or more set of annotations indicating parallel data. The document collection server 102 may comprise a processor configured to access the memory 110 and process instructions. The document collection server 102 may communicate over the network 104 using a communications interface. The network 104 may comprise a public network (e.g., the Internet) or a private network. The client 106 may include storage, a display, or additional functionality beyond the scope of the embodiments.


The client 106 may comprise a computational device such as a personal computer. The client 106 may include a training set generator 108. The training set generator 108 may comprise hardware, software, or firmware and may be configured to identify parallel documents and/or fragments in bilingual collections. The training set generator 108 may be configured to access bilingual collections stored in the document collection server 102. Further, the training set generator 108 may transmit data indicating parallel documents or fragments to the document collection server 102.



FIG. 2 depicts a block diagram illustrating an exemplary training set generator, such as the training set generator 108 of FIG. 1, according to exemplary embodiments. The training set generator 108 may identify parallel documents and/or fragments within bilingual document collections. The bilingual document collections may comprise documents collected from the Internet or the World Wide Web (WWW) in exemplary embodiments. The training set generator 108 may comprise a word translator engine 202, a query engine 204, a document selector engine 206, a parallel document engine 208, and a parallel fragment engine 210. Because sentence alignment requires a large amount of computations, the word translator engine 202, and the query engine 204 may be configured to reduce the number of documents with which sentence alignment is performed.


The word translator engine 202 is configured to translate each word within a source document to generate a translated source document. A source document is a document in the bilingual document collection of which a parallel translation is sought. The source document, for example, may comprise a news article written in English. For example, the training set generator 108 may be configured to determine whether any documents written in Romanian associated with a target library are parallel translations of, or contain parallel translations of fragments of, the source document.


A target library comprises one or more target documents. Target documents may include documents or segments that possibly comprise a parallel translation of the source document. Target documents may be obtained from sources such as the Internet or other known libraries and may be classified according to a classifier such as date, URL, or the like. The word translator engine 202 translates the source document word-by-word or literally into the language of the target library. To further the example, the news article written in English is translated word-by-word into Romanian, which may be utilized as the language of the target library.


The query engine 204 is configured to query the target library using the translated source document. The query engine 204 selects a subset comprising the documents that are most similar to the translated source document. The subset may be limited to the top N documents. In some embodiments, N may be a constant such as the number twenty (20).


The document selector engine 206 aligns one or more target sentences in each of the target documents in the subset to one or more sentences in the source document. By aligning the sentences, the training set generator 108 avoids falsely classifying documents as parallel based only on word-level comparisons. Based on the sentence alignments, the document selector engine 206 may discard one or more of the top N documents that, while comprising word-level translations, do not comprise sentence-level translations. For example, the document selector engine 206 may discard documents that do not have a specified number of sentences that can be aligned. In other embodiments, the document selector engine 206 may discard sentence pairs within the aligned documents that do not contain a specified number or percentage of words that are translations of each other. By aligning sentences within the source documents and the target documents, the training set generator 108 can distinguish parallel documents from comparable documents.


The parallel document engine 208 is configured to determine whether a document pair comprising the source document and the target document is a parallel translation. The parallel document engine 208 is discussed further with respect to FIG. 3 and FIG. 6.


The parallel fragment engine 210 is configured to identify parallel sentence fragments in non-parallel document pairs such as document pairs from news sources on the Internet. The parallel fragment engine 210 is discussed further in FIG. 4, FIG. 8, and FIG. 9. Although FIG. 2 shows various engines comprising the training set generator 108, fewer or more engines may comprise the training set generator 108 and still fall within the scope of the various embodiments.



FIG. 3 depicts a block diagram illustrating an exemplary parallel document engine 208 according to exemplary embodiments. The parallel document engine 208 determines whether the target document is the parallel translation of the source document. The parallel document engine 208 comprises a sentence analysis module 302 and a document classification module 304.


The sentence analysis module 302 determines whether aligned sentences based on the sentence alignments generated by the document selector engine 206 are translations of each other independently of the context within the document or segment. The sentence analysis module 302 inspects the sentence pairs between the sentences in the source document and the sentences in each of the documents in the subset comprising the documents that are most similar to the translated source document to compute sentence-level links. The sentence analysis module 302 distinguishes between parallel and non-parallel sentence pairs based on sentence features that can be extracted from a word-level alignment of the two aligned sentences. The sentence features are identified by linking each word in the sentences with its best translation candidate in the paired sentence. This linking process may be referred to as “greedily linking.”


Features that can be extracted by greedily linking include, for example, the percentage of words that are aligned, contiguous phrases that are aligned, and contiguous phrases that are not aligned. After the features have been extracted, a Maximum Entropy-based parallel sentence classifier (not shown) may be trained to obtain positive and negative classifiers for the sentences. In exemplary embodiments, the following Maximum Entropy probability equation may be used:







P


(


c
i

|
sp

)


=


1

Z


(
sp
)








j
=
1

k



λ
j


f
ij



(

c
,
sp

)










where ci is the class (c0=“parallel”, c1=“not parallel”), sp is the percentage of words in a sentence pair that have a translation in the other sentence of the sentence pair. Z(sp) is a normalization factor, and fij are the feature functions (indexed both by class and by feature). A feature function, f(sp), is defined as the value of the word overlap of the sentences in the sentence pair sp. The resulting model has free parameters λj, the feature weights. The parameter values that maximize the likelihood of a given training corpus can be computed using known optimization algorithms. Based on the positive and negative classifiers, sentence level links between the source document and the documents within the subset are obtained.


The document classification module 304 is configured to select the document within the subset that shares the most sentence level links with the source document. The document within the subset that shares the most sentence-level links with the source document is referred to as the target document. The document classification module 304 then determines whether the target document is a parallel translation of the source document by comparing the length of the target document to the length of the source document and determining whether a noisy sentence threshold and a monotone sentence threshold are met. This process is described in greater detail in association with FIG. 6. The output of the document classification module 304 may comprise an annotation indicating that the target document is a parallel translation of the source document.



FIG. 4 depicts a block diagram illustrating an exemplary parallel fragment engine 210 according to exemplary embodiments. The parallel fragment engine 210 may be configured to extract parallel sentence fragments from within non-parallel corpora. Thus, the parallel fragment engine 210 is configured to determine whether a sentence fragment in the source document is a parallel translation of a sentence fragment in the target document. For example, if the document classification module 304 determines that the source document and the target document are non-parallel, that is the target document is not a parallel translation of the source document, the documents are likely to be comparable documents. Comparable documents may also be referred to as “noisy translations.” The comparable documents may comprise sub-sentential parallel fragments that may be extracted by the parallel fragment engine 210 and added to a training data set. The parallel fragment engine 210 may comprise a candidate selection filter 402, a coarse lexicon 404, a probability module 406, a fine lexicon 408, and a fragment detection module 410.


The candidate selection filter 402 discards sentence pairs in the subset comprising the segments or documents selected by the document selection engine 206. The candidate selection filter 402 discards sentence pairs that have very few words that are translations of each other based on the coarse lexicon 404. For example, sentence pairs that comprise three or fewer words that appear in both the source sentence and the target sentence may be discarded. In other embodiments, sentence pairs may be discarded according to a percentage of words appearing in both the source sentence and the target sentence.


The coarse lexicon 404 comprises a probabilistic lexicon derived from an initial parallel corpus such as a training data set. The coarse lexicon 404 may be obtained by running a GIZA++ implementation of the IBM word alignment models on the initial parallel corpus. In the coarse lexicon, each source word may be associated with many possible translations. For example, in some embodiments, each source word is associated with, on average, twelve possible translations. Each of these possible translations may be further associated with a probability. The coarse lexicon is used to retain most of the existing comparable sentences occurring between the source document and the target document.


The probability module 406 is configured to greedily link each word in the source sentence to the best translation occurring in the target sentence. Using the fine lexicon 408, the probability module 406 then assigns values to each word alignment indicating the probability that the source word is properly aligned with, or a translation of, the target word. The probability module 406 may filter these values further. The fine lexicon 408 may be generated in exemplary embodiments according to the process discussed in connection with FIG. 8.


The fragment detection module 410 may be configured to detect a parallel sentence fragment based on the values assigned to each word alignment based on the fine lexicon 408. In some embodiments, the fragment detection module 410 may further filter the fragment matches. This process is discussed in greater detail in connection with FIG. 7. The output of the parallel fragment engine 210 comprises at least one parallel fragment that may be added to the training set.



FIG. 5 depicts a flowchart illustrating an exemplary process 500 for automatically generating parallel corpora from bilingual document sources according to exemplary embodiments. The process 500 identifies parallel segments and fragments in the bilingual documents according to sentence pairs identified between the documents. The process 500 may be used to generate a training set for statistical machine translation (SMT). The process 500 comprises accessing a bilingual document collection, translating words in a source document, querying a target library using the translated source document, selecting a subset comprising a target document from the target library, aligning the sentences in the source document with sentences in the target document, and determining whether the source document is a parallel translation of the target document. The method may alternatively or additionally include determining whether a fragment in the source document is parallel to a fragment in the target document. If the source document or a fragment thereof is a parallel translation of the target document, the parallel portions may be stored within a training set.


At step 502, each word in the source document is independently translated into the language of the target document to generate a translated source document. The words may be translated according to a dictionary, for example.


At step 504, the translated source document is run as a query against a large library comprising documents written in the target language. In step 506, the source document is paired with a subset comprising the most similar documents written in the target language according to the results of the query. In some embodiments, the subset may be limited to a constant number, N, of the most similar documents. N may be any number up to and including the number of documents in the target library. N may be limited by a computational capacity of a computer such as client 106.


At step 508, parallel sentence pairs between the source document and the documents in the subset are identified. The sentence pairs may be identified by the sentence analysis module 302.


After the sentence pairs are computed in step 508, step 510 is performed to determine whether the source document and at least one of the documents in the subset are parallel translations. In some embodiments, the parallel document engine 208 may perform this determination. The process used in step 510 is discussed in greater detail in connection with FIG. 6. If the documents are parallel, the parallel documents are added to the training set in step 512. In other embodiments, step 510 may not be performed and the process 500 proceeds to step 514 without determining whether any documents are parallel translations of each other.


If the documents are not parallel, step 514 is performed to determine whether there are parallel fragments in the paired documents. In some embodiments, the parallel fragment engine 210 may perform this determination. The process used in step 514 is discussed in greater detail in connection with FIG. 7 and FIG. 8. If there are parallel fragments in the sentences, the parallel fragments are added to the training set in step 516. In other embodiments, the process 500 may not perform step 514 and may instead terminate after performing steps 510 and 512.



FIG. 6 depicts a flowchart of a process 600 for determining whether a source document is a parallel translation of a document in the subset based on sentence alignments, according to exemplary embodiments. The process 600 may be performed as step 510 in process 500. In some embodiments, the process 600 may be performed by the parallel documents engine 208.


In step 602, a noisy sentence pair threshold is determined. A noisy sentence pair is a sentence pair comprising a first sentence that is at least a rough translation of one or more second sentences. For example, the first sentence may include the words, in a first language, “Mary went to the park with her dog,” while the second sentence may include the words, in a second language, “Mary went to the park.” In some embodiments, the noisy sentence threshold may be a percentage of the sentences in the source document. The noisy sentence threshold, for example, may be thirty percent (30%) of the sentences in the document.


At step 604, a monotone sentence pair threshold is determined. A monotone sentence pair is a sentence pair comprising words that have a high probability of being a parallel translation of one another. In exemplary embodiments, the monotone sentence pair may be a percentage of the noisy sentences. For example, the monotone sentence pair threshold may be ninety percent (90%) of the noisy sentence pairs. The noisy sentence pair threshold and the monotone sentence pair may be determined initially and/or later adjusted according to the accuracy of the identification of the parallel documents.


At step 606, the target document in the subset selected in step 506 having the most sentence pairs aligned with the source document according to step 508 is selected. After step 606, a series of determinations is made to determine whether the source document is a parallel translation of the target document. If the outcome of any of these determinations is negative, the source document is not determined to be parallel to the target document.


At step 608, comprises determining whether the length of the source document is approximately equal to the length of the target document is determined. Step 608 may be performed by the document classification module 304. This determination may be made according to the number of sentences present in the target document and in the source document. In some embodiments, the lengths of the documents are approximately equal if the length difference is no more than twenty-five percent (25%) of each of their lengths.


At step 610, if the target document and the source document are approximately the same length, the document classification module 304 may, in exemplary embodiments, determine whether the number of sentence pairs identified between the target document and the source documents satisfies the noisy sentence threshold.


If the noisy sentence threshold is satisfied, the monotone sentence pairs between the target document and the source document are identified, in step 612. The monotone sentence pairs may be identified from the noisy sentence pairs previously identified. At step 614, whether the number of identified monotone sentence pairs satisfies the monotone sentence threshold determined in step 604 is determined. This determination may be performed by the document classification module 304, in accordance with exemplary embodiments.


If the monotone sentence threshold is satisfied, the source document and the target document are identified as parallel and added to the training set, in step 512. The steps performed in process 600 may be reordered or performed substantially simultaneously and still fall within the scope of exemplary embodiments. Additional determinations known by those skilled in the art may be added to process 600 and still be within the scope of various embodiments.



FIG. 7 depicts a flowchart of a process 700 for extracting parallel sentence fragments from comparable corpora, according to exemplary embodiments. In exemplary embodiments, the parallel fragment engine 210 may perform process 700. Parallel sentence fragments comprise sub-sentential parallel translations found within documents in bilingual collections. For example, corpora may be comparable if the source document and the target document are determined to not be parallel according to the process 600.


To extract parallel sentence fragments, a coarse lexicon and a fine lexicon are generated from an existing parallel training corpus in step 702. In exemplary embodiments, the coarse lexicon may comprise the coarse lexicon 404 and the fine lexicon may comprise the fine lexicon 408, discussed in FIG. 4. The coarse lexicon may be generated by running the GIZA++ implementation of the IBM word alignment models. The coarse lexicon is configured to identify most of the existing parallel data. The fine lexicon may be generated according to the process described in connection with FIG. 8 according to exemplary embodiments.


At step 704, sentence pairs which have few words that are translations of each other using the coarse lexicon are discarded. A lack of parallel words in a sentence pair according to the coarse lexicon indicates that it is unlikely that there are parallel fragments within the sentence pair.


At step 706, each word in the source sentence is greedily linked to the best translation in the target sentence. The word linkages are a way to quantify the differences between source sentences that are “mostly translated” and “mostly not translated” in the target sentences. By representing the target sentence as a numeric signal where translated words correspond to a positive value and not translated words correspond to a negative value, the process 700 is able to retain fragments within the sentence that are mostly positive. The word linkages may then be assigned a specific numerical value in steps 708 and 710.


At step 708, a positive value is assigned to the word linkages that indicate translated words in the sentence pair. The positive value corresponds to a positive dependency of the linked words. The numerical value is retrieved or otherwise accessed from the fine lexicon generated in step 702 based on the linked words.


At step 710, not translated words in the sentence pair are assigned a negative value to indicate that there is little or no probability that the words can, or should be, linked. In some embodiments, the value assigned to the not translated words is negative one (−1).


At step 712, a smoothing filter is applied to the numerical signal generated according to the sentence pair to obtain a filtered signal. In some embodiments, the smoothing filter may comprise an averaging filter which sets the value at each point to be the average of several values surrounding the value. For example, the surrounding five (5) values may be averaged.


At step 714, fragment matches within the sentence pair are determined. If there is a parallel fragment in the sentence pair, the positive fragments having a corresponding positive filtered signal are retained. If there is no fragment match, or the filtered signal is negative, the sentence pair is discarded.


At step 716, unlikely matching fragments are discarded. The application of the smoothing filter may, for example, distort the signal to produce a short fragment that is a false positive. For example, in some embodiments, fragments comprising less than three words may be discarded to avoid false positives. If the fragments that are likely to be a false positive are discarded, the process 700 returns to step 516 comprising adding the parallel fragments to the training set.



FIG. 8 depicts a flowchart of a process 800 for generating a fine lexicon, such as the fine lexicon 408, according to exemplary embodiments. The fine lexicon comprises fewer possible translations (e.g., an average of five (5) possible translations for each source word) for each source word than the coarse lexicon (e.g., coarse lexicon 404 which may comprise an average of twelve (12) possible translations). Thus, the fine lexicon is used to identify the fragment pairs that are likely to be parallel translations. For each possible translation, the fine lexicon comprises a positive numerical probability that the target word is a translation of the source word. Additionally, the fine lexicon also comprises a negative numerical probability that a target word is not a translation of a source word.


At step 802, a parallel training corpus is word aligned. Word aligning the parallel training corpus generates annotations in the parallel training corpus indicating that a word in the target language is a possible translation of a word in the source language.


At step 804, a Log-Likelihood-Ratio (LLR) score is calculated to measure the likelihood that a source word and a target word are not independent. The LLR score is used to estimate the independence of pairs of words which cooccur in a parallel corpus. According to exemplary embodiments, the source word and the target word will cooccur in the source document and the target document if the two words are also linked together in the word aligned parallel training corpus. According to some embodiments, the LLR score may be computed using the equation:







LLR
score

=





t
?



{

t
,

-
t


}









s
?



{

s
,

-
s


}






C


(


t
?

,

s
?


)




log


(


p


(


t
?

|

s
?


)



p


(

t
?

)



)










corresponding words that are linked together in the respective target and source language sentences of an aligned sentence pair. In this equation, −t and −s are the corresponding words that are not aligned in the respective sentences. The variables t? and S? range over these values, and C(t?, s?) is the observed joint count for the values of t? and s?. The probabilities in the formula refer to maximum likelihood estimates.


At step 806, both a positive probability and a negative probability are determined based on classifying the LLR score as indicating a positive association or a negative association. The positive probability estimates the probability that the target word translates into the source word. The negative probability estimates the probability that the target word does not translate into the source word.


At step 808, normalizing factors for each word in the source document are computed. One normalizing factor is based on the summation of the positive LLR scores while a second normalizing factor is based on a summation of the negative LLR scores.


At step 810, each term, or value associated with each word alignment, is divided by the corresponding normalizing factor calculated in step 808. In further embodiments of the fine lexicon, the probability distributions may be recalculated by reversing the source language and the target language. The reversed probability distributions may be calculated using process 800.


The above-described functions and components can be comprised of instructions that are stored on a storage medium. The instructions can be retrieved and executed by a processor. Some examples of instructions are software, program code, and firmware. Some examples of storage medium are memory devices, tape, disks, integrated circuits, and servers. The instructions are operational when executed by the processor to direct the processor to operate in accord with various embodiments. Those skilled in the art are familiar with instructions, processor(s), and storage medium.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. For example, any of the elements associated with the training set generator 108 may employ any of the desired functionality set forth hereinabove. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments.

Claims
  • 1. A method for identifying parallel sub-sentential fragments in a bilingual collection of documents, the method comprising: translating a source document in the bilingual collection of documents using a processor configured to perform statistical machine translation;querying a target library associated with the bilingual collection of documents using the translated source document using a query engine of the processor;identifying a plurality of target documents in the target library that are most similar to the translated source document, based on the query, using the query engine;aligning a source sentence associated with the source document to one or more target sentences associated with each of the plurality of identified target documents to generate one or more aligned sentence pairs, using a document selector engine of the processor;discarding an aligned sentence pair based on a number of words in the sentence pair that are translations of each other, using the document selector engine; anddetermining for each of the aligned sentence pairs that have not been discarded whether a source fragment in the source sentence comprises a parallel translation of a target fragment in the target sentence based on a number of words in the source fragment that are translations of words in the target fragment, the determining performed using a parallel document engine of the processor and comprising: determining a percentage of words that are aligned in each sentence pair of the target document using greedily linking,determining a number of sentence pairs in the target document that are parallel sentence pairs based on the percentage of words that are aligned in each sentence pair, andselecting the target document as being a parallel translation of the source document according to a number of parallel sentence pairs in the target document.
  • 2. The method recited in claim 1 further comprising discarding a sentence pair based on a number of words that are translations of each other determined according to a coarse lexicon.
  • 3. The method recited in claim 2 further comprising assigning a translation probability to words greedily linked in the aligned source sentence, and based on a numerical value retrieved from a fine lexicon.
  • 4. The method recited in claim 3 further comprising detecting a parallel fragment based on a threshold associated with a number of essentially continuous words assigned a positive translation probability.
  • 5. The method recited in claim 1 further comprising determining whether the source document comprises a parallel translation of the target document based on a number of sentences that can be aligned in the source document and the target document.
  • 6. A computer program embodied on a non-transitory computer readable medium having instructions for identifying parallel sub-sentential fragments in a bilingual collection, the instructions comprising the steps: translating a source document from a bilingual collection;querying a target library associated with the bilingual collection using the translated source document;identifying one or more target documents based on the query;aligning a source sentence associated with the source document to one or more target sentences associated with the one or more target documents; anddetermining whether a source fragment associated with the source sentence comprises a parallel translation of a target fragment associated with the one or more target sentences, the determination comprising: determining a percentage of words that are aligned in each sentence pair of the target document using greedily linking,determining a number of sentence pairs in the target document that are parallel sentence pairs based on the percentage of words that are aligned in each sentence pair, andselecting the target document as being a parallel translation of the source document according to a number of parallel sentence pairs in the target document.
  • 7. The computer program recited in claim 6 further comprising an instruction for discarding the one or more target sentences based on a coarse lexicon.
  • 8. The computer program recited in claim 7 further comprising an instruction for assigning a translation probability to words in the aligned source sentence based on a fine lexicon.
  • 9. The computer program recited in claim 8 further comprising an instruction for detecting a parallel fragment based on a threshold associated with a number of essentially continuous words assigned a positive translation probability.
  • 10. The computer program recited in claim 6 further comprising an instruction for determining whether the source document comprises a parallel translation of the target document.
  • 11. A method for identifying parallel documents in a bilingual collection of documents, the method comprising: translating a source document from a bilingual collection of documents using a processor configured to perform statistical machine translation;querying a target library associated with the bilingual collection of documents using the translated source document using a query engine of the processor;identifying a predetermined limited number one or more target documents in the target library that are most similar to the translated source document, based on the query using the query engine;aligning one or more source sentence associated with the source document to one or more target sentences associated with each of the one or more identified target documents to generate one or more aligned sentence pairs, the aligning performed using a document selector engine of the processor;discarding each of the one or more identified target documents that does not have a specified number of sentence pairs that can be aligned, the discarding performed using the document selector engine;determining for each of the one or more identified target documents a number of aligned sentence pairs that are translations of each other, the determining performed using the document selector engine; anddetermining whether the source document comprises a parallel translation of one of the one or more target documents, the determining performed using a parallel document engine of the processor and comprising: determining a percentage of words that are aligned in each sentence pair of the target document using greedily linking,determining a number of sentence pairs in the target document that are parallel sentence pairs based on the percentage of words that are aligned in each sentence pair, andselecting the target document as being a parallel translation of the source document according to a number of parallel sentence pairs in the target document.
  • 12. The method recited in claim 11 wherein determining whether the source document comprises a parallel translation of one of the one or more target documents further comprises determining whether the number of the source sentences aligned to the one or more target sentences satisfies a threshold associated with noisy sentences.
  • 13. The method recited in claim 11 wherein determining whether the source document comprises a parallel translation of the target document further comprises determining whether the number of the source sentences aligned to the one or more target sentences satisfies a threshold associated with monotone sentences.
  • 14. The method recited in claim 11 further comprising determining whether a source fragment associated with the source sentence comprises a parallel translation of a target fragment associated with one of the one or more target sentences.
  • 15. A system for identifying parallel documents in a bilingual collection, the system comprising: a word translator engine stored in a memory, executable by a processor, and configured to translate a source document from a bilingual collection;a query engine configured to query a target library associated with the bilingual collection using the translated source document and identify one or more target documents based on the query;a document selector engine configured to align a source sentence associated with the source document to one or more target sentences associated with the one or more target documents; anda parallel document engine configured to determine whether the source document comprises a parallel translation of one of the one or more the target documents, the parallel document engine further configured to: determining a percentage of words that are aligned in each sentence pair of the target document using greedily linking,determining a number of sentence pairs in the target document that are parallel sentence pairs based on the percentage of words that are aligned in each sentence pair, andselecting the target document as being a parallel translation of the source document according to a number of parallel sentence pairs in the target document.
  • 16. The system recited in claim 15 wherein the parallel document engine further comprises a sentence analysis module configured to select the one of the one or more target documents according to a number of the source sentences within the source document aligned to the one or more target sentences.
  • 17. The system recited in claim 16 wherein the parallel document engine further comprises a document classification module configured to determine whether the number of the source sentences aligned to the one or more target sentences satisfies a threshold associated with noisy sentences.
  • 18. The system recited in claim 16 wherein the parallel document engine further comprises a document classification module configured to determine whether the number of the source sentences aligned to the one or more target sentences satisfies a threshold associated with monotone sentences.
  • 19. The system recited in claim 15 further comprising a parallel fragment engine configured to determine whether a source fragment associated with the source sentence comprises a parallel translation of a target fragment associated with the one or more target sentences.
CROSS-REFERENCE

This United States nonprovisional patent application claims the benefit of U.S. provisional application No. 60/790,131 filed Apr. 7, 2006 and entitled “Systems and Methods for Identifying Parallel Documents and Sentence Fragments in Multilingual Document Collections” which is incorporated by reference herein.

GOVERNMENT INTERESTS

The research and development described in this application were supported by the GALE program of the Defense Advanced Research Projects Agency (DARPA), Contract No. HR0011-06-C-0022. The U.S. government may have certain rights in the claimed inventions.

US Referenced Citations (357)
Number Name Date Kind
4502128 Okajima et al. Feb 1985 A
4599691 Sakaki et al. Jul 1986 A
4615002 Innes Sep 1986 A
4661924 Okamoto et al. Apr 1987 A
4787038 Doi et al. Nov 1988 A
4791587 Doi Dec 1988 A
4800522 Miyao et al. Jan 1989 A
4814987 Miyao et al. Mar 1989 A
4942526 Okajima et al. Jul 1990 A
4980829 Okajima et al. Dec 1990 A
5020112 Chou May 1991 A
5088038 Tanaka et al. Feb 1992 A
5091876 Kumano et al. Feb 1992 A
5146405 Church Sep 1992 A
5167504 Mann Dec 1992 A
5181163 Nakajima et al. Jan 1993 A
5212730 Wheatley et al. May 1993 A
5218537 Hemphill et al. Jun 1993 A
5220503 Suzuki et al. Jun 1993 A
5267156 Nomiyama Nov 1993 A
5268839 Kaji Dec 1993 A
5295068 Nishino et al. Mar 1994 A
5302132 Corder Apr 1994 A
5311429 Tominaga May 1994 A
5387104 Corder Feb 1995 A
5408410 Kaji Apr 1995 A
5432948 Davis et al. Jul 1995 A
5442546 Kaji et al. Aug 1995 A
5477450 Takeda et al. Dec 1995 A
5477451 Brown et al. Dec 1995 A
5488725 Turtle et al. Jan 1996 A
5495413 Kutsumi et al. Feb 1996 A
5497319 Chong et al. Mar 1996 A
5510981 Berger et al. Apr 1996 A
5528491 Kuno et al. Jun 1996 A
5535120 Chong et al. Jul 1996 A
5541836 Church et al. Jul 1996 A
5541837 Fushimoto Jul 1996 A
5548508 Nagami Aug 1996 A
5644774 Fukumochi et al. Jul 1997 A
5675815 Yamauchi et al. Oct 1997 A
5687383 Nakayama et al. Nov 1997 A
5696980 Brew Dec 1997 A
5724593 Hargrave, III et al. Mar 1998 A
5752052 Richardson et al. May 1998 A
5754972 Baker et al. May 1998 A
5761631 Nasukawa Jun 1998 A
5761689 Rayson et al. Jun 1998 A
5768603 Brown et al. Jun 1998 A
5779486 Ho et al. Jul 1998 A
5781884 Pereira et al. Jul 1998 A
5794178 Caid et al. Aug 1998 A
5805832 Brown et al. Sep 1998 A
5806032 Sproat Sep 1998 A
5819265 Ravin et al. Oct 1998 A
5826219 Kutsumi Oct 1998 A
5826220 Takeda et al. Oct 1998 A
5845143 Yamauchi et al. Dec 1998 A
5848385 Poznanski et al. Dec 1998 A
5848386 Motoyama Dec 1998 A
5850561 Church et al. Dec 1998 A
5855015 Shoham Dec 1998 A
5864788 Kutsumi Jan 1999 A
5867811 O'Donoghue Feb 1999 A
5870706 Alshawi Feb 1999 A
5893134 O'Donoghue et al. Apr 1999 A
5903858 Saraki May 1999 A
5907821 Kaji May 1999 A
5909681 Passera et al. Jun 1999 A
5930746 Ting Jul 1999 A
5966685 Flanagan et al. Oct 1999 A
5966686 Heidorn et al. Oct 1999 A
5983169 Kozma Nov 1999 A
5987402 Murata et al. Nov 1999 A
5987404 Della Pietra et al. Nov 1999 A
5991710 Papineni et al. Nov 1999 A
5995922 Penteroudakis et al. Nov 1999 A
6018617 Sweitzer et al. Jan 2000 A
6031984 Walser Feb 2000 A
6032111 Mohri Feb 2000 A
6047252 Kumano et al. Apr 2000 A
6064819 Franssen et al. May 2000 A
6064951 Park et al. May 2000 A
6073143 Nishikawa et al. Jun 2000 A
6077085 Parry et al. Jun 2000 A
6092034 McCarley et al. Jul 2000 A
6119077 Shinozaki Sep 2000 A
6131082 Hargrave, III et al. Oct 2000 A
6161082 Goldberg et al. Dec 2000 A
6182014 Kenyon et al. Jan 2001 B1
6182027 Nasukawa et al. Jan 2001 B1
6205456 Nakao Mar 2001 B1
6206700 Brown et al. Mar 2001 B1
6223150 Duan et al. Apr 2001 B1
6233544 Alshawi May 2001 B1
6233545 Datig May 2001 B1
6233546 Datig May 2001 B1
6236958 Lange et al. May 2001 B1
6269351 Black Jul 2001 B1
6275789 Moser et al. Aug 2001 B1
6278967 Akers et al. Aug 2001 B1
6278969 King et al. Aug 2001 B1
6285978 Bernth et al. Sep 2001 B1
6289302 Kuo Sep 2001 B1
6304841 Berger et al. Oct 2001 B1
6311152 Bai et al. Oct 2001 B1
6317708 Witbrock et al. Nov 2001 B1
6327568 Joost Dec 2001 B1
6330529 Ito Dec 2001 B1
6330530 Horiguchi et al. Dec 2001 B1
6356864 Foltz et al. Mar 2002 B1
6360196 Poznanski et al. Mar 2002 B1
6389387 Poznanski et al. May 2002 B1
6393388 Franz et al. May 2002 B1
6393389 Chanod et al. May 2002 B1
6415250 van den Akker Jul 2002 B1
6460015 Hetherington et al. Oct 2002 B1
6470306 Pringle et al. Oct 2002 B1
6473729 Gastaldo et al. Oct 2002 B1
6473896 Hicken et al. Oct 2002 B1
6480698 Ho et al. Nov 2002 B2
6490549 Ulicny et al. Dec 2002 B1
6498921 Ho et al. Dec 2002 B1
6502064 Miyahira et al. Dec 2002 B1
6529865 Duan et al. Mar 2003 B1
6535842 Roche et al. Mar 2003 B1
6587844 Mohri Jul 2003 B1
6609087 Miller et al. Aug 2003 B1
6647364 Yumura et al. Nov 2003 B1
6691279 Yoden et al. Feb 2004 B2
6745161 Arnold et al. Jun 2004 B1
6745176 Probert, Jr. et al. Jun 2004 B2
6757646 Marchisio Jun 2004 B2
6782356 Lopke Aug 2004 B1
6810374 Kang Oct 2004 B2
6848080 Lee et al. Jan 2005 B1
6857022 Scanlan Feb 2005 B1
6885985 Hull Apr 2005 B2
6901361 Portilla May 2005 B1
6904402 Wang et al. Jun 2005 B1
6952665 Shimomura et al. Oct 2005 B1
6983239 Epstein Jan 2006 B1
6996518 Jones et al. Feb 2006 B2
6996520 Levin Feb 2006 B2
6999925 Fischer et al. Feb 2006 B2
7013262 Tokuda et al. Mar 2006 B2
7016827 Ramaswamy et al. Mar 2006 B1
7016977 Dunsmoir et al. Mar 2006 B1
7024351 Wang Apr 2006 B2
7031911 Zhou et al. Apr 2006 B2
7050964 Menzes et al. May 2006 B2
7054803 Eisele May 2006 B2
7085708 Manson Aug 2006 B2
7089493 Hatori et al. Aug 2006 B2
7103531 Moore Sep 2006 B2
7107204 Liu et al. Sep 2006 B1
7107215 Ghali Sep 2006 B2
7113903 Riccardi et al. Sep 2006 B1
7143036 Weise Nov 2006 B2
7146358 Gravano et al. Dec 2006 B1
7149688 Schalkwyk Dec 2006 B2
7171348 Scanlan Jan 2007 B2
7174289 Sukehiro Feb 2007 B2
7177792 Knight et al. Feb 2007 B2
7191115 Moore Mar 2007 B2
7194403 Okura et al. Mar 2007 B2
7197451 Carter et al. Mar 2007 B1
7206736 Moore Apr 2007 B2
7209875 Quirk et al. Apr 2007 B2
7219051 Moore May 2007 B2
7239998 Xun Jul 2007 B2
7249012 Moore Jul 2007 B2
7249013 Al-Onaizan et al. Jul 2007 B2
7283950 Pournasseh et al. Oct 2007 B2
7295962 Marcu Nov 2007 B2
7302392 Thenthiruperai et al. Nov 2007 B1
7319949 Pinkham Jan 2008 B2
7340388 Soricut et al. Mar 2008 B2
7346487 Li Mar 2008 B2
7346493 Ringger et al. Mar 2008 B2
7349839 Moore Mar 2008 B2
7349845 Coffman et al. Mar 2008 B2
7356457 Pinkham et al. Apr 2008 B2
7369998 Sarich et al. May 2008 B2
7373291 Garst May 2008 B2
7383542 Richardson et al. Jun 2008 B2
7389222 Langmead et al. Jun 2008 B1
7389234 Schmid et al. Jun 2008 B2
7403890 Roushar Jul 2008 B2
7409332 Moore Aug 2008 B2
7409333 Wilkinson et al. Aug 2008 B2
7447623 Appleby Nov 2008 B2
7454326 Marcu et al. Nov 2008 B2
7496497 Liu Feb 2009 B2
7533013 Marcu May 2009 B2
7536295 Cancedda et al. May 2009 B2
7546235 Brockett et al. Jun 2009 B2
7552053 Gao et al. Jun 2009 B2
7565281 Appleby Jul 2009 B2
7574347 Wang Aug 2009 B2
7580830 Al-Onaizan et al. Aug 2009 B2
7587307 Cancedda et al. Sep 2009 B2
7620538 Marcu et al. Nov 2009 B2
7620632 Andrews Nov 2009 B2
7624005 Koehn et al. Nov 2009 B2
7624020 Yamada et al. Nov 2009 B2
7627479 Travieso et al. Dec 2009 B2
7680646 Lux-Pogodalla et al. Mar 2010 B2
7689405 Marcu Mar 2010 B2
7698124 Menezes et al. Apr 2010 B2
7698125 Graehl et al. Apr 2010 B2
7707025 Whitelock Apr 2010 B2
7711545 Koehn May 2010 B2
7716037 Precoda May 2010 B2
7801720 Satake et al. Sep 2010 B2
7813918 Muslea et al. Oct 2010 B2
7822596 Elgazzar et al. Oct 2010 B2
7925494 Cheng et al. Apr 2011 B2
7957953 Moore Jun 2011 B2
7974833 Soricut et al. Jul 2011 B2
8060360 He Nov 2011 B2
8145472 Shore et al. Mar 2012 B2
8214196 Yamada et al. Jul 2012 B2
8244519 Bicici et al. Aug 2012 B2
8265923 Chatterjee et al. Sep 2012 B2
8296127 Marcu et al. Oct 2012 B2
8615389 Marcu Dec 2013 B1
8666725 Och Mar 2014 B2
20010009009 Iizuka Jul 2001 A1
20010029455 Chin et al. Oct 2001 A1
20020002451 Sukehiro Jan 2002 A1
20020013693 Fuji Jan 2002 A1
20020040292 Marcu Apr 2002 A1
20020046018 Marcu et al. Apr 2002 A1
20020046262 Heilig et al. Apr 2002 A1
20020059566 Delcambre et al. May 2002 A1
20020078091 Vu et al. Jun 2002 A1
20020087313 Lee et al. Jul 2002 A1
20020099744 Coden et al. Jul 2002 A1
20020107683 Eisele Aug 2002 A1
20020111788 Kimpara Aug 2002 A1
20020111789 Hull Aug 2002 A1
20020111967 Nagase Aug 2002 A1
20020143537 Ozawa et al. Oct 2002 A1
20020152063 Tokieda et al. Oct 2002 A1
20020169592 Aityan Nov 2002 A1
20020188438 Knight et al. Dec 2002 A1
20020198699 Greene et al. Dec 2002 A1
20020198701 Moore Dec 2002 A1
20030009322 Marcu Jan 2003 A1
20030023423 Yamada et al. Jan 2003 A1
20030144832 Harris Jul 2003 A1
20030154071 Shreve Aug 2003 A1
20030158723 Masuichi et al. Aug 2003 A1
20030176995 Sukehiro Sep 2003 A1
20030182102 Corston-Oliver et al. Sep 2003 A1
20030191626 Al-Onaizan et al. Oct 2003 A1
20030204400 Marcu et al. Oct 2003 A1
20030216905 Chelba et al. Nov 2003 A1
20030217052 Rubenczyk et al. Nov 2003 A1
20030233222 Soricut et al. Dec 2003 A1
20040006560 Chan et al. Jan 2004 A1
20040015342 Garst Jan 2004 A1
20040024581 Koehn et al. Feb 2004 A1
20040030551 Marcu et al. Feb 2004 A1
20040035055 Zhu et al. Feb 2004 A1
20040044530 Moore Mar 2004 A1
20040068411 Scanlan Apr 2004 A1
20040098247 Moore May 2004 A1
20040102956 Levin May 2004 A1
20040102957 Levin May 2004 A1
20040111253 Luo et al. Jun 2004 A1
20040115597 Butt Jun 2004 A1
20040122656 Abir Jun 2004 A1
20040167768 Travieso et al. Aug 2004 A1
20040167784 Travieso et al. Aug 2004 A1
20040193401 Ringger et al. Sep 2004 A1
20040230418 Kitamura Nov 2004 A1
20040260532 Richardson et al. Dec 2004 A1
20050021322 Richardson et al. Jan 2005 A1
20050021517 Marchisio Jan 2005 A1
20050033565 Koehn Feb 2005 A1
20050038643 Koehn Feb 2005 A1
20050055199 Ryzchachkin et al. Mar 2005 A1
20050055217 Sumita et al. Mar 2005 A1
20050060160 Roh et al. Mar 2005 A1
20050075858 Pournasseh et al. Apr 2005 A1
20050086226 Krachman Apr 2005 A1
20050102130 Quirk et al. May 2005 A1
20050125218 Rajput et al. Jun 2005 A1
20050149315 Flanagan et al. Jul 2005 A1
20050171757 Appleby Aug 2005 A1
20050204002 Friend Sep 2005 A1
20050228640 Aue et al. Oct 2005 A1
20050228642 Mau et al. Oct 2005 A1
20050228643 Munteanu et al. Oct 2005 A1
20050267738 Wilkinson et al. Dec 2005 A1
20060004563 Campbell et al. Jan 2006 A1
20060015320 Och Jan 2006 A1
20060015323 Udupa et al. Jan 2006 A1
20060020448 Chelba et al. Jan 2006 A1
20060041428 Fritsch et al. Feb 2006 A1
20060095248 Menezes et al. May 2006 A1
20060111891 Menezes et al. May 2006 A1
20060111892 Menezes et al. May 2006 A1
20060111896 Menezes et al. May 2006 A1
20060129424 Chan Jun 2006 A1
20060142995 Knight et al. Jun 2006 A1
20060150069 Chang Jul 2006 A1
20060167984 Fellenstein et al. Jul 2006 A1
20060190241 Goutte et al. Aug 2006 A1
20070016400 Soricutt et al. Jan 2007 A1
20070016401 Ehsani et al. Jan 2007 A1
20070033001 Muslea et al. Feb 2007 A1
20070050182 Sneddon et al. Mar 2007 A1
20070078654 Moore Apr 2007 A1
20070078845 Scott et al. Apr 2007 A1
20070083357 Moore et al. Apr 2007 A1
20070094169 Yamada et al. Apr 2007 A1
20070112553 Jacobson May 2007 A1
20070112555 Lavi et al. May 2007 A1
20070112556 Lavi et al. May 2007 A1
20070122792 Galley et al. May 2007 A1
20070168202 Changela et al. Jul 2007 A1
20070168450 Prajapat et al. Jul 2007 A1
20070180373 Bauman et al. Aug 2007 A1
20070219774 Quirk et al. Sep 2007 A1
20070265825 Cancedda et al. Nov 2007 A1
20070265826 Chen et al. Nov 2007 A1
20070269775 Andreev et al. Nov 2007 A1
20070294076 Shore et al. Dec 2007 A1
20080052061 Kim et al. Feb 2008 A1
20080065478 Kohlmeier et al. Mar 2008 A1
20080114583 Al-Onaizan et al. May 2008 A1
20080154581 Lavi et al. Jun 2008 A1
20080183555 Walk Jul 2008 A1
20080215418 Kolve et al. Sep 2008 A1
20080249760 Marcu et al. Oct 2008 A1
20080270109 Och Oct 2008 A1
20080270112 Shimohata Oct 2008 A1
20080281578 Kumaran et al. Nov 2008 A1
20080307481 Panje Dec 2008 A1
20090076792 Lawson-Tancred Mar 2009 A1
20090083023 Foster et al. Mar 2009 A1
20090119091 Sarig May 2009 A1
20090125497 Jiang et al. May 2009 A1
20090234634 Chen et al. Sep 2009 A1
20090241115 Raffo et al. Sep 2009 A1
20090326912 Ueffing Dec 2009 A1
20100017293 Lung et al. Jan 2010 A1
20100042398 Marcu et al. Feb 2010 A1
20100138213 Bicici et al. Jun 2010 A1
20100174524 Koehn Jul 2010 A1
20110029300 Marcu et al. Feb 2011 A1
20110066643 Cooper et al. Mar 2011 A1
20110082684 Soricut et al. Apr 2011 A1
20120323554 Hopkins et al. Dec 2012 A1
Foreign Referenced Citations (14)
Number Date Country
202005022113.9 Feb 2014 DE
0469884 Feb 1992 EP
0715265 Jun 1996 EP
0933712 Aug 1999 EP
0933712 Jan 2001 EP
07244666 Jan 1995 JP
10011447 Jan 1998 JP
11272672 Oct 1999 JP
2004501429 Jan 2004 JP
2004062726 Feb 2004 JP
2008101837 May 2008 JP
5452868 Jan 2014 JP
WO03083709 Oct 2003 WO
WO 2004042615 May 2004 WO
Non-Patent Literature Citations (256)
Entry
http://web.archive.org/web/20040222202831/http://en.wikipedia.org/wiki/Document, Feb, 24, 2004.
http://wayback.archive.org/web/20050101000000*/http:////dictionary.reference.com//browse//identifying, Feb 28, 2005.
Abney, Stephen, “Parsing by Chunks,” 1991, Principle-Based Parsing: Computation and Psycholinguistics, vol. 44, pp. 257-279.
Al-Onaizan et al., “Statistical Machine Translation,” 1999, JHU Summer Tech Workshop, Final Report, pp. 1-42.
Al-Onaizan, Y. and Knight, K., “Named Entity Translation: Extended Abstract”, 2002, Proceedings of HLT-02, San Diego, CA.
Al-Onaizan, Y. and Knight, K., “Translating Named Entities Using Monolingual and Bilingual Resources,” 2002, Proc. of the 40th Annual Meeting of the ACL, pp. 400-408.
Al-Onaizan et al., “Translating with Scarce Resources,” 2000, 17th National Conference of the American Association for Artificial Intelligence, Austin, TX, pp. 672-678.
Alshawi et al., “Learning Dependency Translation Models as Collections of Finite-State Head Transducers,” 2000, Computational Linguistics, vol. 26, pp. 45-60.
Arbabi et al., “Algorithms for Arabic name transliteration,” Mar. 1994, IBM Journal of Research and Development, vol. 38, Issue 2, pp. 183-194.
Barnett et al., “Knowledge and Natural Language Processing,” Aug. 1990, Communications of the ACM, vol. 33, Issue 8, pp. 50-71.
Bangalore, S. and Rambow, O., “Corpus-Based Lexical Choice in Natural Language Generation,” 2000, Proc. of the 38th Annual ACL, Hong Kong, pp. 464-471.
Bangalore, S. and Rambow, O., “Exploiting a Probabilistic Hierarchical Model for Generation,” 2000, Proc. of 18th conf. on Computational Linguistics, vol. 1, pp. 42-48.
Bangalore, S. and Rambow, 0., “Evaluation Metrics for Generation,” 2000, Proc. of the 1st International Natural Language Generation Conf., vol. 14, pp. 1-8.
Bangalore, S. and Rambow, 0., “Using TAGs, a Tree Model, and a Language Model for Generation,” May 2000, Workshop TAG+5, Paris.
Baum, Leonard, “An Inequality and Associated Maximization Technique in Statistical Estimation for Probabilistic Functions of Markov Processes”, 1972, Inequalities 3:1-8.
Bikel et al., “An Algorithm that Learns What's in a Name,” 1999, Machine Learning Journal Special Issue on Natural Language Learning, vol. 34, pp. 211-232.
Brants, Thorsten, “TnT—A Statistical Part-of-Speech Tagger,” 2000, Proc. of the 6th Applied Natural Language Processing Conference, Seattle.
Brill, Eric. “Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part of Speech Tagging”; 1995, Computational Linguistics, vol. 21, No. 4, pp. 543-565.
Brown et al., “A Statistical Approach to Machine Translation,” Jun. 1990, Computational Linguistics, vol. 16, No. 2, pp. 79-85.
Brown, Ralf, “Automated Dictionary Extraction for “Knowledge-Free” Example-Based Translation,” 1997, Proc. of 7th Int'l Cont. on Theoretical and Methodological Issues in MT, Santa Fe, NM, pp. 111-118.
Brown et al., “The Mathematics of Statistical Machine Translation: Parameter D Estimation,” 1993, Computational Linguistics, vol. 19, Issue 2, pp. 263-311.
Brown et al., “Word-Sense Disambiguation Using Statistical Methods,” 1991, Proc. of 29th Annual ACL, pp. 264-270.
Carl, Michael. “A Constructivist Approach to Machine Translation,” 1998, New Methods of Language Processing and Computational Natural Language Learning, pp. 247-256.
Chen, K. and Chen, H., “Machine Translation: An Integrated Approach,” 1995, Proc. of 6th In'tl Cont. on Theoretical and Methodological Issue in MT, pp. 287-294.
Chinchor, Nancy, “MUC-7 Named Entity Task Definition,” 1997, Version 3.5.
Clarkson, P. and Rosenfeld, R., “Statistical Language Modeling Using the CMU-Cambridge Toolkit”, 1997, Proc. ESCA Eurospeech, Rhodes, Greece, pp. 2707-2710.
Corston-Oliver, Simon, “Beyond String Matching and Cue Phrases: Improving Efficiency and Coverage in Discourse Analysis”, 1998, The MAI Spring Symposium on Intelligent Text Summarization, pp. 9-15.
Dagan, I. and Itai, A., “Word Sense Disambiguation Using a Second Language Monolingual Corpus”, 1994, Computational Linguistics, vol. 20, No. 4, pp. 563-596.
Dempster et al., “Maximum Likelihood from Incomplete Data via the EM Algorithm”, 1977, Journal of the Royal Statistical Society, vol. 39, No. 1, pp. 1-38.
Diab, M. and Finch, S., “A Statistical Word-Level Translation Model for Comparable Corpora,” 2000, In Proc.of the Conference on Content Based Multimedia Information Access (RIAO).
Elhadad, M. and Robin, J., “An Overview of Surge: a Reusable Comprehensive Syntactic Realization Component,” 1996, Technical Report 96-03, Department of Mathematics and Computer Science, Ben Gurion University, Beer Sheva, Israel.
Elhadad, M. and Robin, J., “Controlling Content Realization with Functional Unification Grammars”, 1992, Aspects of Automated Natural Language Generation, Dale et al. (eds)., Springer Verlag, pp. 89-104.
Elhadad et al., “Floating Constraints in Lexical Choice”, 1996, ACL, 23(2): 195-239.
Elhadad, Michael, “FUF: the Universal Unifier User Manual Version 5.2”, 1993, Department of Computer Science, Ben Gurion University, Beer Sheva, Israel.
Elhadad. M., and Robin, J., “Surge: a Comprehensive Plug-in Syntactic Realization Component for Text Generation”, 1999 (available at http://www.cs.bgu.ac.il/-elhadad/pub.html).
Elhadad, Michael, “Using Argumentation to Control Lexical Choice: A Functional Unification Implementation”, 1992, Ph.D. Thesis, Graduate School of Arts and Sciences, Columbia University.
Fung, Pascale, “Compiling Bilingual Lexicon Entries From a Non-Parallel English-Chinese Corpus”, 1995, Proc, of the Third Workshop on Very Large Corpora, Boston, MA, pp. 173-183.
Fung, P. and Vee, L., “An IR Approach for Translating New Words from Nonparallel, Comparable Texts”, 1998, 36th Annual Meeting of the ACL, 17th International Conference on Computational Linguistics, pp. 414-420.
Gale, W. and Church, K., “A Program for Aligning Sentences in Bilingual Corpora,” 1991, 29th Annual Meeting of the ACL, pp. 177-183.
Germann, Ulrich: “Building a Statistical Machine Translation System from Scratch: How Much Bang for the Buck Can We Expect?” Proc. of the Data-Driven MT Workshop of ACL-01, Toulouse, France, 2001.
Germann et al., “Fast Decoding and Optimal Decoding for Machine Translation”, 2001, Proc. of the 39th Annual Meeting of the ACL, Toulouse, France, pp. 228-235.
Diab, Mona, “An Unsupervised Method for Multilingual Word Sense Tagging Using Parallel Corpora: A Preliminary Investigation”, 2000, SIGLEX Workshop on Word Senses and Multi-Linguality, pp. 1-9.
Grefenstette, Gregory, “The World Wide Web as a Resource for Example-Based Machine Translation Tasks”, 1999, Translating and the Computer 21, Proc. of the 21 st International Cant. on Translating and the Computer. London, UK, 12 pp.
Hatzivassiloglou, V. et al., “Unification-Based Glossing”,. 1995, Proc. of the International Joint Conference on Artificial Intelligence, pp. 1382-1389.
Ide, N. and Veronis, J., “Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art”, Mar. 1998, Computational Linguistics, vol. 24, Issue 1, pp. 2-40.
Imamura, Kenji, “Hierarchical Phrase Alignment Harmonized with Parsing”, 2001, in Proc. of NLPRS, Tokyo.
Jelinek, F., “Fast Sequential Decoding Algorithm Using a Stack”, Nov. 1969, IBM J. Res. Develop., vol. 13, No. 6, pp. 675-685.
Jones, K. Sparck, “Experiments in Relevance Weighting of Search Terms”, 1979, Information Processing & Management, vol. 15, Pergamon Press Ltd., UK, pp. 133-144.
Knight, K. and Yamada, K., “A Computational Approach to Deciphering Unknown Scripts,” 1999, Proc. of the ACL Workshop on Unsupervised Learning in Natural Language Processing.
Knight, K. and Al-Onaizan, Y., “A Primer on Finite-State Software for Natural Language Processing”, 1999 (available at http://www.isLedullicensed-sw/carmel).
Knight, Kevin, “A Statistical MT Tutorial Workbook,” 1999, JHU Summer Workshop (available at http://www.isLedu/natural-language/mUwkbk.rtf).
Knight, Kevin, “Automating Knowledge Acquisition for Machine Translation,” 1997, AI Magazine 18(4).
Rich, E. and Knight, K., “Artificial Intelligence, Second Edition,” 1991, McGraw-Hili Book Company [redacted].
Richard et al., “Visiting the Traveling Salesman Problem with Petri nets and application in the glass industry,” Feb. 1996, IEEE Emerging Technologies and Factory Automation, pp. 238-242.
Robin, Jacques, “Revision-Based Generation of Natural Language Summaries Providing Historical Background: Corpus-Based Analysis, Design Implementation and Evaluation,” 1994, Ph.D. Thesis, Columbia University, New York.
Sang, E. and Buchholz, S., “Introduction to the CoNLL-2000 Shared Task: Chunking,” 20002, Proc. of CoNLL-2000 and LLL-2000, Lisbon, Portugal, pp. 127-132.
Schmid, H., and Walde, S., “Robust German Noun Chunking With a Probabilistic Context-Free Grammar,” 2000, Proc. of the 18th Conference on Computational Linguistics, vol. 2, pp. 726-732.
Selman et al., “A New Method for Solving Hard Satisfiability Problems,” 1992, Proc. of the 10th National Conference on Artificial Intelligence, San Jose, CA, pp. 440-446.
Schutze,Hinrich, “Automatic Word Sense Discrimination,” 1998, Computational Linguistics, Special Issue on Word Sense Disambiguation, vol. 24, Issue 1, pp. 97-123.
Sobashima et al., “A Bidirectional Transfer-Driven Machine Translation System for Spoken Dialogues,” 1994, Proc. of 15th Conference on Computational Linguistics, vol. 1, pp. 64-68.
Shapiro, Stuart (ed.), “Encyclopedia of Artificial Intelligence, 2nd edition”, vol. D 2,1992, John Wiley & Sons Inc; “Unification” article, K. Knight, pp. 1630-1637.
Soricut et al., “Using a large monolingual corpus to improve translation accuracy,” 2002, Lecture Notes in Computer Science, vol. 2499, Proc. of the 5th Conference of the Association for Machine Translation in the Americas on Machine Translation: From Research to Real Users, pp. 155-164.
Stalls, B. and Knight, K., “Translating Names and Technical Terms in Arabic Text,” 1998, Proc. of the COLING/ACL Workkshop on Computational Approaches to Semitic Language.
Sun et al., “Chinese Named Entity Identification Using Class-based Language Model,” 2002, Proc. of 19th International Conference on Computational Linguistics, Taipei, Taiwan, vol. 1, pp. 1-7.
Sumita et al., “A Discourse Structure Analyzer for Japanese Text,” 1992, Proc. of the International Conference on Fifth Generation Computer Systems, vol. 2, pp. 1133-1140.
Taylor et al., “The Penn Treebank: An Overview,” in A. Abeill (ed.), D Treebanks: Building and Using Parsed Corpora, 2003, pp. 5-22.
Tiedemann, Jorg, “Automatic Construction of Weighted String Similarity Measures,” 1999, In Proceedings of the Joint SIGDAT Conference on Emperical Methods in Natural Language Processing and Very Large Corpora.
Tillmann et al., “A DP based Search Using Monotone Alignments in Statistical Translation,” 1997, Proc. of the Annual Meeting of the ACL, pp. 366-372.
Tillman, C. and Xia, F., “A Phrase-Based Unigram Model for Statistical Machine Translation,” 2003, Proc. of the North American Chapter of the ACL on Human Language Technology, vol. 2, pp. 106-108.
Veale, T. and Way, A., “Gaijin: A Bootstrapping, Template-Driven Approach to Example-Based MT,” 1997, Proc. of New Methods in Natural Language Processing (NEMPLP97), Sofia, Bulgaria.
Vogel, S. and Ney, H., “Construction of a Hierarchical Translation Memory,” 2000, Proc. of Cooling 2000, Saarbrucken, Germany, pp. 1131-1135.
Vogel et al., “The CMU Statistical Machine Translation System,” 2003, Machine Translation Summit IX, New Orleans, LA.
Vogel et al., “The Statistical Translation Module in the Verbmobil System,” 2000, Workshop on Multi-Lingual Speech Communication, pp. 69-74.
Wang, Ye-Yi, “Grammar Interference and Statistical Machine Translation,” 1998, Ph.D Thesis, Carnegie Mellon University, Pittsburgh, PA.
Watanbe et al., “Statistical Machine Translation Based on Hierarchical Phrase Alignment,” 2002, 9th International Conference on Theoretical and Methodological Issues in Machin Translation (TMI-2002), Keihanna, Japan, pp. 188-198.
Witbrock, M. and Mittal, V., “Ultra-Summarization: A Statistical Approach to Generating Highly Condensed Non-Extractive Summaries,” 1999, Proc. of SIGIR '99, 22nd International Conference on Research and Development in Information Retrieval, Berkeley, CA, pp. 315-316.
Wang, Y. and Waibel, A., “Decoding Algorithm in Statistical Machine Translation,” 1996, Proc. of the 35th Annual Meeting of the ACL, pp. 366-372.
Wu, Dekai, “Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora,” 1997, Computational Linguistics, vol. 23, Issue 3, pp. 377-403.
Wu, Dekai, “A Polynomial-Time Algorithm for Statistical Machine Translation,” 1996, Proc. of 34th Annual Meeting of the ACL, pp. 152-158.
Yamada, K. and Knight, K., “A Decoder for Syntax-based Statistical MT,” 2001, Proceedings of the 40th Annual Meeting of the ACL, pp. 303-310.
Yamada, K. and Knight, K. “A Syntax-based Statistical Translation Model,” D 2001, Proc. of the 39th Annual Meeting of the ACL, pp. 523-530.
Yamamoto et al., “A Comparative Study on Translation Units for Bilingual Lexicon Extraction,” 2001, Japan Academic Association for Copyright Clearance, Tokyo, Japan.
Yarowsky, David, “Unsupervised Word Sense Disambiguation Rivaling Supervised Methods,” 1995, 33rd Annual Meeting of the ACL, pp. 189-196.
Callan et al., “TREC and TIPSTER Experiments with Inquery,” 1994, Information Processing and Management, vol. 31, Issue 3, pp. 327-343.
Cohen, Yossi, “Interpreter for FUF,” (available at ftp:/lftp.cs.bgu.ac.il/ pUb/people/elhadad/fuf-life.lf).
Mohri, M. and Riley, M., “An Efficient Algorithm for the N-Best-Strings Problem,” 2002, Proc. of the 7th Int. Conf. on Spoken Language Processing (ICSLP'02), Denver, CO, pp. 1313-1316.
Nederhof, M. and Satta, G., “IDL-Expressions: A Formalism for Representing and Parsing Finite Languages in Natural Language Processing,” 2004, Journal of Artificial Intelligence Research, vol. 21, pp. 281-287.
Och, F. and Ney, H., “Discriminative Training and Maximum Entropy Models for Statistical Machine Translation,” 2002, Proc. of the 40th Annual Meeting of the ACL, Philadelphia, PA, pp. 295-302.
Resnik, P. and Smith, A., “The Web as a Parallel Corpus,” Sep. 2003, Computational Linguistics, Special Issue on Web as Corpus, vol. 29, Issue 3, pp. 349-380.
Russell, S. and Norvig, P., “Artificial Intelligence: A Modern Approach,” 1995, Prentice-Hall, Inc., New Jersey [redacted—table of contents].
Ueffing et al., “Generation of Word Graphs in Statistical Machine Translation,” 2002, Proc. of Empirical Methods in Natural Language Processing (EMNLP), pp. 156-163.
Kumar, R. and L1, H., “Integer Programming Approach to Printed Circuit Board Assembly Time Optimization,” 1995, IEEE Transactions on Components, Packaging, and Manufacturing, Part B: Advance Packaging, vol. 18, No. 4. pp. 720-727.
Yamada-K., “A Syntax-Basaed Statistical Translation Model,” 2002 PhD Disseration, pp. 1-141.
Al-Onaizan et al., “Translation with Scarce Resources,” 2000 Univ. of Southern Calif., pp. 1-7.
Imamura et al., “Feedback Cleaning of Machine Translation Rules Using Automatic Evaluation,” 2003 Computational Linguistics, pp. 447-454.
Lee-Y.S.,“Neural Network Approach to Adaptive Learning: with an Application to Chinese Homophone Disambiguation,” IEEE pp. 1521-1526.
Rayner et al.,“Hybrid Language Processing in the Spoken Language Translator,” IEEE, pp. 107-110.
Rogati et al., “Resource Selection for Domain-Specific Cross-Lingual IR,” ACM 2004, pp. 154-161.
Patent Cooperation Treaty International Preliminary Report on Patentability and The Written Opinion, International application No. PCT/US2008/004296, Oct. 6, 2009, 5 pgs.
Knight, K. and Chander, I., “Automated Postediting of Documents,”1994, Proc. of the 12th Conference on Artificial Intelligence, pp. 779-784.
Knight, K. and Luk, S., “Building a Large-Scale Knowledge Base for Machine Translation,” 1994, Proc. of the 12th Conference on Artificial Intelligence, pp. 773-778.
Knight, Kevin, “Connectionist Ideas and Algorithms,” Nov. 1990, Communications of the ACM, vol. 33, No. 11, pp. 59-74.
Knight, Kevin, “Decoding Complexity in Word-Replacement Translation Models”, 1999, Computational Linguistics, 25(4).
Knight et al., “Filling Knowledge Gaps in a Broad-Coverage Machine Translation System”, 1995, Proc. of the14th International Joint Conference on Artificial Intelligence, Montreal, Canada, vol. 2, pp. 1390-1396.
Knight, Kevin, “Integrating Knowledge Acquisition and Language Acquisition,” May 1992, Journal of Applied Intelligence, vol. 1, No. 4.
Knight et al., “Integrating Knowledge Bases and Statistics in MT,” 1994, Proc. of the Conference of the Association for Machine Translation in the Americas.
Knight, Kevin, “Learning Word Meanings by Instruction,”1996, Proc. of the D National Conference on Artificial Intelligence, vol. 1, pp. 447-454.
Knight, K. and Graehl, J., “Machine Transliteration”, 1997, Proc. of the ACL-97, Madrid, Spain.
Knight, K. et al., “Machine Transliteration of Names in Arabic Text,” 2002, Proc. of the ACL Workshop on Computational Approaches to Semitic Languages.
Knight, K. and Marcu, D., “Statistics-Based Summarization—Step One: Sentence Compression,” 2000, American Association for Artificial Intelligence Conference, pp. 703-710.
Knight, K. et al., “Translation with Finite-State Devices,” 1998, Proc. of the 3rd AMTA Conference, pp. 421-437.
Knight, K. and Hatzivassiloglou, V., “Two-Level, Many-Paths Generation,” D 1995, Proc. of the 33rd Annual Conference of the ACL, pp. 252-260.
Knight, Kevin, “Unification: A Multidisciplinary Survey,” 1989, ACM Computing Surveys, vol. 21, No. 1.
Koehn, P. and Knight, K., “ChunkMT: Statistical Machine Translation with Richer Linguistic Knowledge,” Apr. 2002, Information Sciences Institution.
Koehn, P. and Knight, K., “Estimating Word Translation Probabilities from Unrelated Monolingual Corpora Using the EM Algorithm,” 2000, Proc. of the 17th meeting of the AAAI.
Koehn, P. and Knight, K., “Knowledge Sources for Word-Level Translation Models,” 2001, Conference on Empirical Methods in Natural Language Processing.
Kurohashi, S. and Nagao, M., “Automatic Detection of Discourse Structure by Checking Surface Information in Sentences,” 1994, Proc. of COL-LING '94, vol. 2, pp. 1123-1127.
Langkilde-Geary, Irene, “An Empirical Verification of Coverage and Correctness for a General-Purpose Sentence Generator,” 1998, Proc. 2nd Int'l Natural Language Generation Conference.
Langkilde-Geary, Irene, “A Foundation for General-Purpose Natural Language Generation: Sentence Realization Using Probabilistic Models of Language,” 2002, Ph.D. Thesis, Faculty of the Graduate School, University of Southern California.
Langkilde, Irene, “Forest-Based Statistical Sentence Generation,” 2000, Proc. of the 1st Conference on North American chapter of the ACL, Seattle, WA, pp. 170-171.
Langkilde, I. and Knight, K., “The Practical Value of N-Grams in Generation,” 1998, Proc. of the 9th International Natural Language Generation Workshop, pp. 248-255.
Langkilde, I. and Knight, K., “Generation that Exploits Corpus-Based Statistical Knowledge,” 1998, Proc. of the COLING-ACL, pp. 704-710.
Mann, G. and Yarowsky, D., “Multipath Translation Lexicon Induction via Bridge Languages,” 2001, Proc. of the 2nd Conference of the North American Chapter of the ACL, Pittsburgh, PA, pp. 151-158.
Manning, C. and Schutze, H., “Foundations of Statistical Natural Language Processing,” 2000, The MIT Press, Cambridge, MA [redacted].
Marcu, D. and Wong, W., “A Phrase-Based, Joint Probability Model for Statistical Machine Translation,” 2002, Proc. of ACL-2 conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 133-139.
Marcu, Daniel, “Building Up Rhetorical Structure Trees,” 1996, Proc. of the National Conference on Artificial Intelligence and Innovative Applications of Artificial Intelligence Conference, vol. 2, pp. 1069-1074.
Marcu, Daniel, “Discourse trees are good indicators of importance in text,” 1999, Advances in Automatic Text Summarization, The MIT Press, Cambridge, MA.
Marcu, Daniel, “Instructions for Manually Annotating the Discourse Structures of Texts,” 1999, Discourse Annotation, pp. 1-49.
Marcu, Daniel, “The Rhetorical Parsing of Natural Language Texts,” 1997, Proceedings of ACLIEACL '97, pp. 96-103.
Marcu, Daniel, “The Rhetorical Parsing, Summarization, and Generation of Natural Language Texts,” 1997, Ph.D. Thesis, Graduate Department of Computer Science, University of Toronto.
Marcu, Daniel, “Towards a Unified Approach to Memory- and Statistical-Based Machine Translation,” 2001, Proc. of the 39th Annual Meeting of the ACL, pp. 378-385.
Melamed, I. Dan, “A Word-to-Word Model of Translational Equivalence,” 1997, Proc. of the 35th Annual Meeting of the ACL, Madrid, Spain, pp. 490-497.
Melamed, I. Dan, “Automatic Evaluation and Uniform Filter Cascades for Inducing N-Best Translation Lexicons,” 1995, Proc. of the 3rd Workshop on Very Large Corpora, Boston, MA, pp. 184-198.
Melamed, I. Dan, “Empirical Methods for Exploiting Parallel Texts,” 2001, MIT Press, Cambridge, MA [table of contents].
Meng et al.. “Generating Phonetic Cognates to Handle Named Entities in English-Chinese Cross-Language Spoken Document Retrieval,” 2001, IEEE Workshop on Automatic Speech Recognition and Understanding. pp. 311-314.
Milke et al., “A full-text retrieval system with a dynamic abstract generation function,” 1994, Proceedings of SI-GIR '94, pp. 152-161.
Mikheev et al., “Named Entity Recognition without Gazeteers,” 1999, Proc. of European Chapter of the ACL, Bergen, Norway, pp. 1-8.
Monasson et al., “Determining computational complexity from characteristic ‘phase transitions’,” Jul. 1999, Nature Magazine, vol. 400, pp. 133-137.
Mooney, Raymond, “Comparative Experiments on Disambiguating Word Senses: An Illustration of the Role of Bias in Machine Learning,” 1996, Proc. of the Conference on Empirical Methods in Natural Language Processing, pp. 82-91.
Niessen,S. and Ney, H, “Toward hierarchical models for statistical machine translation of inflected languages,” 2001, Data-Driven Machine Translation Workshop, Toulouse, France, pp. 47-54.
Och, F. and Ney, H, “Improved Statistical Alignment Models,” 2000, 38th Annual Meeting of the ACL, Hong Kong, pp. 440-447.
Och et al., “Improved Alignment Models for Statistical Machine Translation,” 1999, Proc. of the Joint Conf. of Empirical Methods in Natural Language Processing and Very Large Corpora, pp. 20-28.
Papineni et al., “Bleu: a Method for Automatic Evaluation of Machine Translation,” 2001, IBM Research Report, RC22176(WQ102-022).
Pla et al., “Tagging and Chunking with Bigrams,” 2000, Proc. of the 18th Conference on Computational Linguistics, vol. 2, pp. 614-620.
Rapp, Reinhard, Automatic Identification of Word Translations from Unrelated English and German Corpora, 1999, 37th Annual Meeting of the ACL, pp. 519-526.
Rapp, Reinhard, “Identifying Word Translations in Non-Parallel Texts,” 1995, 33rd Annual Meeting of the ACL, pp. 320-322.
Resnik, P. and Yarowsky, D. “A Perspective on Word Sense Disambiguation Methods and Their Evaluation,” 1997, Proceedings of SIGLEX '97, Washington, D.C., pp. 79-86.
Resnik, Philip, “Mining the Web for Bilingual Text,” 1999, 37th Annual Meeting of the ACL, College Park, MD, pp. 527-534.
Knight, Kevin, “Integrating Knowledge Acquisition and Language Acquisition”, May 1992, Journal of Applied Intelligence, vol. 1J, No. 4.
Tanaka, K. and Iwasaki, H. “Extraction of Lexical Translations from Non-Aligned Corpora,” Proceedings of COLING 1996 (NPL0187).
Taskar, B., et al., “A Discriminative Matching Approach to Word Alignment,” In Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing (Vancouver, BC, Canada, Oct. 6-8, 2005). Human Language Technology Conference. Assoc. for Computational Linguistics, Morristown, NJ. (NPL0189).
Tomas, J., “Binary Feature Classification for Word Disambiguation in Statistical Machine Translation,” Proceedings of the 2nd Int'l. Workshop on Pattern Recognition, 2002, pp. 1-12. (NPL0194).
Uchimoto, K. et al., “Word Translation by Combining Example-Based Methods and Machine Learning Models,” Natural LanguageProcessing (Shizen Gengo Shori), vol. 10, No. 3, Apr. 2003, pp. 87-114. (NPL0195).
Uchimoto, K. et al., “Word Translation by Combining Example-based Methods and Machine Learning Models,” Natural LanguageProcessing (Shizen Gengo Shori), vol. 10, No. 3, Apr. 2003, pp. 87-114. (English Translation) (NPL0196).
Varga et al., “Parallel Corpora for Medium Density Languages”, In Proceedings of RANLP 2005, pp. 590-596 (NPL0198).
Yamamoto et al, “Acquisition of Phrase-level Bilingual Correspondence using Dependency Structure” In Proceedings of COLING-2000, pp. 933-939 (NPL0214).
Zhang et al., “Synchronous Binarization for Machine Translations,” Jun. 4-9, 2006, in Proc. of the Human Language Technology Conference of the North American Chapter of the ACL, pp. 256-263. (NPL0217).
Zhang et al., “Distributed Language Modeling for N-best List Re-ranking,” In Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (Sydney, Australia, Jul. 22-23, 2006). ACL Workshops. Assoc. for Computational Linguistics, Morristown, NJ, 216-223. (NPL0218).
Koehn, P. et al, “Statistical Phrase-Based Translation,” Proceedings of HLT-NAACL 2003 Main Papers , pp. 48-54 Edmonton, May-Jun. 2003. (NPL0222).
Abney, S.P., “Stochastic Attribute Value Grammars”, Association for Computional Linguistics, 1997, pp. 597-618 (NPL0223).
Fox, H., “Phrasal Cohesion and Statistical Machine Translation” Proceedings of the Conference on Empirical Methods in Natural Language Processing, Philadelphia, Jul. 2002, pp. 304-311. Association for Computational Linguistics. <URL: http://acl.ldc.upenn.edu/W/W02/W02-1039.pdf> (NPL0224).
Tillman, C., et al, “Word Reordering and a Dynamic Programming Beam Search Algorithm for Statistical Machine Translation,” 2003, Association for Computational Linguistics, vol. 29, No. 1, pp. 97-133 <URL: http://acl.ldc.upenn.edu/J/J03/J03-1005.pdf> (NPL0225).
Wang, W., et al. “Capitalizing Machine Translation” In HLT-NAACL '06 Proceedings Jun. 2006. <http://www.isi.edu/natural-language/mt/hlt-naacl-06-wang.pdf> (NPL0226).
Langlais, P. et al., “TransType: a Computer-Aided Translation Typing System” EmbedMT '00 ANLP-NAACL 2000 Workshop: Embedded Machine Translation Systems, 2000, pp. 46-51. <http://acl.ldc.upenn.edu/W/W00/W00-0507.pdf> (NPL0227).
Agbago, A., et al., “True-casing for the Portage System,” In Recent Advances in Natural Language Processing (Borovets, Bulgaria), Sep. 21-23, 2005, pp. 21-24. (NPL0002).
Alshawi, Hiyan, “Head Automata for Speech Translation”, Proceedings of the ICSLP 96, 1996, Philadelphia, Pennslyvania. (NPL0011).
Ambati, V., “Dependency Structure Trees in Syntax Based Machine Translation,” Spring 2008 Report <http://www.cs.cmu.edu/˜vamshi/publications/DependencyMT—report.pdf>, pp. 1-8. (NPL0012).
Arun, A., et al., “Edinburgh System Description for the 2006 TC-STAR Spoken Language Translation Evaluation,” in TC-STAR Workshop on Speech-to-Speech Translation (Barcelona, Spain), Jun. 2006, pp. 37-41. (NPL0014).
Ballesteros, L. et al., “Phrasal Translation and Query Expansion Techniques for Cross-Language Information Retrieval,” SIGIR 97, Philadelphia, Pa, © 1997, pp. 84-91. (NPL0015).
“Bangalore, S. and Rambow, O., ““Using TAGs, a Tree Model, and a Language Model for Generation,”” May 2000,Workshop TAG+5, Paris. (NPL0017)”.
Bannard, C. and Callison-Burch, C., “Paraphrasing with Bilingual Parallel Corpora,” In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (Ann Arbor, MI, Jun. 25-30, 2005). Annual Meeting of the ACL Assoc. For Computational Linguistics, Morristown, NJ, 597-604. DOI=http://dx.doi.org/10.3115/1219840 (NPL0020).
Berhe, G. et al., “Modeling Service-based Multimedia Content Adaptation in Pervasive Computing,” CF '04 (Ischia, Italy) Apr. 14-16, 2004, pp. 60-69. (NPL0023).
Boitet, C. et al., “Main Research Issues in Building Web Services for Mutualized, Non-Commercial Translation,” Proc. of the 6th Symposium on Natural Language Processing, Human and Computer Processing of Language and Speech, © 2005, pp. 1-11. (NPL0025).
Brill, Eric, “Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part of Speech Tagging”, 1995, Assocation for Computational Linguistics, vol. 21, No. 4, pp. 1-37 (NPL0027).
Callison-Burch, C. et al., “Statistical Machine Translation with Word- and Sentence-aligned Parallel Corpora,” In Proceedings of the 42nd Meeting on Assoc. for Computational Linguistics (Barcelona, Spain, Jul. 21-26, 2004). Annual Meeting of the ACL. Assoc. for Computational Linguistics, Morristown, NJ, 1. (NPL0034).
Cheng, P. et al., “Creating Multilingual Translation Lexicons with Regional Variations Using Web Corpora,” In Proceedings of the 42nd Annual Meeting on Assoc. for Computational Linguistics (Barcelona, Spain, Jul. 21-26, 2004). Annual Meeting of the ACL. Assoc. for Computational Linguistics, Morristown, NJ, 53. (NPL0037).
Cheung et al., “Sentence Alignment in Parallel, Comparable, and Quasi-comparable Corpora”, In Proceedings of LREC, 2004, pp. 30-33 (NPL0038).
Cohen et al., “Spectral Bloom Filters,” SIGMOD 2003, Jun. 9-12, 2003, ACM pp. 241-252 (NPL0041).
Cohen, “Hardware-Assisted Algorithm for Full-text Large-Dictionary String Matching Using n-gram Hashing,” 1998, Information Processing and Management, vol. 34, No. 4, pp. 443-464. (NPL0042).
Covington, “An Algorithm to Align Words for Historical Comparison”, Computational Linguistics, 1996,vol. 22, No. 4, pp. 481-496 (NPL0045).
Eisner, Jason, “Learning Non-Isomorphic Tree Mappings for Machine Translation,” 2003, in Proc. of the 41st Meeting of the ACL, pp. 205-208. (NPL0050).
Fleming, Michael et al., “Mixed-Initiative Translation of Web Pages,” AMTA 2000, LNAI 1934, Springer-Verlag, Berlin, Germany, 2000, pp. 25-29. (NPL0057).
Och, Franz Josef and Ney, Hermann, “Improved Statistical Alignment Models” ACLOO:Proc. of the 38th Annual Meeting of the Association for Computational Lingustics, ′Online! Oct. 2-6, 2000, pp. 440-447, XP002279144 Hong Kong, China Retrieved from the Internet: <URL:http://www-i6.informatik.rwth-aachen.de/Colleagues/och/ACLOO.ps> retrieved on May 6, 2004! abstract (NPL0058).
Ren, Fuji and Shi, Hongchi, “Parallel Machine Translation: Principles and Practice,” Engineering of Complex Computer Systems, 2001 Proceedings, Seventh IEEE Int'l Conference, pp. 249-259, 2001. (NPL0059).
Fung et al, “Mining Very-Non-Parallel Corpora: Parallel Sentence and Lexicon Extraction via Bootstrapping and EM”, In EMNLP 2004 (NPL0060).
Gale, W. and Church, K., “A Program for Aligning Sentences in Bilingual Corpora,” 1993, Computational Linguisitcs, vol. 19, No. 1, pp. 75-102 (NPL0064).
Galley et al., “Scalable Inference and Training of Context-Rich Syntactic Translation Models,” Jul. 2006, in Proc. of the 21st International Conference on Computational Linguistics, pp. 961-968. (NPL0065).
Galley et al., “What's in a translation rule?”, 2004, in Proc. of HLT/NAACL '04, pp. 1-8. (NPL0066).
Gaussier et al, “A Geometric View on Bilingual Lexicon Extraction from Comparable Corpora”, In Proceedings of ACL 2004, July (NPL0067).
Gildea, D., “Loosely Tree-based Alignment for Machine Translation,” In Proceedings of the 41st Annual Meeting on Assoc. for Computational Linguistics—vol. 1 (Sapporo, Japan, Jul. 7-12, 2003). Annual Meeting of the ACL Assoc. for Computational Linguistics, Morristown, NJ, 80-87. DOI=http://dx.doi.org/10.3115/1075096.1075107. (NPL0070).
Grossi et al, “Suffix Trees and Their Applications in String Algorithms”, In. Proceedings of the 1st South American Workshop on String Processing, Sep. 1993, pp. 57-76 (NPL0072).
Gupta et al., “Kelips: Building an Efficient and Stable P2P DHT thorough Increased Memory and Background Overhead,” 2003 IPTPS, LNCS 2735, pp. 160-169. (NPL0073).
Habash, Nizar, “The Use of a Structural N-gram Language Model in Generation-Heavy Hybrid Machine Translation,” University of Maryland, Univ. Institute for Advance Computer Studies, Sep. 8, 2004. (NPL0074).
Huang et al., “Relabeling Syntax Trees to Improve Syntax-Based Machine Translation Quality,” Jun. 4-9, 2006, in Proc. of the Human Language Techology Conference of the North Americna Chapter of the ACL, pp. 240-247. (NPL0076).
Klein et al., “Accurate Unlexicalized Parsing,” Jul. 2003, In Proc. of the 41st Annual Meeting of the ACL, pp. 423-430. (NPL0087).
Koehn, Philipp, “Noun Phrase Translation,” A PhD Dissertation for the University of Southern California, pp. xiii, 23, 25-57, 72-81, Dec. 2003. (NPL0108).
Kupiec, Julian, “An Algorithm for Finding Noun Phrase Correspondences in Bilingual Corpora,” In Proceedings of the 31st Annual Meeting of the ACL, 1993, pp. 17-22. (NPL0113).
Lita, L., et al., “tRuEcasIng,” 2003, Proceedings of the 41st Annual Meeting of the Assoc. for Computational Linguistics (In Hinrichs, E. And Roth, D.—editors), pp. 152-159. (NPL0121).
Llitjos, A. F. et al., “The Translation Correction Tool: English-Spanish User Studies,” Citeseer © 2004, downloaded from: http://gs37.sp.cs.cmu.edu/ari/papers/Irec04/fontll, pp. 1-4. (NPL0122).
McCallum, A. and Li, W., “Early Results for Named Entity Recognition with Conditional Random Fields, Feature Induction and Web-enhanced Lexicons,” In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL, 2003, vol. 4 (Edmonton, Canada), Assoc. for Computational Linguistics, Morristown, NJ, pp. 188-191. (NPL0133).
McDevitt, K. et al., “Designing of a Community-based Translation Center,” Technical Report TR-03-30, Computer Science, Virginia Tech, © 2003, pp. 1-8. (NPL0134).
Metze, F. et al., “The NESPOLE! Speech-to-Speech Translation System,” Proc. of the HLT 2002, 2nd Int'l Conf. on Human Language Technology (San Francisco, CA), © 2002, pp. 378-383. (NPL0139).
Mohri, Mehryar, “Regular Approximation of Context Free Grammars Through Transformation”, 2000, pp. 251-261, “Robustness in Language and Speech Technology”, Chapter 9, Kluwer Academic Publishers. (NPL0143).
Nagao, K. et al., “Semantic Annotation and Transcoding: Making Web Content More Accessible,” IEEE Multimedia, vol. 8, Issue 2 Apr.-Jun. 2001, pp. 69-81. (NPL0146).
Norvig, Peter, “Techniques for Automatic Memoization with Applications to Context-Free Parsing”, Compuational Linguistics,1991, pp. 91-98, vol. 17, No. 1 (NPL0149).
Och et al. “A Smorgasbord of Features for Statistical Machine Translation.” HLTNAACL Conference. Mar. 2004, 8 pages. (NPL0151).
Och, F., “Minimum Error Rate Training in Statistical Machine Translation,” In Proceedings of the 41st Annual Meeting on Assoc. for Computational Linguistics—vol. 1 (Sapporo, Japan, Jul. 7-12, 2003). Annual Meeting of the ACL. Assoc. for Computational Linguistics, Morristown, NJ, 160-167. DOI= http://dx.doi.org/10.3115/1075096. (NPL0152).
Och, F. and Ney, H., “A Systematic Comparison of Various Statistical Alignment Models,” Computational Linguistics, 2003, 29:1, 19-51. (NPL0155).
Perugini, Saviero et al., “Enhancing Usability in CITIDEL: Multimodal, Multilingual and Interactive Visualization Interfaces,” JCDL '04, Tucson, AZ, Jun. 7-11, 2004, pp. 315-324. (NPL0158).
Petrov et al., “Learning Accurate, Compact and Interpretable Tree Annotation,” Jun. 4-9, 2006, in Proc. of the Human Language Technology Conference of the North American Chapter of the ACL, pp. 433-440. (NPL0159).
Qun, Liu, “A Chinese-English Machine Translation System Based on Micro-Engine Architecture,” An Int'l Conference on Translation and Information Technology, Hong Kong, Dec. 2000, pp. 1-10. (NPL0161).
Zhang, R. et al., “The NiCT-ATR Statistical Machine Translation System for the IWSLT 2006 Evaluation,” submitted to IWSLT, 2006. (NPL0173).
Kumar, S. and Byrne, W., “Minimum Bayes-Risk Decoding for Statistical Machine Translation.” HLTNAACL Conference. Mar. 2004, 8 pages. (NPL0179).
Shirai, S., “A Hybrid Rule and Example-based Method for Machine Translation,” 1997, NTT Communication Science Laboratories, pp. 1-5. (NPL0181).
Ueffing et al., “Using POS Information for Statistical Machine Translation into Morphologically Rich Languages,” In EACL, 2003: Proceedings of the Tenth Conference on European Chapter of the Association for Computational Linguistics, pp. 347-354.
Frederking et al., “Three Heads are Better Than One,” In Proceedings of the 4th Conference on Applied Natural Language Processing, Stuttgart, Germany, 1994, pp. 95-100.
Och et al., “Discriminative Training and Maximum Entropy Models for Statistical Machine Translation,” In Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, PA, 2002.
Yasuda et al., “Automatic Machine Translation Selection Scheme to Output the Best Result,” Proc. of LREC, 2002, pp. 525-528.
Papineni et al., “Bleu: a Method for Automatic Evaluation of Machine Translation”, Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Jul. 2002, pp. 311-318.
Shaalan et al., “Machine Translation of English Noun Phrases into Arabic”, (2004), vol. 17, No. 2, International Journal of Computer Processing of Oriental Languages, 14 pages.
Isahara et al., “Analysis, Generation and Semantic Representation in CONTRAST—A Context-Based Machine Translation System”, 1995, Systems and Computers in Japan, vol. 26, No. 14, pp. 37-53.
Proz.com, Rates for proofreading versus Translating, http://www.proz.com/forum/business—issues/202-rates—for—proofreading—versus—translating.html, Apr. 23, 2009, retrieved Jul. 13, 2012.
Celine, Volume discounts on large translation project, naked translations, http://www.nakedtranslations.com/en/2007/volume-discounts-on-large-translation-projects/, Aug. 1, 2007, retrieved Jul. 16, 2012.
Graehl, J and Knight, K, May 2004, Training Tree Transducers, In NAACL-HLT (2004), pp. 105-112.
Niessen et al, “Statistical machine translation with scarce resources using morphosyntactic information”, Jun. 2004, Computational Linguistics, vol. 30, issue 2, pp. 181-204.
Liu et al., “Context Discovery Using Attenuated Bloom Filters in Ad-Hoc Networks,” Springer, pp. 13-25, 2006.
First Office Action mailed Jun. 7, 2004 in Canadian Patent Application 2408819, filed May 11, 2001.
First Office Action mailed Jun. 14, 2007 in Canadian Patent Application 2475857, filed Mar. 11, 2003.
Office Action mailed Mar. 26, 2012 in German Patent Application 10392450.7, filed Mar. 28, 2003.
First Office Action mailed Nov. 5, 2008 in Canadian Patent Application 2408398, filed Mar. 27, 2003.
Second Office Action mailed Sep. 25, 2009 in Canadian Patent Application 2408398, filed Mar. 27, 2003.
First Office Action mailed Mar. 1, 2005 in European Patent Application No. 03716920.8, filed Mar. 27, 2003.
Second Office Action mailed Nov. 9, 2006 in European Patent Application No. 03716920.8, filed Mar. 27, 2003.
Third Office Action mailed Apr. 30, 2008 in European Patent Application No. 03716920.8, filed Mar. 27, 2003.
Office Action mailed Oct. 25, 2011 in Japanese Patent Application 2007-536911 filed Oct. 12, 2005.
Office Action mailed Jul. 24, 2012 in Japanese Patent Application 2007-536911 filed Oct. 12, 2005.
Final Office Action mailed Apr. 1, 2013 in Japanese Patent Application 2007-536911 filed Oct. 12, 2005.
Office Action mailed May 13, 2005 in Chinese Patent Application 1812317.1, filed May 11, 2001.
Office Action mailed Apr. 21, 2006 in Chinese Patent Application 1812317.1, filed May 11, 2001.
Office Action mailed Jul. 19, 2006 in Japanese Patent Application 2003-577155, filed Mar. 11, 2003.
Office Action mailed 2007 in Chinese Patent Application 3805749.2, filed Mar. 11, 2003.
Office Action mailed Feb. 27, 2007 in Japanese Patent Application 2002-590018, filed May 13, 2002.
Office Action mailed Jan. 26, 2007 in Chinese Patent Application 3807018.9, filed Mar. 27, 2003.
Office Action mailed Dec. 7, 2005 in Indian Patent Application 2283/DELNP/2004, filed Mar. 11, 2003.
Office Action mailed Mar. 31, 2009 in European Patent Application 3714080.3, filed Mar. 11, 2003.
Agichtein et al., “Snowball: Extracting Information from Large Plain-Text Collections,” ACM DL '00, the Fifth ACM Conference on Digital Libraries, Jun. 2, 2000, San Antonio, TX, USA.
Satake, Masaomi, “Anaphora Resolution for Named Entity Extraction in Japanese Newspaper Articles,” Master's Thesis [online], Feb. 15, 2002, School of Information Science, JAIST, Nomi, Ishikaw, Japan.
Office Action mailed Aug. 29, 2006 in Japanese Patent Application 2003-581064, filed Mar. 27, 2003.
Office Action mailed Jan. 26, 2007 in Chinese Patent Application 3807027.8, filed Mar. 28, 2003.
Office Action mailed Jul. 25, 2006 in Japanese Patent Application 2003-581063, filed Mar. 28, 2003.
Huang et al., “A syntax-directed translator with extended domain of locality,” Jun. 9, 2006, in Proceedings of the Workshop on Computationally Hard Problems and Joint Inference in Speech and Language Processing, pp. 1-8, New York City, New York, Association for Computational Linguistics.
Melamed et al., “Statistical machine translation by generalized parsing,” 2005, Technical Report 05-001, Proteus Project, New York University, http://nlp.cs.nyu.edu/pubs/.
Galley et al., “Scalable Inference and Training of Context-Rich Syntactic Translation Models,” Jul. 2006, In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pp. 961-968.
Huang et al., “Statistical syntax-directed translation with extended domain of locality,” Jun. 9, 2006, in Proceedings of AMTA, pp. 1-8.
Notice of Allowance mailed Dec. 10, 2013 in Japanese Patent Application 2007-536911, filed Oct. 12, 2005.
Huang et al. Automatic Extraction of Named Entity Translingual Equivalence Based on Multi-Feature Cost Minimization. In Proceedings of the ACL 2003 Workshop on Multilingual and Mixed-Language Name Entry Recognition.
Related Publications (1)
Number Date Country
20070250306 A1 Oct 2007 US
Provisional Applications (1)
Number Date Country
60790131 Apr 2006 US